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Abstract

This article presents the complete von Neumann stabiliéyyais of a predictgmulti-corrector scheme derived from
an implicit mid-point time integrator often used in shocldhgdynamics computations in combination with staggered
spatial discretizations. It is shown that only even itesaiéthe method yield stable computations, while the odd
iterates are, in the most general case, unconditionallfabies Dispersion error analysis is also presented.
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1. Introduction

The present article proposes a complete von Neumann $gadiilil dispersion analysis of a linearized version of
the time-integration algorithm presented in [14, 15]. Tapproach is based on a predi¢ioulti-corrector variant
of the implicit mid-point time integrator, and has the appepproperty of conserving mass, momentum and total
energy in the nonlinear setting, without staggelimgimethe thermodynamic variables with respect to the kinematic
variables. The algorithm exactly corresponds to the stagb@n space) finite dierence formulations of [2, 4] in the
case of one spatial dimension and periodic boundary camditi

Recently, the authors have discovered that the proposedtalg does notyield stable solutions in the case of
an odd number of iterations, and the present work is a doctatien of the detailed analysis that followed these
initial observations. We would also like to mention the veggent, and very interesting stability analysis [3] for the
staggered scheme proposed in [4] over a two-dimensioniébrom periodic grid. The analysis in [3] is limited to the
case of the implicit mid-point algorithm and the schemeegponding to only one predictor and one corrector passes,
for the case of a purely acoustic system, with no viscosityr Work is instead focussed on exploring the peculiar
behavior of the even and odd iterations of the predjotaiti-corrector, including theféects of viscosity, and it is in
agreement with the specific cases discussed in [3].

The rest of the exposition is organized as follows: Sectigdevoted to presenting the equations of Lagrangian
hydrodynamics, deriving an appropriate and represesethtigarization. In Section 3, a discrete system of equaii®n
obtained in the case of one dimension and periodic boundegittons. By means of the Discrete Fourier Transform,
the von Neumann stability analysis is applied in Section theosystem of discrete equations. Section 5 is devoted
to the analysis of the purely acoustic system of equatiam&elction 6 the analysis is restricted to the highest wave
numbers, with the purpose of deriving a simple stabilityfbtor the time step in practical computations. In Section
7 the efect of viscosity on the stability of all discrete modes isoad&counted for. A number of one-dimensional
compressible flow computations are presented in Sectiom &nfirm the theoretical findings also in the nonlinear
case, for an ideal gas. A summary is presented in Section 9.
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Figure 1: Sketch of the Lagrangian map

2. A simplified Lagrangian hydrodynamics system

In order to apply the von Neumann stability analysis to thetey of equations of Lagrangian shock hydrodynam-
ics, a linearization procedure is necessary. To this goabmefly summarize the system of Lagrangian equations for
a compressible fluid in which heat fluxes, heat sources, ady fooces are absent. L&y andQ be open sets iiR™
(whereng is the number of spatial dimensions). Tdeformation

¢ Qo> Q=9¢(Q), 1)
X X = o(X,1), VXeQq t=0, )

maps the material coordina¥§ representing the initial position of an infinitesimal nrékeparticle of the body, to

X, the position of that particle in the current configuratisad Fig. 1)Qg is the domain occupied by the body in its
initial configuration, with boundar,. ¢ mapsg to Q, the domain occupied by the body in its current configuration
Thedeformation gradienanddeformation Jacobian determinacén be defined as

F= VXSD B (3)
J = det(F) , (4)

whereV, is the gradient in the original configuration. In the dom@irthe equations for the displacement update and
conservation of mass, momentum, and energy read:

u=v, (5)
pJd=po, (6)
0=pV+Vp, (7)
0=pe+ pVe V. (8)

Here,V, andV,- are the current configuration gradient and divergence épetaand(-) indicates the material, or
Lagrangian, time derivativeu = x — X is the displacement vectqgpy is the reference (initial) density is the
(current) densityy is the velocity, ang is the pressure, assumed to abide an equation of state gfthp &£ p(po, €),
with e the internal energy per unit mass.



In[13, 15], it was shown that the shock hydrodynamics eguatcan be reduced to the system form of a nonlinear
wave equation. Namely, (6), (7), (8) and the equation oésyald

0=pv+V,p, 9)
0= p+pcV, v, (10)

wherecs is the speed of sound in the medium. In the Lagrangian settiregdisplacement and mass conservation
equations (5)-(6) are associated with a standing (in Lagaancoordinates) entropy wave, governing the motion of
contact discontinuities. The incorporation of these eignatin the analysis that follows is not essential, as thailgia
bounds for the systems of equations under consideraticthioanéated by the acoustic characteristics associated with
equations (9) and (10).

Therefore, we will restrict our analysis to the system ofa@ns (9) and (10), which can be easily linearized
adopting the small strain approximation (i.€,,~ Vy, the motion of the mesh is neglected), and assuming netgigib
time and space variations of density and speed of sound.dkr @0 achieve insightful results, we will consider a
simple one-dimensional flow with periodic boundary cormi. The reader will appreciate in what follows that the
derivations are quite involved, and that these assumpéimmessential to obtain meaningful results.

3. One-dimensional linearized variational formulation

We consider a weak formulation of the one-dimensional liized equations of Lagrangian shock hydrodynamics,
augmented by a shock capturing artificial viscosity operdts]. Namely, denoting b{l' the unit periodic torus along
the real lineR, we have, for every piece-wise linear (continuous) shapetfony and every piece-wise constant

(discontinuous) shape functign
0=f¢V—f¢,XP+f¢,xvv,x, (12)
T T T

0=f¢P+f¢C§V*X’ (12)
T T

where, for the sake of simplicity, we have denodMd= pv (recallp = const.) andP = p. Using the same
predictofmulti-corrector strategy adopted in [16], the discrefmain time of (11)-(12) yields:

0= [[w (Ve - Vi) -t [LuPls,

+ At fT Uxv (V)L , . (13)

0= f ¢ (P4 - Pn) + At f $C2 (V)i - (14)
T T

where () and ()(*V are used to denote quantities computed with the pregéctoector iteratesi) and { + 1),
respectively, and the subscripisn + 1, andn + 1/2 are used to indicate quantities at titaet, + 1, andtp,1/2 =
(tn + tn+1)/2.

Remarkl. Observe that the latest available velocity iterate is usgtlé computation of the second term of (14), as
in[2, 4, 14, 15], with the purpose of conserving total enérgiyne nonlinear setting. We adopt this time discretization
to keep the analysis as close as possible to the algoriffattisely used in the computationsin [2, 4, 14, 15], and we
refer to this method as tteonservativeéime integrator.

We assume a uniform, equispaced subdivision of the tBrimgo finite elements of measuhe The velocities are
approximated by piece-wise linear functions with degreeeedom collocated at the nodes of the discretization,
while the pressures are approximated by piece-wise casstaith degrees-of-freedom collocated at the barycenters

3



of the elements (staggered spatial discretization). Intiaecto the previous assumptions, mass lumping is adopted
in the momentum equation, yielding the following finitétdrence equations:

(i+1) i ) (i) )
0= Vj ni~ Vin+ 5 2¢, (P1+1/2 ne1 T Pisr2n — Pj—l/2,n+1 - Pl*1/2»n)

K 0} ) )} )
2 ( Vj+l i1~ Vistn + 2Vj 1 T 2Vin VJ 1n+1 Vlfl,n) > (15)
1 Csor 1 i+1

0= P?J:rl/)z ne1 ~ Pist2n+ ; (VJ(I++1 r)1+l +Vijiin Vj(l+l,r)‘l+l - Vi—lsn) , (16)

CSAt vAt

is the acoustic Courant numbers 7,

whereo = andj is the node index.

Remark2. Inthe simple one-dimensional, periodic case, equatiob)s(16) exactly coincide with the one-dimensional
version of the finite dference schemes detailed in [2, 4].

4. Von Neumann stability analysis

As customary in the von Neumann stability analysis (see 1¥] for details), because the boundary conditions
are periodic, we can expand the solution degrees-of-firaehoa finite, linear combination of complex exponentials
with complex coéficients. This eventually amounts to applying a Discrete eodiransform (DFT) operator to the
discrete equations (15)—(16). In particular, we have:

N/2

V= > Ve (17)
k=—N/2+1
N/2
pi) — _ Z pl) glBi(i+1/2) (18)
j+1/2n — k,n ’
k=—N/2+1

wherei = V-1, and\7(i) is the Fourier coficient associated with thgh harmonic, time step and iterateij. Note

thatN is the number of elements (a multiple of 2), fmd_ 2”—““ = N" is an angularly scaled version of the integer

wave numbek (with |T| = meas() = Nh = 1 the measure of the torus). Complex exponentials assddiatéferent
wave numbers satisfy a discrete orthogonality property:

N/2-1 )
ghamelba™ = 54, for —N/2 <k gq<N/2, (19)
m=-N/2

with §iq the Kronecker delta tensadig = 1 if k = g, anddxq = 0 if k # 0). We then substitute (17)-(18) into (15)-(16)

multiplied by i andel=(i+1/2) respectively, and we sum ovirWe multiply (16) bye®(+2/2) instead o1 in
order to simplify the algebra, as the pressure variableigggred in space with respect to the momentum equation.

Due to the orthogonality property (19), and the linearityttedf system of equations (15)-(16), it is easy to verify
that the previous steps lead bpairs of equations, coupling the dynamics of ktle pressure and velocity modes,
with —=N/2+ 1 < k < N/2. Namely:

(i+1) (i)

(I + A0)Zins1 = ArZigner + (1 + A2)Zkn (20)
where
p )
Zen=1 o (21)
I:)k,n
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Figure 2: Elevation plots of the spectral ragii (o, 8k) for « = 0, x = 1/4, and various iterates of the predi¢toulti-corrector algorithm. In the
top row, the implicit mid-point time integrator detailed (i89). In the subsequent rows, in ascending order, the é®ifadbm one to four. Note that
in Figures 2(a), 2(b), 2(d), 2(e), 2(9), 2(h), 2(j), 2(k)n9( and 2(n) the vertical range is,[02], while in Figures 2(c), 2(f), 2(i), 2(l), 2(0) the
vertical range is [01]. Also note that Figures 2(a) and 2(b) are identical.
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is thekth velocity/pressure modal pair, relative to thi time step and thigh iterate, and

L (1 O 22
-5 ] ’ (22)
0 0
) 2
Fo | i%o-sin(%k) 0 } ’ -
A | $C0SBI D) —igasin(3) | (24)
0 0

[ k(cosp) - 1) —igosin(%) |

—i%o-sin(%) 0

A, (25)

Itis also very important to observe that because the degrefrsedom “signal” has real values, the discrete Fourier
codficients must satisfy the complex conjugacy property

20 = (ij’)n) , forO<k<N/2-1, (26)

whereW" indicates the complex conjugate\&f (componentwise). For the same reason, the following cimdn
the often called “odd ball” mode holds:

5 (i)
Z\)2n=0. (27)

Because complex conjugates have the same absolute valugpposdite phase, it is fiicient to limit the study of
the amplification factors for the modes of the discrete sydtethe range & k < N/2, that is, 0< gk < 7. In the
discussion that follows, it will also be important to coresich variation of the time-integration algorithm, in which
the velocity iteraté/(*1) in (16) is replaced by the previous iterat®. This method will be referred to as thegged
approach. In this case, equation (16) becomes

0 :Pgi:ll/)z,ml = Pjsyj2n+ (2570' (V,Ql,ml +Vjiin = VJQl,nH. - Vi—l,n) ) (28)

and, consequentl, and A; need to be modified as:
Ay=0, (29)
A =A;. (30)

This approach yields a more straightforward time integr&bo the linearized equations, which does not extend,
however, to a conservative scheme in the nonlinear case.

The vector equation (20) is a recurrence relationship batmiee predictgmulti-corrector iterates of the proposed
time-integration approach. Set

Bo = (I + Ao) (1 + Ay) , (31)
Bi=(l + Ao *As, (32)
and recall that the first guess for the new iterate at timeis the solution at timé,, namelyzgy),)1+l = Zk,n. Then, we

can derive explicit recurrence formulas for the computadbzg;i)l in terms ofZy:

5(1) 5(0) 5
Zini1 = B1Zy i1 + BoZkn

= (Bo + B1)Zkn

=GMZyy, (33)
6
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Figure 3: Contour plots of the spectral radii of variousates of the predictgmulti-corrector algorithm fok = 0. Figures 3(a), 3(b), 3(c), and
3(d): Conservative scheme (C). Figures 3(e), 3(f), 3(dd, 2(h): Lagged scheme (L).

(2 ~ (1 A~
Zﬁ,r)wl = Blzﬁ,r)wl + BOZk,n

= (BlG(l) + Bo) Zk,n

= G(Z)Zk,n , (34)
(3 ~(2 ~
Z(k,r)1+l = BlZ(k,r)Hl + BOZk,n

= (BlG(Z) + Bo) Zk,n

= (3(3)Zk’n , (35)
5 (4 ~(3 .
Z(k,r)1+l = BlZ(k,r)1+1 + BoZkn

= (BlG(s) + Bo) Zk,n

= G(4)2k,n i (36)
5(5)
Zk,n+l = (37)

In the limit for an infinite number of iterations, we obtairetamplification matrix for the original implicit mid-point
algorithm from which the predictfrorrector time integrator is derived:

(1 +A)ZE) = A ZED 4+ (1 + A Zkn (38)
that is, removing the superscripbf from Zﬁﬁl, and rearranging terms,
Zinir = (1 + Ao — A)) (1 + Ap) Zyn
=G™Zy,. (39)



Remark3. The predictotmulti-corrector method can therefore be interpreted asealfpoint iterative process, con-
verging to the solution of the implicit method (39). In padiar, the conservative scheme has the nature of a Gauss-
Seidel iteration, as the matrlx+ Ag is lower diagonal, while the lagged scheme resembles a Didextiion, since in

this caseAq = 0.

Remark4. Convergence of the fixed-point iteration is ensureffiBf|| < 1 (suficient condition). It will be subse-
guently shown that this condition is equivalent to the terapstability condition.

It is possible to evaluate the stability properties of thepmsed predictgmulti-corrector algorithm, by evaluating
howG® evolves in time an initial condition. In particular, if

) G(i)s”
GO = max 183 4 40
Gl T (40)
then stability of the numerical discretization is ensutf@dfining the spectral radius as

p(GY) = max(a(G))) < IV, (41)

whereA(G") is a (generally complex) eigenvalue®f’, we can recast condition as (see

hereA(G") is a (g lly complex) eigenvalue®f’ dition (40) as (see [7])

p(GV) < 1= stability, (42)
p(GY) > 1 = instability. (43)

These conditions are consequence of a well-known theorenafrix analysis:

Theorem 1 (cf. [8], p. 298).Let A € C™™, whereC is the complex field. Therim,_. A" = 0 if and only if
p(A) < 1.

Hence, ifo(GY) < 1, Theorem 1 directly implies stability. }f(G") > 1, one can consider, as initial condition vector
Zo, the eigenvector relative to an eigenvaligewith [1o| > 1. Using the properties of vector norms, it is easy to see
that limyeo [1Z0ll = liMnse I(GV)"Zoll = liMpse 110" Z0ll = o0, and we have instability. The case that our analysis
covers less precisely is the case wp¢B") = 1. Recalling that (see [8], p. 299)

p(GY) = lim [I(GV)"H", (44)
it is easy to realize that the casgG") = 1 admits linear growth in the solution (i.¢i(G®)"| = O(n)). However, the
analysis that follows (see, e.g., Figure 2) shows gif@f’) = 1 occurs in three special cases :

1. 0 =0 & At = 0, atrivial case corresponding of no time evolution.

2. Bk = 0, corresponding to the evolution in time of a constant mnléhis case, it is not necessary to resort to the
von Neumann analysis, to prove that the entire class of ilhgs under consideraticstablypreserves constant
solutions in time.

3. The time-step stability limit, as a limit case of the cdiudi p(G") < 1. This case is not so importantin practical
(nonlinear) computations, since it is usually not safe tocomputations exactly at the stability limit.

Notice also that a complex eigenvalue@? can be expressed as:
AGY) = (@)™, (45)

wherewAt = arg((G")), andw € R is the phase. This decomposition will be important for thelgtof the dispersion
properties of the proposed time integration approach. ferrative expression for (45) is

A(GW) = gl-eviant (46)
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Figure 4: Spectral radii for the predictomulti-corrector algorithm in the case= 0, for various values of the acoustic Courant numbeFigures
4(a)-4(d): Conservative scheme. Figures 4(e)-4(h): Ldhggheme. Black: Implicit time integrator. Orange, redegrand blue are used for the
first, second, third, and fourth iterate, respectively.

where

IA(GD)| = géAt ’ o, {‘T= _Iog(|/l(G('))|) ‘ (47)
At
By performing a Taylor expansion gfandw in the limit of vanishing time stept and mesh sizé, it is possible to
recover the truncation error and the formal order of acguodithe various iterates of the method.

Due to the complexity of the algebra involved, we are notudaig the calculations and explicit expressions
of the eigenvalues of th6” matrices in the general case. We will present the fundarheegalts by appropriate
plots in Section 5 and Section 7. All algebraic symbolic rpatitions were performed using thesviemarica® ™
software [1, 18].

5. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial visiyos usually present only in shock layers, and absent
in expansion regions. Therefore, it is very important talgtthe proposed time integrator in the limit of a vanishing
viscosity, as most of the flow domain is subject to this caodit

5.1. Amplification factor

Figure 2 shows the spectral radii of the matri@¥$ for i = 1,2,3,4 andi — oo (implicit limit), for the conser-
vative and lagged algorithms in the case 0, and also for the conservative algorithm whesa 1/4. For the time
being, we focus on the plots relativesa= 0.

First, note that the implicit algorithm detailed in (39) isuirally stable (Fig. 2(a) and 2(b)), as the spectral radius
of the corresponding amplification matrix is equal to unit)ethe entire planed, 5]. The first and third iterates

of the conservative algorithm (C) avaconditionally unstablevhile the second and fourth iterates are conditionally
stable, as shown in Figures 2(g) and 2(m). This phenomemomewhat surprising, can be explained by realizing
that the spectral radii for the predictowlti-corrrector scheme exhibit mon-monotoniconvergence to unity as
(i) - co. Observe that the situation for the lagged algorithm is seinat diferent, since the first two iterates are
unconditionally unstable (Fig. 2(e) and 2(h)), but the sgfoent third and fourth iterates regain conditional siigbil

in the ranger € [0, 1] (Fig. 2(k) and 2(n)). This fact can easily be observed edbntour plots of the spectral radii
presented in Figure 3, and perhaps even more clearly in tti®se at various values of presented in Figure 4.
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Also note in Figure 4(d) that the second iterate, indicatged bed line, shows the insurgence of a bifurcation (a
kink in the red curve, neg = 3r/4). Past the bifurcation point, the eigenvalues of the dinption matrix cease to
be complex conjugate and become real, as also evident ime=g{d), by the absence of a phase in the eigenvalues.
This is not a desirable property in wave propagation probleminere one would expect the discretized equations to
behave as a system of harmonic oscillators. Past the bifongaoint, the discrete solutions become real exponential
in time, and cause an incorrect representation of the streicf the original system of partialféérential equations.
The lagged algorithm does not show this behavior.

5.2. Dispersion error

When no viscosity is present, it is very insightful to evaithe extent of the dispersion error in computations.
This can be done by observing that the classical dispersiatianship for a linear wave is given ly = 27kcg/|T).
Recalling thafl' = hN, it is easy to derive that

WAt = o . (48)
A typical measure of the dispersion error is given by theorati

G _ arge:p) )

w Bk

Figure 5 shows elevation plots of the ratigw. It is noticeable in Figures 5(e) and 5(i) that bifurcatiakes place
for values of fr, ] in the neighborhood of [Ir], for the second and forth iterate of the conservative diigoar,
respectively. As already mentioned, this behavior is nesent for the lagged scheme.

Contour plots of the dispersion ratio are presented in EigurThe black thick lines indicate the loci where the
dispersion ratio equals unity, that is, optimal behaviarghase error).

Comparing the various results in Figure 7, notice the goddbier of the conservative approach in retaining the
dispersion properties of the corresponding implicit methat least until a bifurcation arises for the second iterate
(see Figs. 7(a), 7(b), 7(c), and 7(d)). This is not the caséhfolagged scheme, for which all the iterates have quite
different phase characterization with respect to the impliettod (Figs. 7(e), 7(f), 7(g), and 7(h)).

5.3. Low wave number limit and truncation error

A Taylor expansion of the amplification factprand dispersion ratia/w in a right neighborhood g8 = 0 can
more clearly quantify the previous conclusions on the ratiiithe proposed conservative algorithm.

o?B2 (G 4+ 11072

p(GY) =1+ —= + O(B}). (w oo og Bk + 0B, (50)
o*pl w(G? 2+0°

p(G(Z)) -1-— 1_6k + O(ﬂli) . (w ) =1- > IBE + O(ﬂﬁ) , (51)
0'6,86 o(G® 2+ 02

p(G®) =1+ 6—4“ + 0], (w . 52 B+ OB (52)
0_8188 5 G(4) 24+ 0_2

P(G) =1- ==&+ 0()). (w )1 Sa P+ OBy - (53)

Hence, it is clearly noticeable the fact that the low modesaanplified for odd iterates and damped for even iterates.
The dispersion of low modes, instead, seems to maintairetime $imit behavior as soon as the number of iterates is
larger than one. Furthermore, a Taylor series expansigraafiw in powers ofAt andh allows to evaluate the order
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Figure 7: Plot of the ratiav/w, for « = 0, for various values of the acoustic Courant numbeFigures 7(a)-7(d): Conservative scheme. Figures
7(e)-7(h): Lagged scheme. Color scheme is as follows. Bkdsed for the implicit version of the algorithm. Oranged,rgreen and blue are
used for the first, second, third, and fourth iterate, retyey.
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of convergence of the proposed method. We obtain:

£GW) = - %céRZAt + O(h?At) , (54)
o(GY) = w - 2_14csh2R3 - ;—éc§R3At2 +0(At?h?) (55)
_ 1 -~

EG?) = céat + O(°AL), (56)
0(G?) = w - 2_14csh2R3 - 1i2c§R3At2 +0(At?h?) (57)
£GP = - 6_14102&%5 + O(h2At5) (58)
o(G¥) = w- 2_14csh2R3 - 1i2c§R3At2 + O(APh?) (59)
_ 1 .~

EGY) = Sociieat’ + O(At), (60)
o(GY) = w - 2_14csh2R3 - 1i2c§R3At2 + O(At?h?) (61)

wherex = 2nk/|T|, so thatw = kcs. Consequently, the first, second, third and fourth iterafebe predictofmulti-
corrector conservative method are first-, third-, fifth- @edenth-order accurate with respect to the dissipatiar.err
All iterates are second-order accurate with respect toigpedsion error.

6. Stability of the highest wavembers

Before proceeding with the case in which dissipation isgmést is important to develop a preliminary analysis
of stability for the highest spatial wave numbers in the idite equations. Stability of the highest modes in the
computation is a necessabyt not syficient condition for overall stability. However, an understarglon the high
wave number dynamics can shed light on the overall beha¥itrecalgorithm, and, most importantly, provide stable
time estimates of practical use in computations.

The amplification of the highest wave number is governed bymatrices3®, wheng is set equal tar. In this
case, a number of algebraic manipulations leads to therfisitpexpressions for the eigenvalues of the matra@s:

/l(ll; =1-0%-2 (62)
F ot + 4021+ k) + 432, (63)
/1(12; =1- 202 + 0% — 2« + 40k + A (64)
F —1+20% + 4k — 82+ (1+ 0% — 2+ 42 + 02(-2 + 4K))? , (65)
A=, (66)

where we have omitted the derivations for the third and higfeeates, since the algebraic expressions become very
complex and tedious to manipulate. Let us consider the skiterate, that is the first iterate for which second-order
accuracy is achieved, and analyze the stability condiitin< /1(12% < 1. Only the right bound is meaningful for

stability. Setting/l(f; = 1 yields a polynomial equation, with roats= 0, 0 = — V1 - 2, ando = V1 - 2«. Only the
last root is useful in defining a stability limit, which, taig squares, reads

c?+2-1<0, or, CAt?+2vAt-h?<0. (67)

The same condition is derived in the case of four iteratidrisepredictofmulti-corrector algorithm, with much more
complex algebraic manipulations. Solving the quadratica¢ign associated with (67) yields the bounds

—v— V2 +c2h? cat< VT V2 + cZh?

< (68)
c c
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(a) Fiterate. (b) 29 iterate. (c) 3 iterate. (d) 4" iterate.

Figure 8: Contour plots of the spectral radii for variousdictgor/multi-corrector iterates of the conservative algorithmthie case = 1/4. The
red continuous line correspond to the isoline for the spécadius equal to unity.
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Figure 9: Contour plots of the loci of the spectral radii dgoaunity, in the case = 1/4. The color scheme is as follows. First iterate in black,
second iterate in blue, third iterate in green, fourth teefa red. The curve relative to the second iterate is noblasas it overlaps with the one
relative to the fourth iterate.
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Figure 10: Spectral radii for the predictowilti-corrector algorithm in the case= 1/4, for various values of the acoustic Courant numbgfor
the conservative scheme. Color scheme is as follows. Blaeflicit time integrator. Orange, red, green and blue aedsr the first, second,
third, and fourth iterate, respectively.

The left bound is always verified, while the right gives thabdlity limit. Multiplying and dividing the entire inequiy
by v + /2 + c2h? (always a strictly positive quantity) and simplifying thexinc2, we obtain
h2
ANt ———— . 69
P T (©9)
Remark5. In the limit of a vanishing artificial viscosity, the acous@ourant-Friedrichs-Levy condition is obtained,
namely,
h
At < — or, o<1, (70)
Cs
Remark6. In the limit of a vanishing speed of sound (condition veryeaftencountered in hypervelocity impact
problems), the stability limit is uniquely dependent on #réficial viscosityy and takes the classical form of the
dissipative Courant-Friedrichs-Levy condition:

2
At < — or. <
2’ ’ o=
Remark7. The predictor multi-corrector approach can also be in&tgut as a fixed-point iteration procedure [15]. A
suficient condition for the convergence (in spectral spaceyohprocedure i§B;1]| < 1, that iso(B1) < 1. Itis not
difficult to verify that, wherBy = x, this condition coincides with (67).

: (71)

NI =

7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shockfogdynamics computations to enhance the robustness
of the algorithms under extreme shock wave conditions.odig operators usually are modeled as Laplafiisive
operators, and may pose additional constraints on stglfilitther limiting the time step. In this case, because ef th
parabolic nature of the problem, the dispersion error aislg less relevant and is omitted. Also, only results fer th
conservative scheme are presented, since this methodrisatingocus of the present work.

7.1. Amplification factor

The amplification factor (spectral radius) of the matriG¥ is presented as a function of the non-dimensional
wave numbepy and acoustic Courant numberin Figures 2(c), 2(f), 2(i), 2(l), and 2(o), for a value of then-
dimensional viscosity cdicientx = 1/4. A comparison with the plots in Figure 2 for the casexef 0 shows that
the introduction of diusion in the proposed predictorulti-corrector algorithm further restricts the stalyilitange
of the even iterates but provides a stability range for tihetise unstable odd iterates. This fact can more clearly
be observed in Figures 8 and 9. Recalling that, by definitimh the developments in Section 6,00 < 1, and
0 < k < 1/2 are necessary for stability, a rearrangement of (67) yied stability condition:

o< Vi-2, (72)
15
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Figure 11: Three-dimensional (red) surfaces represetitiedoci of the spectral radii equal to unity for the first fotarates of the conservative
predictoymulti-corrector scheme. The blue surfaces represent ddist limit given by (67) (or, equivalently, (69)).
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Figure 12: Density versus spatial position at tim&22 x 10> for the periodic breaking wave test problem. Solutions fidfedent number of
iterations of the predictgmulti-corrector algorithm are computed with no artificigdeosity andCFL = 0.90.

from which, wherk = 1/4, we obtainc < V2/2 ~ 0.707. This result can also be verified in Figure 9, fgr= 7.

The convergence of the spectral radii of the various iteret¢he spectral radius of the implicit case can be evaluated
in Figure 10 where sections of the elevation plots of Figuia 2arious values of the parameterare presented.
Bifurcations of the eigenvalues for the sectiongrat 0.7,0.8,0.9 are clearly visible, although in this case, their
effect is not so problematic, because now the original systepautial diferential equations has the nature of a wave
problem with dissipative damping.

Perhaps the most important plots of this entire article aesgnted in Figure 11, in which red three-dimensional
contour surfaces show the loci of the spectral radii equahity for the first, second, third, and fourth iterate of the
conservative version of proposed method, in the spaggé«]. A blue surface represents the stability limit when
equality holds in (67).

Note that in Figures 11(a) and 11(c) the stability regionaarded by two red surfaces. Therefore the presence
of diffusion is stabilizing for the first and third iterates, whicbuwld otherwise be unstable. The second and forth
iterates (Figs. 11(b) and 11(d)) are conditionally stabtdgast by visual inspection, since the stability regiotepgs
below the red surfaces), with stability condition given B®)). Hence, in this case, the highest wave numbers seem
to impose the most restrictive constraint on the time step.
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Figure 13: Density versus spatial positii)n at tim@2Bx 10°° for the periodic breaking wave test pxroblem. Solutions fidiedent number of
iterations of the predictgmulti-corrector algorithm are computed with active ari#fiosziscosity andCFL = 0.90.

Remark8. The dfect of a non-vansihing artificial viscosity is not felt in thencation error for the phase, which
maintains the same order of accuracy as in the undamped Gasgetruncation error for the dissipation is instead
affected, as all iterates do not exceed first-order accuratlyregpect to the undamped wave propagation case.

8. Numerical simulations

We present two tests to show how the time step estimate diariv@ection 6 performs.

8.1. Periodic Breaking Wave

An interesting numerical test is represented by a breakangvproblem similar to the one described in [5, 6]. The
domain of the problem is the interval,[0], subdivided into 200 elements, with periodic boundargditions. The
material is ay-law ideal gas [10] withy = 5/3. The initial density has a sinusoidal variation

p(x,0)=0.001(1.0+ 0.1 sin(2rx)) .

The initial pressure is

_ 6P 0)\
and the initial velocity is
V(x, 0) = 27(CSO __ fS) ,

Y
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where

. _( p(x,0>)“2
s = yp(X,O) >

. - 108 \?
*=\"0001] -

The solution is smooth for a finite time © Tpreak < o0, at which point the wave breaks and a shock forms [5, 6].
The nonlinear version of the present algorithm, describedktail in [14, 15], is used. The results of Figure 12 are
obtained for several prediconulti-corrector iterates, with no viscosity applied. Tlesults of Figure 13 are obtained
with codficients for the linear and quadratic part of the nonlineaficiel viscosity chosen as; = 0.15 andc, = 2.0,
respectively. All simulations were run usi@FL = 0.90. Consistent with the preceding analysis, an even number
of iterations appears to be stable. An odd number of itematproduces unstable results when no artificial viscosity
is applied, but stability is regained in the case of 7 iterati when the artificial viscosity is active. This may be
the result of the convergence of the predigtuulti-corrector algorithm in combination with the dissijea produced

by the artificial viscosity. In practical computations, rewgr, one cannot expect the artificial viscosity to be active
everywhere in the computational domain.

and

8.2. Interacting Blast Waves

As a second numerical test, we consider the Woodward-@aileieracting shock wave test problem [19]. In
one dimension the domain of the problem is the interval[Osubdivided into 400 elements. Again, the material
is ay-law ideal gas withy = 1.4. The gas is initially at rest between reflecting walls, véthniform initial density
everywhere equal to 1. On the subdomairQ[@] the initial pressure is 1000 and on the subdomai® [00] the initial
pressure is 100. Everywhere else the pressure is initthi@8.01. Two strong shock waves develop and interact. The
linear and quadratic part of the nonlinear artificial visgokave codficientsc; = 0.15 andc, = 2.0, respectively.
Figure 14 plots the numerical results of density versustjposior various values of th€ FL control parameter. Two
predictoycorrector iterations are used for these simulations. Tinelsitions withCFL < 1 do not show any sign of
instability, while the simulations wit€FL > 1.10 appear mildly unstable. The time step stability estinsatems to
be accurate (and more restrictive) to within about 10%, agtléor this test problem.

Remark9. This added stability may be due to the conservation progmeetjoyed by the algorithm in the nonlinear
setting, which bound the global total energy to stay coristanughout the computation.

Remark10. The large spurious overshoot in densityat 0.765 is typical of Lagrangian simulations of this test [9,
12], and is a somewhat expected feature in this computation.

9. Summary

We have presented a von Neumann stability analysis of arlzexhversion of the predictonulti-corrector al-
gorithm proposed in [14, 15], which, at least in the one-disienal setting, coincides with the time integrators
documented in [2, 4]. We have highlighted as a curious featfithis algorithm, that the odd iterates are uncondi-
tionally unstable, while the even are conditionally stafaleleast up to four iterates). Numerical test showed that th
time-step stability bound derived in the linearized anialysrks well also in the nonlinear case.
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Figure 14: Density versus spatial position for the Woodw@atkella test problem for incrementally decreasing valiethe CFL parameter. Plots
are at the final time of 0.038.
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