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1 Introduction

Variational multiscale concepts for Large Eddy SimulatibkS) were introduced
in Hughes, Mazzei and Jansen [33]. The basic idea was to usdioaal pro-

jections in place of the traditional filtered equations aaddcus modeling on
the fine-scale equations. Avoidance of filters eliminatesyndifficulties associ-
ated with the traditional approach, namely, inhomogeneonscommutative filters
necessary for wall-bounded flows, use of complex filterechgjti@s in compress-
ible flows, etc. In addition, modeling confined to the finelsaquations retains



numerical consistency in the coarse-scale equations arsdpgrmits full rate-of-
convergence of the underlying numerical method in contnait the usual ap-
proach, which limits convergence rate due to artificial @ty effects in the fully
resolved scalesJ(h*/?) in the case of Smagorinsky-type models). Initial versions
of the variational multiscale method focused on dividirgpleed scales into coarse
and fine designations, and eddy viscosities, inspired ittomal models, were
only included in the fine scale equations, and acted only efirle scales. This ver-
sion was studied in Hughes al.[34], Hughes, Oberai and Mazzei [36], and Oberai
and Hughes [56], and found to work very well on homogeneaatsapic flows and
fully-developed equilibrium and non-equilibrium turbotechannel flows. Static
eddy viscosity models were employed in these studies bugrsrpresults were
subsequently obtained through the use of dynamic modetgpasted in Holmen
et al. [27] and Hughes, Wells, and Wray [41]. Good numerical resulére ob-
tained with the static approach by other investigators,etgiollis [18], Jeanmart
and Winckelmans [44], and Ramakrishnan and Collis [59], &amhnan and Col-
lis [61], Ramakrishnan and Collis [60], Ramakrishnan andli€{62]. Particular
mention should be made of the work of Farhat and Koobus [2@®],Koobus and
Farhat [48], who have implemented this procedure in an uastred mesh, finite
element/finite volume, compressible flow code, and apptiedry successfully to
a number of complex test cases and industrial flows. A vaduedliew with many
references to relevant literature may be found in Gravenj2iy. We believe that
this initial version of the variational multiscale concdyats already demonstrated
its viability and practical utility and is, at the very leasbmpetitive with traditional
LES turbulence modeling approaches. For a comprehensatient of multiscale
concepts in turbulence, see Sagaut, Deck and TerracolT&8}e has also been a
number of contributions to the literature in which stal@tiznumerical methods
have been used to model turbulence (see, e.g., Hoffman &am$do [26]). These
endeavors are somewhat different in philosophy than theeptecontribution.

Nevertheless, there is still significant room for improveinéhe use of traditional
eddy viscosities to represent fine-scale dissipation iaefficient mechanism. Em-
ploying an eddy viscosity in the resolved fine scales to greturbulent dissipa-
tion introduces a consistency error, which results in tlselkeed fine scales being
sacrificed to retain full consistency in the coarse scaleso(r opinion, this is
still better than the traditional approach in which coresisly in all resolved scales
is sacrificed to represent turbulent dissipation.) Thiscpdure is felt to be inef-
ficient because approximately 7/8 of the resolved scalesypreally ascribed to
the fine scales. Another shortcoming noted for the initiasia of the variational
multiscale method is too small an energy transfer to unvesbinodes when the
discretization is very coarse (see, e.g., Hughes, WellsVerad [41]). This phe-
nomenon is also noted for some traditional models, sucheadythamic Smagorin-
sky model, Hughes, Wells and Wray [41], but, by design, isemmonounced for
the multiscale version of the dynamic mod€he objectives of recent multiscale
work have been to capture all scales consistently and todawsé of eddy viscosi-
ties altogetherThis holds the promise of much more accurate and efficient LES



procedures. In this work, we describe a new variational iszdte formulation,
which makes considerable progress toward these goals. & felows, all re-
solved scales are viewed as coarse scales, which obviatafofementioned issue
of inefficiencyab initio.

We begin by taking the view that the decomposition into ceamsd fine scales
is exact. For example, in the spectral case, the coarse-spakte consists of all
Fourier modes beneath some cut-off wave number and thedale-space consists
of all remaining Fourier modes. Consequently, the coataéespace has finite di-
mension whereas the fine-scale space is infinite dimensidhalderivation of the
coarse- and fine-scale equations proceeds, first, by sutbsgithe split of the exact
solution into coarse and fine scales into the Navier-Stogaateons, then, second,
by projecting this equation into the coarse- and fine-saaltsigaces. The projec-
tion into coarse scales is a finite dimensional system foctlaese-scale component
of the solution, which depends parametrically on the firdescomponent. In the
spectral case, in addition to the usual terms involving theee-scale component,
only the cross-stress and Reynolds-stress terms invoévérib-scale component.
In the case of non-orthogonal bases, even the linear termesrigie to coupling
between coarse and fine scales. The coarse-scale compdagntip analogous
role to the filtered field in the classical approach, but hasatfvantage of avoiding
all problems associated with homogeneity, commutatiwigils, compressibility,
etc. The projection into fine scales is an infinite-dimenal@ystem for the fine-
scale component of the solution, which depends paramiyrarathe coarse-scale
component. We also assume the cut-off wave number is sultigirge that the
philosophy of LES is appropriate. For example, if there isedl\defined inertial
sub-range, then we assume the cut-off wave number residesadtere within it.
This assumption enables us to further assume that the energgnt in the fine
scales is small compared with the coarse scales. This turtn® de important in
our efforts to analytically represent the solution of theefgtale equations. The
strategy is to obtain approximate analytical expressiontk fine scales then sub-
stitute them into the coarse-scale equations which areyim solved numerically.
If the scale decomposition is performed in space and tineriy approximation
in the procedure is the representation of the fine-scaleisolulo provide a frame-
work for the fine-scale approximation, we assume an infindypbation series
expansion to treat the fine-scale nonlinear term in the fiadesequation. By virtue
of the smallness of the fine scales, this expansion is exppéateonverge rapidly
under the circumstances described in many cases of praotiesest. The remain-
ing part of the fine-scale Navier-Stokes system islithearizedoperator which is
formally inverted through the use of a matrix Green'’s fumetiThe combination
of a perturbation series and Green’s function provides acteiormal solution of
the fine-scale Navier-Stokes equations. The driving fonctése equations is the
Navier-Stokes system residual computed from the coarsessdanis expresses the
intuitively obvious fact that if the coarse scales constitigood approximation to
the solution of the problem, the coarse-scale residualbeilbmall and the result-
ing fine-scale solution will be small as well. This is the caseshave in mind and



it provides a rational basis for assuming the perturbateies converges rapidly.
Note that one cannot use such an argument on the originalgondieecause in this
case the perturbation series would almost definitely faddoverge. (If we could
have used this argument, we would have solved the NavideStequations an-
alytically! Unfortunately, it does not work.) The formallation of the fine-scale
eguations suggests various approximations may be empioywdctical problem
solving. We are tempted to use the word “modeling” becaupecjmate analyt-
ical representations of the fine scales constitute the gpyaimation and hence
may be thought of as the “modeling” component of the prespptaach but we
want to emphasize that it is very different from classicatelong ideas which are
dominated by thexddition of ad hoceddy viscosities. We will present numerical
results that demonstrate these eddy-viscosity terms arecessary in the present
circumstances. There are two aspects to the approximdtthe tine scales: 1) Ap-
proximation of the matrix Green’s function for the lineawzNavier-Stokes system;
and 2) approximation of the nonlinearities representechieyperturbation series.
The first and obvious thought for the latter aspect, nontityeas to simply trun-
cate the perturbation series. This idea is investigatedeiisas another promising
idea, in conjunction with some simple approximations of @reen’s function. It
turns out there is considerable experience in local scapmoximations of the
Green’s function based on the theory of stabilized methagshids [28], Hughest
al. [31], Hughes, Scovazzi and Franca [39]. These ideas dersgration from the
asymptotic approaches of Barenblatt [2]. The Green’s fangs typically approx-
imated by locally defined algebraic operators (i.e., the™of stabilized methods)
multiplied by local values of the coarse-scale residuathwhis approximation of
the solution of the linearized operator, nonlinearities lba easily accounted for in
perturbation series fashion.

The remainder of the paper is summarized as follows: In 8e&iwe present the
mathematical details of the variational multiscale thesegcribed previously. This
represents our general approach to LES-style turbulenclng and is indepen-
dent of the specifics of the discrete spaces utilized to sgtethe coarse scales.
In Section 3, we present ideas supporting the use of simpialing arguments
to represent the fine scales. In Section 4, we describe thernegntational aspects
of the procedures used herein and the details of the fine-apgroximation. The
relationship between this version of the variational nsgkie method and classical
stabilized methods is delineated. The variational mutsenethod includes addi-
tional terms. Both conceptually and from the point of viewacfual implementa-
tion, stabilized methods may be viewed as historical stegppiones leading to the
more coherent variational multiscale formulation. In 8&tb, the time integration
techniques are presented. In Section 6, we present our raanstudies of forced
isotropic turbulence aRe), = 165 and Re, = oco. (Re, is the Taylor microscale
Reynolds number.) We begin in Section 6.1 with a descripbibtihe approxima-
tion spaces consisting of NURBS elements (non-unifornonati B-splines, see,
e.g., Rogers [63], Piegl and Tiller [57], Farin [21], and @ahRiesenfeld and El-
ber [17]). In the case of the rectilinear geometry consideMURBS reduce to



B-splines, which have been advocated for turbulence cations previously (see
Kravchenko, Moin and Moser [49], Shariff and Moser [68], #thenko, Moin
and Shariff [50], and Kwok, Moser and Jiménez [51]). We esgptivariate linear,
guadratic, and cubic NURBS with periodic boundary condgioLinear trivari-
ate NURBS turn out to be identical to trilinear hexahedratdielements, but the
higher-order NURBS are different than classical higheteorfinite elements. In
Section 6.2, we perform a dispersion error analysis for NSRBrsus classical
finite elements on simple, linear, one-dimensional adveaid diffusive model
problems, and conclude that NURBS have better approximadioperties than
classical finite elements. In Section 6.3, we describe theweaforce the turbu-
lence and in Section 6.4 we present the results of our nualeraculations. We
employ meshes df2?, 643, 1283, and2563 to explore convergence with mesh re-
finement (-convergence) and we examine the behavior of increasingr drdm
linear to cubic on fixed mesheg-€onvergence). In the case &k, = 165, we
compare with the DNS spectral results of Langford and Mds2}. Energy spectra
and third-order structure functions are presented. Owsassent is that the results
are very good for all cases. In the casefaf, = oo we can clearly see the devel-
opment of an inertial subrange. In Section 7 we presenttsefarl turbulent chan-
nel flows atRe, = 395. (Re, is the wall-friction Reynolds number.) We employ
meshes 0B2% and643. This time the mesh is graded in the wall-normal direction
to better capture the boundary layer. Again, we considevergence from thé-
andk-refinement perspectives. A striking result is how muchdsequadratic ele-
ments are than linear elements. For a mesbudf the quadratic and cubic results
are essentially identical to the DNS results of Moser, Kird dansour [55] for
first- and second-order statistics, and for a mest2dthey are in close agreement.
Conclusions are drawn in Section 8.

2 Variational multiscale formulation of the incompressible Navier-Stokes equa-
tions.

In this section we describe our turbulence modeling theory.

2.1 Incompressible Navier-Stokes equations

We consider a space-time dom&n= Qx]0, T'[C R? x R with lateral boundary
P =I'x]0, T, asillustrated in the left-hand side of Figure 1. The itfiti@undary-
value problem consists of solving the following equatioosd : Q — R?, the

velocity, andp : Q — R, the pressure (divided by the constant density),
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Fig. 1. Space-time domain (left) and slicing into spaceetstabs (right).

%—?+V~(u®u)+Vp:VAu+f inQ (1)
V- -u=0 inQ 2)

u=0 onP 3)

w(07) = u(07) on{ (4)

wheref : Q — R?is the given body force (per unit volume)js the kinematic vis-
cosity, assumed positive and constan)~) : Q — R< is the given initial velocity;
and® denotes the tensor product (e.g., in component nota{m@,v]ij = uv;).

Equations (1)—(4) are, respectively, the linear momentalarize, the incompress-
ibility constraint, the no-slip boundary condition and thiial condition.

2.1.1 Global space-time variational formulation

LetV = V(Q) denote both the trial solution and weighting function sgaaéich
are assumed to be identical. We assuihe- {u,p} € V impliesu = 0 onP and
Jop(t)dQ = 0forallt € )0, T]. Let(-, ), denote the.? inner product with respect



to the domainw. The variational formulation is stated as follows:

FindU € V such thatVW = {w, ¢} € V:

B(W,U) = By(W,U) + By(W,U,U) = L(W) 5)

with
ow
B(W,U)=(w(T ),u(T ) — | =—,u
W.0) = ()t~ ()

+ (¢, V-u)q— (V- w,p)qg + (Vw,2vViu), (6)

By(W.U.V) = — (Vw,u®v)g @)

L(W) = (w, f)q + (w(07),u(07))e (8)

whereV = {v,-} andV?iu = (Vu + (Vu)T) /2. Note thatB, (-, -) is a bilinear
formandB,(-, -, -) is a trilinear form. Assuming sufficient regularity and igtating
by parts, we obtain the Euler-Lagrange form of (5)-(8):

0= <w,aa—?+v-(u®u)+Vp—V-2l/Vsu—f> + (¢, V - u)q
Q

+ (w(07), u(07) — u(07))a (9)

which reveals that the variational formulation impliessfaction of the momentum
equations, incompressibility constraint, and initial dition. The velocity bound-
ary condition is built into the definition of the spa¥eln summary, the variational
formulation is equivalent to (1)-(4).

2.1.2 Sliced space-time variational formulation

Consider aslicing of space-time obtained by replacit@ 7'[ by |t,, t,s1[, n =
0,1,2,..., N, and summing over the space-tislabsQ,, (see Fig. 1). The coun-



terparts of (5)—(9) for a typical slab are:

B<W> U)n = BI<W7 U)n + BQ<W7 Uv U)n = L(W)n (10)
0
BAW.0), = (wlty) o — ()
Qn

+ (¢, V-ulg, = (V-w,pla, + (V'w,20Viu)q
(11)
By(W,U, V), = — (Vw,u®v)qg. (12)
L(W), = (w, fa, + (w(ty), u(t,))e (13)

0= <w,8—u+V-(u®u)+Vp—V-2uVSu—f>

ot a

+(q. V- u)g, + (wty), ulty) —u(t,))o (14)

where, in (10)-(14)U = {u,p} andW = {w, ¢} belong toV, = V(Q,), the
restriction ofV to Q,,. From the Euler-Lagrange form of the equation, (14), we see
that the momentum equation and incompressibility constiaie satisfied on the
slab, and the solution is continuous across slab interfddesformulation in terms

of space-time slabs exploits the causal nature of the N&ti@kes equations and
reduces the overall problem to a succession of initial/blamyvalue problems on
the slabs. The solution is obtained solving the variati@tplation on each slab
successivelyp = 0,1,2,..., N. We emphasize that this is axactformulation,
entirely equivalent to (5)—(9), and (1)—(4). However, iisnore suitable starting
point for the development of numerical schemes.

Remark

In order to simplify notation in the sequel, we will work withe global form of the
variational equation. However, all results are equallyliapple to the variational
equations of the individual space-time slabs.

2.2 Scale separation

We consider a direct-sum decompositionbinto “coarse-scale” and “fine-scale”
subspaces; and)”, respectively,

V=VaoV (15)

V is assumed to be a finite-dimensional space and it will betifieahlater with the
space of functions with which we actually compute. In orademiake the decom-
position well-defined, we need to introduce a procedure foquely determining
U € VandU’ € V' from a givenU € V. This can be accomplished with the aid
of a projectorP : V¥ — V. For exampleP could be thel.2-projector,H *-projector,



etc. There are infinitely many possibilitiésOnceP is selected, we know how the
coarse scales approximate all scales, viz.,

U =PU (16)
U=U-PU=~1-PU (17)

wherel is the identity operator. Likewise, we can decompose a wigighunction
into its coarse- and fine-scale components:

W =PW (18)
W =W —PW = (1 -P)W (19)

With these, we may decompose the original variational ega@tto coupled coarse-
scale and fine-scale equations, viz.,

B(W,U +U') = L(W) (20)
B(W' U +U')=L(W') (21)
where
BW,U +U') = By(W,U) + B, (W,U’)
+ BQ(Wv Ua U)
+ Bo(W,U,U’) + Bo(W,U’,U)
+ B,(W, U, U") (22)
BWW' .U +U') = B/(W' U) + B, (W', U")
+ Bo,(W',U,U)
+ Bo(W', U, U") + Bo(W', U, U)
+ B, (W', U, U (23)

In (22), Bo(W,U,U’) and Bo(W,U’,U) correspond to the cross-stress terms,
andBo(W,U’, U") corresponds to the Reynolds stress term. Equation (21)ean b
expressed as

Bﬁ(W’, U/) + BQ(W/, U/, U/) = <W/, Res (U))V/’y/* (24)

> The wayU is determined fronU is a very important issue, and it has very significant
impact on the theory to be developed. An initiatory studyypidal projectors is presented
in Hughes and Sangalli [37]. Not only can one envision an itgfinumber of possible pro-
jectors, but one can also envision an infinite number of neali optimization schemes that
“fit” U to U. In some applications nonlinear schemes will surely be imao, an exam-
ple being compressible turbulence with shocks where moioty is important. However,
for incompressible turbulence, we feel linear projectsissh as theZ '-projector, should
suffice. (See Hughes and Oberai [35] for an application offfigrojector in turbulence.)

10



where

Bz(W' U") = By (W' ,.U")
+ By(W',U'",U) + B,(W',U,U") (25)

<W/7 ReS(U»V’,V’* = L(W/) - Bl(W/vU) - BZ(W/vﬁv U) (26)

in which Res(U) is the coarse-scale residual “lifted” to the dual of the ficale
spaceV’™, (-, ) is the duality pairing, and

V’,V/*

By (-, U") = (d%B(-,UJraU’)) (27)
e=0

the linearization of3(-, U + U’) aboutU in the directionlV’. Note that the solution
of (24) can be formally represented as a functiond/aindRes (U ), namely,

U' = F'(U,Res(U)) (28)

The explicit dependence di in the first argument of” emanates from the de-
pendence of the linearized operaféy onU. This expression can be inserted into
(20) to “close” the finite-dimensional system fbr,

B(W,U + F'(U,Res(U))) = L(W) (29)

(28) and (29) can be thought of in global terms or in terms @quence of space-
time slabs. In both cases, they represent a procedure fangdhe Navier-Stokes
equations in terms of a scale decomposition of the solutanfar we have not
discussed approximations or numerics. The solutioa U + U’, whereU is de-
termined by solving (29) anti’ is determined frontJ through (28), is thexactso-
lution of the original variational problem, (20)-(21), ai)-(4), the Navier-Stokes
initial/boundary-value problem.

Our plan for turbulence modeling is to systematicapproximatethe functional
F’. This will provide us with a parameterization of the fine ssain terms of the
coarse scales, which can be substituted in the coarse-agadgion, “closing” it.
The finite-dimensional coarse-scale equation can then lvedsdn this way we
obtain an approximate coarse-scale solution and an egtim@tthe fine scales. In
summary, our variational multiscale theory of turbulenasdeling is encapsulated
in the following equations:

— — = -

U = F(U,Res(U)) (30)

B(W.,U + F (U,Res(U)) = L(W) (31)

11



where F is an approximation of the exact function&l, and U’ andT are the
approximations olJ’ and U, respectively. The concept underlying the model is
illustrated in Figure 2. We also note that (30) constitutea @osterioriestimation

Represented scales Subgrid scales
NO Vg
14
0 k k' — oo
U = F (U,Res(T)) Solve analytically

Fig. 2. The variational multiscale turbulence modelingotlyels schematically illustrated.
The fine, or “subgrid” scales are solved for analytically antstituted into the coarse-scale
equation. The coarse scales are the represented scaleslaulaton. Note that there is no
ad hoceddy viscosity model introduced.

of theerror in the coarse-scale solution (see Huggeal. [31], Hughes, Scovazzi
and Franca [39] and Hauke, Doweidar and Miana [24, 25]).

Remarks

(1) (31) may be thought of as playing a similar role in the aonal multiscale
theory as the filtered equations play in traditional turbaemodeling. Dis-
tinguishing features are (31) is finite-dimensional angeth in contrast with
the filtered equations.

(2) Intuitively, the “better” the fine-scale approximatjdhe smaller the dimen-
sion of the coarse-scale space required, and consequbatbmaller the com-
putational effort. It is also possible to envision a hiehgrof approximations
that produce variational multiscale analogues of tradéldurbulence mod-
eling concepts, such as large eddy simulation (LES), dethelldy simula-
tion (DES), the Reynolds averaged Navier-Stokes (RANS)aah, etc. LES
represents the turbulence modeling methodology requthiagreatest com-
putational burden, but perhaps the least complex moddimtipe following
sections we will endeavor to develop a variational mullseaalogue of LES
within the theoretical framework of (30) and (31).

(3) Itis very important to emphasize that in practice we wairectly with (31),

a finite-dimensional system, and we consider the solutiq@b¥, U, our ap-
proximation toU, and in turn our approximation t&/. Recall, by design of
P, U is an approximation t@/. We do not need to solve for the fine scales
and because of this (30) is completely extraneous, unlessigleto use it

to estimate the error in the coarse scales. That being saiyi also be in-

teresting to considel/ + U’ as an alternative approximation &@. It will
of course be necessary to assume that the coarse-scaleisgatkciently

12



large for the philosophy of LES to be appropriate. That ishére is a well-
defined inertial sub-range, then we assume the cut-off egtwee coarse- and
fine-scale spaces resides somewhere within it. This assumgatables us to
further assume that the energy content in the fine scalesall sompared
with the coarse scales, an aspect of considerable impertarattempting to
analytically determine the solution of the fine-scale eigunat

2.3 Perturbation series

It seems reasonable to assume that the larger the 3habe better the approxi-
mation of U to U, and the smaller the coarse-scale resi®Red(U) € V'*. We
further assume that Res(U) = 0, thenF’'(U, 0) = 0, and ifRes(U) is “small,”
thenU’ will likewise be “small.”® These assumptions suggest a perturbation series
expansion of the form:

U' =cU, +Uy+ UL +...= > "U, (32)
k=1

wherees = HRes (U)Hw' Let us rewrite (24) in terms of the proposed expansion:

b (W' 320, ) + B (W UL Y 0L ) — oW R (39
k=1 k=1 k=1

Where('v > = <'7 '>V’,V’*s and

o Res(U)

D = e (34)
v/
Notice that, by linearity,
B (W3 0L ) = Xt (W07 35)
k=1 k=1

6 These assumptions seem physically reasonable, but rigonathematical justification
may be difficult to obtain. The existence of nontrivial, urded weak solutions of the Eu-
ler equations, compact in space and time, underscores ttieematical difficulties of the
Navier-Stokes equations at large Reynolds numbers (s¢ke [69

13



while the second term requires further consideration. Vy&aed it as follows:

By (W', eU| + U+ UG+ ... eU + 22U + UL + .. )
=By, (W', U}, U))

+ &3 [By (W' U, UY) + By (W', U, UY))

+ &4 [By (W, U, UY) + By (W U, UY) + By (W U3, U

+ ... (36)

A recurrence formula can be easily deduced, by groupindicaafts of the powers
of e:

e2 — By (W, U, U")
3 — By (W', U\, U}) + By (W', U, U,)
et = By (W', U, U}) + By (W UL UY) + By (W, UL U

b — + + +

Hence:

0o 00 00 k—1
B, (W’, Sy, Zéﬂ) = szk > By (W’, U, U;_j) (37)
= 1=

k=1 k=1

The full expansion of the equation can be compactly writen a

[e9) 9] k—1
Z ¥ By (W', U,) + Z £ Z By (W/7 U;w ;c—j) =e(W',R(U)) (39)
k=1 k=2  j=1

Equating like coefficients, we obtain a sequence of linedatianal problems cou-
pled through their right-hand sides:

Fork=1 By (W' U}) = (W' RT)vy- (39)
k—1
Fork>2 Bz (W'.U})=-Y B, (WU, U} ) (40)
j=1
The bilinear operatoBz (-, -) is the same for all the problems in the cascade, and

can be formally inverted through a Green’s operator. Thee@seoperator concept
can be introduced in an abstract sense througisalventoperator:

G=()=G'U,): V*=V (41)
F()— V' (42)

such that
Bz(W'. V') = F(W") (43)
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If a sequence of operatofs; : V' — R (i.e., F; € V™) is defined as:

Fork=1 F(W')=F(W;RTD))

— (W' ,R(O))yr - (44)
Fork >2 F.(W')=F.W,U,,...,.U;_,)
k—1
= -3 B, (W' U}, U, )) (45)

j=1
then it is possible to reformulate the sequence of probl&as-(40) as:
U, =Gy(Fr) = G (U, Fp), k=1,2,... (46)

Notice that in the cascade of problems (39)—(40) (or, edemtty, (44)—(45), or
(46)) the levelk term in the expansion depends on terms on the right-hand side
which involve the coarse-scale residual and terms in thamsipn from level to
k—1.

Upon substituting thé/}’s into the series (32), the powers of= HRes(U)HV
cancel out. If the series converges, it represents an eghttan to the fine-scale
equation, and then (31) gives the exact solution of the eestale equation. In
other words, given the validity of the assumptions, the egalution of the original
Navier-Stokes system is obtained. In order to determinexhet solutions of each
of the linear problems in the cascade, we need the exact GigegratorGL. This
is anon-classicalGreen’s operator, referred to as the “fine-scale Green’satmeg’
that in turn depends on thiassicalGreen’s operator and the selected proje&tor
(see Hughes and Sangalli [37]):

G = G - GP'(PGP")"'PG, (47)
whereP" is the adjoint ofP. Note that the orthogonality properties

PG’ =0 (48)

GP =0 (49)

immediately follow from (47). In Hughes and Sangalli [37as shown, in the
context of finite element approximations of the advectidfugion equation, for
the advection-dominated case, that the projector basethe }-inner product
(termed the Dirichlet projector in Hughes and Oberai [3%P)duced a highlyo-
calizedfine-scale Green’s operator, despite the classical Gregrgsator being
highly nonlocal In fact, for the one-dimensional case, the support of the dicale
Green’s operator was confined to individual elements, aatetivas no coupling
between elements. It is important to realize that this issngéneral feature of the
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fine-scale Green'’s operator, but one that depends crucialtite particular projec-
tor. For example, the fine-scale Green’s operator produgélldd.>-projector was
nonlocal in all cases.

Exact determination of the Green’s function is not possiole neither is summing
an infinite number of terms in the perturbation series. Cguestly, two approxi-
mations are necessary in order to develop a practical salsttheme:

(1) Approximation of the fine-scale Green’s operator for linearized Navier-
—~/
Stokes systenGy ~ Gy.
(2) Approximation of the nonlinearities by truncation oétperturbation series.

Once these approximations are made precise, we have deftngaléence model
of the form (31). This will be discussed in the next section.

Remark

It needs to be emphasized that the pathway to an approximdtelénce model
identified by the above assumptions is not the only possipbbut it does seem a
viable candidate for LES-type modeling within the variaabmultiscale method.
Clearly, a more direct attack on the fully nonlinear finels@quation, rather than
the perturbation series approach, might seem an even mapéipus approach. In
either case, our theoretical framework for turbulence nmngeemains (30) and
(32).

3 Approximating the fine-scale Green’s operator

A study of the fine-scale Green’s operator for the lineagdgeadvection-diffusion
equation was performed in Hughes and Sangalli [37], in wlainhexplicit for-
mula was derived in terms of the classical Green’s operatdraaprojector onto
the coarse-scale space, given here by (47). It was showmlifferent projectors
yielded very different locality properties of the fine-s=@reen’s operator. Thé; -
projector produced a highly localized Green’s operatorenehs the.?-projector
exhibited more global support. Locality is a very desirgiieperty because it sug-
gests local approximation, a significant simplificatiomfrthe practical viewpoint.
It has been known for some time that stabilization operatepsesent local ap-
proximations to fine-scale Green’s operators (see HugtgsBeezziet al. [10],
Hugheset al. [31] and Hughes and Sangalli [37]) and this also suggeststtiea
product of stabilization operators and coarse-scale uatsdvould represent very
simple but potentially effective representations of ficals fields. (A more pre-
cise justification of this idea for simple model problems wag&n in Hughes and
Sangalli [37].)

So far, for the most part, effort devoted to calculating foale Green’s opera-
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tors has utilized an analytical approach. This can only exebed rigorously in
the simplest circumstances (see Hughes [28], Bretzal. [10], Hugheset al. [31]
and Hughes and Sangalli [37]), but provides valuable irtsagll serves as a basis
for comparing with approximate and more practically usgiucedures. Given a
fine-scale basis, and the variational equation for the foadesfield, the fine-scale
Green’s operator can be computed (see Hughak [31]). However, heretofore no
practical success has been attained with this approacligetae functions used
to represent the fine-scale basis, typically low-order poiyials, have not been
able to faithfully describe advection-dominated asynipto¢havior, of paramount
importance in high Reynolds and Péclet number applicati®ecently, progress
has been made by two of us (J.A. Cottrell and T.J.R. Hughe!®ing the dis-
continuous variational multiscale method (see Huges. [38], Bochev, Hughes,
and Scovazzi [9] and Buffa, Hughes and Sangalli [13]). Tlppraach provides
considerable generality and enables fine-scales fields ¢albelated numerically,
accounting for nonlinearity, and time dependence. We beliewill represent an
important step forward in better representing fine-scalddjeresulting in more
accurate turbulence modeling procedures, and we hope ¢otr@p it in the near
future.

In the present work we are content to work on the most simplebasic end of the
approximation spectrum. The idea is to compute elemeng-gibilization opera-
tors, denoted-, and calculate the fine-scale field as the produet ahd the local
coarse-scale residual,

U ~ —7Res(U) (50)
Note thatT is matrix-valued in our case, specifically, ¢ R***, and it can be
computed from the formula for the fine-scale Green’s opetat@ssuming it takes
the form ofr times a Dirac distribution in each element. The result tngues is
thatr is the element mean value of the fine-scale Green'’s opehatibre case of a
space-time elemen®¢, we have (see [40])

T

1 o
@ = 1 Jo Jor Gt 19 4QAQ (51)

Note thatr is a function ofU. This formula has been used to determine precise
values ofr for simple cases, primarily in the steady case, but, moendftan not,
well-established asymptotic scaling arguments have bsed to directly calculate

7 in more complex circumstances. There are a number of refeseio this begin-
ning with some of the earliest works on stabilized methode,(g.g., Brooks and
Hughes [12], Shakib, Hughes and Johan [67], Tezduyar [78fhds, Scovazzi
and Franca [39], Scovazzi [66], Calo [14] and Bazilevs [3]is is the approach
adopted here and the precise formula utilized is given imthe section.

Once we have a formula such as (50) we can construct the petitgrbation series
approximation, as shown in Scovazzi [66] and Calo [14]. Heevein the present
work, keeping with the theme of simplicity, we will truncétee series at the first
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term, namely, (50).

Having described the simple path chosen in this work, we db g emphasize that
we view it as extremely important to investigate rich posgisies within our theo-
retical framework of the fine-scale problem. We believe thit lead to practical
and theoretical benefits.

4 Implementation

The space-time formulation of Section 2 is very general arstiggestive of a wide

variety of interpretations. For fixed spatial domains seliscrete formulations are

very economical (see, e.g., Betiral. [8]), and this is what is employed herein. In
place of (20) and (22), we have, respectively,

LMW™h) (52)
BN W™" UM + BY(W", U" U") + BH(W", U")

B"W" U"+ U’
B"wWh" U+ U’

)=
)
(
(W

+ Bl Wh,U U+ BywWh U, U (Cross stress)
+ BYW" U, U (Reynolds stress) (53)
where
LW = (w" ) (54)
h
BY(W" U") = (w", — )Q —(V-w",p")o
+ (V" zuvs "o+ (¢",V - uM)q, (55)
B{(W"U') = —(V-w",p)a - (V¢",u)o (56)
By(W", V,U) = —(Vw", v @ u)g (57)

andU" = {u" p"} andW" = {w", ¢"} have replaced/ and W, respectively,
and U’ remains the same. Thie-superscript denotes a mesh parameter. In this
formulation, time is continuous at this stage. (52) is aiedi by integrating by
parts and invoking the following assumptions: %Zi =0;2)u = 0onT;

and 3)(Viw", 2vV*u’')q = 0. The last assumption follows from the orthogonality
conditions induced by the projector emanating from thebdrr form describing the
viscous term (see Bazilevs [3], Hughes and Oberai [35] anghidsi and Sangalli
[37]).

4.1 Fine-scale approximation

We assume thd® is partitioned into a set of subdomains, such as finite elésnen
or NURBS elements, and on this partition we have a finite dsiweral space of
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functions, with local support, that is our approximatiorasp defininglU’" and
W" Letx = {z;}?_,, denote the coordinates of elemdiitin physical space,
and let¢ = {&;}2_,, denote the coordinates of elemétitin parametric space. Let
x=ux(&): K — K be a continuously differentiable mapping with a continugus
differentiable inverse. We now provide a detailed expas$or the fine-scale ap-
proximation appearing in equation (50) for a typical elemen

In the present notation,

—~ ’ZL/
U~U = { i } — —7Res(U") (58)
where
I3,50
S TMA3x3 Us (59)
Og TC
h ooh
Res(Uh) — ") (60)
ro(uh)
h . h du" h h h h
ra(al,p) = Sl vl + Oy - vt — f (61)
ro(u") =V - u” (62)
™ = (Ait2 +u" Gu" 4+ C2G : G) M2 (63)
c=(mmg-g)"" (64)
2. O 0,
Gii = —r (65)
J ];[ al'l 81']'
3

h,j=1
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andAt is the time step size and; is a positive constant, independent of the mesh

3 agﬂ
J_
3
g-9=> 99 (69)

i=1

size, derived from an element-wise inverse estimate (sge,Johnson [45]). For
a cube-shaped element, witlthe edge lengthG;; = %6“-, whered;; is the Kro-
necker delta (i.eq;; = 1, if « = j, and is zero otherwise).

Ty IS designed by asymptotic scaling arguments (see BarerjBlatdeveloped
within the theory of stabilized methods (see, e.g., Hughes Mallet [32] and
Shakib, Hughes and Johan [67]).

Remarks

(1)

(2)

The momentum residual contains second derivativea’ofi.e., —vAu").
Typically, u” will be smooth on element interiors but may only be contirgiou
across element interfaces. Interpreted distributionttiigre are Dirac layers
located on element interfaces. Janseal. [42] have developed a procedure
for reconstructing second derivatives, avoiding the Diagers. The technique
L?-projects the first derivatives af" onto the basis fo#”. The derivatives
of the projection are well-defined on element interiors angharticular, are
square-integrable. We have used this procedure wifeis only continuous
across element interfaces. However, our numerical expezimdicated that if
the nonlinear convergence tolerance within each time steypset sufficiently
small, reconstructing second derivatives in this manrmeéndt appreciably af-
fect results. This observation is not consistent with thafskanseret al.[42],
and the matter deserves further study. Whés at leastC-continuous, it is
of course not necessary to reconstruct second derivalihesis the case for
higher-order NURBS utilized in our computations (see $&dti6 and 7).
Although we have not introduced the time discretizattbe time step\t ap-
pears in (63). For time steps of the order of the element didectime scale,
that is, At = O(h/|u"|), this behaves satisfactorily. However, A$ — 0,
for fixed h/|u"|, the formulas forr,; and 7~ degenerate in thaty, — 0
and7c — oo. To address this deficiency, Codiatal. [16] have introduced
the notion of “dynamic subgrid scales.” An ordinary diffetial equation and
asymptotic scaling arguments are used to advance the fate-Beld. This
means that the fine-scale field becomes a “history varialblat heeds to
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be stored at each integration point. The computationattre is similar to
that for inelastic constitutive equations in computati@mid mechanics (see
Simo and Hughes [70]). The procedure has been shown to batiedfeven
for very small time steps. This seems like a promising steapendirection of
more accurately representing the fine scales.

(3) The definition of derives from a discrete approximationGt L] V, where
L.q = 0/0t+u -V —vA. Note thatry, is the discrete approximation &f,,.

Combining equations (52) and (58), we obtain the followiamsdiscrete formu-
lation: FindU" such thayW™",

BMS<Wh, Uh) o LJ\/[S(wh) — 0 (70)
where
BMH(W" U") = B(W",U") (71)
+ (uh -Vw" + th TMTJV[<uhaph))Q
(V ’lU Tc’f’c h))Q
( 7'M"“M( h,ph))ﬂ
(V’LU 7-er.]\/f 7p ) ®TMTM(uh7ph))Qv
LMI(WP) = (w", f)a, (72)
and
BO(W" U™ = (w, @gt o= (Vw0 (73)
+ (Viw', QVVsuh)Q
Remarks

(1) Thefirstterm on the right-hand side of (71), and defindd®), is the Galerkin
term; the next two terms are classical stabilization teramg] the last two
terms are the additional terms produced by the variationgtiscale method.
From this perspective, classical stabilization, such a®Sland GLS (see
Hughes, Scovazzi and Franca [39]), is only a stepping stowart the full
variational multiscale method.

(2) Another way to interpret (71) is to note that classicabgization accounts for
only one of the cross-stress terms, whereas the variationtilscale method
accounts for both cross-stress and Reynolds-stress terms.
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5 Time discretization and numerical implementation

In what follows, A is the nodal index in standard finite element analysis, aed th
control point index in NURBS-based isogeometric analysisle; is the:i' Carte-
sian basis vector. We assume that velocity and pressurexpam@ed in terms of
the same basis, denotéd/4}'\’_,, wheren, is the number of basis functions. This
simplifies the exposition, but this is not a requirement @ thethod. LefV, V,
and P denote the vectors of nodal or control point degrees of tyeedf velocity,
velocity time derivative, and pressure, respectively. \&en@ two residual vectors,
corresponding to the momentum and continuity equationssubstituting/V,e;
and N4 in place ofw”" andq” in (70), respectively.

R" = [RY,] (74)
RY; = BY5({Nae;, 0}, {u",p"}) — LY ({Nae;, 0}) (75)
RC =[RS (76)
R = B2 ({0, Na}, {u",p"}) — LY ({0, N4}). (77)

Although V' is the time derivative oV, we view it as independent in the time in-
tegration algorithm. We employ the generalizedaethod, which was first applied
to fluid dynamics in Jansen, Whiting and Hulbert [43] (see &kung and Hulbert
[15] for the original presentation for the equations of stmal dynamics). Here we
present the details of the algorithm for the equations cbmmgressible flow in the
multiscale description. Our exposition is similar to th¥hiting and Jansen [76]
and Whiting [75]. The algorithm is stated as follows: Given, V., find V.1,
Vi1, Vn+am, Viias» @and P, ., such that

RM(Voian: Vicays Pa1) =0, (78)
RY(V pia, Vitas Pn+1) 0, (79)

Vi1 = Va + AV, + YAV iy — V), (80)
Vn+am = Vn + O‘m( n+l = )7 (81)

Viia; =Vat+ap(Vig — V). (82)

where At = t,4, — t, is the time step size, and,,, oy, and~ are real-valued
parameters that define the method. Given the solution atlévett,,, we integrate
the equations of motion to the time lewgl,; by forcing the residuals of the mo-
mentum and continuity equations, (78) and (79), to vaniahafetersy,,, oy, and

~ are selected based on considerations of accuracy andtgtdbivas shown in
Jansen, Whiting and Hulbert [43] that second-order acgurattime is achieved if

7:1/2+O‘m_af7 (83)
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while unconditional stability is attained if
Qm > ayp > 1/2. (84)

We obtain a one-parameter family of second-order accuradeuaconditionally
stable time integration schemes by settingccording to (83) and employing the
following parameterization of the intermediate time lavel

1,3 —pso 1
= —( p)andaf: :
14 peo

T2+ po

O

(85)

where the parameter,, is the spectral radius of the amplification matrix/ss —
oo, Which controls high-frequency dissipation (see Hugh&$)[Z0 solve the non-
linear system of equations (78)-(82), we employ Newton’shroé, which results
in a two-stage predictor-multicorrector algorithm.

Predictor stage.Set

Vn+1,(0) =V, (86)
. —1) ..

Voii0) = 4l 5 )Vn (87)
Pn+1,(0) = Pn (88)

where subscripb on the left-hand-side quantities is the iteration indexisas

referred to the “same velocity” predictor by Jansen, Wiitamd Hulbert [43], and
was shown to be efficient for turbulence applications. Tlogofe(y — 1)/ makes

the predictor consistent with the generalizeequations.

Multi-corrector stage. Repeat the following steps for= 1,2, . . ., [,z

(1) Evaluate iterates at the intermediate time levels,

Vn+am,(l) = Vn + am(Vn—i-l,(l—l) - Vn)v (89)
Vn-i-ocf,(l) =V, + af(vn-i—l,(l—l) - Vn) (90)
P, g)= Prio-y (91)

Note, (89) and (90) amount to satisfaction of (81) and (82).
(2) Use the intermediate solutions to assemble the residdidhe continuity and
momentum equations and the corresponding matrices inrtbarlsystem

KAV 10 + GoAP. g = —R{), (92)
DAV 10y + LyAP, 10 = —R),. (93)
Solve this linear system using a preconditioned GMRES élyor(see Saad

and Shultz [64]) to a specified tolerance. Note that in (92) é8) we are
solving for the increment iV’ rather tharV'.
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(3) Having solved the linear system, update the iterates:

Vn+1,(l) = Vn+1,(l—1) + AVn+1,(l), (94)
Vn—i—l,(l) = Vn-l—L(l—l) + ’}/AtAV,H_L(l), (95)
P10 =Priig-1) + APy ). (96)

Note, this update automatically satisfies (80). This comagl®ne nonlinear
iteration.

Two to four nonlinear iterations are typically required theeve convergence in a
time step.

The most computationally involved part of the above ald¢ponits obviously step (2)
of the multi-corrector stage. The amount of computationalkwvequired is equiv-
alent to the solution of a linear finite element problem, Whiovolves assembling
the left-hand-side matrices and right-hand-side vectmd,calling a linear equa-
tion solver. Implementation in the isogeometric analysiiisg is very similar to
that of standard finite elements (see Hughes, Cottrell azdv@a [30] for details).

The matrices in (92) and (93) are approximations of the cb@st tangent matrices,

24



given by partial differentiation, namely

_ aRM<Vn+ama Vn+af7 Pn+1) 0Vn+am
a OV s Vo
ORM (Vian, Viray, Prt1) OV e,
8V”Jraf OV i1
aRM(Vn-i-anm Vn-i-afa Pn—i—l)
OV pyam
aRM(Vn-i-ama Vn-i-afa Pn—i—l)
OV nta,
ORM(V psams Vinray, Prtt)
0P, 1 ’
. aRC(VrH-amv Vn"l‘Oéf? Pn+1) 0Vn+am
a OV i Vot
ORC(Vtans Virays Put1) OV e,
aV"Jraf OV
aRC(Vn+ama Vn+afa Pn+1)
OV s
aRC(Vn-i-am» Vn-i-afa Pn—i—l)
o) ZN
_ OR®(Viusan: Viray, Pur1)
o = oP,

K

:am

+ Oéf’)/At

Gu =

Dy,

:am

+ Oéf’)/At

In obtaining (97) and (99), we used (80)-(82).

(97)

(98)

(99)

(100)

Explicit formulas for the matrices used in our calculati@ans given as follows:

K = [Kip]
Kip = am(Na, Np)a 6 + am(u" - VN4 Tar, Np)a 6

+ apyAt(Na,u" - VNp)q 0i; + apyAt(VNav, VNg)q 6

+ Ozf’)/At(VNA - e;v, VNB . ei)Q
+ apyAt(u" - VNaty, u” - VNg)g 6
+ oy yAt(VNy4 - e;7c, VN - €)q

G:[ iAB}

g =—(VN4-e;, Np)o+ (uh - VNae;7y, VNB)g
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D = |Diy] (105)
Dyp = apyAt(Na, VN - €;)q (106)
+ apyAt(V N, ul - VINge)a + an(VN4 1y, Nge;i)q

and

L = [Lag] (107)
LAB = (VNATM,VNB)Q (108)

whered;; is the Kronecker delta, and the iteration indéhas been omitted to sim-
plify the notation.

6 Forced isotropic turbulence
6.1 Discretization

The domain in physical spacefis= (2)? with periodic boundary conditions in all
directions. We employ uniform meshes of NURBS basis fumstid he functions

are constructed in the usual tensor product format [30]. kivieley meshes a$23,

643, 1283, and256° elements and basis functions, which are equal in number due
to periodicity. An illustration of the basis functions fon & element mesh in one
dimension is presented in Figure 3. For a fixed order we sthdyeffect ofh-
refinement, that is, we subdivide meshes. For a fixed meshudg #te effect of
k-refinement, that is, we elevate order. Notice that inithrefinement process, the
number of degrees-of-freedom is the same for every ordes. i$tdue to the full
periodicity of the basis.

6.2 Phase-error analysis for classical finite elements abilRBS

The first-order wave equation

To determine the performance of NURBS applied to flow prolslemmatural start-
ing point is the first-order wave equation, or pure advectidare we compare
analyticsolutions to the discrete equations arrived at by finite eldrand NURBS
treatments of the problem.

A linear dispersive system is one that admits solutions efftnm (see Whitham
[74])

¢ = acos(kx — wt) (109)
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Fig. 3. One-dimensional periodic basis functions.

where the frequency is a real function of the wavenumbér with the specific
form of w(k) being determined by the system. If the phase speéd/ % depends
on k, rather than being a constant, the system is said to be ‘idispe For the
first-order wave equation posed on an infinite domain, namely

O o6
e + up - = 0, forz e]— oo, +o0], (110)

w = ku, and any dispersion in a numerical solution is artificialafs, every
Fourier mode should travel to the right at speg(le., pure advection), any devia-
tions being artifacts of the numerics.
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For both finite elements and NURBS, we seek a solution of thma fo

ny

¢ =D Pa(t)Na(z). (111)

A=1

In the case wher&/ 4 is a standard finite element basis function, we associate-ts
efficient¢ 4 with the value of the function at the nodg. For the non-interpolatory
NURBS basisg 4 is still the coefficient of functionV,, but the nodal value in-
terpretation no longer holds. Still, we may speak of a “siénmt the usual way

(though perhaps the specific choice of terminology is legs@piate). To arrive

at a stencil for either finite elements or NURBS, we subsi{dtll) into (110),

multiply by basis functionV,, and integrate to get

np

/OL Na > (¢5Ng +udpNp)dz = 0, (112)

B=1

where the superposed dot denotes differentiation witheesjp¢ and the prime
superscript denotes differentiation with respect to

Linear finite elements and linear NURBS are identical, so egbour investiga-
tion with the quadratic case. Assume a uniform mesh with efernengths. Look-
ing first at the case where thé,’s are C*' quadratic NURBS functions (actually,
B-splines in this simple scenario), performing the intéigrain (112) yields

1

120(95/4_2 + 26041 + 6604 + 260441 + Do)

u
+ %(—%—2 —10¢a—1 + 109441 + Pase) = 0. (113)

As in Vichnevetsky and Bowles [73], we let
d4 = exp 1(k"Ah — wt) (114)

wherek" is the discrete wave number, an approximatioh te w/u, andi = /—1.
Substituting this into (113) and simplifying yields

T (€72 42607 + 66+ 266 + )

u —210 —16 10 210
(= -1 1 - 11
5 h( e Oe + 10e” + e ) 0 ( 5)

wheref = k"h. Rearranging and recalling that® + ¢='*)/2 = cos a and (e'* —
') /21 = sin a we get

du

w(cos 26 + 26 cos 0 + 33) h

(sin20 4+ 10sinf) = 0. (116)
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Finally, solving fork /k" = w" /w gives us

k 5(10sin @ + sin 26)
— = . 117
kh 0(33 + 26 cos 6 + cos 20) (117)

For the classical quadratic finite element (see Hughes,[#93)situation is more
complicated as the basis functidfy can take on two forms. IV, corresponds to
an end node (i.eA odd), then performing the integration in (112) results in

1. . . . .
E(_CbA—Z + 2041 + 84 + 20411 — Pay2)+

Pat1 — Qa1 Patr — Qa2
2u 57 u m =0. (118)

For the case wherd/, is associated with a center node (i.&.even), performing
the same steps yields

1—10(@_1 +8ba+ dar1) + u% —0. (119)

Following Gresho and Sani [23], we let

1+ (=14
2

1-(—
2

W‘] h
+ exp1(k"Ah — wt). (120)

o) = |

Substituting (120) into (119), solving the latter féland using that result in (118),
we arrive af

—2sin20 £ /(1 — 260)(19 — cos26
k _ ~2sin \/( cos 20)( c0s20) | (121)
kh (3 — cos 26)

See Gresho and Sani [23] for a discussion on selectitigt “ —" in (121).

Plots of the phase errdi/k" = w" /w for these two quadratic cases, as welt&s
cubic NURBS and linears, are shown in Figure 4. We see thajuhdratic finite
elements actually overshoot the exact solution for parhefdomain whereas the
NURBS solution is considerably more accurate. The cubic BBRre better still.
For a fixed wavenumber, the error in the phase speed gagg:asfor C° quadratic
finite elements and a8 (h°) for the C'! quadratic NURBS. In general, the error is
O(h?) for classicalC? finite elements of ordep, p > 1, andO(h**?) for C?~*
NURBS of ordem, p > 1 (see Vichnevetsky and Bowles [73]). Note, this acknowl-
edges the fact that linear finite elements, thatis, 1, are superconvergent, in that

" Note that if we had considered® quadratic NURBS instead @ quadratic finite el-
ements, the stencil would have been different, but the te$oit w would be exactly the
same. This is becausgé” NURBS basis functions are different from the classical dinit
element basis functions, but tepacethey span is exactly the same.
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Fig. 4. The first-order wave equation. Phase errors versasiimensional wave numbers.
Comparison of linear and quadratic finite elemenit$,quadratic NURBS, and'? cubic
NURBS.

they achieve)(h*) phase error (see Gresho and Sani [23]). These resultsallast
the superiority of NURBS over classical finite elements fdvective processes
governed by the first-order wave equation.

The heat equation

We study the heat equation given by:

2

W kT2 orae] oot (122)
and proceed as in the case of the first-order wave equaticepexhis time we
assume

b4 = exp (k" Ah — wt). (123)

The dispersion analysis is performed for finite elementsMO&RBS using basis
functions of ordep = 2 throughp = 4. For completeness, the solution using linear
elements is shown as well, though for linear elements tisare difference between
finite elements and NURBS. Results are presented in Figure 5.

The superior behavior of NURBS basis functions comparel finite elements is
once again evident. In this case, the finite element resefietlan accurate acousti-
cal branch and inaccurate optical branches (see BrilldLif) [ It is very important
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Fig. 5. The heat equation. Phase errors versus non-dinmasi@ve numbers. Comparison
of classicalC?-continuous finite elements and NURBS foe= 1 to 4.

to observe the trends in Figure 5. For finite elements, thigadiranchesliverge
asp is increased. That is, the errors in the higher wave numbererbe greater
asp is increased. On the other hand, for NURBIS entire spectrum converges
asp is increased. These opposite trends are likely very impbitsapplications in
which theentirediscrete spectrum participates significantly in the sotlutiThese
results demonstrate the superiority of NURBS over clatdicde elements for
diffusive processes governed by the heat equation. The ioatidn of results for
advective and diffusive processes suggest to us that NURBSoa capable of at-
taining better accuracy than classical finite elementspnegenting turbulence. (A
companion study in which turbulent channel flows were comguising standard
quadratic finite elements and quadrafi¢ NURBS has confirmed this behavior.
See Akkermaret al.[1].)

6.3 Constant power-input forcing

We simulate forced isotropic turbulence by supplying a tamispower input in the
lowest velocity modes. The force at each instant is given by

P
flz)= > ug exp (1K - ) (124)
k 2Ekf
‘k}i|<l€f
k0
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where1 = \/—1, P, is the fixed power input, set to 62.8436001234 in the simula-
tions,

1 A
Ekf:§ Z Uk - Uk (125)

|ks| <k
K40

is the kinetic energy contained in the lowest modes, and

=1y / ) exp (—1k - z) dQ (126)
denote the Fourier coefficients of the velocity field. Theare computed for each
k that satisfiesk;| < kr, i = 1,2, 3. ks is selected to be 3 in our calculations. The

integrals in (126) are computed by quadrature rather thdadty-ourier transforms
because only a few modes are required.

The solution may be written as

u" =Y Nyda (127)
A

whereN ,’s are the basis functions amb),’s are the degrees of freedom, and thus it
follows that the Fourier coefficients can be written as a iatector product,

g = \Q\/ x)exp (—ik - x) d

:@/QXA:NA x) dyexp (—Kk-x)dQ

-y L_é'/QNA () exp (—1k - 2) dQ| ds

= Brada (128)
A

in which By 4 can be precomputed.
6.4 Testcases

We consider two cases$ie, = 165 and Rey, = oo, WhereRe, is the Taylor mi-
croscale Reynolds number, Pope [58].

For Re, = 165 the kinematic viscosityy, is set tol/150. The kinetic energy is
computed as:

¢ = ﬁ/guh () - u" (x) dQ (129)
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which fluctuates aboutl, +15%, in all cases. Thus,

2¢°> |15
Rey = 24,22 (130)
3V ev

is about165 for all cases, where is the dissipation (see Pope [58]). Once the
simulation reaches equilibrium, the power inpi,, is equal to the dissipation of
the simulation. This result is in good agreement with the Dbl&. Results are
compared with the data provided by R.D. Moser, which is deedrin Langford
and Moser [52]. FolRe, = oo the viscosity is set to zero. In this case we compare
with theoretical correlations (see Pope [58]).

6.5 Simulation results

The quantities of interest are the energy spectrum and tbheybant third-order
structure function. The two-point third-order structuuadtion is defined as

S (r)=(u(z+r)—u(x)) (131)

where(-) implies ensemble average. In the inertial subrarfjescales liker for
fully-developed, locally isotropic turbulence (see Pop8][ p. 204). Due to the
role played bySs in the Karman-Howarth equation, an accurate representafio
S; implies an accurate description of the energy transferenrbrtial subrange.

Data samples were collected for at least 20 eddy-turnowessi7,;; = ¢°/(2¢).
Samples were separated by aboult’,;;. The spatial sampling is performed at
knots and the mid-points between knots. For example, inithelation of323, we
sample on #&4? uniform mesh.

Remarks

(1) We investigated the possibility that,, the parameter in the generalized-
method that controls its numerical high-frequency digsgoaaffected results.
We ran cases with,, = 1 (no dissipation), 0.5 (our default value) and 0
(maximal dissipation). We found no discernible differenae the computed
statistics. This may have been due to the very small timesstispd in the
calculations, typically of the order of 0.2 the advectivau@mt number, where
the advective speed is defined 8.

(2) We note that it is important to precisely converge thelinear residual of the
coarse scale equations in every time step. We reduced ideaés each step
to 107° of its initial value. Failure to sufficiently converge thesigual leads
to spurious dissipation in our experience.
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The data is presented in two complementary fashions. Fgéyeé, 13, and 14
illustrate h-refinement, whereas Figures 8, 9, 15 and 16 illustkatefinement (
see Hughes, Cottrell and Bazilevs [30]).

6.5.1 Rey =165

Figure 6 shows that the energy spectrum has no energy pilehigrawave num-
bers for all orders and numbers of degrees-of-freedomcindd energy spectra are
in good agreement with the DNS, even for coarse meshes. urd-@ we observe
that about half the wave numbers for linear basis functioasraclose agreement
with the DNS spectrum, while this ratio significantly impesvfor higher-order
basis functions, becoming almost 100% for the cubic cagé’at

In Figure 7, the third-order structure function is plottg@enst the non-dimensional
distancer/n, wherey is the Kolmogorov dissipative scale (Pope [58]) , defined as,

3\ /4
n:(_> . (132)

€

As r/n increases the velocity field should decorrelate, which iseoled in our
calculations and the DNS. However, the forcing utilizedha DNS is somewhat
different than that utilized here. In the DNS, the forcinguis within a sphere of
radius 3 in spectral space, whereas in our calculationdptieeng was performed
within a box of half-edge-length 3. Thus, the small discrepes between our re-
sults and the DNS for large valuesofn are to be expected. Figure 7 shows that
for each order, improved agreement with DNS is attained bye#sing the num-
ber of degrees-of-freedom. Figures 8 and 9 show that ordeatbn improves the
agreement with DNS. It is particularly evident from thesaufes, that the most
significant payoff is achieved when increasing the ordenflimear to quadratic.

Figures 10-11 show snapshots of vorticity isosurfaces aidcity streamlines
computed on a28% mesh of quadratic NURBS. Figure 12 shows a detail of a
single vortex tube computed on a mesh6df cubic NURBS. The visualizations
are performed using techniques from Johnson, Calo and € 4#6] and Johnson,
Gaither and Calo [47].

6.5.2 Re), =00

The Re, = oo case (i.e.p = 0) is felt to be relevant to practical engineering situ-
ations in which the resolution is inadequate to represenpltysical flow features,
even with an LES approach (see Lesieur, Métais and Comje What one hopes
to seein an LES is a distinct branch of the energy spectrunegiponding to the in-
ertial range, without an energy pile-up at the cut-off wauenber. Likewise, there
is a theoretical inertial-range scaling for the two-poimtd-order structure func-
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(c) C%-continuous cubic NURBS

Fig. 6. Energy spectra fdr—refinement.Re) = 165.
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Fig. 7. Two-point third-order structure functions flor-refinement.Re) = 165.
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Fig. 8. Energy spectra fdr—refinement.Re) = 165.
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Fig. 9. Two-point third-order structure functions flor-refinement.Rey = 165.
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Fig. 10. Vorticity isosurfaces, velocity streamlines, amdticity contours plotted on the
entire computational domain fdte, = 165.

tion. In the present circumstances, the forcing occur§for< ky = 3, i = 1,2, 3,
but beyond this value we expect to see a transition to anaheahge, at least for a

sufficiently fine mesh.

From Figures 13 and 15, we observe that, for all orders aratatizations, no en-
ergy pile up occurs in the highest wave numbers in the condpenergy spectra.
Beyond the regime of forcing, the expected Kolmogoko¥'? spectrum is clearly
discernible. It is interesting to observe from Figure 13 tha tail off of the spec-
trum at high wave numbers diminishes as the order of appratkim is increased.
To facilitate the comparison of Figures 14 and 16 with Figut@and 9, respectively,
we employ the same scaling in Figures 14 and 16 as the one wiaruBegyures 7
and 9. In Figures 14 and 16 we emphasize this point by theiobtat;;s. Again,
the development of the inertial range is evident.
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(©) (d)

Fig. 11. Vorticity isosurfaces, velocity streamlines, adticity contours forRey = 165.
Detail of the local vortical structures.

7 Turbulent Channel Flow

Our next numerical example is an equilibrium turbulent ctedrilow at Reynolds
number 395 based on the friction velocity and the channéivadth. The com-
putational domain is a rectangular box of sizex 2 x 2/37 in the stream-wise,
wall-normal, and span-wise directions, respectively. Astip Dirichlet boundary
condition is set at the wallk(= +1), while the stream-wise and the span-wise
directions are assigned periodic boundary conditions.nidslip condition is im-
posed strongly, that is, velocity degrees of freedom ardia@ttp set to zero at
the wall. Alternatively, one may enforce the no-slip coimis weakly by aug-
menting the discrete formulation with terms that enforceidbiet conditions as
Euler-Lagrange conditions (see Bazilevs and Hughes [6]Bamilevset al. [7]).
Although the weak boundary condition approach was showretsuperior to the
strong imposition, we did not employ it in the computatioegarted in this paper.
The manner of specifying periodic conditions is identicatiie case of homoge-
neous isotropic turbulence. The flow is driven by a constaegsure gradientf,,,
acting in the stream-wise direction. The values of the kiagerviscosityr and the
forcing f, are set td.47200 - 10~* and3.372040 - 1073, respectively.
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() (d)

Fig. 12. Vorticity isosurfaces, velocity streamlines, adticity contours forRey = 165.
Detail of a single vortical structure.

The computations were performed on mesheg2dfand 64 elements. For both
meshes we emplay’-continuous lineai;t-continuous quadratic, arié?-continuous
cubic NURBS. For all orders, in the stream-wise and the spiae-directions the
number of basis functions is equal to the number of elementisese directions.
On the other hand, due to the open knot vector constructem Fsgure 17), the
number of basis functions in the wall-normal directiomjs= n.; + p, wheren,,

is the number of elements in this direction anid the polynomial order.

Numerical results for this test case are reported in the fofratatistics of the

mean stream-wise velocity and root-mean-square velocituations. Statistics
are obtained by sampling the solution fields at the mesh laradsaveraging in the
stream-wise and span-wise directions as well as in time.g@oison of the statis-
tical quantities of interest with the DNS data of Moser, KindaMansour [55] is

made in order to assess the accuracy of the proposed tuckulendeling method-
ology. All results are presented in non-dimensional waltsurBoth h-refinement

(Figures 18-20) and-refinement (Figures 21-22) viewpoints are presented.

Refining the mesh by a factor of two in each direction resulta imuch more

accurate solution for linear elements, which is evidentfiféigure 18. Note from
Figures 19 and 20 that for a meshsdf elements both quadratic and cubic solutions
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Fig. 13. Energy spectra fér—refinementRe) = co.
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Fig. 14. Two-point third-order structure functions forrefinement.Re) = co.
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Fig. 15. Energy spectra fér—refinementRe) = oco.
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Fig. 16. Two-point third-order structure functions forrefinement.Re) = oco.

45



0.8

0.6

04

02

| &

1 0 1

(a) Linear NURBS basis

0.8
0.6
04

02

| &

(b) Quadratic NURBS basis

0.8
0.6
04

02

91 0 1
(c) Cubic NURBS basis

Fig. 17. lllustration of the wall-normal discretizationrfthe turbulent channel flow prob-
lem. Meshes are graded towards the ends of the interval ar twdetter resolve boundary
layers. Note that, due to the open knot vector constructsee (30] for details), the first
and last basis functions are interpolatory at the endpaihtae domain, which facilitates
strong imposition of no-slip Dirichlet boundary conditeon

are almost identical to the DNS result. Also note that3k&mesh solutions for
guadratic and cubic NURBS are significantly more accurasm tiine64® mesh
solution for linear elements (compare Figures 19 and 20 £8)h

In Figure 21, on th&23 mesh, linear elements show a significant over-prediction
of the mean stream-wise velocity in the log layer. Fluctuaiin the stream-wise
velocity are also over-predicted as compared to the DNStré&3nithe same mesh,
qguadratic and cubic NURBS show good accuracy in both meanflaotiating
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Fig. 18. Turbulent channel flow &e, = 395 computed using linear NURB&:refinement
interpretation of results.

guantities. Notice the significant increase in accuracynmdpeing from linear to
guadratic NURBS, while increasing the order of approxiomato cubic yields re-
sults that are not much different than for quadratic NURBBe $ame trends are
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(b) Velocity fluctuations

Fig. 19. Turbulent channel flow aRe, = 395 computed using quadratic NURBS:
h-refinement interpretation of results.

evident in Figure 22. However, here it is clear that the qacland cubic results
are virtually identical to the DNS results.
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Fig. 20. Turbulent channel flow &e, = 395 computed using cubic NURB&:refinement
interpretation of results.

The results fo32® quadratic and cubic NURBS are even better than high-fidelity
spectral Galerkin LES results presented in Hughes, ObedhiMazzei [36] and
Holmenet al.[27]. We note though that the formulation utilized in [27,] 3n-
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Fig. 21. Turbulent channel flow ake, = 395 computed on a mesh @23 elements:
k-refinement interpretation of results.

ployed a fine-scale eddy viscosity model and is quite diffefeom the one used
here.
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Fig. 22. Turbulent channel flow ake, = 395 computed on a mesh @43 elements:
k-refinement interpretation of results.

Figure 23 shows isosurfaces of stream-wise velocity, vl@treamlines, and a
series of snapshots of particles released at the chanr@biafid set in motion to
follow the streamlines in the boundary layer.
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Fig. 23. Turbulent channel flow &e, = 395. Flow streamlines and isosurfaces of stream—
wise velocity. Two parallel planes of particles, coloreditetand green, are released at the
channel inflow close to the wall (see (a)), and are set in mdbdollow the streamlines.
Snapshots of the particle field are shown as particles tidaeh the length of the chan-
nel (see (b)-(d)). One can see the formation of the boundemsr las the particles released
closer to the wall travel at slower speeds compared to the mieased in the outer layer.
Also note that the particles initially released on diffdrplanes are mixed together as they
approach the outflow, revealing the presence of faster awgesistreaks in the boundary
layer. Solution on the mesh 803 quadratic NURBS was used for this visualization.

8 Conclusions

We presented a general variational multiscale theory lsigitr LES-type turbu-
lence modeling. The theory is derived directly from the imgoessible Navier-
Stokes equations and does not involve any ad hoc mechaniisrparticular, it
entirely avoids use of eddy viscosities. We feel that theotly of turbulence mod-
eling is more fundamental and logically consistent tharsatezived heretofore and
it has significant potential in practical engineering cidtions. One of the primary
reasons we feel this way is that NURBS, in the context of thgeemetric concept
(Hughes, Cottrell and Bazilevs [30], Cottreli al.[19] and Bazilevset al.[5]), are
capable of precisely modeling complex geometric configaoinat This feature was
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not exploited herein where we focused on the physics of tarnme in simple ge-
ometries, but the code we utilized is the same one we havessitdly employed
in a variety of complex laminar and turbulent, fluid and flgitucture interaction
computations (see Bazilevs [3], Bazilestsal.[4] and Zhanget al.[77]). We might
also mention that the turbulence modeling aspects rearaiteredwhen we con-
sider laminar flows. In this sense, our methodology may beetkas an approach
for solving the incompressible Navier-Stokes equationsetiver the flow under
consideration is laminar or turbulent, or both (see Cald)[M/e also believe that
this aspect separates our theory of turbulence modelimg fr@decessors.

The calculations we performed of forced homogeneous ipmtriirbulence and
turbulent channel flows demonstrated that even the simpsgtual-based model-
ing of fine scales by asymptotic scaling arguments is capaftigving very good
results, at least in the LES context. Nevertheless, welfiegthis is an area in which

it is almost inevitable that there will be significant impeswent. Research is under
way to develop better approximations to fine-scale behaWermay mention the
important work of Codinaet al. [16] and work that we also have in progress and
hope to report on in the near future.

We wish to emphasize the importance of the fine-scale magigliablem. It rep-
resents the only open issue within our theory of turbulenoédeting because the
coarse-scale equation, the one we solve numerically, ist @xdahe sense that the
dependence on the fine scales is exact, that is, there is moxapation until the
fine scales are substituted into it. For this reason, we fgalficant effort should
be devoted to studying the fine-scale problem, both thealgtiand computation-
ally. One area that deserves attention is directly addrgssonlinearities in the
fine-scale approximation rather than dealing with themugtoperturbation and
linearization procedures. In the context of scaling arguisiean initial investiga-
tion was performed in Calo [14].

The role of NURBS should also not be underestimated, at ieastimparison with
classical finite elements. We showed through dispersiolysisaf one-dimensional
model problems that NURBS gave significantly better appnations of advective
and diffusive behavior. This was particularly dramatic e thigh-wave number
portion of the spectrum in diffusive processes. We conjectthat this was an ad-
vantage in LES turbulence modeling due to the participatioall resolved wave
numbers in a numerical calculation. In a companion studyevéopmed a compar-
ison of NURBS and classical finite elements on turbulent nkhfiows, and the
results confirmed our conjecture (see Akkerreaal.[1]).

The gold standard in turbulence has always been spectraloah@bgy. NURBS
give near-spectral approximations yet are applicable earbst complex geome-
tries through the isogeometric concept. Although clasé$icide elements are capa-
ble of approximating complex geometries, they are not dapabhigh-precision
geometric modeling because curved geometries are modélegiace-wise poly-
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nomial facets. On the other hand, NURBS are undoubtedly th&t midely used

technology for modeling curved surfaces in geometric desagd even quadratic
NURBS are capable of exactly representing all conic sest{on., circles, cylin-

ders, spheres, ellipsoids, etc.), which are ubiquitousnigireeering design. Fur-
thermore, it is not yet fully appreciated how poorly claasicigher-order finite

elements approximate higher wave numbers. We believe teegdint behavior of
the approximation with increasing order is a deficiency nbtlence, and, we con-
jecture, in other situations as well. On the contrary, thedgbehavior of NURBS

over the entire wave-number spectrum, combined with thgdesority in geo-

metric representation, seem to make them an ideal genaabgritechnology for
turbulent flow simulation of complex engineering designs.

An issue that needs to be investigated is the relationdtapyi with compact finite
differences (see Lele [53]). If a relationship can be egthbd, it may be very
beneficial in generalizing compact finite differences to ptax geometries and in
suggesting fast computer implementations of NURBS apprations.

Given that the scale separation in the present methodotoggrformed with re-

spect to the coarse-scale space actually used in the na@ainasioputations, that is,
the resolved scales, and that the fine-scale approximatiemdered well-defined
by a projector used to make precise the direct sum decongosito coarse and
fine scales, it is impossible to entirely separate modelimdyraumerical concepts.
We accept this as a fact associated with correct LES-typestimgdconcepts, not
a shortcoming. However, other modeling concepts are odytpossible within the

variational multiscale framework, including ones, whick aot directly associated
with numerical approximation, such as is the case of RANS.

We also believe that our theory is more coherent mathentlgtidean previous

formulations and that it may be possible to use it as a basasstdtistical analysis
of convergence and approximation. This would representra significant step

forward for the theory of turbulence modeling, but, adndilyea very difficult one

to achieve. Nevertheless, we feel a door has been openduefaonhstruction of a
mathematical theory.

We found quadratic NURBS to give very significant accuracyaadiages over lin-
ear elements. This, combined with their geometric apprakion superiority, and
small computational overhead compared with linear elem@tout50% in our

computations), suggests to us that they should be condidepeeferred practical
tool for engineering computations. Cubics, on the othedharcreased cost con-

siderably (by about00% compared to quadratics), largely due to cache overflow

in element calculations. These remarks need to be qualifi¢ldsfact that our im-
plementation of higher-order elements is not yet optimirnegthy way. We hope to
significantly improve efficiency in future work.

In summary, we feel a new paradigm for turbulence modelirsgdeeen established.
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Initial results seem to indicate its accuracy per degreesafdom is superior or, at
the least, equal to any procedure proposed heretoforeeiftsrglity and geomet-
ric flexibility also suggest it may provide a more powerfupapach to turbulence
calculations than previously existed.
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