Stabilized Shock Hydrodynamics: V.
Von Neumann Stability Analysis of a Predigtilulti-corrector Lagrangian Method

G. ScovazA*, W. J. Ridet, E. Love?, J. N. Shadifl

41431 Computational Shock- and Multi-physics Departmead@& National Laboratories,
P.O. Box 5800, MS 1319, Albuquerque, NM 87185-1319, USA
b1437 Electrical and Microsystem Modeling Department, $ahthtional Laboratories,
P.O. Box 5800, MS 0378, Albuguerque, NM 87185-0378, USA

Abstract

The typical structure of the linearized equations of Lagian shock-hydrodynamics is given by the first-order systemm of
the wave equation with dissipativéfects. This article presents the complete von Neumann ityadnild dispersion analysis for a
predictofmulti-corrector time integrator applied to a stabilizediaional multiscale finite element formulation of suchteys of
equations. Bounds for stable time advancement are deewelgstimates of the formal order of accuracy indicate tieaptoposed
method is second order in time and space.
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1. Introduction The rest of the exposition is organized as follows: Section
2 is devoted to presenting the equations of Lagrangian Rydro
In [8, 12], a conservative predictor multi-corrector tinme i dynamics, deriving an appropriate and representativatina-
tegrator was proposed in combination with a new Lagrangiation. In Section 3, the discrete system of equations is obthi
shock hydrodynamics algorithm based on piece-wise linear fiin the case of one dimension and periodic boundary condition
nite elements and variational multiscale stabilizatiohisTarti- By means of the Discrete Fourier Transform, the von Neumann
cle presents the full von Neumann analysis of stability Fas t  stability analysis is applied in Section 4 to the full systefn
algorithm, in the case of a linearized version of the shoadkby  discrete modes, and restricted in Section 5 to the highegt wa
dynamics equations. The linearized system of equations gonumbers, with the purpose of deriving a simple stability fabu
erns the acoustic propagation of waves in a medium. for the time step in practical computations. Section 6 ity
Because the proposed algorithm is often used in combinatioto the analysis of the system of equations of pure (undamped)
with shock capturing artificial viscosities, stability buwils are  acoustics, and includes calculations of the formal ordecoti-
derived not only in the case of a purely acoustic, undamped sy racy of the method by Taylor expansion of the dissipation and
tem of equations, but also in the case whefudion is present. dispersion errors. In Section 7 thiexts of viscosity on stabil-
As expected, the presence offlstliffusion-type operators is ity are also accounted for. A few numerical tests are present
negatively &fecting the stability of the time integration scheme, in Section 8, to verify the stability estimates derived ieygous
producing a more restrictive Courant-Friedriechs-Levgdie  sections. Conclusions are summarized in Section 9.
tion. A simple time-step control condition is developed bpa
lyzing the stabiIiFy of the highest wave numbers in the dager 5 A simplified Lagrangian hydrodynamics system
system of equations, and compared with results from the com-
plete von Neumann analysis. Furthermore, by means of Taylor With the purpose of presenting the algorithm proposed in [8,
series expansions, it is shown that the formal accuracyef th12], we briefly summarize the system of Lagrangian equations
method in the case of no artificial viscosity is second order i for a compressible fluid in which heat fluxes, heat sources, an
time and space. body forces are absent. L&y andQ be open sets iR™ (where
ng is the number of spatial dimensions). Tdeformation
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Figure 1: Sketch of the Lagrangian map

is the domain occupied by the body in its initial configuratio
with boundaryl'y. ¢ mapsQg to Q, the domain occupied by
the body in its current configuration. Tkdeformation gradient
anddeformation Jacobian determinacan be defined as

F=V,
J =detF),

®3)
(4)

whereV, is the gradient in the original configuration. In the

domainQ, the equations for the displacement update and con-

servation of mass, momentum, and energy read:

u=v, )
pJ =po0 (6)
O0=pv+Vp, (7)
0=pe+pVe V. (8)

Here,V, andV, are the current configuration gradient and diver-

gence operators, ar(é) indicates the material, or Lagrangian,
time derivative.u = x — X is the displacement vectagsy is
the reference (initial) density, is the (current) density is the

velocity, andp is the pressure, assumed to satisfy an equatio

of state of the fornp = p(p, €), with € the internal energy per
unit mass.

In [8], it was shown that the shock hydrodynamics equations
can be reduced to the system (or, mixed) form of a nonlinear

wave equation. Namely, (6), (7), (8), and the equation desta
yield
O=pv+Vp, )

0= p+pcV, v, (10)

wherecs is the speed of sound in the medium. Inthe Lagrangian

setting, the displacement and mass conservation equdfpns
(6) are associated with a standing entropy wave (with régpec

2

the Lagrangian material coordinates) governing the mation
contact discontinuities. The incorporation of these eiquatin
the analysis that follows is not essential, as the stakilitynds
for the system of equations under consideration are doednat
by the acoustic characteristics associated with equaf@)r@sd
(20). In this context, it is also important to observe that, b
construction, numerical schemes in Lagrangian coordérete
capable of precisely capturing and tracking contact digsoan
ities without adding any numerical dissipation. Therefave
will restrict our analysis to the system of equations (9) @i,
which can be easily linearized assuming small strains {impl
ing v, ~ V,, i.e., negligible mesh motion), and small spiicee
variations of density and speed of sound.

In order to achieve insightful results, we will consider imsi
ple one-dimensional flow with periodic boundary conditions
The reader will appreciate in what follows that the derivas
are quite involved, and that these assumptions are edstntia
obtain meaningful results.

3. One-dimensional linearized variational formulation

Analogous to [12], we consider a weak formulation of the
one-dimensional linearized equations of Lagrangian skyek
drodynamics, augmented by variational multiscale stzdtilbn
operators and a shock capturing artificial viscosity opmerat
Namely, denoting byTl' the unit periodic torus along the real
line R, and considering a piece-wise linear finite element de-
composition, we have that, for every discrete test funstipn

andg,
Ozflﬂv—flﬂ’xp
T T

+fl//,xT(P+C§V,x)+flﬁ,vaV,x, (11)
T T
0=f¢P+f¢c§V,x
T T
+f¢,xTC§(V+P,x)+f¢,x vp P x , (12)
T T

where we have used the notatidr= pv (recallp = const.) and
P = p. For the sake of simplicity, we also assume= vp =
v. Using the same predictonulti-corrector strategy adopted in

LlZ], the discretization in time of (11)-(12) yields:

0= [ w (Vi - va) -t [ P,

At f wx 7 (PO, - Py + AV )

+ At fﬂt lp,X V(V,X)gll/z 5 (13)
i1 i1
0= fT ¢ (ngl) - Pn) + At fT ¢ (v,x)fjjl}2
+ At \[']1“ ¢,X %Cﬁ (Vr(:ll) - Vn + At(P,X)gll/z)
et [ 0y @ (14)
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Figure 2: Elevation plots of the spectral ragi (o, k), for « = 0, ¢. = 0,1, 2, and various iterates of the predig¢taulti-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (39). In tisebsequent rows, the iterates from one to four. For thegase, ¢, = 1, andc; = 2, the plots are in the
rangeo € [0, 2], o € [0, 1], ando € [0, V2/2], respectively. Also, note that Figures 2(a), 2(d), 2&g)), 2(m) have a vertical range,[0.2], while all other Figures

are in the range [].



wherer'= & = %, ()® and ()@Y are used to denote quantities wherei = V-1, and \7&'31 and ﬁ’ﬁ')n are the Fourier cd@-
computed with the predict@orrector iteratesif and { + 1),  cients for velocity and pressure, relative to #ih harmonic,
respectively, and the subscriptan + 1, andn+ 1/2 are used to  the nth time step and théh iterate. Note thal is the num-
indicate quantities at tim®g, t, + 1, andt,,1/2 = (tn + thy1)/2. ber of elements (a multiple of 2), amid = 2|”Th‘k = Z”Wk is an
angularly scaled version of the integer wave numibéwith
Remark1. In order to keep the analysis as close as possible tor| = meas{) = Nh = 1 the measure of the torus). Com-
the algorithm €ectively used in the computations in [12], the plex exponentials associated tdfdrent wave numbers satisfy
latest available velocity iterate is used in the computetifthe g discrete orthogonality property:
second and third terms of (14). This choice yields a conser-
vative formulation in the nonlinear extension of the altfur,
and, for this reason, this method is referred to astheserva-

tive time integrator.

N/2-1 .
ghamela™ = 54, for —N/2<k,g<N/2, (19)
m=-N/2

with dyq the Kronecker delta tensobyg = 1 if k = g, and
We assume a uniform, equispaced subdivision of the torug,, = 0if k # ). We then replace (17)-(18) into (15)-(16) mul-
T into finite elements of measuke As in [12], both pressure tiplied by gifai andeiﬁ,j’ respectively, and we sum ovgr Due
and velocity are approximated by piece-wise linear fumstio ;) 1o orthogonality property (19), and the linearity of #ys-
Adopting mass |umping in addition to the previous assumpiem of equations (15)-(16), it is easy to verify that the jwes
tions, the following finite diference equations are derived: steps lead td\ pairs of equations, coupling the dynamics of the
kth pressure and velocity modes, withN/2 + 1 < k < N/2.

i+ /.
0=Vini1 = Vin Namely:
o . .
+— (PO 4+ Pa-PY P n a .
4cs( anen * Pisin = Py = Pioan) I+ A)ZU = 20 41+ A)Zun.  (20)
9 ~(p0 ) (i) .
- Z_CST (le+1,n+1 - PJ+1»n - le—l,n+1 + Pj—l,n) where
~ 2 7
K+T0o i i ()
0] ) 0] (i V,
A (le+l,n+l +Vistn = 2V}) zﬁ')n - { A'(‘)” } (21)
: ? pU
~Vjn+ VO L+ Vi) (15) kn
1) is thekth velocitypressure modal pair, relative to thth time
0=Pj1~Pin step and théth iterate, and
CsO™ /\ /(i+1 i+1 ,
t (VJ(I-:I.J)H]_ + Vjsin = Vj(l—+1,r)1+1 - Vj—l,n) | 10 22)
CO /4Dy )\ B ’
- TT(VjI:l,nJrl = Vjrin = Vjtrl,ml + Vlfl,n) 101
~ 2
K+To ] i 0 0
(i) ) (i)
- 2 (le+1,n+1 + PJ+1»n - 2|:)jl,n+1 A = s (23)
0 ~i(f-3)csosin@) 0
~2Pjn+ PV +Pian) (16) :

[ (Fo2+ k) (cosB) —1)  i(F-3)ZsinE)
where j is the node indexg = % is the acoustic Courant ~ Ar = 5 (2 1)e ;
number and = 4. 0 (fo® + k) (cosy) - 1) o
4. Von Neumann stability analysis | (Fo? + k) (cosB) —1) i (% + %) < sin(By)

A = ° .
In conformity with the von Neumann stability analysis (see | -i(F+3)csosin@)  (Fo? + k) (cosBi) — 1) |
[7, 14] for details), because the boundary conditions are pe (25)

odic, we can expand the solution degrees-of-freedom age, fini
linear combination of complex exponentials with complegfeo
ficients. This eventually amounts to applying a Discreterfesu
Transform (DFT) operator to the discrete equations (1%)-(1

It is also very important to observe that because the degrees
of-freedom “signal” has real values, the discrete Fourefic
cients must satisfy the complex conjugacy property

In particular, we have: A (i) ~ @) \*
20 = (zk,n) , foro<k<N/2-1,  (26)
VO = Z Vi (17)  whereW" indicates the complex conjugate \6f (componen-
k==N/2+1 twise), and, in addition, the following condition for theterf
0 N/2 0 s called “odd ball” mode holds:
Plh= D, Ple™. (18) ()
k=—N/2+1 ZNjpop=0. (27)
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Figure 3: Contour plots of the spectral radii of variousates of the predictgmulti-corrector algorithm fok = 0. Figures 3(a)-3(d): Conservative scheme for
¢, = 1 (coincident with the lagged scheme (C,L)). Figures 3(@)}:3onservative scheme fof = 2 (C). Figures 3(i)—3(l): Lagged scheme for= 2 (L). The red
continuous line is the contour line relative to a unit speaiadius, the white dashed line in Figures 3(e)-3(l) indisahe valuer = V2/2.

Because complex conjugates have the same absolute value antt, consequentho and A; need to be modified as:
opposite phase, it is fiicient to limit the study of the amplifi-

cation factors to the discrete modes in the rangelo< N/2, Ao=0, (29)
that is, 0< Bk < #. In the discussion that follows, it will also - N

be important to consider a variation of the time-integnatid- _ (fo® +x) (cosfi) - 1) '(T - 5) & SinGy)
gorithm, in which the velocity iteratg/(+1) in (16) is replaced ! i(% _ %) csosinB)  (Fo? + 1) (cosB) — 1)

by the previous iterat¢®. This method will be referred to as (30)

thelaggedapproach. In this case, equation (16) becomes
This approach yields a more straightforward time integréoo
the linearized equations, but does not extend, howevecooa
servative scheme in the nonlinear case.

ozp(i;i)l_ Pin The vector equation (20) is a recurrence relationship be-
l’csg 0 0 tween the predictgmulti-corrector iterates of the proposed

T (VO et + Visern =V 1 = Vian) time-integration approach. Set

Cso . . . _
= T (Vin = Vistn = VP + Vi) Bo= (I + A)) (I + Ag), (31)

=2 _ By = (I + Ag)tA; . (32)

K+ 10 (i) ) 0} 1 0

T (Pj+l,n+l +Pjiin - 2Pj,n+1

Recalling that the first guess for the new iterate at timgis

(28) " the solution at timet, namelyZ{h., = Zyn, we can derive

_ (i) _
—2Pjn+ PO L+ P,,l,n) ,
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Figure 4: Contours of unit spectral radii (stability limfgr the case, = 2 for the conservative algorithm (Fig. 4(a)) and for the kdjglgorithm (Fig. 4(b)). The
color scheme is as follows: First iterate in black, secoathte in blue, third iterate in green, fourth iterate in redFigure 4(a), part of the curve relative to the
second iterate is not visible, as it overlaps with the onatike to the fourth iterate.

explicit recurrence formulas for the computatlonZJ,(fml in
terms Oka,n-

1 0
Z(kr)1+l = Blz(kr:+1 + BOan

= (Bo + B1)Zkn

= G(l)zk,n ) (33)
2
Z(kr)1+l = Blzk 1t BOan
= (B1G™ + Bo) Zkn
=GPZyn, (34)
3 2
Z(kr)1+1 = Blzf(r)Hl + BOan
= (B1G® + Bo) Zn
=G¥Zyy, (35)
4
Z(kr)1+1 = Blzk 1t BOan
= (B1G® + Bo) Zn
= G(A)Zk,n ) (36)
5(5)
Zyne1 = (37)

In the limit for an infinite number of iterations, we obtaireth
amplification matrix for the original implicit mid-point gb-
rithm from which the predictgcorrector time integrator is de-
rived:

(I +A)Zimy = AZi + (1 + A)Zikn,  (38)

that is, removing the superscripb] from an+1, and rearrang-
ing terms,

Zyner = (1 + Ao — AD) (1 + A2) Zkn

=G™Zyn (39)

Remark2. The predictofmulti-corrector method can therefore
be interpreted as a fixed-point iterative process, conugrigi
the solution of the implicit method (39). In particular, tben-
servative scheme has the nature of a Gauss-Seidel iteraton
the matrixl + Aq is lower diagonal, while the lagged scheme
resembles a Jacobi iteration, sinkg= 0.

Remark3. Convergence of the fixed-point iteration is ensured
if ||B1|| < 1 (suficient condition). It will be subsequently shown
that this condition is equivalent to the temporal stabitiondi-
tion.

It is possible to evaluate the stability properties of the-pr
posed predictgmulti-corrector algorithm, by evaluating how
G evolves in time an initial condition. In particular, if

G
ax | S“gl
sr20 IS

then stability of the numerical discretization is ensur@dfin-
ing the spectral radius as

p(GY) = maxjAGY))y < 1G]],

IGY| = (40)

(41)

where A(G") is a (generally complex) eigenvalue 6f), we
can use slightly dferent condition for stability, which leads to

a simpler analysis (see, e.g., [4]):
p(GY) < 1= stability, (42)
p(GY) > 1= instability . (43)

These conditions are consequence of a well-known theorem in
matrix analysis:
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Figure 6: Spectral radii for the stabilized predigtoulti-corrector algorithm in the cage= 0, for various values of the acoustic Courant numbend stabilization
parametec, = 2. Figures 6(a)-6(d): Conservative scheme (C). Figures-6(k): Lagged scheme (L). Black: Implicit time integrat@range, red, green and blue
are used for the first, second, third, and fourth iteratespeetively.

Theorem 1 (cf. [5], p. 298).Let A € C™™, whereC is the
complex field. Therlim,_., A" = 0if and only ifo(A) < 1.

algorithms under consideraticgtably preserves constant
solutions in time.

The time-step stability limit, as a limit case of the condi
tion p(G") < 1. This case is not so important in practical
(nonlinear) computations, since it is usually not safe to ru
computations exactly at the stability limit.

Hence, ifp(G") < 1, Theorem 1 directly implies stability. If 3.

p(GY) > 1, one can consider, as initial condition vecity,
the eigenvector relative to an eigenvaldg with [1p] > 1.
Using the properties of vector norms, it is easy to see that
iMoo 1Z0ll = liMpse G Zoll = liMpse [A0MIZoll = o,  Notice also that a complex eigenvalue@? can be expressed
and we have instability. The case that our analysis covsss le as:
precisely is the case wher{G") = 1. Recalling that (see [5],

p. 299) AGY) = 1(G) e (45)

wherewAt = arg@(G")), andw € R is the phase. This de-
composition will be important for the study of the dispersio
properties of the proposed time integration approach, asish

in Section 6 and Section 7. An alternative expression foy i€t5

p(GY) = lim [I(GY)"H", (44)
itis easy to realize that the cgs&") = 1 admits linear growth
in the solution (i.e.](GY)"| = O(n)). However, the analysis
that follows (see, e.qg., Figures 2 and 11) shows #@f") = 1

. . i &t
occurs in three special cases : A(GV) = grertant (46)
1. 0 = 0 © At = 0, a trivial case corresponding of no time where
evolution. 0
2. B = 0, corresponding to the evolution in time of a con- IA(GD)| = et | or, &= _log((G™)n _ (47)

stant mode. In this case, it is not necessary to resort to At

the von Neumann analysis, to prove that the entire class of

7
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By performing a Taylor expansion @fandc in the limit of  which implies again the stability limit (58), while the I&found
vanishing time stept and mesh sizh, it is possible to recover leads to the inequalitg? — o + 1 > 0, always verified since
the truncation error and the formal order of accuracy of e v the polynomial has complex roots. Hence, the first and sec-
ious iterates of the method, as shown in Section 6.3. Dueeto thond iterates share the same stability condition. Procgddin
complexity of the algebra involved, we are not including thether, we observe that the third iterate produces a left bound
calculations and explicit expressions of the eigenvaldgh®  given by 2— 2a + 202 — 20° = 2(1+ a?)(1 - @) > 0, equiv-
G matrices. We present the fundamental results by appropralent to (58), while the right bound2a(e? — @ + 1) < 0
ate plots in Section 6 and Section 7. All algebraic symboke m is always verified (see the derivations for the left bound for
nipulations were performed using thexMiemarica® ™ soft-  the second iterate). The left bound for the forth iteratddgie
ware [1, 15]. 2(1-a+a?-a®+a*) =2((1- @)* + a(3e? - 5a + 3)) > 0, al-
ways verified, since the roots of the polynomiaf3 5« + 3 are
complex. Finally, the right bound yieldg1 + o?)(a — 1) < 0,
again equivalent to (58). Stability limits for all remaigiiter-
Before proceeding with a complete analysis of the stabil-ates can be obtained by recursion.
ity and dispersion properties of the proposed predictalti- Condition (58) can then be used to estimate the stable time-
corrector algorithm, it is important to develop a prelimipa step size, as it implies
analysis of stability for the highest spatial wave numberthe
discrete equations. Stability of the highest modes in a com- &7
putation is a necessabut not syficient condition for overall
stability. However, an understanding of the dynamics ohhig
wave number modes can shed light on the overall behavior
the algorithm, and, most importantly, provide time-steptool —y— m v+ m
estimates of practical use in computations. c.2 <At< c.2 .
The amplification of the highest wave number is governed by s s
the matrice$s", whengy is set equal ta. In this case, itis easy The left bound is always verified, the right gives the stabil-
to observe thag = 0, and thatA; and A, become diagonal ity limit. Multiplying and dividing the right inequality by
and equal to a multiple of the identity matdix In particular, v+ 4v2 + c,c2h? (always a strictly positive quantity in com-
putations) and simplifying the termc, we obtain

5. Stability of the highest wavembers

242%-1<0, or, C.C2At? + 2vAt —h? < 0.
(59)

O%olving the associated quadratic equation yields the bound

(60)

A= Ay = —(c.o? + 24)1 . (48)
h2
Therefore, the time evolution of the highest pressure and ve At ————— . (61)
locity Fourier modes is decoupled and identical. The stuidy o v+ 2+ ecgh?

the proposed predictonulti-corrector method can therefore be
reduced to a scalar problem. Settiag= c.0” + 2« > 0, W Remark4. In the limit of a vanishing artificial viscosity, a mod-

obtain: ified advective Courant-Friedrichs-Levy condition is dbéal,
GY = (1-2a)l , (49) namely
G®@ = (1-2a+ 2291 , (50) At < h , o, o< 1 (62)
G®¥ = (1-2a+22° - 2271, (51) Ve Cs Ve
GW = (1-2a + 2% - 20° + 2291, (52)  This implies that the variational multiscale stabilizatiis re-

GO = (53) ducing the stability limit forc. > 1 and increasing the stability

o limit if ¢, < 1 (at least for the highest wave numbers). For
Limiting the analysis to the first four iterates, the follogista- ¢ = 1, the standard acoustic Courant-Friedrichs-Levy stgbili
bility conditions are derived condition is recovered.

Firstiterate:—1<1-2a<1. (54) Remark5. In the limit of a vanishing speed of sound (condi-
tion very often encountered in hypervelocity impact profsg,

. . _ 2
SeC(-)nd- fterate=1<1-2a+ 202 =1 (55) the stability limit is uniquely dependent on the artificiédeos-
Third iterate: - 1 < 1 - 2o +22” -22° < 1. (56) ity v and takes the classical form of the dissipative Courant-
Fourthiterate:— 1 < 1— 20 + 202 —20% + 22* < 1. (57)  Friedrichs-Levy condition:
For the first iterate, the right bound yields> 0, always veri- At < h_2 or < 1 (63)
fied, and the left bound T2y’ ’ -2

(58) Remark6. As already mentioned, the predictor multi-corrector
approach can also be interpreted as a fixed-point iteration p

which provides the time-step stability constraint. For $ee-  cedure [11]. A sfiicient condition for the convergence (in spec-

ond iterate, the right bound yields the inequalit(@—- 1) < 0,  tral space) of such procedur€|[iB4|| < 1, that isp(B1) < 1. It

a<l,
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Figure 8: Contour plots of the rati@/w, for k = 0. Plots are forc, = 1,2, and various iterates of the predigtaulti-corrector algorithm. Figures 8(a)-8(d):
Conservative scheme fay = 1 (coincident with the lagged scheme (C,L)). Figures 8(@)):8Conservative scheme fay = 2 (C). Figures 8(i)-8(l): Lagged

scheme foc: = 2 (L). The red continuous line is the locus of a unit spectdius.

is not difficult to verify that, in the case of the highest wave
number, that igx = x, this condition coincides with (59). By
plotting contour surfaces atB;) = 1, we were also able to
graphically verify that the stability implies convergerafehe
corrector iterates on the entire spaoe«, B]. This approach
is virtually identical to the one outlined in Section 7.1 iz
ularly, Figure 15) and will not be reported here, for the sake
brevity.

6. The case of vanishing viscosity

The black continuous line indicates the logyi® = 1 (no phase error).

parametecc, = 0,1,2. First, note that the implicit algorithm
detailed in (39) is neutrally stable in the case of no stadili
tion, as the spectral radius of the corresponding amplifinat
matrix is equal to unity over the entire plane p] (Fig. 2(a)).
Without stabilization, only theeveniterates are stable in the
predictoymulti-corrector version, as detailed in Figures 2(g)
and 2(m). As shown in Figures 2(d) and 2(j) (note in partic-
ular that these vertical range of the plot is I®]), when sta-
bilization is absent, the first and third iterates of the josgd
algorithm arainconditionally unstableThis somewhat surpris-
ing phenomenon can be explained by realizing that the sgectr

In shock hydrodynamics computations, the artificial viscos radii for the predictgimulti-corrrector scheme exhibit mon-

ity is usually present only in shock layers, and is absenkin e
pansion regions. Therefore, it is very important to study th
proposed time integrator in the limit of a vanishing vistpsis
the most part of the flow domain is subject to this condition.

6.1. Amplification factor

Figure 2 shows the spectral radii of the matric@8 for
i — oo (implicit scheme) and = 1,2, 3,4, with stabilization

10

monotoniaconvergence to unity ag)(— .

Whenc, = 1 the conserved and lagged variants of the sta-
bilized algorithm coincide. The implicit case in Fig. 2(Is) i
stable, and the stability range for the predigtaulti-corrector
is o € [0,1] (Fig. 2(e), 2(h), 2(k), and 2(n)), as predicted in
Section 5. In the case = 2, the stability region of some of the
iterates for either the conservative or the lagged scheres do
not completely extend to- = 1/ V2 (i.e., the stability limit for
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Figure 9: Plot of the ratia/w, for « = 0, for various values of the acoustic Courant numbendc, = 1, for which the conservative and lagged schemes coincide.
Color scheme is as follows. Black: Implicit time integrat@range, red, green and blue are used for the first, secard],ahd fourth iterate, respectively.

Bw Blw @ Blw
1.5 1.5 1.5 1.5
1. 1. 1. 1.
0.5 0.5 0.5 0.5
o 1 3 % X 0 3 3 ¥ " o 3 5 %« o i 3 =
@ ¢ =2,0=03. (C) () ¢, = 2,0 = 057. (C) © ¢ = 2,0 =06. (C) d) ¢ =2,0=07. (C)
Tlw lw wlw lw
1.5 1.5 1.5 1.5
1. 1. 1. 1.
0.5 0.5 0.5 0.5
o i 3 ¥ % o0 3 3 ¥ " o 1 3 = " o 1 3 = "
©c =2 0=03. (L) M ¢ = 2,0 = 057. (L) (@) ¢ =2,0=06. (L) () c =2,0=07. (L)

Figure 10: Plot of the ratia/w, for « = 0, for various values of the acoustic Courant numbandc, = 2. Figures 10(a)-10(d): Conservative scheme (C). Figures
10(e)-10(h): Lagged scheme (L). Color scheme is as foll@®leck: Implicit time integrator. Orange, red, green andebdue used for the first, second, third, and
fourth iterate, respectively.

the highest wave numbers, derived in Section 5). This featurappreciated the convergence of the spectral radii of thatés

is the result of the increased value of the stabilizatiorstanmt,  to the spectral radii of the corresponding implicit schemeg-

which causes some of the lower modes to go unstable beforesented by black lines. In Figure 6(c), it is visible the eins

the highest. Observe that, in this case, the range of gtabili of a bifurcation point for the amplification matrix of the sec

is a function of the number of iterations of the predigtoulti- ~ ond iterate (the kink in the red curve nggy = 7n/8). This

corrector. In fact, the first and third iterates of the comaive ~ phenomenon is more clearly visible in Figure 6(d), a seabion

scheme (Figs. 3(e) and 3(g)) are stable over the entire rangke spectral radpastthe stability limit 09/ V2 ~ 0.64, for the

o € [0,1/ V2], as well as the first, third and forth iterates of second and fourth iterates (the red and blue curves in piityxim

the lagged scheme (Figs. 3(i), 3(k), and 3(l)). Figure 4 showof gx = 51/8). Past a bifurcation point, the eigenvalues of the

the stability isolines at which the spectral radii of vasaam-  corresponding amplification matrix cease to be complex con-

plification matrices are unity, whery = 2. In the case of the jugate, as evident in Figures 10(c) and 10(d), by the absence

conservative algorithm in Figure 4(a), it is easy to reattz&  of a phase in the eigenvalues. This is not a desirable propert

introducing a safety factor.9 is suficient in recovering a sta- in discretized wave propagation problems which should beha

bility range for all iterates, namely € [0,0.9/ V2]. as systems of harmonic oscillators. In [12], the best nuraéri

results in terms of accuracy and robustness (low mesh distor

Additional information can be gained by plotting sectiofis o tion) were obtained with three iterates of the conservatige-

the spectral radius elevation plots of the various amptifica  rithm, ¢, = 2 and a safety factor.8 (i.e.,oc = 0.8/ V2 ~ 0.57).

matrices for diferent values of the acoustic Courant number This choices correspond to the green curve in Figure 6(b§: Th

as shown in Figures 5 and 6. Figures 5(a)-5(d) show the sesulhigh wave number damping, the moderate low wave number er-

for the coinciding conservative and lagged schemesayith1l,  ror, and the absence of an eigenvalue bifurcation explaisst

Figures 6(a)—6(d) show results for the conservative scivaithe  findings.

¢, = 2, while Figures 6(e)—6(h) show results for the lagged

scheme, again witle, = 2. Observe that high wave number

damping increases as the valuecofncreases. It is also easily

11
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Figure 11: Elevation plots of the spectral radlili, for x = 1/4. Plots are foc, = 0, 1,2, and various iterates of the predigtoulti-corrector algorithm. In the top
row, the implicit mid-point time integrator (see (39)). Imetsubsequent rows, the iterates from one to four. The speattii are presented as a functioncofind
Bk. Note that for the case = 0, ¢, = 1, andc, = 2, the plots are in the rangee [0, 2], & € [0, 1], ando- € [0, V2/2], respectively.
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6.2. Dispersion error our analysis to the stabilized case, we see that odd itevees

When no viscosity is present, it is very insighful to evalu- Shoot the frequency for high values ofc ande, while even
ate the extent of the dispersion error in computations. lisr t Il€rates undershoot the frequency in the same range ofs/alue
purpose, observe that the classical dispersion relatipfisha  fOr Sk ando~. This is most clearly appreciated in Figure 9 and
linear wave is given by = 2rkcs/|T|. Recalling thafT| = hN, 10.
it is easily derived

6.3. Low wave number limit and truncation error
WAt = of . (64) A Taylor expansion of the amplification factprand disper-
sion ratiow/w in a right neighborhood oB«x = 0 can more
clearly quantify the previous conclusions on the naturehef t
o argQ(o,By) pro_posed cqnservative algorit.hm. We considle_r oqu theeons
- (65)  vative algorithm, and we obtain, for the amplification facto

A typical measure of the dispersion error is given by theorati

w 0Pk
—_ . . . . 2
Whenw/w = 1, no dlspgr5|on error is present for a certain P(Gg):l) -1_ 02(} - (T—),Bﬁ +0(8) (66)
wave numbepy at a certain value of. Figure 7 shows ele- 6 8

vation plots of the ratiav/w. It is noticeable in Figures 7(g) bas 1 o2

and 7(m) that eigenvalue bifurcation takes place for vabfes p(GEH ) =1 - o? (6 + g)ﬁﬁ +0(B), (67
[o,Bk] = [2,7/2], when no stabilization is applied. Although

less notably, this also occurs for the conservative stagillcase  gnd

with ¢, = 2 (Figs. 7(i), and 7(0)), ford, Bk] near [1 7/2], as al- 5

rea-ldy mentioned in .Sectllon 6.1. Contour pIots. of the dlspe.rs p(GSLZ) —1— ‘T_IBE n O(ﬂf(‘) ’ (68)
ratio are presented in Figure 8. The black thick lines intdica g 4

the loci where the dispersion ratio equals unity. The reckthi (2.34....00) ,(1 o2\ 4 5

lines indicate the locus of the amplification factor equaltity PG ) =1-0o ((_5 + g)ﬁk +0(B) . (69)
(i.e., the stability limit). Note that the predicfonulti-corrector

iterates show degradation of the phase error in proximithef Therefore, the stabilized method is always stable for low
stability limits, with respect to the corresponding imglial-  wave numbers. Note also that the leading terms in the Tay-
gorithms (see also Fig. 7). The noticeable “distortion”lie t lor expansions are identical for both = 1 andc, = 2, for a
contour lines near the stability boundary indicates a §icarit  number of iteration larger than or equal to two. The exparsio
growth in the phase errors. However, the third iterate fer th also suggest that the method for= 1 is always second order
stabilized case foc, = 1 andc, = 2 shows fairly moderate in time, while the method foc, = 2 is first order for the first
phase error forr € [0.8,0.9] ando = 0.57, respectively, as iterate and second from the second iterate on. The expansion

seen in Figures 9 and 10. for the phase show a similar trend, namely:
Remark7. Computations documented in [12] usitg = 2 o(G™M) 1- o2
. c=V _ g 2 4

were most often performed at = 0.8/C, ~ 0.57 with » =1- 5 P +O(B) » (70)
three iterates of the predicfanulti-corrector. This choice cor- -~

) . G(2,3,4,...,oo)) 2
responds to high wave number damping and small overall phase o( =1 12 1 R N 0(5Y) (71)
error (see also Fig. 6(b)), and was found in [12] to reduceémes w B 6 12 Pi k7>
distortion in blast tests of Sedov type [13]. g

an

Remark8. The fact that the variational multiscale stabilization — )
with ¢, = 2 reduces by a factor/V2 the stability limit should w(Ge ) _q_16- Glffzﬁz +OBY (72)
not be considered as an indication that the variationalimult w 96 K ke
scale shock hydrodynamics method would require 30% more J(G(2,3,4,...,oc)) 1 5
time steps than a standard hydrocode computation. In faet, t A (_ + U_)ﬂﬁ +0BY), (73)
opposite can be said: A comparison on multidimensionas test w 6 12

showed that the variational multiscale method requiredwen a |, ... suggest that both stabilized methods are second-acee
erage 20-30% fewer time steps than the more standard constan, -+e for the phase. More precise information can be gdiped

phresfsurer:‘mmra] element w(r;pler_ne_ntatllon Irll'[llll. This is dn;]e ! means of a double Taylor series expansioaafdain powers
t_e actt "’.‘tt € propose _var_latlona mu tlsc_a € appreao of the time step\t and mesh spacinyg Whenc, = 1 we obtain
vides considerable reduction in mesh distortion with respe

a standard hydrocode implementation, with very posititeats _ 2[4 4jc4
) X 1) CK™ Cs 3 4 32
also on the overall time advancement constraint. E(G) = 5 h® At - —g AU+ O(h*At, At°h?) , (74)
In Figures 7 and 8, it is noticeable theffdrence in behavior = ~234,..) C§R4 2 4 A13p2
. .y G = —=— h® At + O(At h*, At°h?) , 75
between the odd and even iterates of the method. Restrictin ( Gt ) 8 + O ) (75)

13
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Figure 12: Contour plots of the spectral radii for variousdictoymulti-corrector iterates of the conservative algorithnthie case = 1/4. Figures 3(a)-3(d) show
the case o€, = 1. Figures 3(e)—3(h) show the casecpf= 2. The red continuous curves are isolines of unit spectcilisa

Under the assumption that the time st&pand mesh spacing
h are balanced by &FL condition, the previous derivations
imply that the dissipation error is first order for the firgrite
and third order for all other iterates, while the dispersoror
is second order for all iterates. Overall, the proposedlstad
. method is formally second order accurate, for two or more it-
CSRShZ c3kd AR + O(AE AR, H* erations of the predictgmulti-corrector procedure. Also note
B VTt (AT, AThY, 1) that the leading term in the second iteratedor 2 has not yet
(77)  converged to its limit value, indicating that at least thiteea-
tions are required to exactly retain the properties of thaliit
limit algorithm in the low wave number regime.

and

k3

—w-
)=w-—¢

a_)(G(l)

Cr=1

ok
WP+ = A + O(AL", AR, )
(76)

(c )

wherex = 27k/|T|, so thatw = kcs. We conclude that the
formal order of accuracy of all the iterates of the methodiisit
order with regard to dissipation and second order withercega
to dispersion, whent andh are balanced by @FL condition.

In the case, = 2, we obtain

7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shock hy

22 . .
fGW ) = csk” At + O(h?AL, AB) (78) drodynamics computations to enhance robustness undeeseve
’:2 4 shock wave conditions. Viscosity operators usually are -mod
_ c2k4 5c2k4 eled as Laplace fusive operators, and may pose additional
2 2 3 4 312 . . R . .
f(GE,Zz) = ST h™At - 186 AL” + O(Ath®, Ath7) constraints on stability, further limiting the time stepislthere-
(79) foreimportantto present a thorough analysis and time exiap
- trol estimate, when dissipation is present. In this casealbse
(G4 = csk! h2 At + O(Ath?, Ah) | (80)  ofthe parabolic nature of the problem, the dispersion emai-
- 4 ysis is less relevant and will be omitted. Only results fag th
and conservative scheme are presented.
i3 373
o(GM ) =w- ng h? + Glgcék A + O(At%, AtH2, %), 7.1. Amplification factor
(81) The amplification factor (spectral radius) of the matri€&s
- 3 is shown as a function of the non-dimensional wave number
5(6(2*3’4’“”"")) — - Ccsk h2 _ ik AR + O(At, AR, hY) . Bk and acoustic Courant numherin Figure 11, for a value of
o2 6 12 ' ' the non-dimensional viscosity cieientx = 1/4. A compari-

(82)  son of Figure 11 with Figure 2 shows that the introduction of a

14
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Figure 13: Contour plots of the loci of the spectral radii &do unity for the case, = 1 (Fig. 13(a)) and, = 2 (Fig. 13(b)). The color scheme is as follows. First
iterate in black, second iterate in blue, third iterate ieegr, fourth iterate in red. The curves relative to the sedtemndte are not visible as they overlap with the
ones relative to the fourth iterate.

viscosity produces in general a reduction of the stabilityge  green surface is used to represent the condition,

for the various iterates of the proposed predijetardti-corrector 0.9
algorithm. This fact can more clearly observed by comparing 1= " (84)
Figure 3 with Figure 12 and Figure 4 with Figure 13. Itis also K+ yKk+Co

important to observe in Figure 13(b) that, in the case of ta a which incorporates a safety fact@FL = 0.9 in the time-
four iterates for a stabilization parameter= 2, the highest step stability condition (61). First of all, note that thedb-
wave numbersre not responsibldor the stability constraint, dimensional stability region in Figures 15(a) and 15(g) is
since, as the Courant numheris increased, it is the mode at bounded by the two red surfaces. The third iterate with no sta
approximately3x = 7/8 to go unstable first. Instead, in the casebilization is unconditionally unstable, since the intetsen be-
¢. = 1, for which both the lagged and conservative version oftween planesi = const.] and red surfaces always occurs in
the time integrator coincide, it is the highest wave numbére  Figure 15(g). This is not the case for the first iterate, which
responsible for the stability limit. conditionally stable in the rangee [1/4, 1/2]. However, this
Recalling that by definition and the developments in Sectiorfesult does not have practical relevance, since in the meai
5,0< o < 1/, and 0< « < 1/2, a rearrangement of (59) Case one can expecto cover the entire range [0/2].

yields the stability condition: Considering Figure 15(f) for the two-iterate scheme with
c, = 2, it is easy to realize that the red and blue surfaces do
1-2x intersect at valueg < x, indicating that the stability condition
o< e (83)  (61) is inappropriate. Mitigating the size of the time step b

a factor 0.9 (see (84)) is flicient in preventing the predictor-
from which, wherk = 1/4, we obtainr < v2/2 ando- < 1/2 corrector to become unstable, as indicated by the fact #tat (
for the cases, = 1 andc, = 2, respectively. These results can least by visual inspection) the red and green surfaces in the

also be verified in Figure 13, f@ = 7. The convergence of same picture do not intgrsect. ) )
the spectral radii relative to the various iterates to thpliecit Whenc, = 1, the estimate given by (61) (or, equivalently,

case can be evaluated in Figure 14 where sections of the elevie ). Yields a stable time step, at least by inspection gfifés

tion plots of Figure 11 at various values of the parametare ~ +°(P), 15(€), and 15(h). The valee= 2 was used in the com-
putations performed in [12], in combination with the follimg

presented. : "
Perhaps the most important plots of the entire study are pré[me-step control:
sented in Figure 15, in which red three-dimensional contour h? .
surfaces show the loci of the spectral radii equal to unitytie At=CFL v m » with CFL<09. (85
S

first, second, and third iterate of the proposed method, en th
space {, Bk, k]. Results are shown in the case of no stabiliza-
tion (c. = 0) and for values of the stabilization parametes 1
andc, = 2, for the conservative approach. A blue surface repre- We present two one-dimensional tests to show how the time
sents the stability limit given by the high wave number asisly step estimate derived in Section 5 performs in the general no
result (59) when equality holds. In addition, in Figure )J5&  linear case. In particular, the tests are performed for aalid
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Figure 14: Spectral radii for the stabilized predigtaulti-corrector algorithm in the case = 1/4, for various values of the acoustic Courant numisesnd
stabilization parameter,. Figures 14(a)-14(d), conservative scheme wijte 1, Figures 14(e)-14(h) conservative schemecfor 2. Color scheme is as follows.
Black: Implicit time integrator. Orange, red, green andebdue used for the first, second, third, and fourth iteraspeetively.

gas, using the nonlinear algorithm detailed in [12], fronmiakh  to 0.90, 1, and 105. In the tests under consideration, the arti-
the linearized version analyzed in this study has beenelgriv ficial viscosity operator is deactivated, and we adopt ateans
c; = 2. Itis easy to realize that in the case of two and three

8.1. Propagation of an acoustic pulse iterations (Figs. 16 and 17, resp.) the time-step estinsateriy
This test tracks the propagation of an acoustic pulse represharp. In fact, in the two-iteration case of Figure 16, sohs
sented by the initial conditions are stable foiCFL = 0.9 and unstable foCFL = 1.0. In
Vo = w. (86) the three-iteration case of Figure 17, solutions are stabpl®

CFL = 1.0, and become unstable f&FL = 1.05. The case

po = ltw, 87)  of four iteratios (Fig. 18) is more interesting, since it swthe

Po = l+w, (88)  same theoretical stability bound as the two iterate casagha
17605(4%;0”)) CFL = 0.9, but oscillations appear only f@FL = 1.05. A

w(X) = — . 0<X-Xor <4, (89) possible explanation is that the nonlinear algorithm corese
0, otherwise, total energy, and is therefore less prone to a catastropwvetly

where 4, the wavelength is taken equal to one fourth of thepflnstabllltles, as the predictonulti-corrector converges to the

length the domaif)g, andX,¢; = —A. The initial condition is implicit limit.
depicted in Figures 16, 17, and 18, by red continuous links T
test was already presented in [9—11] in full detail. In piat ) . ) . .
the initial condition is given by a base flow with a superposed Another interesting numerical test is represented by & peri
perturbation with amplitude of about 2%. We can therefore ex°diC, nonlinear breaking wave problem similar to the one de-

pect the nonlinear equations of Lagrangian shock hydragyna SC'iPed in [2, 3]. The domain of the problem is the interval
ics to behave very similarly to their linearized limit, dimsed  [0- 1], subdivided into 100 elements, and with periodic bound-

in full detail in the previous sections. As time progresgee &1y conditions. The material is a gamma-law ideal gas [Bwit
waves are generated: v = 5/3. The initial density has a sinusoidal variation

1. Alarge amplitude acoustic wave moving from left to right, p(x,0) = 0.001(1.0 + 0.1 sin(2rX)) .
which can be seen on the right of the domain.

2. A smaller amplitude acoustic wave moving from right to The initial pressure is
left, which at the final time of the computation is about to )
reflect from the left boundary. p(x, 0) = 106(P(X» O)) )

3. A standing (i.e., motionless) entropy wave, characteriz 0.001
by a fluctuation in density and internal energy, visible on
the left of the domain.

8.2. Periodic Breaking Wave

and the initial velocity is

The numerical results are presented in Figures 16, 17, arid 18 V(x,0) = 2t~ Cs i
the case of two, three, and four iterations of the prediotalti- y-1

corrector algorithm, and for values of tig=L number equal
16
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a) c, = 0, 1 iterate. b) ¢, = 1, Iiterate.
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(d) ¢, = 0, 2 iterate. (e) ¢ = 1, 2 iterate. ) ¢ =2, 2iterate.
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a 00"
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Figure 15: Three-dimensional surfaces representing ttiefdhe spectral radii equal to unity for the first, secona ¢hird iterate of the conservative version of
the proposed time integrator, in the case of no stabilimatip = 0, and for values of the stabilization parameter equalte 1 andc, = 2, respectively. The blue
surface represents the stability limit given by (59) (onlieglently, (61)), the green surface represents the “miitig” stability condition given in (84). Note that
there are no additional intersections between the red amdsbirface in Figure 15(b), other than the one that occufern. The very rapid change in slope near
[0, Bk] = [1,7/2] seems to create a graphical artifact, which was not plestitresolve increasing the plotting mesh resolution.
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Figure 16: Plots of density, pressure, internal energy,\vahatity versus the spatial position for the propagatiommfacoustic pulse at tinte= 0.5, and various
CFL numbers. Two iterations of the conservative predjotaiti-corrector approach. The red lines indicate theahitbndition.
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Figure 17: Plots of density, pressure, internal energy,\ahatity versus the spatial position for the propagatiommfacoustic pulse at tinte= 0.5, and various
CFL numbers. Three iterations of the conservative predittoiti-corrector approach. The red lines indicate theahitondition.
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Figure 18: Plots of density, pressure, internal energy,\ahatity versus the spatial position for the propagatiommfacoustic pulse at tinte= 0.5, and various

CFL numbers. Four iterations of the conservative predietatti-corrector approach. The red lines indicate theahitondition.
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Figure 19: Plots of density, pressure, internal energy,\ahakity versus the spatial position for the periodic birgkwvave test at timé = 0.0004, and various
CFL numbers. Three iterations of the conservative preditioiti-corrector approach.
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where

p(x, 0))”2
p(x0))
and

Cs = (’}/
10°

1/2
Cs, = |Y=—= .
® (70.001)
The solution is smooth for a finite time @ Tpreax < o0, at

in the linear case that worked well also in the nonlinear case
[12]. From the derivation presented herein, it appearsrtivat

ning the computations with a CFL safety factor of 0.8 yields
better, if not the best results in terms of high wave number di
sipation and dispersion error. Finally, formal order of@ecy
arguments suggest that the proposed method is second order i
space and time for smooth solutions, when (as usual in tran-
sient dynamics computations) time step and mesh spacing are

which point the wave breaks and a shock forms [2, 3]. In thissalanced by &£ FL-type condition. In conclusion, this article

second test the artificial viscosity operator is activehvaion-

supports with a detailed analysis the algorithmic desigthef

stants given as in [12]. The numerical results are presdoted method developed in [8] and implemented in [12], and shows

t = 0.0004> Tpyreak

that the &ect of variational multiscale operators in shock hy-

Because this problem involves the formation of shock wavesgrodynamics computations is to improve the stability arss di

the applicability of the linearized analysis developed iavp
ous sections is tested more severely. In particular, inakse of
nonlinear problems, the predictowlti-corrector approach is
equivalent to a fixed-poimonlineariteration. It was observed
that two iterations were not flicient to ensure nonlinear con-
vergence of the solution for this test. Hence, only resuts f

persion characteristics of time integrators without addiverly
restrictive conditions on the time step.
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Remark9. Areason forthe need of at least three iterations ma
be the interplay between the artificial viscosity and thearar
tional multiscale stabilization at the shock location. artru-
lar, the artificial viscosity produces an “artificial” resial near
the shock, which in turn increases the strength of the &tabil
tion term. This nonlinear interaction may require more ttvem
iterations to be captured with Sicient accuracy.

(1]
[2]

In the case of three and four iterations (Fig. 19 and F8.
resp.), oscillations are only visible f@FL = 1.05, proving the
effectiveness of the time-step estimate in the nonlinear dase.
is also noticeable that the overshoot past the shock is egduc [4]
in the four iterations case, with respect to the three itenat

(3]

: ) e [5]
case. In the case of four iterates, instabilities shouldiopast
CFL = 0.90, but they are not visible in the ca€é-L = 1.00, [6]
as in the acoustic pulse test. -

Remark10. In the case of the periodic breaking wave test, the
artificial viscosity is active and may provide a stabiliziafy
fect by damping small oscillations in the compression regio
which eventually coalesces into a shock. This fact may par-[®]
tially explain the results in the case of four iterates of the
predictofmulti-corrector.

(8]

(10]

Remark11. In any case, the important point to be made is that
the theoretical stability bound developed with a lineatiaaal-
ysis provides a safe estimate for time-step advancemenirals
the nonlinear case, as confirmed in the numerical computatio
presented in this study and in [12].

(11]

(12]

9. Summary 3]

We have presented a von Neumann analysis of a linearized
version of the predictgmulti-corrector algorithm proposed in
[12], with a comprehensive evaluation of stability and disp
sion properties. We have derived a time-step stability boun
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Figure 20: Plots of density, pressure, internal energy,\ehakity versus the spatial position for the periodic birgkwvave test at timé = 0.0004, and various
CFL numbers. Four iterations of the conservative predictatti-corrector approach.
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