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Abstract

The typical structure of the linearized equations of Lagrangian shock-hydrodynamics is given by the first-order systemform of
the wave equation with dissipative effects. This article presents the complete von Neumann stability and dispersion analysis for a
predictor/multi-corrector time integrator applied to a stabilized variational multiscale finite element formulation of such system of
equations. Bounds for stable time advancement are derived,and estimates of the formal order of accuracy indicate that the proposed
method is second order in time and space.
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1. Introduction

In [8, 12], a conservative predictor multi-corrector time in-
tegrator was proposed in combination with a new Lagrangian
shock hydrodynamics algorithm based on piece-wise linear fi-
nite elements and variational multiscale stabilization. This arti-
cle presents the full von Neumann analysis of stability for this
algorithm, in the case of a linearized version of the shock hydro-
dynamics equations. The linearized system of equations gov-
erns the acoustic propagation of waves in a medium.

Because the proposed algorithm is often used in combination
with shock capturing artificial viscosities, stability bounds are
derived not only in the case of a purely acoustic, undamped sys-
tem of equations, but also in the case when diffusion is present.
As expected, the presence of stiff diffusion-type operators is
negatively affecting the stability of the time integration scheme,
producing a more restrictive Courant-Friedriechs-Levy condi-
tion. A simple time-step control condition is developed by ana-
lyzing the stability of the highest wave numbers in the discrete
system of equations, and compared with results from the com-
plete von Neumann analysis. Furthermore, by means of Taylor
series expansions, it is shown that the formal accuracy of the
method in the case of no artificial viscosity is second order in
time and space.
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Corporation, a Lockheed Martin Company, for the United States Department of
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The rest of the exposition is organized as follows: Section
2 is devoted to presenting the equations of Lagrangian hydro-
dynamics, deriving an appropriate and representative lineariza-
tion. In Section 3, the discrete system of equations is obtained
in the case of one dimension and periodic boundary conditions.
By means of the Discrete Fourier Transform, the von Neumann
stability analysis is applied in Section 4 to the full systemof
discrete modes, and restricted in Section 5 to the highest wave
numbers, with the purpose of deriving a simple stability bound
for the time step in practical computations. Section 6 is devoted
to the analysis of the system of equations of pure (undamped)
acoustics, and includes calculations of the formal order ofaccu-
racy of the method by Taylor expansion of the dissipation and
dispersion errors. In Section 7 the effects of viscosity on stabil-
ity are also accounted for. A few numerical tests are presented
in Section 8, to verify the stability estimates derived in previous
sections. Conclusions are summarized in Section 9.

2. A simplified Lagrangian hydrodynamics system

With the purpose of presenting the algorithm proposed in [8,
12], we briefly summarize the system of Lagrangian equations
for a compressible fluid in which heat fluxes, heat sources, and
body forces are absent. LetΩ0 andΩ be open sets inRnd (where
nd is the number of spatial dimensions). Thedeformation

ϕ : Ω0→ Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

maps the material coordinateX, representing the initial position
of an infinitesimal material particle of the body, tox, the posi-
tion of that particle in the current configuration (see Fig. 1). Ω0
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Figure 1: Sketch of the Lagrangian mapϕ.

is the domain occupied by the body in its initial configuration,
with boundaryΓ0. ϕ mapsΩ0 to Ω, the domain occupied by
the body in its current configuration. Thedeformation gradient
anddeformation Jacobian determinantcan be defined as

F = ∇Xϕ , (3)

J = det(F) , (4)

where∇X is the gradient in the original configuration. In the
domainΩ, the equations for the displacement update and con-
servation of mass, momentum, and energy read:

u̇ = v , (5)

ρJ = ρ0 , (6)

0 = ρ v̇ + ∇xp , (7)

0 = ρǫ̇ + p∇x· v . (8)

Here,∇x and∇x· are the current configuration gradient and diver-
gence operators, anḋ(·) indicates the material, or Lagrangian,
time derivative. u = x − X is the displacement vector,ρ0 is
the reference (initial) density,ρ is the (current) density,v is the
velocity, andp is the pressure, assumed to satisfy an equation
of state of the formp = p̂(ρ, ǫ), with ǫ the internal energy per
unit mass.

In [8], it was shown that the shock hydrodynamics equations
can be reduced to the system (or, mixed) form of a nonlinear
wave equation. Namely, (6), (7), (8), and the equation of state
yield

0 = ρv̇ + ∇xp , (9)

0 = ṗ+ ρc2
s∇x·v , (10)

wherecs is the speed of sound in the medium. In the Lagrangian
setting, the displacement and mass conservation equations(5)-
(6) are associated with a standing entropy wave (with respect to

the Lagrangian material coordinates) governing the motionof
contact discontinuities. The incorporation of these equations in
the analysis that follows is not essential, as the stabilitybounds
for the system of equations under consideration are dominated
by the acoustic characteristics associated with equations(9) and
(10). In this context, it is also important to observe that, by
construction, numerical schemes in Lagrangian coordinates are
capable of precisely capturing and tracking contact discontinu-
ities without adding any numerical dissipation. Therefore, we
will restrict our analysis to the system of equations (9) and(10),
which can be easily linearized assuming small strains (imply-
ing∇x ≈ ∇X, i.e., negligible mesh motion), and small space/time
variations of density and speed of sound.

In order to achieve insightful results, we will consider a sim-
ple one-dimensional flow with periodic boundary conditions.
The reader will appreciate in what follows that the derivations
are quite involved, and that these assumptions are essential to
obtain meaningful results.

3. One-dimensional linearized variational formulation

Analogous to [12], we consider a weak formulation of the
one-dimensional linearized equations of Lagrangian shockhy-
drodynamics, augmented by variational multiscale stabilization
operators and a shock capturing artificial viscosity operator.
Namely, denoting byT the unit periodic torus along the real
line R, and considering a piece-wise linear finite element de-
composition, we have that, for every discrete test functions ψ
andφ,

0 =
∫

T

ψ V̇ −
∫

T

ψ,X P

+

∫

T

ψ,X τ(Ṗ+ c2
sV,X) +

∫

T

ψ,X νV V,X , (11)

0 =
∫

T

φ Ṗ+
∫

T

φ c2
s V,X

+

∫

T

φ,X τc
2
s(V̇ + P,X) +

∫

T

φ,X νP P,X , (12)

where we have used the notationV = ρv (recallρ = const.) and
P = p. For the sake of simplicity, we also assumeνV = νP =

ν. Using the same predictor/multi-corrector strategy adopted in
[12], the discretization in time of (11)-(12) yields:

0 =
∫

T

ψ
(

V(i+1)
n+1 − Vn

)

− ∆t
∫

T

ψ,X P(i)
n+1/2

+ ∆t
∫

T

ψ,X τ̃
(

P(i)
n+1 − Pn + ∆tc2

s(V,X)(i)
n+1/2

)

+ ∆t
∫

T

ψ,X ν (V,X)(i)
n+1/2 , (13)

0 =
∫

T

φ
(

P(i+1)
n+1 − Pn

)

+ ∆t
∫

T

φ c2
s (V,X)(i+1)

n+1/2

+ ∆t
∫

T

φ,X τ̃c
2
s

(

V(i+1)
n+1 − Vn + ∆t(P,X)(i)

n+1/2

)

+ ∆t
∫

T

φ,X ν (P,X)(i)
n+1/2 , (14)
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(a) cτ = 0, implicit. (b) cτ = 1, implicit. (c) cτ = 2, implicit.

(d) cτ = 0, 1st iterate. (e) cτ = 1, 1st iterate. (f) cτ = 2, 1st iterate.

(g) cτ = 0, 2nd iterate. (h) cτ = 1, 2nd iterate. (i) cτ = 2, 2nd iterate.

(j) cτ = 0, 3rd iterate. (k) cτ = 1, 3rd iterate. (l) cτ = 2, 3rd iterate.

(m) cτ = 0, 4th iterate. (n) cτ = 1, 4th iterate. (o) cτ = 2, 4th iterate.

Figure 2: Elevation plots of the spectral radiiρG(i) (σ, βk), for κ = 0, cτ = 0, 1, 2, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (39). In thesubsequent rows, the iterates from one to four. For the casecτ = 0, cτ = 1, andcτ = 2, the plots are in the
rangeσ ∈ [0, 2], σ ∈ [0, 1], andσ ∈ [0,

√
2/2], respectively. Also, note that Figures 2(a), 2(d), 2(g),2(j), 2(m) have a vertical range [0, 1.2], while all other Figures

are in the range [0, 1].
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whereτ̃ = τ
∆t =

cτ
2 , (·)(i) and (·)(i+1) are used to denote quantities

computed with the predictor/corrector iterates (i) and (i + 1),
respectively, and the subscriptsn, n+ 1, andn+ 1/2 are used to
indicate quantities at timetn, tn + 1, andtn+1/2 = (tn + tn+1)/2.

Remark1. In order to keep the analysis as close as possible to
the algorithm effectively used in the computations in [12], the
latest available velocity iterate is used in the computation of the
second and third terms of (14). This choice yields a conser-
vative formulation in the nonlinear extension of the algorithm,
and, for this reason, this method is referred to as theconserva-
tive time integrator.

We assume a uniform, equispaced subdivision of the torus
T into finite elements of measureh. As in [12], both pressure
and velocity are approximated by piece-wise linear functions.
Adopting mass lumping in addition to the previous assump-
tions, the following finite difference equations are derived:

0 =V(i+1)
j,n+1 − V j,n

+
σ

4cs

(

P(i)
j+1,n+1 + P j+1,n − P(i)

j−1,n+1 − P j−1,n

)

−
σ

2cs
τ̃
(

P(i)
j+1,n+1 − P j+1,n − P(i)

j−1,n+1 + P j−1,n

)

− κ + τ̃σ
2

2

(

V(i)
j+1,n+1 + V j+1,n − 2V(i)

j,n+1

−2V j,n + V(i)
j−1,n+1 + V j−1,n

)

, (15)

0 =P(i+1)
j,n+1 − P j,n

+
csσ

4

(

V(i+1)
j+1,n+1 + V j+1,n − V(i+1)

j−1,n+1 − V j−1,n

)

− csσ

2
τ̃
(

V(i+1)
j+1,n+1 − V j+1,n − V(i+1)

j−1,n+1 + V j−1,n

)

− κ + τ̃σ
2

2

(

P(i)
j+1,n+1 + P j+1,n − 2P(i)

j,n+1

−2P j,n + P(i)
j−1,n+1 + P j−1,n

)

, (16)

where j is the node index,σ = cs∆t
h is the acoustic Courant

number andκ = ν∆t
h2 .

4. Von Neumann stability analysis

In conformity with the von Neumann stability analysis (see
[7, 14] for details), because the boundary conditions are peri-
odic, we can expand the solution degrees-of-freedom as a finite,
linear combination of complex exponentials with complex coef-
ficients. This eventually amounts to applying a Discrete Fourier
Transform (DFT) operator to the discrete equations (15)–(16).
In particular, we have:

V(i)
j,n =

N/2
∑

k=−N/2+1

V̂(i)
k,neiβk j , (17)

P(i)
j,n =

N/2
∑

k=−N/2+1

P̂(i)
k,neiβk j , (18)

where i =
√
−1, and V̂(i)

k,n and P̂(i)
k,n are the Fourier coeffi-

cients for velocity and pressure, relative to thekth harmonic,
the nth time step and theith iterate. Note thatN is the num-
ber of elements (a multiple of 2), andβk =

2πhk
|T| =

2πk
N is an

angularly scaled version of the integer wave numberk (with
|T| = meas(T) = Nh = 1 the measure of the torus). Com-
plex exponentials associated to different wave numbers satisfy
a discrete orthogonality property:

N/2−1
∑

m=−N/2

eiβkmeiβqm = δkq , for − N/2 ≤ k, q ≤ N/2 , (19)

with δkq the Kronecker delta tensor (δkq = 1 if k = q, and
δkq = 0 if k , q). We then replace (17)-(18) into (15)-(16) mul-

tiplied by eiβq j andeiβr j , respectively, and we sum overj. Due
to the orthogonality property (19), and the linearity of thesys-
tem of equations (15)-(16), it is easy to verify that the previous
steps lead toN pairs of equations, coupling the dynamics of the
kth pressure and velocity modes, with−N/2 + 1 ≤ k ≤ N/2.
Namely:

(I + A0)Ẑ
(i+1)
k,n+1 = A1Ẑ

(i)
k,n+1 + (I + A2)Ẑk,n , (20)

where

Ẑ
(i)
k,n =



















V̂(i)
k,n

P̂(i)
k,n



















(21)

is thekth velocity/pressure modal pair, relative to thenth time
step and theith iterate, and

I =















1 0

0 1















, (22)

A0 =

















0 0

−i
(

τ̃ − 1
2

)

cs σ sin(βk) 0

















, (23)

A1 =

















(τ̃σ2 + κ) (cos(βk) − 1) i
(

τ̃ − 1
2

)

σ
cs

sin(βk)

0 (τ̃σ2 + κ) (cos(βk) − 1)

















,

(24)

A2 =



















(τ̃σ2 + κ) (cos(βk) − 1) −i
(

τ̃ + 1
2

)

σ
cs

sin(βk)

−i
(

τ̃ + 1
2

)

csσ sin(βk) (τ̃σ2 + κ) (cos(βk) − 1)



















.

(25)

It is also very important to observe that because the degrees-
of-freedom “signal” has real values, the discrete Fourier coeffi-
cients must satisfy the complex conjugacy property

Ẑ
(i)
−k,n =

(

Ẑ
(i)
k,n

)∗
, for 0 ≤ k ≤ N/2− 1 , (26)

whereŴ
∗

indicates the complex conjugate ofŴ (componen-
twise), and, in addition, the following condition for the often
called “odd ball” mode holds:

Ẑ
(i)
N/2,p = 0 . (27)
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(a) cτ = 1, 1st it. (C,L) (b) cτ = 1, 2nd it. (C,L) (c) cτ = 1, 3rd it. (C,L) (d) cτ = 1, 4th it. (C,L)

(e) cτ = 2, 1st it. (C) (f) cτ = 2, 2nd it. (C) (g) cτ = 2, 3rd it. (C) (h) cτ = 2, 4th it. (C)

(i) cτ = 2, 1st it. (L) (j) cτ = 2, 2nd it. (L) (k) cτ = 2, 3rd it. (L) (l) cτ = 2, 4th it. (L)

Figure 3: Contour plots of the spectral radii of various iterates of the predictor/multi-corrector algorithm forκ = 0. Figures 3(a)–3(d): Conservative scheme for
cτ = 1 (coincident with the lagged scheme (C,L)). Figures 3(e)–3(h): Conservative scheme forcτ = 2 (C). Figures 3(i)–3(l): Lagged scheme forcτ = 2 (L). The red
continuous line is the contour line relative to a unit spectral radius, the white dashed line in Figures 3(e)–3(l) indicates the valueσ =

√
2/2.

Because complex conjugates have the same absolute value and
opposite phase, it is sufficient to limit the study of the amplifi-
cation factors to the discrete modes in the range 0≤ k < N/2,
that is, 0≤ βk < π. In the discussion that follows, it will also
be important to consider a variation of the time-integration al-
gorithm, in which the velocity iterateV(i+1) in (16) is replaced
by the previous iterateV(i). This method will be referred to as
the laggedapproach. In this case, equation (16) becomes

0 =P(i+1)
j,n+1 − P j,n

+
csσ

4

(

V(i)
j+1,n+1 + V j+1,n − V(i)

j−1,n+1 − V j−1,n

)

−
csσ

4
τ̃
(

V(i)
j+1,n+1 − V j+1,n − V(i)

j−1,n+1 + V j−1,n

)

− κ + τ̃σ
2

2

(

P(i)
j+1,n+1 + P j+1,n − 2P(i)

j,n+1

−2P j,n + P(i)
j−1,n+1 + P j−1,n

)

, (28)

and, consequently,A0 andA1 need to be modified as:

A0 = 0 , (29)

A1 =



















(τ̃σ2 + κ) (cos(βk) − 1) i
(

τ̃ − 1
2

)

σ
cs

sin(βk)

i
(

τ̃ − 1
2

)

csσ sin(βk) (τ̃σ2 + κ) (cos(βk) − 1)



















.

(30)

This approach yields a more straightforward time integrator for
the linearized equations, but does not extend, however, to acon-
servative scheme in the nonlinear case.

The vector equation (20) is a recurrence relationship be-
tween the predictor/multi-corrector iterates of the proposed
time-integration approach. Set

B0 = (I + A0)−1(I + A2) , (31)

B1 = (I + A0)−1A1 . (32)

Recalling that the first guess for the new iterate at timetn+1 is

the solution at timetn, namely Ẑ
(0)
k,n+1 = Ẑk,n, we can derive
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(a) cτ = 2, all iterates (C)

0.0 0.2 0.4 0.6 0.8 1.0
0

Π
4

Π
2

3Π
4

Π

0

Π
4

Π
2

3Π
4

Π

Σ

Β
k

(b) cτ = 2, all iterates (L)

Figure 4: Contours of unit spectral radii (stability limit)for the casecτ = 2 for the conservative algorithm (Fig. 4(a)) and for the lagged algorithm (Fig. 4(b)). The
color scheme is as follows: First iterate in black, second iterate in blue, third iterate in green, fourth iterate in red.In Figure 4(a), part of the curve relative to the
second iterate is not visible, as it overlaps with the one relative to the fourth iterate.

explicit recurrence formulas for the computation ofẐ
(i+1)
k,n+1 in

terms ofẐk,n:

Ẑ
(1)
k,n+1 = B1Ẑ

(0)
k,n+1 + B0Ẑk,n

= (B0 + B1)Ẑk,n

= G(1)Ẑk,n , (33)

Ẑ
(2)
k,n+1 = B1Ẑ

(1)
k,n+1 + B0Ẑk,n

=
(

B1G(1) + B0

)

Ẑk,n

= G(2)Ẑk,n , (34)

Ẑ
(3)
k,n+1 = B1Ẑ

(2)
k,n+1 + B0Ẑk,n

=
(

B1G(2) + B0

)

Ẑk,n

= G(3)Ẑk,n , (35)

Ẑ
(4)
k,n+1 = B1Ẑ

(3)
k,n+1 + B0Ẑk,n

=
(

B1G(3) + B0

)

Ẑk,n

= G(4)Ẑk,n , (36)

Ẑ
(5)
k,n+1 = . . . (37)

In the limit for an infinite number of iterations, we obtain the
amplification matrix for the original implicit mid-point algo-
rithm from which the predictor/corrector time integrator is de-
rived:

(I + A0)Ẑ
(∞)
k,n+1 = A1Ẑ

(∞)
k,n+1 + (I + A2)Ẑk,n , (38)

that is, removing the superscript (∞) from Ẑ
(∞)
k,n+1, and rearrang-

ing terms,

Ẑk,n+1 = (I + A0 − A1)−1(I + A2) Ẑk,n

= G(∞) Ẑk,n . (39)

Remark2. The predictor/multi-corrector method can therefore
be interpreted as a fixed-point iterative process, converging to
the solution of the implicit method (39). In particular, thecon-
servative scheme has the nature of a Gauss-Seidel iteration, as
the matrixI + A0 is lower diagonal, while the lagged scheme
resembles a Jacobi iteration, sinceA0 = 0.

Remark3. Convergence of the fixed-point iteration is ensured
if ||B1|| < 1 (sufficient condition). It will be subsequently shown
that this condition is equivalent to the temporal stabilitycondi-
tion.

It is possible to evaluate the stability properties of the pro-
posed predictor/multi-corrector algorithm, by evaluating how
G(i) evolves in time an initial condition. In particular, if

||G(i)|| = max
s∈R2\0

||G(i)s||
||s||

≤ 1 (40)

then stability of the numerical discretization is ensured.Defin-
ing the spectral radius as

ρ(G(i)) = max{|λ(G(i))|} ≤ ||G(i)|| , (41)

whereλ(G(i)) is a (generally complex) eigenvalue ofG(i), we
can use slightly different condition for stability, which leads to
a simpler analysis (see, e.g., [4]):

ρ(G(i)) < 1⇒ stability , (42)

ρ(G(i)) > 1⇒ instability . (43)

These conditions are consequence of a well-known theorem in
matrix analysis:
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Figure 5: Spectral radii for the stabilized predictor/multi-corrector algorithm in the caseκ = 0, for various values of the acoustic Courant numberσ and stabilization
parametercτ = 1, for which the conservative and lagged schemes coincide. Black: Implicit time integrator. Orange, red, green and blueare used for the first,
second, third, and fourth iterates, respectively.
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Figure 6: Spectral radii for the stabilized predictor/multi-corrector algorithm in the caseκ = 0, for various values of the acoustic Courant numberσ and stabilization
parametercτ = 2. Figures 6(a)–6(d): Conservative scheme (C). Figures 6(e)–6(h): Lagged scheme (L). Black: Implicit time integrator. Orange, red, green and blue
are used for the first, second, third, and fourth iterates, respectively.

Theorem 1 (cf. [5], p. 298).Let A ∈ Cm×m, whereC is the
complex field. Then:limn→∞ An = 0 if and only ifρ(A) < 1.

Hence, ifρ(G(i)) < 1, Theorem 1 directly implies stability. If
ρ(G(i)) > 1, one can consider, as initial condition vectorẐ0,
the eigenvector relative to an eigenvalueλ0 with |λ0| > 1.
Using the properties of vector norms, it is easy to see that
limn→∞ ||Ẑn|| = limn→∞ ||(G(i))nẐ0|| = limn→∞ |λ0|n||Ẑ0|| = ∞,
and we have instability. The case that our analysis covers less
precisely is the case whenρ(G(i)) = 1. Recalling that (see [5],
p. 299)

ρ(G(i)) = lim
n→∞
||(G(i))n||1/n , (44)

it is easy to realize that the caseρ(G(i)) = 1 admits linear growth
in the solution (i.e.,||(G(i))n|| = O(n)). However, the analysis
that follows (see, e.g., Figures 2 and 11) shows thatρ(G(i)) = 1
occurs in three special cases :

1. σ = 0 ⇔ ∆t = 0, a trivial case corresponding of no time
evolution.

2. βk = 0, corresponding to the evolution in time of a con-
stant mode. In this case, it is not necessary to resort to
the von Neumann analysis, to prove that the entire class of

algorithms under considerationstablypreserves constant
solutions in time.

3. The time-step stability limit, as a limit case of the condi-
tion ρ(G(i)) < 1. This case is not so important in practical
(nonlinear) computations, since it is usually not safe to run
computations exactly at the stability limit.

Notice also that a complex eigenvalue ofG(i) can be expressed
as:

λ(G(i)) = |λ(G(i))|eiω̄∆t , (45)

whereω̄∆t = arg(λ(G(i))), andω̄ ∈ R is the phase. This de-
composition will be important for the study of the dispersion
properties of the proposed time integration approach, as shown
in Section 6 and Section 7. An alternative expression for (45) is

λ(G(i)) = e(−ξ̄+iω̄)∆t , (46)

where

|λ(G(i))| = e−ξ̄∆t , or, ξ̄ = − log(|λ(G(i))|)
∆t

. (47)
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(a) cτ = 0, implicit. (b) cτ = 1, implicit. (c) cτ = 2, implicit.

(d) cτ = 0, 1st iterate. (e) cτ = 1, 1st iterate. (f) cτ = 2, 1st iterate.

(g) cτ = 0, 2nd iterate. (h) cτ = 1, 2nd iterate. (i) cτ = 2, 2nd iterate.

(j) cτ = 0, 3rd iterate. (k) cτ = 1, 3rd iterate. (l) cτ = 2, 3rd iterate.

(m) cτ = 0, 4th iterate. (n) cτ = 1, 4th iterate. (o) cτ = 2, 4th iterate.

Figure 7: Elevation plots of the ratio ¯ω/ω, for κ = 0. Plots are forcτ = 0, 1, 2, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator (see (39)). In the subsequent rows, the iterates from one to four. Note that for the casecτ = 0, cτ = 1, andcτ = 2, the plots are in
the rangeσ ∈ [0, 2], σ ∈ [0, 1], andσ ∈ [0,

√
2/2], respectively.
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By performing a Taylor expansion of̄ξ and ω̄ in the limit of
vanishing time step∆t and mesh sizeh, it is possible to recover
the truncation error and the formal order of accuracy of the var-
ious iterates of the method, as shown in Section 6.3. Due to the
complexity of the algebra involved, we are not including the
calculations and explicit expressions of the eigenvalues of the
G(i) matrices. We present the fundamental results by appropri-
ate plots in Section 6 and Section 7. All algebraic symbolic ma-
nipulations were performed using the Mathematica R© TM soft-
ware [1, 15].

5. Stability of the highest wavembers

Before proceeding with a complete analysis of the stabil-
ity and dispersion properties of the proposed predictor/multi-
corrector algorithm, it is important to develop a preliminary
analysis of stability for the highest spatial wave numbers in the
discrete equations. Stability of the highest modes in a com-
putation is a necessarybut not sufficient condition for overall
stability. However, an understanding of the dynamics of high
wave number modes can shed light on the overall behavior of
the algorithm, and, most importantly, provide time-step control
estimates of practical use in computations.

The amplification of the highest wave number is governed by
the matricesG(i), whenβk is set equal toπ. In this case, it is easy
to observe thatA0 = 0, and thatA1 and A2 become diagonal
and equal to a multiple of the identity matrixI. In particular,

A1 = A2 = −(cτσ
2 + 2κ)I . (48)

Therefore, the time evolution of the highest pressure and ve-
locity Fourier modes is decoupled and identical. The study of
the proposed predictor/multi-corrector method can therefore be
reduced to a scalar problem. Settingα = cτσ2 + 2κ ≥ 0, we
obtain:

G(1) = (1− 2α)I , (49)

G(2) = (1− 2α + 2α2)I , (50)

G(3) = (1− 2α + 2α2 − 2α3)I , (51)

G(4) = (1− 2α + 2α2 − 2α3 + 2α4)I , (52)

G(5) = . . . , (53)

Limiting the analysis to the first four iterates, the following sta-
bility conditions are derived

First iterate:− 1 ≤ 1− 2α ≤ 1 . (54)

Second iterate:− 1 ≤ 1− 2α + 2α2 ≤ 1 . (55)

Third iterate: − 1 ≤ 1− 2α + 2α2 − 2α3 ≤ 1 . (56)

Fourth iterate:− 1 ≤ 1− 2α + 2α2 − 2α3 + 2α4 ≤ 1 . (57)

For the first iterate, the right bound yieldsα ≥ 0, always veri-
fied, and the left bound

α ≤ 1 , (58)

which provides the time-step stability constraint. For thesec-
ond iterate, the right bound yields the inequality 2α(α− 1) ≤ 0,

which implies again the stability limit (58), while the leftbound
leads to the inequalityα2 − α + 1 ≥ 0, always verified since
the polynomial has complex roots. Hence, the first and sec-
ond iterates share the same stability condition. Proceeding fur-
ther, we observe that the third iterate produces a left bound
given by 2− 2α + 2α2 − 2α3 = 2(1+ α2)(1 − α) ≥ 0, equiv-
alent to (58), while the right bound−2α(α2 − α + 1) ≤ 0
is always verified (see the derivations for the left bound for
the second iterate). The left bound for the forth iterate yields
2(1−α+α2−α3+α4) = 2((1−α)4+α(3α2− 5α+ 3)) ≥ 0, al-
ways verified, since the roots of the polynomial 3α2−5α+3 are
complex. Finally, the right bound yieldsα(1+ α2)(α − 1) ≤ 0,
again equivalent to (58). Stability limits for all remaining iter-
ates can be obtained by recursion.

Condition (58) can then be used to estimate the stable time-
step size, as it implies

cτσ
2 + 2κ − 1 ≤ 0 , or, cτc

2
s∆t2 + 2ν∆t − h2 ≤ 0 .

(59)

Solving the associated quadratic equation yields the bounds

−ν −
√

ν2 + cτc2
sh2

cτc2
s

≤ ∆t ≤
−ν +

√

ν2 + cτc2
sh2

cτc2
s

. (60)

The left bound is always verified, the right gives the stabil-
ity limit. Multiplying and dividing the right inequality by
ν +

√

ν2 + cτc2
sh2 (always a strictly positive quantity in com-

putations) and simplifying the termcτc2
s, we obtain

∆t ≤ h2

ν +
√

ν2 + cτc2
sh2

. (61)

Remark4. In the limit of a vanishing artificial viscosity, a mod-
ified advective Courant-Friedrichs-Levy condition is obtained,
namely

∆t ≤ h
√

cτ cs
, or, σ ≤ 1

√
cτ
. (62)

This implies that the variational multiscale stabilization is re-
ducing the stability limit forcτ > 1 and increasing the stability
limit if cτ < 1 (at least for the highest wave numbers). For
cτ = 1, the standard acoustic Courant-Friedrichs-Levy stability
condition is recovered.

Remark5. In the limit of a vanishing speed of sound (condi-
tion very often encountered in hypervelocity impact problems),
the stability limit is uniquely dependent on the artificial viscos-
ity ν and takes the classical form of the dissipative Courant-
Friedrichs-Levy condition:

∆t ≤ h2

2ν
, or, κ ≤ 1

2
. (63)

Remark6. As already mentioned, the predictor multi-corrector
approach can also be interpreted as a fixed-point iteration pro-
cedure [11]. A sufficient condition for the convergence (in spec-
tral space) of such procedure is||B1|| < 1, that isρ(B1) < 1. It
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(a) cτ = 1, 1st it. (C,L) (b) cτ = 1, 2nd it. (C,L) (c) cτ = 1, 3rd it. (C,L) (d) cτ = 1, 4th it. (C,L)

(e) cτ = 2, 1st it. (C) (f) cτ = 2, 2nd it. (C) (g) cτ = 2, 3rd it. (C) (h) cτ = 2, 4th it. (C)

(i) cτ = 2, 1st it. (L) (j) cτ = 2, 2nd it. (L) (k) cτ = 2, 3rd it. (L) (l) cτ = 2, 4th it. (L)

Figure 8: Contour plots of the ratio ¯ω/ω, for κ = 0. Plots are forcτ = 1,2, and various iterates of the predictor/multi-corrector algorithm. Figures 8(a)–8(d):
Conservative scheme forcτ = 1 (coincident with the lagged scheme (C,L)). Figures 8(e)–8(h): Conservative scheme forcτ = 2 (C). Figures 8(i)–8(l): Lagged
scheme forcτ = 2 (L). The red continuous line is the locus of a unit spectral radius. The black continuous line indicates the locus ¯ω/ω = 1 (no phase error).

is not difficult to verify that, in the case of the highest wave
number, that isβk = π, this condition coincides with (59). By
plotting contour surfaces atρ(B1) = 1, we were also able to
graphically verify that the stability implies convergenceof the
corrector iterates on the entire space [σ, κ, βk]. This approach
is virtually identical to the one outlined in Section 7.1 (partic-
ularly, Figure 15) and will not be reported here, for the sakeof
brevity.

6. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial viscos-
ity is usually present only in shock layers, and is absent in ex-
pansion regions. Therefore, it is very important to study the
proposed time integrator in the limit of a vanishing viscosity, as
the most part of the flow domain is subject to this condition.

6.1. Amplification factor
Figure 2 shows the spectral radii of the matricesG(i) for

i → ∞ (implicit scheme) andi = 1, 2, 3, 4, with stabilization

parametercτ = 0, 1, 2. First, note that the implicit algorithm
detailed in (39) is neutrally stable in the case of no stabiliza-
tion, as the spectral radius of the corresponding amplification
matrix is equal to unity over the entire plane [σ, β] (Fig. 2(a)).
Without stabilization, only theeveniterates are stable in the
predictor/multi-corrector version, as detailed in Figures 2(g)
and 2(m). As shown in Figures 2(d) and 2(j) (note in partic-
ular that these vertical range of the plot is [0, 1.2]), when sta-
bilization is absent, the first and third iterates of the proposed
algorithm areunconditionally unstable. This somewhat surpris-
ing phenomenon can be explained by realizing that the spectral
radii for the predictor/multi-corrrector scheme exhibit anon-
monotonicconvergence to unity as (i)→ ∞.

Whencτ = 1 the conserved and lagged variants of the sta-
bilized algorithm coincide. The implicit case in Fig. 2(b) is
stable, and the stability range for the predictor/multi-corrector
is σ ∈ [0, 1] (Fig. 2(e), 2(h), 2(k), and 2(n)), as predicted in
Section 5. In the casecτ = 2, the stability region of some of the
iterates for either the conservative or the lagged scheme does
not completely extend toσ = 1/

√
2 (i.e., the stability limit for
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(d) cτ = 1,σ = 0.9. (C)

Figure 9: Plot of the ratio ¯ω/ω, for κ = 0, for various values of the acoustic Courant numberσ andcτ = 1, for which the conservative and lagged schemes coincide.
Color scheme is as follows. Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and fourth iterate, respectively.
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Figure 10: Plot of the ratio ¯ω/ω, for κ = 0, for various values of the acoustic Courant numberσ andcτ = 2. Figures 10(a)–10(d): Conservative scheme (C). Figures
10(e)–10(h): Lagged scheme (L). Color scheme is as follows.Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and
fourth iterate, respectively.

the highest wave numbers, derived in Section 5). This feature
is the result of the increased value of the stabilization constant,
which causes some of the lower modes to go unstable before
the highest. Observe that, in this case, the range of stability
is a function of the number of iterations of the predictor/multi-
corrector. In fact, the first and third iterates of the conservative
scheme (Figs. 3(e) and 3(g)) are stable over the entire range
σ ∈ [0, 1/

√
2], as well as the first, third and forth iterates of

the lagged scheme (Figs. 3(i), 3(k), and 3(l)). Figure 4 shows
the stability isolines at which the spectral radii of various am-
plification matrices are unity, whencτ = 2. In the case of the
conservative algorithm in Figure 4(a), it is easy to realizethat
introducing a safety factor 0.9 is sufficient in recovering a sta-
bility range for all iterates, namelyσ ∈ [0, 0.9/

√
2].

Additional information can be gained by plotting sections of
the spectral radius elevation plots of the various amplification
matrices for different values of the acoustic Courant numberσ,
as shown in Figures 5 and 6. Figures 5(a)–5(d) show the results
for the coinciding conservative and lagged schemes withcτ = 1,
Figures 6(a)–6(d) show results for the conservative schemewith
cτ = 2, while Figures 6(e)–6(h) show results for the lagged
scheme, again withcτ = 2. Observe that high wave number
damping increases as the value ofcτ increases. It is also easily

appreciated the convergence of the spectral radii of the iterates
to the spectral radii of the corresponding implicit schemes, rep-
resented by black lines. In Figure 6(c), it is visible the onset
of a bifurcation point for the amplification matrix of the sec-
ond iterate (the kink in the red curve nearβk = 7π/8). This
phenomenon is more clearly visible in Figure 6(d), a sectionof
the spectral radiipastthe stability limit 0.9/

√
2 ≈ 0.64, for the

second and fourth iterates (the red and blue curves in proximity
of βk = 5π/8). Past a bifurcation point, the eigenvalues of the
corresponding amplification matrix cease to be complex con-
jugate, as evident in Figures 10(c) and 10(d), by the absence
of a phase in the eigenvalues. This is not a desirable property
in discretized wave propagation problems which should behave
as systems of harmonic oscillators. In [12], the best numerical
results in terms of accuracy and robustness (low mesh distor-
tion) were obtained with three iterates of the conservativealgo-
rithm, cτ = 2 and a safety factor 0.8 (i.e.,σ = 0.8/

√
2 ≈ 0.57).

This choices correspond to the green curve in Figure 6(b): The
high wave number damping, the moderate low wave number er-
ror, and the absence of an eigenvalue bifurcation explains these
findings.
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(a) cτ = 0, implicit. (b) cτ = 1, implicit. (c) cτ = 2, implicit.

(d) cτ = 0, 1st iterate. (e) cτ = 1, 1st iterate. (f) cτ = 2, 1st iterate.

(g) cτ = 0, 2nd iterate. (h) cτ = 1, 2nd iterate. (i) cτ = 2, 2nd iterate.

(j) cτ = 0, 3rd iterate. (k) cτ = 1, 3rd iterate. (l) cτ = 2, 3rd iterate.

(m) cτ = 0, 4th iterate. (n) cτ = 1, 4th iterate. (o) cτ = 2, 4th iterate.

Figure 11: Elevation plots of the spectral radiiρG(i) , for κ = 1/4. Plots are forcτ = 0, 1,2, and various iterates of the predictor/multi-corrector algorithm. In the top
row, the implicit mid-point time integrator (see (39)). In the subsequent rows, the iterates from one to four. The spectral radii are presented as a function ofσ and
βk. Note that for the casecτ = 0, cτ = 1, andcτ = 2, the plots are in the rangeσ ∈ [0, 2], σ ∈ [0, 1], andσ ∈ [0,

√
2/2], respectively.
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6.2. Dispersion error

When no viscosity is present, it is very insighful to evalu-
ate the extent of the dispersion error in computations. For this
purpose, observe that the classical dispersion relationship for a
linear wave is given byω = 2πkcs/|T|. Recalling that|T| = hN,
it is easily derived

ω∆t = σβk . (64)

A typical measure of the dispersion error is given by the ratio

ω̄

ω
=

arg(λ(σ, βk))
σβk

. (65)

When ω̄/ω = 1, no dispersion error is present for a certain
wave numberβk at a certain value ofσ. Figure 7 shows ele-
vation plots of the ratio ¯ω/ω. It is noticeable in Figures 7(g)
and 7(m) that eigenvalue bifurcation takes place for valuesof
[σ, βk] ≈ [2, π/2], when no stabilization is applied. Although
less notably, this also occurs for the conservative stabilized case
with cτ = 2 (Figs. 7(i), and 7(o)), for [σ, βk] near [1, π/2], as al-
ready mentioned in Section 6.1. Contour plots of the dispersion
ratio are presented in Figure 8. The black thick lines indicate
the loci where the dispersion ratio equals unity. The red thick
lines indicate the locus of the amplification factor equal tounity
(i.e., the stability limit). Note that the predictor/multi-corrector
iterates show degradation of the phase error in proximity ofthe
stability limits, with respect to the corresponding implicit al-
gorithms (see also Fig. 7). The noticeable “distortion” in the
contour lines near the stability boundary indicates a significant
growth in the phase errors. However, the third iterate for the
stabilized case forcτ = 1 andcτ = 2 shows fairly moderate
phase error forσ ∈ [0.8, 0.9] andσ = 0.57, respectively, as
seen in Figures 9 and 10.

Remark7. Computations documented in [12] usingcτ = 2
were most often performed atσ = 0.8/

√
cτ ≈ 0.57 with

three iterates of the predictor/multi-corrector. This choice cor-
responds to high wave number damping and small overall phase
error (see also Fig. 6(b)), and was found in [12] to reduce mesh
distortion in blast tests of Sedov type [13].

Remark8. The fact that the variational multiscale stabilization
with cτ = 2 reduces by a factor 1/

√
2 the stability limit should

not be considered as an indication that the variational multi-
scale shock hydrodynamics method would require 30% more
time steps than a standard hydrocode computation. In fact, the
opposite can be said: A comparison on multidimensional tests
showed that the variational multiscale method required on av-
erage 20-30% fewer time steps than the more standard constant
pressure finite element implementation in [11]. This is due to
the fact that the proposed variational multiscale approachpro-
vides considerable reduction in mesh distortion with respect to
a standard hydrocode implementation, with very positive effects
also on the overall time advancement constraint.

In Figures 7 and 8, it is noticeable the difference in behavior
between the odd and even iterates of the method. Restricting

our analysis to the stabilized case, we see that odd iteratesover-
shoot the frequencyω for high values ofβk andσ, while even
iterates undershoot the frequency in the same range of values
for βk andσ. This is most clearly appreciated in Figure 9 and
10.

6.3. Low wave number limit and truncation error

A Taylor expansion of the amplification factorρ and disper-
sion ratio ω̄/ω in a right neighborhood ofβk = 0 can more
clearly quantify the previous conclusions on the nature of the
proposed conservative algorithm. We consider only the conser-
vative algorithm, and we obtain, for the amplification factor

ρ(G(1)
cτ=1) =1− σ2

(

1
6
− σ

2

8

)

β4
k +O(β6

k) , (66)

ρ(G(2,3,4,...,∞)
cτ=1 ) =1− σ2

(

1
6
+
σ2

8

)

β4
k +O(β6

k) , (67)

and

ρ(G(1)
cτ=2) =1−

σ2

4
β2

k +O(β4
k) , (68)

ρ(G(2,3,4,...,∞)
cτ=2 ) =1− σ2

(

1
6
+
σ2

8

)

β4
k +O(β6

k) . (69)

Therefore, the stabilized method is always stable for low
wave numbers. Note also that the leading terms in the Tay-
lor expansions are identical for bothcτ = 1 andcτ = 2, for a
number of iteration larger than or equal to two. The expansions
also suggest that the method forcτ = 1 is always second order
in time, while the method forcτ = 2 is first order for the first
iterate and second from the second iterate on. The expansions
for the phase show a similar trend, namely:

ω̄(G(1)
cτ=1)

ω
=1− 1− σ2

6
β2

k +O(β4
k) , (70)

ω̄(G(2,3,4,...,∞)
cτ=1 )

ω
=1− σ2

(

1
6
+
σ2

12

)

β2
k +O(β4

k) , (71)

and

ω̄(G(1)
cτ=2)

ω
=1− 16− 61σ2

96
β2

k +O(β4
k) , (72)

ω̄(G(2,3,4,...,∞)
cτ=2 )

ω
=1− σ2

(

1
6
+
σ2

12

)

β2
k +O(β4

k) , (73)

which suggest that both stabilized methods are second-order ac-
curate for the phase. More precise information can be gainedby
means of a double Taylor series expansion ofξ̄ andω̄ in powers
of the time step∆t and mesh spacingh. Whencτ = 1 we obtain

ξ̄(G(1)
cτ=1

) =
c2

sk̃
4

8
h2∆t −

c4
sk̃

4

8
∆t3 +O(h4∆t,∆t3h2) , (74)

ξ̄(G(2,3,4,...,∞)
cτ=1

) =
c2

sk̃
4

8
h2∆t +O(∆t h4,∆t3h2) , (75)
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(a) cτ = 1, 1st iterate. (b) cτ = 1, 2nd iterate. (c) cτ = 1, 3rd iterate. (d) cτ = 1, 4th iterate.

(e) cτ = 2, 1st iterate. (f) cτ = 2, 2nd iterate. (g) cτ = 2, 3rd iterate. (h) cτ = 2, 4th iterate.

Figure 12: Contour plots of the spectral radii for various predictor/multi-corrector iterates of the conservative algorithm inthe caseκ = 1/4. Figures 3(a)–3(d) show
the case ofcτ = 1. Figures 3(e)–3(h) show the case ofcτ = 2. The red continuous curves are isolines of unit spectral radius.

and

ω̄(G(1)
cτ=1

) = ω − csk̃3

6
h2 +

c3
sk̃

3

6
∆t2 +O(∆t4,∆t2h2, h4) ,

(76)

ω̄(G(2,3,4,...,∞)
cτ=1

) = ω − csk̃3

6
h2 −

c3
sk̃

3

12
∆t2 +O(∆t4,∆t2h2, h4) ,

(77)

where κ̃ = 2πk/|T|, so thatω = κ̃cs. We conclude that the
formal order of accuracy of all the iterates of the method is third
order with regard to dissipation and second order withe regard
to dispersion, when∆t andh are balanced by aCFL condition.
In the casecτ = 2, we obtain

ξ̄(G(1)
cτ=2

) =
c2

sk̃
2

4
∆t +O(h2∆t,∆t3) , (78)

ξ̄(G(2)
cτ=2

) =
c2

sk̃
4

4
h2∆t −

5c2
sk̃

4

16
∆t3 +O(∆t h4,∆t3h2) ,

(79)

ξ̄(G(3,4,...,∞)
cτ=2

) =
c2

sk̃
4

4
h2∆t +O(∆t h4,∆t3h2) , (80)

and

ω̄(G(1)
cτ=2

) = ω − csk̃3

6
h2 +

61c3
sk̃

3

96
∆t2 +O(∆t4,∆t2h2, h4) ,

(81)

ω̄(G(2,3,4,...,∞)
cτ=2

) = ω − csk̃3

6
h2 −

c3
sk̃

3

12
∆t2 +O(∆t4,∆t2h2, h4) .

(82)

Under the assumption that the time step∆t and mesh spacing
h are balanced by aCFL condition, the previous derivations
imply that the dissipation error is first order for the first iterate
and third order for all other iterates, while the dispersionerror
is second order for all iterates. Overall, the proposed stabilized
method is formally second order accurate, for two or more it-
erations of the predictor/multi-corrector procedure. Also note
that the leading term in the second iterate forcτ = 2 has not yet
converged to its limit value, indicating that at least threeitera-
tions are required to exactly retain the properties of the implicit
limit algorithm in the low wave number regime.

7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shock hy-
drodynamics computations to enhance robustness under severe
shock wave conditions. Viscosity operators usually are mod-
eled as Laplace diffusive operators, and may pose additional
constraints on stability, further limiting the time step. It is there-
fore important to present a thorough analysis and time-stepcon-
trol estimate, when dissipation is present. In this case, because
of the parabolic nature of the problem, the dispersion erroranal-
ysis is less relevant and will be omitted. Only results for the
conservative scheme are presented.

7.1. Amplification factor

The amplification factor (spectral radius) of the matricesG(i)

is shown as a function of the non-dimensional wave number
βk and acoustic Courant numberσ in Figure 11, for a value of
the non-dimensional viscosity coefficientκ = 1/4. A compari-
son of Figure 11 with Figure 2 shows that the introduction of a

14



0.0 0.2 0.4 0.6 0.8 1.0
0

Π
4

Π
2

3Π
4

Π

0

Π
4

Π
2

3Π
4

Π

Σ

Β
k

(a) cτ = 1, all iterates.

0.0 0.2 0.4 0.6 0.8 1.0
0

Π
4

Π
2

3Π
4

Π

0

Π
4

Π
2

3Π
4

Π

Σ

Β
k

(b) cτ = 2, all iterates.

Figure 13: Contour plots of the loci of the spectral radii equal to unity for the casecτ = 1 (Fig. 13(a)) andcτ = 2 (Fig. 13(b)). The color scheme is as follows. First
iterate in black, second iterate in blue, third iterate in green, fourth iterate in red. The curves relative to the seconditerate are not visible as they overlap with the
ones relative to the fourth iterate.

viscosity produces in general a reduction of the stability range
for the various iterates of the proposed predictor/multi-corrector
algorithm. This fact can more clearly observed by comparing
Figure 3 with Figure 12 and Figure 4 with Figure 13. It is also
important to observe in Figure 13(b) that, in the case of two and
four iterates for a stabilization parametercτ = 2, the highest
wave numbersare not responsiblefor the stability constraint,
since, as the Courant numberσ is increased, it is the mode at
approximatelyβk = 7/8 to go unstable first. Instead, in the case
cτ = 1, for which both the lagged and conservative version of
the time integrator coincide, it is the highest wave number to be
responsible for the stability limit.

Recalling that by definition and the developments in Section
5, 0 ≤ σ ≤ 1/

√
cτ, and 0≤ κ ≤ 1/2, a rearrangement of (59)

yields the stability condition:

σ ≤
√

1− 2κ
cτ

, (83)

from which, whenκ = 1/4, we obtainσ ≤
√

2/2 andσ ≤ 1/2
for the casescτ = 1 andcτ = 2, respectively. These results can
also be verified in Figure 13, forβk = π. The convergence of
the spectral radii relative to the various iterates to the implicit
case can be evaluated in Figure 14 where sections of the eleva-
tion plots of Figure 11 at various values of the parameterσ are
presented.

Perhaps the most important plots of the entire study are pre-
sented in Figure 15, in which red three-dimensional contour
surfaces show the loci of the spectral radii equal to unity for the
first, second, and third iterate of the proposed method, in the
space [σ, βk, κ]. Results are shown in the case of no stabiliza-
tion (cτ = 0) and for values of the stabilization parametercτ = 1
andcτ = 2, for the conservative approach. A blue surface repre-
sents the stability limit given by the high wave number analysis
result (59) when equality holds. In addition, in Figure 15(f), a

green surface is used to represent the condition,

1 =
0.9

κ +
√

κ + cτσ2
, (84)

which incorporates a safety factorCFL = 0.9 in the time-
step stability condition (61). First of all, note that the three-
dimensional stability region in Figures 15(a) and 15(g) is
bounded by the two red surfaces. The third iterate with no sta-
bilization is unconditionally unstable, since the intersection be-
tween planes [κ = const.] and red surfaces always occurs in
Figure 15(g). This is not the case for the first iterate, whichis
conditionally stable in the rangeκ ∈ [1/4, 1/2]. However, this
result does not have practical relevance, since in the nonlinear
case one can expectκ to cover the entire range [0, 1/2].

Considering Figure 15(f) for the two-iterate scheme with
cτ = 2, it is easy to realize that the red and blue surfaces do
intersect at valuesβk < π, indicating that the stability condition
(61) is inappropriate. Mitigating the size of the time step by
a factor 0.9 (see (84)) is sufficient in preventing the predictor-
corrector to become unstable, as indicated by the fact that (at
least by visual inspection) the red and green surfaces in the
same picture do not intersect.

Whencτ = 1, the estimate given by (61) (or, equivalently,
(59)), yields a stable time step, at least by inspection of Figures
15(b), 15(e), and 15(h). The valuecτ = 2 was used in the com-
putations performed in [12], in combination with the following
time-step control:

∆t = CFL
h2

ν +
√

ν2 + cτc2
sh2

, with CFL ≤ 0.9 . (85)

8. Numerical tests

We present two one-dimensional tests to show how the time
step estimate derived in Section 5 performs in the general non-
linear case. In particular, the tests are performed for an ideal
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Figure 14: Spectral radii for the stabilized predictor/multi-corrector algorithm in the caseκ = 1/4, for various values of the acoustic Courant numberσ and
stabilization parametercτ. Figures 14(a)–14(d), conservative scheme withcτ = 1, Figures 14(e)–14(h) conservative scheme forcτ = 2. Color scheme is as follows.
Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and fourth iterate, respectively.

gas, using the nonlinear algorithm detailed in [12], from which
the linearized version analyzed in this study has been derived.

8.1. Propagation of an acoustic pulse
This test tracks the propagation of an acoustic pulse repre-

sented by the initial conditions

v0 = ω , (86)

ρ0 = 1+ ω , (87)

p0 = 1+ ω , (88)

ω(X) =



















1−cos

(

2π(X−Xo f f)
λ

)

100 , 0 ≤ X − Xo f f ≤ λ ,
0 , otherwise,

(89)

whereλ, the wavelength is taken equal to one fourth of the
length the domainΩ0, andXo f f = −λ. The initial condition is
depicted in Figures 16, 17, and 18, by red continuous lines. This
test was already presented in [9–11] in full detail. In practice,
the initial condition is given by a base flow with a superposed
perturbation with amplitude of about 2%. We can therefore ex-
pect the nonlinear equations of Lagrangian shock hydrodynam-
ics to behave very similarly to their linearized limit, discussed
in full detail in the previous sections. As time progresses three
waves are generated:

1. A large amplitude acoustic wave moving from left to right,
which can be seen on the right of the domain.

2. A smaller amplitude acoustic wave moving from right to
left, which at the final time of the computation is about to
reflect from the left boundary.

3. A standing (i.e., motionless) entropy wave, characterized
by a fluctuation in density and internal energy, visible on
the left of the domain.

The numerical results are presented in Figures 16, 17, and 18, in
the case of two, three, and four iterations of the predictor/multi-
corrector algorithm, and for values of theCFL number equal

to 0.90, 1, and 1.05. In the tests under consideration, the arti-
ficial viscosity operator is deactivated, and we adopt a constant
cτ = 2. It is easy to realize that in the case of two and three
iterations (Figs. 16 and 17, resp.) the time-step estimate is very
sharp. In fact, in the two-iteration case of Figure 16, solutions
are stable forCFL = 0.9 and unstable forCFL = 1.0. In
the three-iteration case of Figure 17, solutions are stableup to
CFL = 1.0, and become unstable forCFL = 1.05. The case
of four iteratios (Fig. 18) is more interesting, since it shares the
same theoretical stability bound as the two iterate case, namely
CFL = 0.9, but oscillations appear only forCFL = 1.05. A
possible explanation is that the nonlinear algorithm conserves
total energy, and is therefore less prone to a catastrophic growth
of instabilities, as the predictor/multi-corrector converges to the
implicit limit.

8.2. Periodic Breaking Wave

Another interesting numerical test is represented by a peri-
odic, nonlinear breaking wave problem similar to the one de-
scribed in [2, 3]. The domain of the problem is the interval
[0, 1], subdivided into 100 elements, and with periodic bound-
ary conditions. The material is a gamma-law ideal gas [6] with
γ = 5/3. The initial density has a sinusoidal variation

ρ(x, 0) = 0.001(1.0+ 0.1 sin(2πx)) .

The initial pressure is

p(x, 0) = 106

(

ρ(x, 0)
0.001

)γ

,

and the initial velocity is

v(x, 0) = 2
cs0 − cs

γ − 1
,
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(a) cτ = 0, 1st iterate. (b) cτ = 1, 1st iterate. (c) cτ = 2, 1st iterate.

(d) cτ = 0, 2nd iterate. (e) cτ = 1, 2nd iterate. (f) cτ = 2, 2nd iterate.

(g) cτ = 0, 3rd iterate. (h) cτ = 1, 3rd iterate. (i) cτ = 2, 3rd iterate.

Figure 15: Three-dimensional surfaces representing the loci of the spectral radii equal to unity for the first, second, and third iterate of the conservative version of
the proposed time integrator, in the case of no stabilization, cτ = 0, and for values of the stabilization parameter equal tocτ = 1 andcτ = 2, respectively. The blue
surface represents the stability limit given by (59) (or, equivalently, (61)), the green surface represents the “mitigated” stability condition given in (84). Note that
there are no additional intersections between the red and blue surface in Figure 15(b), other than the one that occurs forβk = π. The very rapid change in slope near
[σ, βk] = [1, π/2] seems to create a graphical artifact, which was not possible to resolve increasing the plotting mesh resolution.
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Figure 16: Plots of density, pressure, internal energy, andvelocity versus the spatial position for the propagation ofan acoustic pulse at timet = 0.5, and various
CFL numbers. Two iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.
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Figure 17: Plots of density, pressure, internal energy, andvelocity versus the spatial position for the propagation ofan acoustic pulse at timet = 0.5, and various
CFL numbers. Three iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.
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Figure 18: Plots of density, pressure, internal energy, andvelocity versus the spatial position for the propagation ofan acoustic pulse at timet = 0.5, and various
CFL numbers. Four iterations of the conservative predictor/multi-corrector approach. The red lines indicate the initial condition.
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Figure 19: Plots of density, pressure, internal energy, andvelocity versus the spatial position for the periodic breaking wave test at timet = 0.0004, and various
CFL numbers. Three iterations of the conservative predictor/multi-corrector approach.
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where

cs =

(

γ
p(x, 0)
ρ(x, 0)

)1/2

,

and

cs0 =

(

γ
106

0.001

)1/2

.

The solution is smooth for a finite time 0< Tbreak < ∞, at
which point the wave breaks and a shock forms [2, 3]. In this
second test the artificial viscosity operator is active, with con-
stants given as in [12]. The numerical results are presentedfor
t = 0.0004> Tbreak.

Because this problem involves the formation of shock waves,
the applicability of the linearized analysis developed in previ-
ous sections is tested more severely. In particular, in the case of
nonlinear problems, the predictor/multi-corrector approach is
equivalent to a fixed-pointnonlineariteration. It was observed
that two iterations were not sufficient to ensure nonlinear con-
vergence of the solution for this test. Hence, only results for
three and four iterations are presented, in Figures 19 and??,
respectively.

Remark9. A reason for the need of at least three iterations may
be the interplay between the artificial viscosity and the varia-
tional multiscale stabilization at the shock location. In particu-
lar, the artificial viscosity produces an “artificial” residual near
the shock, which in turn increases the strength of the stabiliza-
tion term. This nonlinear interaction may require more thantwo
iterations to be captured with sufficient accuracy.

In the case of three and four iterations (Fig. 19 and Fig.??,
resp.), oscillations are only visible forCFL = 1.05, proving the
effectiveness of the time-step estimate in the nonlinear case.It
is also noticeable that the overshoot past the shock is reduced
in the four iterations case, with respect to the three iteration
case. In the case of four iterates, instabilities should occur past
CFL = 0.90, but they are not visible in the caseCFL = 1.00,
as in the acoustic pulse test.

Remark10. In the case of the periodic breaking wave test, the
artificial viscosity is active and may provide a stabilizingef-
fect by damping small oscillations in the compression region,
which eventually coalesces into a shock. This fact may par-
tially explain the results in the case of four iterates of the
predictor/multi-corrector.

Remark11. In any case, the important point to be made is that
the theoretical stability bound developed with a linearized anal-
ysis provides a safe estimate for time-step advancement also in
the nonlinear case, as confirmed in the numerical computations
presented in this study and in [12].

9. Summary

We have presented a von Neumann analysis of a linearized
version of the predictor/multi-corrector algorithm proposed in
[12], with a comprehensive evaluation of stability and disper-
sion properties. We have derived a time-step stability bound

in the linear case that worked well also in the nonlinear case
[12]. From the derivation presented herein, it appears thatrun-
ning the computations with a CFL safety factor of 0.8 yields
better, if not the best results in terms of high wave number dis-
sipation and dispersion error. Finally, formal order of accuracy
arguments suggest that the proposed method is second order in
space and time for smooth solutions, when (as usual in tran-
sient dynamics computations) time step and mesh spacing are
balanced by aCFL-type condition. In conclusion, this article
supports with a detailed analysis the algorithmic design ofthe
method developed in [8] and implemented in [12], and shows
that the effect of variational multiscale operators in shock hy-
drodynamics computations is to improve the stability and dis-
persion characteristics of time integrators without adding overly
restrictive conditions on the time step.
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Figure 20: Plots of density, pressure, internal energy, andvelocity versus the spatial position for the periodic breaking wave test at timet = 0.0004, and various
CFL numbers. Four iterations of the conservative predictor/multi-corrector approach.
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