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Abstract

A new SUPG-stabilized formulation for Lagrangian hydrodynamics of materials satisfying Mie-
Grüneisen equation of state is proposed. It allows the use of simplex-type (triangular/tetrahedral)
meshes as well as the more commonly used brick-type (quadrilateral/hexahedral) meshes. The proposed
method yields a globally conservative formulation, in which equal-order interpolation (P1 or Q1 isopara-
metric finite elements) is applied to velocities, displacements, and pressure. As a direct consequence,
and in contrast to traditional cell-centered multidimensional hydrocode implementations, the proposed
formulation allows a natural representation of the pressure gradient on element interiors. The SUPG
stabilization involves additional design requirements, specific to the Lagrangian formulation. A discon-
tinuity capturing operator in the form of a Noh-type viscosity with artificial heat flux is used to preserve
stability and smoothness of the solution in shock regions. A set of challenging shock hydrodynamics
benchmark tests for the Euler equations of gasdynamics in one and two space dimensions is presented.
In the two-dimensional case, computations performed on quadrilateral and triangular grids are analyzed
and compared. These results indicate that the new formulation is a promising technology for hydrocode
applications.
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Stabilized Shock Hydrodynamics: I.

A Lagrangian Method

1 Introduction

Since their inception during the Manhattan Project at Los Alamos, algorithms for Lagrangian shock
hydrodynamics computations (hydrocodes in short) have found widespread application to the transient
analysis of a broad class of problems, from structural dynamics and fluid mechanics, to high energy density
physics and astrophysics.

The original numerical formulation used in hydrocodes has been substantially preserved over time. In
general, all kinematic variables (displacements, velocities, and accelerations) are node-centered, thermo-
dynamic variables are cell-centered, and the computational meshes almost universally adopt brick-type
elements (quadrilaterals in two dimensions and hexahedra in three dimensions).

The main differences between the various hydrocode formulations mostly reside in the definition of the
artificial viscosity operator used to capture shocks, the numerical representation of gradient operators for
the thermodynamic quantities, and the methodology adopted to control hourglass instabilities.

Despite a number of attempts in the past, there are still no reliable and efficient formulations for
simplex-type meshes (triangular in two dimensions and tetrahedral in three dimensions). The reason
lies in the artificial stiffness that affects finite element formulations for which thermodynamic variables
(specifically the pressure) are discretized as piecewise constants. This drawback is particularly evident
in the incompressible limit (occurring, for example, for plastic flow), for which the well known locking
phenomenon can occur (see, e.g., Hughes [20]).

Another problematic issue affecting current hydrocode technology is the reconstruction of the gradi-
ents of thermodynamic variables (see Christon [10] for an extensive discussion). As already mentioned,
thermodynamic variables are represented by piecewise-constant, discontinuous functions, and numerical
solutions are extremely sensitive to the type of gradient reconstruction adopted. The work of Caramana
et al. [9] and Campbell and Shashkov [8] carefully discusses how to improve discretizations, in the context
of mimetic finite-difference schemes.

The proposed new method bypasses completely the issue of pressure gradient representation: This is
considered by the authors a key aspect for improving on the current state-of-the-art. The simple idea
adopted herein is to derive a globally conservative formulation, in which pressure and kinematic variables
are represented by means of globally-continuous, piecewise-linear shape functions (with corresponding
nodal degrees-of-freedom) and to stabilize this formulation by means of the SUPG/multiscale framework
of Hughes and coworkers [6, 27, 26, 46, 21, 23]. Convegence analysis of the method in the context of
advection-diffusion systems of equations is given in [30, 25, 24, 31, 32, 48].

From the point of view of gradient representation, the advantage of the new approach is clear, since on
element interiors all first derivatives are well-defined without the need to resort to special reconstruction
techniques. This aspect is particularly evident in the numerical results on brick-type meshes, which do not
show most of the usual pathologies common to standard hydrocode simulations.

In the case of two space dimensions, little difference is observed between the results of simulations
performed on quadrilateral and triangular meshes. This fact is of particular importance, since, to the best
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of our knowledge, there are no examples of accurate and robust algorithms for Lagrangian hydrodynamics
on simplex-type computational grids. In particular, the results on triangular meshes in two dimensions
show the absence of element artificial stiffness, while the simulations on quadrilateral meshes proved free
from hourglassing.

In summary, the absence of either hourglassing or artificial stiffness, and the quality of the results,
usually equal, and in some instances superior, to state-of-the-art algorithms currently documented in the
literature, suggest a significant potential for complex-geometry, multi-physics applications.

The rest of the exposition is organized as follows: the basic equations of Lagrangian hydrodynamics
are introduced in Section 2. The variational formulation for Lagrangian hydrodynamics applications is
established in Section 3, while Section 4 is devoted to the design of the stabilization terms. The artificial
viscosity adopted is described in Section 5. Section 6 discusses the global conservation properties embedded
in the variational formulation, and Section 7 summarizes the predictor/multi-corrector time-integration
strategy. Section 8 contains a general discussion about the time step CFL constraints for the method,
as well as pre- and post-processing issues. Results of the numerical tests are analyzed in Section 9 and
Section 10 for one and two space dimensions, respectively. Conclusions and future research perspectives
are summarized in Section 11. Readers not familiar with the concept of SUPG stabilization are invited to
read Appendix A before the main body of the paper, to understand the foundations of stabilized methods
in the simple context of a linear advection-diffusion problem in one dimension.

2 Equations of Lagrangian Hydrodynamics

We begin by defining the deformation ϕ as the transformation from a reference configuration X (the initial
configuration, corresponding to the material reference frame) to the current configuration:

ϕ : V (open) ⊂ R
nd → R

nd (1)

X 7→ x = ϕ(X , t), ∀X ∈ V, t ≥ 0, (2)

where nd is the number of spatial dimensions. The boundary of V is denoted by S. The deformation
gradient is defined as F = Grad ϕ, that is, FiA = ∂xi/∂XA, i, A ∈ {1, . . . , nd}, and J = detF is
the Jacobian determinant of the transformation. (The summation convention for repeated indices is used
throughout.) The equations of Lagrangian hydrodynamics, consisting of mass, momentum and energy
balances can be formulated with respect to the reference configuration as follows:

u̇ = v (3)

ρ J = ρ0(X) (4)

ρ0 v̇ = ρ0 g + DivP (5)

ρ0 Ė = ρ0 g · v + ρ0 r + Div(P T v + Q) (6)

Here, u = x − X is the displacement vector, ρ0 is the reference (initial) density, ρ is the current density,
v is the velocity, g is the body force, P = JσF−T = σ cofF is the first Piola stress tensor (σ is the
Cauchy stress tensor in the current configuration), E = e + v · v/2 is the total energy, the sum of the
internal energy e and the kinetic energy v ·v/2, r is the energy source term, and Q = JF−1q = (cofF )T q

is the Piola-transformed heat flux. E, e, g, r are measured per unit mass. The reader interested in the
derivations of the Lagrangian equations in the reference configuration may refer to [43], [2], or [40].
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For the sake of simplicity, in the discussion that follows, body forces, heat transfer, and internal sources
of energy are assumed absent. Also, the so-called Piola identity

Div cofF ≡ 0 (7)

will be extensively used in the subsequent derivations.

2.1 Mie-Grüneisen constitutive laws

The following analysis is specific to materials satisfying the Mie-Grüneisen equations of state, including
ideal gases, co-volume gases, high explosives, and elastic-plastic solids with no strength (a situation that
can be achieved when bulk stresses in the material are larger than shear stresses by orders of magnitude).
No deformation strength is involved, so that the stress tensor σ reduces to an isotropic tensor, dependent
only on the thermodynamic pressure:

σ = −pInd×nd
(8)

or, in index notation,

σij = −p δij (9)

with δij , the Kronecker tensor. Mie-Grüneisen materials satisfy an equation of state of the form p =
f1(ρ; ρr, er) + f2(ρ; ρr, er)e, where ρr and er are fixed reference thermodynamic states. More succinctly,

p = f1(ρ) + f2(ρ) e (10)

If f1 = 0 and f2 = (γ − 1) ρ, the equation of state for an ideal gas, p = (γ − 1) ρ e, is recovered. It will
prove very useful, for the derivations in the next sections, to recast (10) as follows

e = g1(ρ) + g2(ρ) p (11)

where g1 = −f1/f2 and g2 = 1/f2. In addition

g′1 =
dg1

dρ
= −f ′

1f2 − f1f
′
2

f2
2

= −f ′
1

f2
+

f1f
′
2

f2
2

(12)

g′2 =
dg2

dρ
= − f ′

2

f2
2

(13)

For ideal gases, it can be easily shown that g1 = 0, g2 = 1/((γ − 1)ρ), g′1 = 0, and g′2 = −1/((γ − 1)ρ2).
The numerical examples will be focused on ideal gases, but it is important to realize that the framework
developed includes a broader class of materials.
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2.2 The one-dimensional hydrodynamics equations

In the one dimensional case, X is a scalar, so that:

X ≡ X1 = X (14)

x ≡ x1 = x = ϕ(X, t) (15)

u ≡ x − X = ϕ(X, t) − X = u (16)

F ≡ F =
∂ϕ

∂X
= 1 +

∂u

∂X
(17)

J ≡ det(F ) =
∂ϕ

∂X
≡ F (18)

In particular, (18) leads to the following simplification for the Piola stress tensor:

P = JσF−T = JσJ−1 = −p (19)

The complete set of one-dimensional equations is given by

u̇ = v (20)

ρ0 v̇ = − ∂p

∂X
(21)

ρ0 Ė = − ∂

∂X
(vp) (22)

ρ J = ρ0 (23)

2.2.1 Conservative form

Equations (20-22) can be cast into conservative form:

U̇ + G1,1 + Z = 0 (24)

where G1,1 =
∂G1

∂X1
=

∂G1

∂X
. In particular,

U =




u
ρ0v
ρ0E


 G1 =




0
p
pv


 Z =




−v
0
0


 (25)

2.2.2 Quasi-linear form

In order to develop the SUPG stabilization operator it is essential to rearrange equations (20)–(22) in
quasi-linear form, as follows:

A0Ẏ + A1Y ,1 + CY = 0 (26)

where

A0 =
∂U

∂Y
, A1 =

∂G1

∂Y
, C =

∂Z

∂Y
(27)
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are the Jacobian matrices for the temporal and spatial fluxes, respectively. We still have to specify Y .
It becomes clear that if continuous piecewise-linear functions for the kinematic and at least one of the
thermodynamic variables are to be used, then the pressure is the natural candidate in the definition of Y .
In fact, alternative options, such as conservation variables, create the problem of taking derivatives of J
with respect to X when computing the matrix A1. The derivative of J with respect to X involves second
derivatives of the displacements u, represented by Dirac distributions over element edges, when piecewise
linear interpolation is used, with possible adverse consequences in the design of the SUPG stabilization
operator. Therefore,

Y =




u
v
p


 (28)

The following algebraic manipulations apply to Ė:

ρ0Ė = ρ0(ė + vv̇)

= ρ0

(
(g′1 + g′2 p)ρ̇ + g2ṗ

)
+ ρ0vv̇ ( using (11)–(13) )

= −(g′1 + g′2 p)
ρ2
0

J2
J̇ + ρ0 g2ṗ + ρ0vv̇ ( using (4) )

= ρ0 g2ṗ − (g′1 + g′2 p)
ρ2
0

J2

∂v

∂X
+ ρ0vv̇ (29)

where we have used the fact that J̇ = ∂u̇
∂X = ∂v

∂X . Notice also that the term involving ∂v
∂X does not

contain a temporal derivative, and is therefore incorporated in the definition of the Jacobian A1. This
final manipulation yields:

A0 =




1 0 0
0 ρ0 0
0 0 ρ0 g2

(ρ0

J

)


 , A1 =




0 0 0
0 0 1
0 Ψ

(ρ0

J , p
)

0


 , C =




0 −1 0
0 0 0
0 0 0


 (30)

where, using (4),

Ψ
(ρ0

J
, p
)

= p −
(ρ0

J

)2 (
g′1

(ρ0

J

)
+ g′2

(ρ0

J

)
p
)

(31)

In the case of an ideal gas,

ρ0Ė =
J

γ − 1
ṗ +

p

γ − 1

∂v

∂X
+ ρ0vv̇ (32)

so that

A0 =




1 0 0
0 ρ0 0

0 0 J
γ−1


 , A1 =




0 0 0
0 0 1
0 γ

γ−1p 0


 , C =




0 −1 0
0 0 0
0 0 0


 (33)

Remark 1 Notice that the Jacobians A0 and A1 have been obtained using a crucial simplification: The
term given by the inner product of the momentum equation times the velocity, the so-called kinetic energy
equation, has been removed from the total energy equation. This amounts to writing a quasi-linear equation
for the internal energy rather than the total energy. With this choice, when the quasi-linear form of the
Lagrangian hydrodynamics equations is used in the stabilization, the resulting SUPG term is invariant
under Galilean transformations. Failure to respect Galilean invariance resulted in numerical instabilities
for early tests, as further discussed in [42].

11



2.3 The two-dimensional hydrodynamics equations

In the two-dimensional case, the manipulations are slightly more involved. The following notation is
adopted:

X ≡
[

X1

X2

]
(34)

x ≡
[

x1

x2

]
=

[
ϕ1(X1,X2, t)
ϕ2(X1,X2, t)

]
(35)

u ≡ x − X =

[
ϕ1(X1,X2, t)
ϕ2(X1,X2, t)

]
−
[

X1

X2

]
=

[
u1

u2

]
(36)

F ≡ ∂ϕ

∂X
= I2×2 +

∂u

∂X
=

[
1 + u1,1 u1,2

u2,1 1 + u2,2

]
(37)

J ≡ det(F ) = (1 + u1,1)(1 + u2,2) − u2,1u1,2 (38)

where ui,A = ∂ui/∂XA. In particular, (8) and (37) lead to the following expression for the Piola stress
tensor:

P = JσF−T = −p

[
1 + u2,2 −u2,1

−u1,2 1 + u1,1

]
(39)

2.3.1 Conservative form

The two-dimensional conservative form reads:

U̇(Y ) + Gi,i(Y ) + Z(Y ) = 0 (40)

where Gi,A = ∂Gi/∂XA, i, A = 1, . . . , nd = 2, are the derivatives of the spatial fluxes Gi(Y ). Namely:

Y =




u1

u2

v1

v2

p




, U =




u1

u2

ρ0v1

ρ0v2

ρ0E




, Z =




−v1

−v2

0
0
0




(41)

G1 =




0
0

p(1 + u2,2)
−pu1,2

pv1(1 + u2,2) − pv2u1,2




G2 =




0
0

−pu2,1

p(1 + u1,1)
−pv1u2,1 + pv2(1 + u1,1)




(42)

2.3.2 Quasi-linear form

In order to design the SUPG stabilization, equations (40) need to be cast in quasi-linear form:

A0Ẏ + A1Y ,1 + A2Y ,2 + CY = 0 (43)

where

A0 =
∂U

∂Y
, A1 =

∂G1

∂Y
, A2 =

∂G2

∂Y
, C =

∂Z

∂Y
(44)
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are the Jacobian matrices. Note that Z is a linear function of Y . Therefore, Z(Y ) = CY , where C is a
constant matrix, justifying (43). The following definition of Y is used:

Y = [u1 u2 v1 v2 p]T (45)

This choice prompts the following manipulations in the energy equation:

ρ0Ė = ρ0(ė + v1v̇1 + v2v̇2)

= ρ0

(
(g′1 + g′2 p)ρ̇ + g2ṗ

)
+ ρ0v1v̇1 + ρ0v2v̇2

= ρ0 g2 ṗ − (g′1 + g′2 p)
ρ2
0

J2
J̇ + ρ0v1v̇1 + ρ0v2v̇2 (46)

with

J̇ =
∂

∂t

∣∣∣∣
X

((1 + u1,1)(1 + u2,2) − u2,1u1,2)

= (1 + u2,2)v1,1 − u1,2v2,1 (term contributing to A1)

−u2,1v1,2 + (1 + u1,1)v2,2 (term contributing to A2) (47)

It is important now to notice a very important cancellation in the second-derivative terms relative to the
momentum and energy equations in (43), due to (7). In fact, we can clearly see that:

G1,1 + G2,2 =




0
0

p,1(1 + u2,2) + pu2,21 − p,2u2,1 − pu2,12

−p,1u1,2 − pu1,21 + p,2(1 + u1,1) + pu1,12

(G1,1 + G2,2)5




=




0
0

p,1(1 + u2,2) − p,2u2,1

−p,1u1,2 + p,2(1 + u1,1)
(G1,1 + G2,2)5




(48)

due to commutativity of second mixed derivatives, and

(G1,1 + G2,2)5 = p,1v1(1 + u2,2) + pv1,1(1 + u2,2) + pv1u2,21

−p,1v2u1,2 − pv2,1u1,2 − pv2u1,21

−p,2v1u2,1 − pv1,2u2,1 − pv1u2,12

+p,2v2(1 + u1,1) + pv2,2(1 + u1,1) + pv2u1,12

= (v1(1 + u2,2) − v2u1,2)p,1

+(−v1u2,1 + v2(1 + u1,1))p,2

+(1 + u2,2)pv1,1 − u1,2pv2,1

−u2,1pv1,2 + (1 + u1,1)pv2,2 (49)
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Arrangement of the terms according to the structure of (43), yields:

A0 =




1 0 0 0 0
0 1 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 ρ0g2

(ρ0

J , p
)




, C =




0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(50)

A1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 (1 + u2,2)Ψ
(ρ0

J , p
)

− u1,2Ψ
(ρ0

J , p
)

0




(51)

A2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 −u2,1Ψ
(ρ0

J , p
)

(1 + u1,1)Ψ
(ρ0

J , p
)

0




(52)

For an ideal gas, Ψ
(ρ0

J , p
)

= γ
γ−1 p, so that:

A0 =




1 0 0 0 0
0 1 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0

0 0 0 0 J
γ−1




(53)

A1 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 γ
γ−1 p (1 + u2,2) − γ

γ−1 p u1,2 0




(54)

A2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 − γ
γ−1 p u2,1

γ
γ−1 p (1 + u1,1) 0




(55)

The generalization to the three-dimensional case is straightforward and not reported here for the sake of
brevity.

Remark 2 Analogous to the one-dimensional case, in order to generate a stabilization term invariant
under Galilean transformations, A0, A1, and A2 have been obtained by removing the kinetic energy equation
from the total energy equation.
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Figure 1. Second-order algorithm: Sketch of the typical piecewise-linear, continuous solution and
piecewise-constant, discontinuous test function.

3 Time integration and variational equations

The basis of the proposed method is a space-time variational formulation, to which the SUPG stabilization
is intimately connected. We adopt a second-order accurate Petrov-Galerkin formulation in time, which
simplifies to a standard mid-point rule when a single-point quadrature rule in time is applied. For obvious
performance reasons, all numerical tests presented herein were performed using this variant.

This time-integration scheme dates back to Hulme [28], Jamet [29], and Aziz and Monk [1]. More
recently, Estep and French [12], French [13, 14], French and Jensen [15], and French and Paterson [16]
present an extensive survey of previous work in the context of parabolic/second-order hyperbolic problems,
and novel developments in the context of global error analysis, and adaptive time-step control.

3.1 A second-order Petrov-Galerkin time integrator

In order to clarify the nature of the numerical discretization, the basic time-integration algorithm is now
described in the context of an ordinary differential equation. Let us consider the initial-value problem:

ẏ = f(y(t)) (56)

y(0) = y0 (57)

The general space-time Galerkin formulation for (56)–(57) over the interval [tn, tn+1] is given by:

0 = w(t−n+1)y(t−n+1) − w(t+n )y(t−n )

−
∫ tn+1

tn

( w,s(s)y(s) + w(s)f(y(s)) ) ds (58)
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Here t±j = limε→0±(tj + ε). Notice that, using integration by parts, the Euler-Lagrange equations for
(58) over the time interval [tn, tn+1] correspond exactly to (56) with (57) imposed weakly. Starting from
the variational statement (58), a specific numerical scheme is defined by the function spaces representing
the solution y and the test function w. A second-order accurate integrator is obtained by way of a
Petrov-Galerkin formulation in time, for which the test space is given by discontinuous, piecewise-constant
functions, and the trial space is represented by continuous, piecewise-linear functions, as shown in Figure
1. Then (58) reduces to:

wh(t−n+1)y
h(tn+1) − wh(t+n )yh(tn) −

∫ tn+1

tn

wh(s)f(yh(s)) ds = 0 (59)

where wh and yh indicate the approximations of w and y.

Remark 3 The current formulation requires only one update, namely y(tn+1).

Remark 4 For linear systems (e.g., f(y) = ay), equation (59) reduces to the mid-point time-integration
rule for the nodal degrees-of-freedom yk = y(tk), namely,

yn+1 − yn =
a∆tn

2
(yn+1 + yn) (60)

and to the well-known Crank-Nicolson scheme, in the case of a linear partial differential equation (PDE).

Remark 5 For nonlinear equations, a mid-point scheme is also recovered when a single-point quadrature
rule in time is applied. Such an approach was used in the numerical implementation of the SUPG method
for Lagrangian hydrodynamics, since the algorithmic structure of the space-time formulation reduces to a
much simpler and more efficient semi-discrete time-integration scheme.

3.2 Space-time variational formulation

The variational formulation adopted in the Lagrangian hydrodynamics computations is now described.
Given a partition 0 = t0 < t1 < t2 < . . . < tN = T of the time interval I =]0, T ], let In =]tn, tn+1], so that
]0, T ] =

⋃N−1
n=0 In. The space-time domain Q = V × I can be divided into time slabs

Qn = V × In (61)

with “lateral” boundary Pn = S × In. A sketch of the general discretization in space-time is presented in
Figure 2. In general, the elements can assume fairly complex shapes in space-time. However, we will only
make use of discretizations prismatic in time. The material domain V is further divided into material-
subdomains V e (elements in space, a partition of the initial configuration, fixed with respect to time). Thus
V =

⋃nel
e=1 V e, and, consequently, a typical space-time element is given by the prism (i.e., tensor product

domain)
Qe

n = V e × In (62)

It is also assumed that the space-time boundary is partitioned as Pn = P g
n ∪ P h

n , P g
n ∩ P h

n = ∅ (i.e., Pn

is divided into a Dirichlet boundary P g
n and a Neumann boundary P h

n ). Using the notation V (X, t±n ) =
limt→t±n

V (X , t), the classical space-time variational formulation is defined as follows:
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0
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Figure 2. General finite element discretization in space-time.

Find Y h ∈ Sh, such that ∀W h ∈ Vh

B(W h,Y h) + SUPG(W h,Y h) + DC(W h,Y h) = F(W h) (63)

where B(·, ·) is the space-time bilinear form, SUPG(·, ·) is the stabilization operator, and DC(·, ·) is the
discontinuity-capturing operator. SUPG(·, ·) and DC(·, ·) are linear in the first argument and nonlinear in
the second. Specifically:

B(W h,Y h) =

∫

V
W h(X , t−n+1)·U (Y h(X , t−n+1))dV

−
∫

V
W h(X, t+n )·U(Y h(X , t−n ))dV

+

∫

Qn

(
−W h

,t ·U (Y h)−W h
,i ·Gi(Y

h)+W h ·Z(Y h)
)

dQ

+

∫

P g
n

W h ·Gi(Y
h)Ni dP (64)
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F(W h) = −
∫

P h
n

W h ·H iNi dP (65)

where Hi represents the Neumann flux along the i-th coordinate (a traction-type boundary condition in
Lagrangian hydrodynamics). The choice of the spaces Sh and Vh defines the time integrator, and, in our
case, causes (64) to further simplify.

3.2.1 Euler-Lagrange equations

The space-time formulation is best understood through the Euler-Lagrange equations, obtained by inte-
gration by parts, assuming sufficient regularity of the solution:

∫

Qn

W h ·
{
U ,t(Y

h) + Gi,i(Y
h) + Z(Y h)

}
dQ

+

∫

V
W h(X , t+n ) ·

{
U(Y h(X, t+n )) − U(Y h(X , t−n ))

}
dV

−
∫

P h
n

W h ·
{

Gi(Y
h) − H i

}
NidP

+SUPG(W h,Y h) + DC(W h,Y h) = 0 (66)

The integral over the space-time domain Qn in (66) tests the system of PDEs on the space-time domain,
the integral over the spatial domain V enforces weak continuity of the solution across time-slabs, according
to the causality principle of temporal evolution. The integral over the lateral space-time surface P h

n on the
third line tests the Neumann boundary conditions (Dirichlet conditions are embedded in the definition of
the trial functions), while the last two terms are yet to be defined.

3.3 Second-order in time formulation

In terms of function spaces, we will assume that the trial function space Sn is given by the piecewise-
linear, continuous functions on Q = V ×]0, T [ (see Fig. 3, for details in the one-dimensional case), while
the test function space Vh will be given by functions that are continuous piecewise-linear in space and
discontinuous, piecewise-constant in time (see Fig. 4). Therefore,

Sh =
{

V h : V h ∈ (C0(Q))m,

V h
∣∣∣
Qe

n

∈ (P1(V
e) × P1(In))m,V h = Gbc(t) on P g

n

}
(67)

Vh =
{

W h : W h
∣∣∣
V
∈ (C0(V ))m,

W h
∣∣∣
Qe

n

∈ (P1(V
e) × P0(In))m,W h = 0 on P g

n

}
(68)
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Figure 3. Local trial functions for the second-order time integrator, in the one-dimensional case.
ξ is the local space coordinate, while η is the local time coordinate.
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Figure 4. Local test functions for the second-order time integrator, in the one-dimensional case.
ξ is the local space coordinate, while η is the local time coordinate.
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with m = 2nd + 1, nd ∈ {1, 2, 3}. Equation (63) reduces to

0 =

∫

V
W h(X) · U(Y h(X , tn+1)) − W h(X) · U(Y h(X , tn)) dV

+

∫

Qn

(
−W h

,i · Gi(Y
h) + W h · Z(Y h)

)
dQ

+

∫

P g
n

W h · Gi(Y
h)NidP +

∫

P h
n

W h · H iNi dP

+SUPG(W h,Y h) + DC(W h,Y h) (69)

Since Y h is continuous in space and time, there is no need to distinguish between positive and negative
limit values for a certain instant in time. In addition, W h is constant in time, so W h = W h(X) on each
space-time slab. The time derivative of W h vanishes, leaving only the jump terms in time to represent the
time-derivative operator.

4 SUPG Stabilization

SUPG stabilization of hyperbolic systems of conservation laws is well established, and one can refer to the
papers by Hauke and Hughes [18, 19], and Shakib, Hughes and Johan [46] for an extensive survey of the
main techniques and corresponding references.

It is also documented in the literature (see, e.g., [33, 37, 38, 36]) that SUPG stabilization prevents
locking/artificial stiffness for P1-elements.

4.1 A multiscale perspective

A multiscale interpretation of the SUPG stabilization is presented next. Let us start from the variational
form of the Lagrangian hydrodynamics equations (63), in which we assume, at the abstract level, that it is
possible to have full knowledge about the exact solution Y ∈ S, with Sh ⊂ S. The test space counterpart
of S is V ⊃ Vh. Hence, (63) reduces to:

B(W ,Y ) = F(W ) (70)

Notice that the SUPG and DC operators have not been included, since V contains full information about
the solution Y . For the sake of simplicity, we will assume that no body forces or Neumann conditions are
applied, so that F(W ) ≡ 0, throughout.

Let us now decompose the solution into a coarse-scale component, or mesh solution Y h ∈ Sh (the
component of Y resolved by the numerical mesh), and a fine-scale or subgrid component Y ′ ∈ S ′, (S ′ =
S\Sh is the complement of Sh to S). Analogously, the test function W can be decomposed as W =
W h + W ′, W ′ ∈ V ′ = V\Vh. Assuming that V ′ and Vh, and, respectively, S ′ and Sh are linearly
independent, the original problem can be decomposed into two subproblems:

B(W h,Y h + Y ′) = 0 (mesh-scale problem) (71)

B(W ′,Y h + Y ′) = 0 (subgrid-scale problem) (72)

20



The sub-grid scale equation (72) can be simplified by making a local linearization (for details, see [42]). On
each element, the nonlinear operators are linearized about a local base solution (for example the average
values of Y h over each element). The residual operator Res is defined by means of the quasi-linear form
of the Lagrangian hydrodynamics equations:

Res = L = A0
∂

∂t
+ Ai

∂

∂Xi
+ C (73)

Equation (72) will then transform, after linearization, to

(W ′,LY ′) = −(W ′,LY h) = −(W ′,Res(Y h)) (74)

where (·, ·) indicates the L2 inner product over the space-time slab, and boundary terms have been omitted,
for the sake of brevity. Formally, one can invert (74) by means of an inverse integral operator L−1, involving
a Green’s function kernel G′

Y ′|Qe
n
(X) = −

∫

Qe
n

G′ Res(Y h) dQ (75)

Although this is only a formal step, detailed derivations show that:

1. The Lagrangian hydrodynamic equations simplify, after linearization, to the wave equation. It is easy
to verify the assertion in the case of compressible gas dynamics. It is well known that the linearization
of the compressible Euler equations is given by the equations of acoustics, which are hyperbolic wave
equations. Hence, G′ can be proved to be a typical wave propagation Green’s function kernel.

2. The multiscale analysis confirms the argument of Kuropatenko [34] regarding the acoustic nature of
the artificial viscosity in the limit for weak shocks or, more appropriately, isentropic compressions.
In this case the solution is smooth enough to be amenable to local linearization, and the presented
multiscale analysis applies in a very strict sense. Detailed derivations on how the SUPG stabilization
relates to the Kuropatenko analysis and the “acoustical” part of HEMP-type viscosities [4, 54] are
found in [42].

Equation (71) is amenable to a local linearization:

B(W h,Y h + Y ′) ≈ B(W h,Y h) + (L∗W h,Y ′) (76)

where L∗ is the adjoint operator of L. Equation (76) is used to implement the stabilization term. The
definition of the SUPG operator is documented for the case of hyperbolic systems (see, in particular, Hauke
and Hughes [18, 19], and, for the case of symmetric hyperbolic systems, Shakib, Hughes and Johan [46], and
the earlier paper by Hughes and Mallet [26]), and consists in approximating the matrix Green’s function
G′ by a matrix τ

SUPG(W h,Y h) = −
(nel)n∑

e=1

∫

Qe
n

(L∗
SHW h) · τ Res(Y h)dQ (77)

where L∗
SH = −AT

0 ∂t − AT
i ∂i is the adjoint of the acoustic wave propagation differential operator LSH =

A0∂t +Ai∂i (in the SUPG literature, LSH is termed the generalized advective operator). The definition of
the matrix τ is specific to the system of equations to be solved and a general methodology for its derivation
can be found in [46]. However a strict implementation in multiple dimensions of such an approach could
not be pursued successfully in the Lagrangian case, and a new design was therefore developed.
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4.2 A new design requirement: Galilean invariance

It was found extremely beneficial to ensure Galilean invariance of the SUPG stabilization operator. It
became apparent in early numerical simulations that lack of Galilean invariance could lead to instabili-
ties [42].

The issue can be best understood by noticing that an SUPG method corresponds to a Petrov-Galerkin
formulation in which the test function space depends on the structure of the system of partial differen-
tial equations simulated. Therefore, it is important to ensure that the test function space is invariant
under Galilean transformations, otherwise the stability properties of the SUPG method may be observer-
dependent. In particular, the perturbation to the Galerkin test space represented by −(L∗

SHW h) ·τ cannot
be an explicit function of the material velocity v, unless v appears in differentiated form.

In addition, it easy to realize that the subgrid-scale solution must be Galilean invariant, since it is the
difference of the vectors Y and Y h. Therefore, it is also reasonable to impose Galilean invariance for the
approximation Y ′ ≈ −τ Res(Y h). If both the perturbation to the test function and the approximation
to Y ′ are invariant, so is the overall SUPG operator.

As discussed in detail in [42], invariance can be achieved by removing the kinetic energy equation from
the total energy equation before deriving the quasi-linear form.

4.3 Stabilization in the Lagrangian framework

In the case of Lagrangian hydrodynamics, it is possible to simplify the expressions for the SUPG operator,
since stabilization affects only the momentum and energy equations. This can be easily seen by carrying
over the calculation of stabilization terms by brute force in the one-dimensional case, for which the approach
in [46] applies successfully. The rationale is that the kinematic equations relating the rates of displacement
to the velocities are actually ODEs in the degrees-of-freedom of the discrete solution, so that stabilization
- peculiar to boundary value problems for PDEs - is not needed. It is possible then to reformulate the
structure of the matrix τ as

τ =

[
0nd×nd

0nd×(nd+1)

0(nd+1)×nd
τ̂ (nd+1)×(nd+1)

]
(78)

As it is easily realized, in the case of one, two and three dimensions in space, instead of developing a matrix
τ of size 3 × 3, 5 × 5, or 7 × 7, it is sufficient to compute just the matrix τ̂ of size 2 × 2, 3 × 3, or 4 × 4,
respectively. From now on, and to avoid a more cumbersome notation, A0, Ai, and C will indicate the
lower (nd + 1) × (nd + 1)-blocks on the diagonal of the corresponding (2nd + 1) × (2nd + 1)-matrices.

Remark 6 Since stabilization is applied only to the momentum and energy equations, it is easy to verify
that L̂∗ = L̂∗

SH .

The newly developed τ̂ reads:

τ̂ =
∆t

2 CFL
A−1

0 =
min1≤j≤nel

(∆xj/(cs)j)

2
A−1

0 (79)

The proposed τ̂ is very similar to the one originally developed by Hauke in [17], in the context of non-
symmetric hyperbolic systems of conservation laws. However, a key difference is that the latter does not
satisfy Galilean invariance properties.
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Remark 7 CFL = ∆t max1≤j≤nel
((cs)j/∆xj) is the global Courant-Friedrichs-Levy number, (cs)j is the

speed of sound, ∆t is the time increment and ∆xj is a characteristic mesh scale in the current configuration,
such as the smallest distance between nodes belonging to the same element. The term ∆t/(2CFL) =
minnel

(∆x/(2cs)) does not vanish as ∆t tends to zero, preventing the stabilization term from decaying too
rapidly for small time steps. Such issues have been extensively discussed, for example, in [5] and [11].

Remark 8 A0 is diagonal, allowing for a fast computation of the stabilization term, compared to [46],
in which the inverse square root of a matrix has to be evaluated or approximated, in the case of multiple
dimensions.

Remark 9 The stabilization matrix τ̂ has been devised as a very simple generalization of the one-dimensional
matrix obtained by the approach described in [46]. The details of the one-dimensional computations are in
[43], and lead to the expression

τ̂ =
∆t

2
√

1 + α2
A−1

0 (80)

where α = ∆t (cs)j/∆xj is the local CFL number.

5 Discontinuity capturing operator

The design of the Discontinuity Capturing (DC) operator is essential to the overall performance of the
numerical method. Shocks must be smoothed in a band of possibly no more than 3-4 elements. Three key
elements are the basis for the design of the proposed DC operator:

1. A von Neumann-Richtmyer [53] artificial viscosity was adopted with an additional artificial heat flux
analogous to the one proposed by Noh [41].

2. The computation of the mesh scale parameter in the von Neumann-Richtmyer formula is performed
by combining the approach of Wilkins [54] and Tezduyar [49, 50, 51]. Special care was taken to avoid
abrupt element-to-element variations of the mesh scale parameter because of negative consequences
on the artificial viscosity performance. This concept is presented in detail in [9].

3. It was also found very important to have the viscosity peak on the elements leading the shock layer,
as the shock moves through the material. This allowed for improved smoothness of the solution
across the shock layer and a reduction of the viscosity coefficient.

In spite of not being particularly sophisticated compared to the latest concepts in the field (see, e.g., [4, 9, 8]
for advanced concepts on TVD limiting), the proposed viscosity proves robust and effective even in the more
demanding tests. Most of the advanced concepts to date use edge-centered viscosities, easily implemented
in the context of finite-difference or finite-volume methods, but less straightforward to implement for a
standard finite element method. It was felt to be beyond the scope of the present paper to investigate such
concepts. These may be the focus of future research.

Remark 10 Although improvements can be made on the viscosity, the numerical results are in most cases
equal or sometimes superior to state-of-the-art techniques for both triangular and quadrilateral meshes.
Apparently, improved gradient representation and SUPG stabilization seem to have a very significant effect
on the overall quality of the results.
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The discontinuity capturing operator is implemented as follows:

DC(W h,Y h) =

(nel)n∑

e=1

∫

Qe
n

GradW h
v : P art dQ (81)

+

(nel)n∑

e=1

∫

Qe
n

GradW h
E ·
(
P T

artv + Qart

)
dQ

−
∫

Pn

W h
E

(
P T

artv · N
)

dP (82)

where

P art = JσartF
−T = σart(cofF ) (83)

Qart = JF−1qart = (cofF )T qart (84)

and

σart = ρ νart
1

2

(
grad v + gradT v

)
(85)

qart = ρ νart g2 (ρ0/J, p) grad p (86)

νart = Cν f∗(J̇) h2
b |div v| χ({div v < 0}) (87)

where Cν = 2.0, and χ is the characteristic function, that is

χ({div v < 0}) =

{
1, if div v < 0
0, otherwise

(88)

W h
v is the test function vector relative to the momentum equations only, and W h

E is the scalar test function
relative to the energy equation. P art and Qart are the Piola transformation of the artificial stress tensor
σart and artificial heat flux vector qart. σart is a function of the symmetric part of the velocity gradient
in the current configuration, which ensures invariance under rotations and Galilean transformations. qart

is a function of the gradient of the internal energy, since the pressure gradient is scaled with the term
∂e/∂p = ρ0g2 (ρ0/J, p). f∗ is a term depending on the element type:

f∗ =

{
1, for segments, quadrilaterals, hexahedra

1 + e−β ∂
∂t

(ln J), for triangles, tetrahedra
(89)

In practice, the derivative of the natural logarithm of J further shifts the peak of the artificial viscosity
ahead of the shock for triangles and tetrahedra, increasing the smoothness of the shock profile. β = 0.75 was
found an appropriate choice. The time derivative is easily computed by means of the predictor-corrector
time integration strategy developed in Section 7.

Remark 11 A reason for the different expression for f∗ in the case of triangles and tetrahedra is that
the discretization of the shape function gradients is different with respect to quadrilaterals and hexahedra.
It was observed in early numerical computations, that using f∗ = 1 also for triangles and tetrahedra was
causing the artificial viscosity to peak behind shocks, rather than ahead of them.
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Remark 12 Since f∗ is a function of J̇ , it maintains the invariance and objectivity properties of the
artificial viscosity operator.

Remark 13 The term P T
artv, or artificial stress dissipation is usually not incorporated in state-of-the-art

viscosities for aerospace computations (see [19, 46, 49, 50, 51]), but it turns out to be extremely important
in implosion computations when shocks are generated by moving boundaries (e.g., piston-type boundary
conditions).

Remark 14 Notice also that a boundary integral for the dissipation P T
artv has been added. Using integra-

tion by parts, it is easily understood that such a term contributes to the discretization of the divergence of
P T

artv. A similar approach would apply to P art in the momentum equation and to Qart in the energy equa-
tion, but such additional contributions were found to negatively affect numerical results, and were therefore
omitted.

Remark 15 A considerable literature is available on discontinuity capturing operators for finite element
methods. Such operators usually take the form of a purely residual-based artificial viscosity, rapidly vanish-
ing when the solution is smooth, as for isentropic compressions/expansions. This is a very useful property,
but attempts made to design a residual-based viscosity for Lagrangian hydrodynamics simulations have
not been successful to date. The main problem related to the residual-based viscosities tested was their
rapid variation from element to element, which undermines their potential in the case of transient shock
propagation computations. Further investigations will be directed toward this issue.

Remark 16 Special care needs to be devoted to the definition of hb, the mesh scaling, in the definition of
the artificial viscosity, as documented in the next section.

5.1 The mesh parameter “hb”

The definition of the mesh parameter can be expressed as

h̃b = 0.75


2‖b‖l2

(
nen∑

a=1

|b · grad Na(x)|
)−1


 (90)

+0.25


2‖v̇‖l2

(
nen∑

a=1

|v̇ · grad Na(x)|
)−1


 (91)

b = grad‖v − v
(e)
min‖l2 (92)

This definition is a compromise between earlier definitions by Wilkins [54], in the context of hydrocode
simulations for structural mechanics, and Tezduyar, in the context of SUPG methods for the compressible
Navier-Stokes equations (see, e.g., [49, 50, 51]). Effectively, (91) is a linear combination of the length scale
in the direction of the local gradient of the magnitude of the velocity and the local acceleration direction.

Remark 17 The vector v
(e)
min is the velocity vector of minimum norm over the element e, namely

v
(e)
min = argmin1≤n≤ne

np
‖v(e)

n ‖l2 (93)
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Figure 5. Sketch of the segments connecting the mid-points for quadrilaterals (left) and triangles
(right).

where ne
np is the number of nodes of the element e. Subtracting v

(e)
min from v in (92) is consistent with

Galilean invariance and improves the accuracy in detecting the direction normal to the shock front for
elements of poor aspect ratio.

Remark 18 Both vectors b and v̇ are used to define h̃b, since the acceleration direction was found superior
in detecting the normal to the shock front, while the vector b was found more reliable in stabilizing mild
but persistent oscillations near moving boundaries, a common feature of hydrocode simulations.

5.1.1 A limiting strategy for the mesh parameter

One of the important aspects in the design of artificial viscosities is to make sure they vary smoothly
across shock fronts, otherwise some of the elements may become over-damped compared with their closest
neighbors, with very negative effects on the quality of the results. A simple limiter acting on h̃b was
designed. A more general approach would be to apply a limiting technique directly to the viscosity (see,
e.g., [4, 9, 8]), which might improve results. However, one of the appealing features of the currently
implemented limiting on h̃b is its locality in terms of the element data structure. For this purpose, it will
be useful to define the vector:

ub =
0.75 b/‖b‖l2 + 0.25 v̇/‖v̇‖l2

‖0.75 b/‖b‖l2 + 0.25 v̇/‖v̇‖l2‖l2
(94)

5.1.2 Quadrilaterals

In the case of quadrilaterals, the limiting is realized by considering the segments connecting the mid-point
of opposite edges of the quadrilateral (ξl and ηl on the left sketch of Fig. 5), and enforcing the following
constraint:

hb = min


h̃b,

((
cos(θl)

‖ξl‖l2

)2

+

(
sin(θl)

‖ηl‖l2

)2
)− 1

2


 (95)

θl =
π

2

arccos(|ub · ξ|)/‖ξl‖l2)

arccos(|ξ · η|)/(‖ξl‖l2‖ηl‖l2)
(96)
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In practice, hb is bounded by the contour of an ellipse of semi-axes ξl/2 and ηl/2.

5.1.3 Triangles

In the case of triangles, the segments ξl, ηl, and ζl connecting the mid-points of the triangular element
edges (see Fig. 5) are used to limit hb according to

hb = min
(
h̃b, argminw∈{ξl,ηl,ζl}

(
|h̃b · w|/‖w‖l2

))
(97)

In this case, hb is bounded by its maximal projection on ξl, ηl, or ζl (in the l2-inner product sense).

6 Global conservation

The proposed formulation is globally conservative. We assume P g
n = ∅, as is commonly done in the

derivation of conservation statements (see Hughes et al. [22]). Let us set to unity over a time-slab one
of the entries of the test vector W h corresponding to the momentum or energy equations, while keeping
zero all remaining entries. Namely, W h

i = 1, for some i ∈ {nd + 1, . . . , 2nd + 1}, and W h
j = 0 if j 6= i.

This choice is made possible by the fact that W h can represent global constants, since it is continuous,
piecewise linear in space, and discontinuous, piecewise constant in time. Equation (63) reduces to:

0 =

∫

V
U i(Y

h(X , t−n+1)) dV − U i(Y
h(X, t−n )) dV +

∫

P h
n

(Hj)iNj dP (98)

which is a statement of conservation from time t−n to time t−n+1 for the U i entry of the conservation variables

vector U , provided the boundary integral vanishes. Indeed, (98) is readily obtained, since W h
,t and W h

,i

vanish and so do the SUPG(W h,Y h) and DC(W h,Y h) operators, by definition. Finally, Z(Y h), has zero
entries for the momentum and energy equation, since it is not a true source term, but, rather, a kinematic
term containing the components of the velocity field for the displacement equations.

7 Explicit predictor/multi-corrector algorithm

Lagrangian hydrodynamics algorithms typically adopt explicit time-marching schemes. In fact, when
considering a linearized analysis, accuracy in time requires the time steps to satisfy CFL = 1. Implicit time-
marching schemes become effective when run at significantly larger CFL values, and although examples
of implicit hydrocodes are present (e.g., in contact dynamics applications), usually explicit approaches are
preferred. When explicit algorithms are used for complex nonlinear systems, often nonlinear effects can
further limit the CFL values.

An explicit, predictor/multi-corrector scheme can be easily defined for the proposed method, by modi-
fying a standard implicit Newton nonlinear iterative solver. In fact, if only the local integrals contributing
to a lumped mass matrix are assembled into a modified Newton tangent matrix, no linear system solves
are required as the iteration proceeds. A detailed explanation of the theoretical framework for this class
of time-integration algorithms is presented in Hughes [20], p. 562, while the paper by Shakib, Hughes
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and Johan [46] is very useful for an example of the implementation in the context of compressible flow
computations for aerospace applications in Eulerian coordinates.

7.1 The general nonlinear system

On a single time-slab, the solution and test vector functions can be expressed as:

Y h(X , t) =

nnp∑

A=1

NA(X)
(
π+

n (t)yA;(n+1) + π−
n (t)yA;(n)

)
(99)

W h(X , t) =

nnp∑

A=1

NA(X)wA;(n+1) (100)

with X ∈ V, t ∈ In, π+
n (t) = (t − tn)/∆t, and π−

n (t) = (tn+1 − t)/∆t. Also, let

(L∗
adv)

h
A = −AT

i NA,i (101)

(Lh
±)A = A0NAπ±

,t + AiNA,iπ
± + CNAπ± (102)

Substitution of (99)–(102) into (69) yields

0 =

nnp∑

A=1

wA ·
{∫

V
NA U

( nnp∑

B=1

NByB;(n+1)

)
− NAU

( nnp∑

B=1

NByB;(n)

)
dV

−
∫

Qn

NA,i
Gi

( nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

))
dQ

+

∫

Qn

NAC

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
dQ

+

∫

P g
n

NA · Gi

( nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

))
Ni dP

+

∫

P h
n

NA · H iNi dP

−
nel∑

e=1

∫

Qe
n

(L∗
adv)

h
A · τ

nnp∑

B=1

(
(Lh

+)ByB;(n+1) + (Lh
−)ByB;(n)

)
dQe

n

+DC

(
NA,

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

))}
(103)

7.2 Newton solver

Since on the interval In the nodal values yB;(n) are known from the previous time-step, the system can be
abstractly represented as

w · ÑL(y(n+1);y(n)) = 0 (104)
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and, since (104) has to hold for any w, we obtain

ÑL(y(n+1);y(n)) = 0 (105)

The Newton iteration reads:

ÑL(y(n+1);y(n)) ≈ ÑL(y(i);y(n)) +
∂ÑL(y(i);y(n))

∂y
δy = 0 (106)

with δy = (y(i+1) − y(i)). Here the upper index (i) refers to an iterate of the Newton algorithm, while
y(n+1) and y(n) refer to the solutions at times tn+1 and tn, respectively. Starting from (106) we can also

accommodate boundary conditions of Dirichlet type, by removing the rows of ÑL corresponding to nodes
on the Dirichlet part of the boundary. Equation (106) can be therefore rewritten as:

M∗(i)
δy = −R(i) (107)

where the more convenient notation

M∗(i)
= ∂yNL(y(i);y(n)) (108)

R(i) = NL(y(i);y(n)) (109)

has been used. NL and ∂yNL are obtained from ÑL and ∂yÑL, respectively, after Dirichlet boundary
conditions have been accounted for, and R is the algebraic residual vector.

7.3 Assembly

M∗ and R are assembled in the usual way, namely:

R(i) =
nel

A
e=1

Re;(i) (110)

M∗(i)
=

nel

A
e=1

M e;(i) (111)

where A is the finite element assembly operator (see, e.g., [2, 20]), and Re;(i), M e;(i) are the element

contributions to the residual and tangent matrix, respectively. The solution can be expressed, in space-time,
as:

Y e;(i)(X , t) =

nen∑

a=1

Ne
a(X)

(
πe;+

n (t)y(i)
a + πe;−

n (t)ya;(n)

)
(112)

29



where N e
a, is the local test function in space (constant in time on the space-time slab under consideration),

and πe;±
n are the local trial functions in time. With the previous assumptions,

Re;(i) = {Re;(i)
a } (113)

Re;(i)
a =

∫

V e

N e
a U
(
Y e;(i)(X , tn+1)

)
− N e

a U
(
Y e;(i)(X, tn)

)
dV

+

∫

Qe
n

−N e
a,i

Gi

(
Y e;(i)(X , t)

)
+ N e

aC Y e;(i)(X , t) dQ

+

∫

P
(g;e)
n

N e
a · Gi

(
Y e;(i)(X , t)

)
Ni dP +

∫

P
(h;e)
n

N e
a · H iNi dP

+

∫

Qe
n

AT
j N e

a,j
· τ
(
A0Y

e;(i)
,t + AkY

e;(i)
,k + CY e;(i)

)
dQ

+ DCe(N e
a,Y

e;(i)) (114)

where a denotes a local node number for element e. In the explicit variant considered here, a simple

approximation of M∗(i)
is used. In this case,

M∗(i) ≈ ML(i)
=

nel

A
e=1

[
δab

∫

V e

Ne
aA0 dV

]
(115)

where δab is the Kronecker delta. The algorithm is summarized in Table 1. It is important to observe that
if single-point quadrature is used for the integration in time, a mid-point integration scheme is recovered.
This version of the more general space-time algorithm has been used in all the computations, where,
typically, three iterations of the predictor/multi-corrector were used.

Retrieve loop parameters: nstep, imax

Initialize: set y(0)

For n = 0, . . . , nstep (Time-step loop begins)

Predictor: y(0) = y(n)

Set ∆t (respecting the CFL condition)

For i = 0, . . . , imax − 1 (Multi-corrector loop begins)

Form R(i)(y(i);y(n))

Form ML(i)
(y(i))

Update δy(i): ML(i)
δy(i) = −R(i)(y(i);y(n))

Corrector: y(i+1) = y(i) + δy(i)

End (Multi-corrector loop ends)

Time update: y(n+1) = yimax

End (Time-step loop ends)
Exit

Table 1. Outline of the predictor-multicorrector algorithm. Three iterations of the
predictor/multi-corrector were used in the computations.
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Segregating the unknowns, the general form of the iteration is




ML
uu 0 0

0 ML
vv 0

0 0 ML
pp






δu(i)

δv(i)

δp(i)


 = −




R
(i)
u

R
(i)
v

R
(i)
p


 (116)

where ML
uu, ML

vv and ML
pp are diagonal.

7.3.1 Time-integration strategy for displacements

For the displacement equations,

δu(i) = −(ML
s )−1Ms

(
u(i) − un − ∆tn

2

(
v(i) + vn

))
(117)

where Ms indicates the consistent mass matrix for the displacements, and ML
s is its lumped version.

Remark 19 The much simpler approach of solving a set of ODEs for the nodal displacements, namely,

δu(i) = −
(

u(i) − un − ∆tn
2

(
v(i) + vn

))
(118)

produced very poor results for the density profiles in the most demanding simulations. Early attempts proved
this approach too inaccurate to be further pursued.

8 General considerations on implementation

A number of additional issues need to be addressed before proceeding with the analysis of the numerical
results.

8.1 Post-processed variables

The algorithm detailed in Table 1 directly computes the displacements, velocities and pressures. If other
quantities of interest are to be computed, the complete solution update strategy is summarized as follows:

1. The primary variables Y = [u, v, p]T are solved for numerically, using the procedure detailed in
Table 1.

2. The determinant J = det F = [∂xi/∂Xj ] of the deformation gradient is computed from the displace-
ment u.

3. The current configuration density ρ = ρ0/J is determined.
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4. The internal energy e is determined using the equation of state (11).

Note that energy and density are not directly computed, but are determined by “post-processing” the
displacements and pressures. Any time they appear in the variational form, their expressions in terms of
the initial density ρ0, the Jacobian J , the pressure p and the specific heat ratio γ are used.

8.2 Proper specification of the density initial condition

In order to start the computations, the initial conditions have to be set. A cell-centered, piecewise constant
approximation for the initial density ρ0 proved the most accurate option, while displacements, velocities
and pressure are piecewise-(multi-)linear continuous functions, with degrees-of-freedom centered at the
nodes.

Because a finite element approximation is adopted, the matching of pressure and density in the initial
conditions is best accomplished in an L2 (weak) sense, rather than point-wise.

For this purpose, a single-point quadrature L2-projection technique was used. This technique is sketched
in Figure 6:

1. pressure and density are initially considered constant over each element. Namely:

pC
0 (X) =

nel∑

e=1

p0;eχ(Ve) (119)

ρC
0 (X) =

nel∑

e=1

ρ0;eχ(Ve) (120)

where χ(Ve) is the characteristic function relative to the element domain Ve.

2. Pressure and density are projected using the lumped mass matrix ML
uu onto the space of continuous

nodal functions, and a node-centered approximation to both is generated. More precisely:

pN
0;A =

( nel

A
e=1

∫

Ve

NA pC
0 (X) dV

)

( nel

A
e=1

∫

Ve

NA dV

) =

( nel

A
e=1

∫

Ve

NA p0;e dV

)

( nel

A
e=1

∫

Ve

NA dV

) (121)

ρN
0;A =

( nel

A
e=1

∫

Ve

NA ρC
0 (X) dV

)

( nel

A
e=1

∫

Ve

NA dV

) =

( nel

A
e=1

∫

Ve

NA ρ0;e dV

)

( nel

A
e=1

∫

Ve

NA dV

) (122)

where pN
0;A and ρN

0;A are the initial pressure and density at node A (in the global node numbering),
respectively. The integrals in (121)–(122) are computed using a single-point quadrature.

3. The nodal density is projected back onto the elements, taking its area-weighted average over each
element. Therefore, (120) now holds with

ρ0;e =
1

Ve

∫

Ve

ne
np∑

a=1

ρN
0;aNa dV (123)
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Figure 6. Sketch of the preprocessing procedure for pressures and densities in one space dimension.

where the subscript a refers to the local, element node numbering, contrasted with the global node
index A in (122). Again, the integrals in (123) are computed using a single-point quadrature.

Remark 20 The described pre-processing strategy for the density conserves the total mass.

8.3 Post-processing of the current configuration density

The issue of pressure/density matching manifests itself again when an accurate approximation for the
current configuration density is sought. In this case the lumped mass projection technique is applied again,
to obtain a node-based current density. In the terminology of finite-difference/finite-volume methods, this
would roughly amount to computing the density relative to the dual volumes (co-volumes) of the mesh.
Namely,

ρN
A =

( nel

A
e=1

∫

Ve

NA ρ0(X)/J dV

)

( nel

A
e=1

∫

Ve

NA dV

) (124)

Remark 21 Also the post-processing approach for the density conserves the total mass.

8.4 CFL condition

First, it is important to stress that the Courant-Friedrichs-Levy (CFL) condition must incorporate the
effects of the artificial viscosity, otherwise the code can generate so-called “q-instabilities”. The proposed
algorithm, when only one iteration of the predictor/multi-corrector approach is applied, yields exactly
the same discrete equations generated by the first-order space-time method described in [45]. Since the
first iteration is the most restrictive, it is sufficient to derive the CFL condition based on this first-order
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method. The von Neumann stability analysis developed in [45] for a linear one-dimensional advection-
diffusion equation, yields:

2
∆t

∆h2
e

(νarte + c2
se

τ) ≤ CFL < 1 (125)

where, with respect to the e-th element, cse is the advective velocity (the speed of sound in our case),
νarte is the artificial viscosity, ∆he is the mesh characteristic length (the minimal distance between element
nodes), and τ is the stabilization time-scale parameter.

Recalling the expression for the stabilization tensor (79),

τ = τA−1
0 =

∆t

2 CFL
A−1

0 (126)

it is easily seen that the Jacobian A−1
0 plays simply the role of a scaling term, making the equations

dimensionally consistent. Substituting τ = ∆t/(2 CFL) in (125), and rearranging like terms, we obtain:

0 = c2
se

∆t2 + 2νarte CFL ∆t − (CFL)2 ∆h2
e (127)

1 > CFL (128)

(127) is a quadratic equation that can be easily solved for ∆t > 0:

∆t = CFL

√
ν2

arte + ∆h2
e c2

se
− νarte

c2
se

= CFL
∆he

cse

(√
1

4Pe2
ν

+ 1 − 1

2Peν

)

=
∆tadv

2Peν

(√
1 + 4Pe2

ν − 1
)

(129)

where Peν = csehe/(2νarte ), ∆tadv = CFL∆he/cse , and ∆he is the minimum of the distances (measured
in the current configuration) between two distinct vertices of the e-th element. A plot of ∆t/∆tadv is
presented in Figure 7. Let us now analyze the limit behavior of (129) holding the speed of sound cse fixed
and varying νarte :

∆t ∼ CFL
∆he

cse

= ∆tadv, as νarte → 0 (130)

∆t ∼ CFL
∆h2

e

2νarte

= ∆tνarte
, as νarte → ∞ (131)

It is clear from this analysis that high values of the artificial viscosity have a detrimental effect on the time
step magnitude. Usually, Peν ∈ [3, 10], so that νarte was typically smaller than the product ∆he cse , with
an additional constraint on the CFL of about 10–20%.
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Figure 7. Behavior of ∆t/∆tadv as a function of Peν . The optimum is to have ∆t/∆tadv = 1,
that is, the CFL condition is uniquely due to the speed of sound. This situation is achieved in the
limit Peν → ∞.

9 One-dimensional tests

A number of one-dimensional Riemann problems, for which exact solutions are available, was solved nu-
merically (the reader can refer to the book by Toro [52] on Eulerian numerical methods for a comprehensive
description).

Test ρ
(L)
0 ρ

(R)
0 p

(L)
0 p

(R)
0 v

(L)
0 v

(R)
0 γ Tfinal

Sod 1.0 0.125 1.0 0.1 0.0 0.0 1.4 0.25

LWC 1.0 1.0 1000 0.01 0.0 0.0 1.4 0.012

2SH 5.99924 5.99242 460.894 46.0950 19.5975 -6.19633 1.4 0.035

Noh – 1.0 – 0.0 – -1.0 5/3 0.6

Table 2. One-dimensional test suite: Initial conditions. (L) and (R) stand for the left and right
states, respectively. The following nomenclature is used: “Sod” refers to the Sod test, “LCW” refers
to the left half of the Woodward-Colella blast test problem, “2SH” refers to the two-shock problem,
and “Noh” refers to the Noh test. In the case of the Noh test some entries of the table are missing,
since there is no left state, but just a rigid wall boundary condition.

The SUPG method was compared with a standard hydrocode implementing a HEMP-viscosity without
limiter (see, e.g., Benson [4], and [43] for complete details). The HEMP artificial viscosity had constants
equal to 1.5 for the von Neumann-Richtmyer part and 0.06 for the linear part. Results for the planar
version of the implosion test devised by Noh [41] are also presented. Table 2 summarizes the initial
conditions and Table 3 presents the exact intermediate ∗-state values at the final time of each simulation.
All one-dimensional simulations were run at CFL = 0.9, for both the standard hydrocode and the SUPG
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Test ρ
(L)
∗ ρ

(R)
∗ p∗ v∗

Sod 0.42632 0.26557 0.30313 0.92745

LWC 0.57506 5.99924 460.894 19.5975

2SH 14.2823 31.0426 1691.64 8.68975

Noh 4.0 4.0 4/3 0.0

Table 3. One-dimensional test suite: Exact solution of the Riemann problem (∗-states). The
nomenclature for the test cases is the same as in Table 2. Notice that in the case of the Noh test no
contact discontinuity is generated (ρ

(L)
∗ = ρ

(R)
∗ ).

method.

9.1 Sod’s problem

The Sod’s test [47] is presented in Figures 8 and 9. The hydrocode delivers good performance, but a
pronounced overshoot is present in the energy plot and the velocity shows low accuracy in the representation
of the solution past the shock front. The results for the SUPG method are better for the velocity. Although
milder, an overshoot is still present for the energy. One plausible explanation is the fact that, in contrast to
the density, the energy is just obtained by a point-wise calculation at the nodal points. A conservative L2-
projection technique could be more effective. The contact discontinuity is captured within 2–3 elements by
the SUPG method, due to the specific pre-processing of the initial condition for the density, as mentioned
in Section 8.2.

9.2 Left-half of Woodward-Colella blast

The left half of the Woodward-Colella [56, 55] interacting blast wave is shown in Figures 10 and 11. Wiggles
are clearly visible behind the shock location for velocity, pressure, and density in the case of the hydrocode,
while they are absent in the case of the SUPG method. In addition, the pronounced over/under-shoot in
the hydrocode solution for the velocity/pressure at the beginning of the expansion (about x = −.25) is
attenuated in the SUPG plots.

9.3 Two-shock problem

The two-shock test [52], shown in Figures 12 and 13, is the most demanding of the suite in terms of ro-
bustness: A contact discontinuity is generated by the interaction of two strong shocks. The test presents
features very similar to implosion calculations. The strong compression undergone by the initial computa-
tional domain, spanning the interval [−1, 1], is clearly noticeable.

The hydrocode solution suffers from a few wiggles in the velocity and pressure plots, absent in the case
of the SUPG method. Although over/under-shoots are present in the SUPG solution for the energy and
density, they tend to be attenuated, compared to the hydrocode results.
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Figure 8. Hydrocode solution for the Sod test. The exact solution is represented by the continuous
line.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

v 
(v

el
oc

ity
)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p 
(p

re
ss

ur
e)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ 
(d

en
si

ty
)

POSTPROCESSED   VARIABLES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

e 
(e

ne
rg

y)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

u 
(d

is
pl

ac
em

en
ts

)

COMPUTED VARIABLES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

ν ar
t (

ar
t. 

vi
sc

os
ity

)

Figure 9. SUPG solution for the Sod tests. The exact solution is represented by the continuous
line.
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Figure 10. Hydrocode solution for the left-half of the Woodward-Colella blast test. The exact
solution is represented by the continuous line.
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Figure 11. SUPG solution for the left-half of the Woodward-Colella blast test. The exact solution
is represented by the continuous line.
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Figure 12. Hydrocode solution for the two-shock problem. The exact solution is represented by
the continuous line.
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Figure 13. SUPG solution for the two-shock problem. The exact solution is represented by the
continuous line.
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Figure 14. Hydrocode solution for the one-dimensional, planar Noh test. The exact solution is
represented by the continuous line.
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Figure 15. Second-order Hydro-SUPG for the one-dimensional, planar Noh test. The exact
solution is represented by the continuous line.
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Remark 22 The Noh-type artificial heat flux is usually deprecated because it can smear contact discon-
tinuities. In our experience, however, contact discontinuities are usually captured by the SUPG method
within 2–4 elements, this spreading being mainly due to the pre-processing of the initial density. After
monitoring the evolution of the contact layers throughout the simulations, no increase in their width was
observed as time progressed. A plausible explanation is that the artificial heat flux adopted herein includes
only a quadratic term in the mesh scaling, while the general form of the Noh correction includes also a
linear term. It seems that even if mild oscillations in the velocity are switching on the artificial heat flux
at the contact, its scaling keeps it within the numerical error threshold.

9.4 Planar Noh’s test

In the planar Noh test [41] – a robustness test – a bar of perfect gas is driven against a hard wall (the node
at the left end of the computational domain), where zero velocity/displacement boundary conditions are
imposed. The initial pressure of the gas is set to zero (namely 10−14), to obtain an infinite strength shock.

The hydrocode delivers good performance although a few wiggles are present past the shock front for
pressure and velocity. There is wall overheating in the element facing the left boundary (a noticeable spike
in the energy and a severe dip in the density, see Fig. 14).

The SUPG method (see Fig. 15) shows no wiggles for pressure and velocity and some moderate
underheating at the wall, due to the use of the Noh-type heat flux correction.

9.5 Overall assessment for the one-dimensional tests

To comment on the overall performance of the SUPG method with respect to the standard hydrocode
approach, it is fair to say that usually the SUPG method outperforms the hydrocode in terms of the
displacement, velocity and pressure solution, it is comparable in terms of the density solution and slightly
worse for the internal energy, which is however post-processed in a very crude way.

10 Two-dimensional numerical tests

A number of classical tests, very well documented in the technical literature (see, e.g. [3, 4, 9, 8, 7] and
references therein), is presented. Computations were performed on isoparametric Q1-quadrilateral and
P1-triangular elements. Since the mesh topology represents an integral part of the tests, and, at the same
time, very little work has been published in the context of triangular/tetrahedral meshes, our approach
has been to design variants of the standard tests by subdividing each quadrilateral in the original meshes
into two triangles. The choice of the splitting is not unique in general and, in all instances, results from
multiple strategies are compared.

10.1 Preliminary test on triangular meshes: Piston problem

A first issue to be addressed in detail is whether or not the current formulation generates artificial stiffness
or even locking on triangular meshes. Two preliminary tests were performed by meshing the domain
[0, 1] × [0, 0.1] (see Fig. 16) with 500 elements of 1:1 aspect ratio, and 50 elements with 1:20 aspect ratio.
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Figure 16. Piston problem for triangles: Initial meshes.

Figure 17. Piston problem for triangles: Pressure. The two solutions are evaluated at the same
time step. Notice the absence of any node-to-node oscillations, typical of artificially stiff P1 elements.
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Figure 18. Initial mesh for the Saltzmann 1:1 test. Left: Quadrilaterals (mesh (I)). Center:
Triangles (mesh (II)). Right: Triangles (mesh (III)). The 1:2 and 100:1 meshes are obtained by
appropriate scaling along the horizontal axis.
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Figure 19. 1:1 Saltzmann solution at T = 0.7. Left: Quadrilaterals (mesh (I)). Center: Triangles
(mesh (II)). Right: Triangles (mesh (III)).

Both simulations were run at CFL = 0.75. These apparently trivial meshes are usually adopted to test
whether a finite element formulation induces locking in the incompressible limit. The right boundary acts
as a piston moving to the left with unit velocity, and generates a shock wave. Unit density and zero internal
energy (namely 10−14) initial conditions are imposed, and γ = 5/3.

In the present case, the equations allow compressibility effects, so locking is unlikely, but artificial
stiffness may occur. From the results shown in Figure 17, no locking or artificial stiffness occurs, and the
pressure profiles are comparable in quality with simulations performed on quadrilateral elements.

10.2 Saltzmann test in cartesian coordinates

The Saltzmann test evaluates the ability of a distorted mesh to capture the features of a planar shock. A
rectangular domain of gas (γ = 5/3) is initially at rest. The bottom boundary moves with unit velocity and
generates a compression shock propagating upwards through the domain. All other boundary conditions
are of “roller” type, that is, zero normal velocity (and, consequently, zero normal displacement). The
Saltzmann test is both a robustness and accuracy test. The initial meshes, an integral part of the test
case, are presented in Figure 18.

Three variants, differing by a scaling transformation, are presented. All meshes are generated from
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Figure 20. 1:2 Saltzmann solution at T = 0.7. Left: Quadrilaterals (mesh (I)). Center: Triangles
(mesh (II)). Right: Triangles (mesh (III)).

a common layout of 10 quadrilateral elements in the horizontal direction and 100 quadrilateral elements
in the vertical direction, for a total of 1111 nodes. Nodes are located according to the following scheme,
where x is the horizontal coordinate and y is the vertical coordinate:

xij = αx∆x (i − 1) (132)

yij = αy

(
∆y (j − 1) + ∆x(11 − i) sin

(
π(j − 1)

100

))
(133)

with i = 1, 2, . . . 11 and j = 1, 2, . . . 101, ∆x = ∆y = 0.01, and αx and αy are scaling factors. Triangular
meshes were generated by splitting each quadrilateral into two triangles. The three proposed variants are
the following:

1. The 1:1 aspect ratio test (i.e., αx = 1 and αy = 1), on the rectangular domain [0, 1] × [0, 0.1], is the
standard Saltzmann test.

2. The 1:2 aspect ratio test (i.e., αx = 0.5 and αy = 1), on the domain [0, 1] × [0, 0.05], was orignally
proposed by Campbell and Shaskov [7] to evaluate the performance of hydrocodes when anisotropies
are present in the mesh.
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Figure 21. 100:1 Saltzmann solution at T = 0.7. Left: Quadrilaterals (mesh (I)). Center:
Triangles (mesh (II)). Right: Triangles (mesh (III)). The horizontal axis has been rescaled by a
factor 0.01, for presentation purposes.

3. The 100:1 aspect ratio test (i.e., αx = 100 and αy = 1), on the domain [0, 1] × [0, 10], was originally
proposed by Margolin [39] to evaluate how very high aspect ratio elements would affect the accuracy
of hydrocode simulations.

For each of the three variants, a standard quadrilateral grid (mesh (I) in Fig. 18) and two triangular grids
(mesh (II) and (III) in the same figure) were adopted. It is important to realize that although generated
by splitting each of the quadrilaterals of mesh (I) into two triangles, mesh (II) and (III) are very different
in quality. In fact, although the location of the nodes is the same, none of the triangular elements of
mesh (II) is obtuse while all of the triangles of mesh (III) are. Therefore, the quality of mesh (III) is
significantly poorer than mesh (II). In particular, an automatic mesh generator would most likely connect
nodes according to mesh (II) rather than mesh (III), since it usually incorporates tools to assess the quality
of elements. Notice also that the 1:2 variant exacerbates the difference between the meshes, while the 100:1
tends to level it.

All simulations were performed at CFL = 0.75.

Figures 19, 20, and 21 show the post-processed density solutions for the 1:1, 1:2, and 100:1 test,
respectively, at time T = 0.7, shortly before the shock generated by the piston reflects off the upper
boundary. In all three tests, the density profiles for mesh (I) and (II) look smooth and the grids do not
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Figure 22. Saltzmann 1:1 test. Left: Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)). Along the rows from top to bottom are plotted – as a function of the
vertical coordinate y – pressure, normalized horizontal velocity (v1/ max(|v2|)), vertical velocity v2,
and nodal density. The exact solution is represented by the continuous line, the dots represent all
the nodal values of the numerical solution (the x-coordinate locations are projected onto a single
plane).

present strong distortions, with the exception of the region near the piston, where some under-heating (an
overshoot of the density corresponding to an undershoot in energy) is taking place. The density solution
and grid deformation are smooth only in the 1:1 and 100:1 tests for mesh (III). Mesh (III) undergoes intense
distortion in the 1:2 test. A simple explanation is that mesh (III) is intrinsically much poorer than mesh
(II), as previously mentioned. It is quite surprising, however, that the degradation of the performance of
the method in the case of mesh (III) is only significant in the 1:2 case.

Quantitative results are shown in Figures 22, 23, and 24. For the 1:1 and 1:2 tests (Fig’s. 22 and
23, resp.), the under-heating is more pronounced, and lack of perfect planar symmetry is observable in
the normalized plot for the horizontal velocity component v1, which is instead much smaller in the 100:1
test. Overall, for all three variants there is good agreement with state-of-the-art computations [8, 7]. As
mentioned before, results for mesh (III) are clearly the poorest in the 1:2 case, while in the 1:1 and 1:100
tests, although inferior, they compare well with meshes (I) and (II).
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Figure 23. Saltzmann 1:2 test. Left: Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)). Along the rows from top to bottom are plotted – as a function of the
vertical coordinate y – pressure, normalized horizontal velocity (v1/ max(|v2|)), vertical velocity v2,
and nodal density. The exact solution is represented by the continuous line, the dots represent all
the nodal values of the numerical solution (the x-coordinate locations are projected onto a single
plane).

Remark 23 It is important to notice that the simulations on triangles are essentially of the same accuracy
as the simulations on quadrilaterals, whenever the quality of the meshes is comparable.

Remark 24 The 100:1 test does not pose any problematic issue for the current algorithm, contrary to the
majority of hydrocodes. In fact, the 100:1 test has the best results compared with the 1:1 and 1:2 test.

Remark 25 It is clearly seen on the top row of Figure 23 that the undershoot in the pressure causes
negative values of the pressure. Such unphysical undershoots are limited to 0.1 − 2.0% for the triangles,
and are even smaller for the quadrilaterals. The explanation for the good performance of the code in the
presence of small negative pressures has to do with the fact that in Lagrangian coordinates, a negative
pressure does not necessarily lead to a negative density, since the density is computed using the equation
ρJ = ρ0, and no volume inversions occurred in the computations.

48



0.7 0.8 0.9 1

0

1

2

Pr
es

su
re

Quadrilaterals (I)

0.7 0.8 0.9 1
−0.1

0

0.1

v 1/m
ax

(|v
2|)

0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

v 2

0.7 0.8 0.9 1
0

2

4

6

N
od

al
 D

en
si

ty

y

0.7 0.8 0.9 1

0

1

2
Triangles (II)

0.7 0.8 0.9 1
−0.1

0

0.1

0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

0.7 0.8 0.9 1
0

2

4

6

y

0.7 0.8 0.9 1

0

1

2
Triangles (III)

0.7 0.8 0.9 1
−0.1

0

0.1

0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

0.7 0.8 0.9 1
0

2

4

6

y

Figure 24. Saltzmann 100:1 test. Left: Quadrilaterals (mesh (I)). Center: Triangles (mesh (II)).
Right: Triangles (mesh (III)). Along the rows from top to bottom are plotted – as a function of the
vertical coordinate y – pressure, normalized horizontal velocity (v1/ max(|v2|)), vertical velocity v2,
and nodal density. The exact solution is represented by the continuous line, the dots represent all
the nodal values of the numerical solution (the x-coordinate locations are projected onto a single
plane).

In principle, there is no guarantee for positivity of the pressure in the presence of large errors in the
velocities. This is an important issue and is currently under investigation. However, the typical pathologies
related to spurious negative values for the pressures, such as lack of conservation, large errors in the shock
wave arrival times, and large errors in the plateaus of the solution past a shock, have not manifested
themselves in the many simulations we performed. More work will be devoted to at least mitigate and
ideally eliminate this problem, especially in connection to complex equations of state, which are typically
used in tabulated form.

Figure 25 shows the results of a long run 1:1 test. Color plots of the density at T = 0.925, are presented
for meshes (I) and (II), while the solution for mesh (III) is shown at the earlier time T ≈ 0.85, when the
simulation was arrested by a volume inversion. The white markers in the solutions for meshes (I) and
(II) indicate the exact location of the shock generated by the piston, which has reflected twice (the first
reflection occurring at the upper boundary, the second at the lower), and is moving upwards. It is easily
seen that there is good agreement between the quadrilateral mesh (I) and the triangular mesh (II) on
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Figure 25. Saltzmann 1:1 test solution (density color plot). Left: Quadrilaterals (mesh (I)) at
T = 0.925. Center: Triangles (mesh (II)) at T = 0.925. Right: Triangles (mesh (III)) at T ≈ 0.85.
The white horizontal marker indicates the location of the shock for the exact solution. Notice that
the 1:1 test on mesh (III) could not be run to the end time due to a volume inversion.

Figure 26. Saltzmann 100:1 test solution (density color plot) at T = 0.925. Left: Quadrilaterals
(mesh (I)). Center: Triangles (mesh (II)). Right: Triangles (mesh (III)). The white horizontal marker
indicates the location of the shock for the exact solution.

the location of the shock. Figure 26 shows the results of the same long run test for the 1:100 aspect
ratio meshes. Color plots of the density at T = 0.925, are now presented for all meshes, since no volume
inversions occurred during the simulations. Also in this case, the agreement on the location of the shock
for the different meshes is good. The tests shown in Figures 25 and 26 have the scope of assessing whether
mild negativity in the pressures may have very negative consequences on the conservation properties of the
algorithm. The good results obtained are reassuring from this perspective.

Overall, the quality of the presented results for the Saltzmann test and its variants is in good agreement
with state-of-the-art computations [8, 7] (see, e.g., Fig. 27) for quadrilateral elements. The results over
triangular meshes maintain the accuracy of the corresponding quadrilateral meshes, if the quality of the
initial meshes is comparable.
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Figure 27. Results from [8] on the Saltzmann test.

10.3 Two-dimensional Noh test on cartesian grids

10.3.1 Triangular meshes on the unit circle

The Noh [41] test in two dimensions is an implosion test. A cartesian reference frame is used. A number
of variants of the test will be considered, to thoroughly evaluate the performance of the SUPG approach.
Let us start with three tests on triangular meshes. The first mesh – indicated as mesh (a) – is obtained by
splitting in half (with a directional bias) an underlying 40× 39 uniformly-spaced quadrilateral mesh. The
result (Fig. 28) is a 3, 160-element mesh with 1, 601 nodes. A second mesh – indicated as mesh (b) – was
generated by splitting into four triangles each quadrilateral of a 28 × 27 uniformly-spaced element mesh.
The result is a 3, 052-element mesh with 1, 541 nodes (Fig. 29). Mesh (a) and (b) have approximately the
same number of nodes and elements, while maintaining different connectivity and geometric characteristics.
Finally, mesh (c) is given by a four-fold splitting of an underlying uniformly-spaced quadrilateral mesh of
56 × 55 elements, yielding a 12, 376-element mesh with 6, 217 nodes. Mesh (c) can be considered as a
finer-grained version of mesh (b), and will not be shown for the sake of brevity. Meshes (a) and (b) were
originally proposed by Loubère [35], and are characterized by having elements of poor aspect ratio and
quality near the origin.

The simulations for this first set of three meshes were performed at CFL = 0.8. The velocity has an
initial uniform radial distribution (all nodal velocity vectors are converging to the origin, and have unit
magnitude except the one centered at the origin, which is zero), as shown in Figure 30. The initial energy
should be zero, but for practical purposes we used the value 10−14. The value γ = 5/3 was used in all
computations. The exact solution for the density behind the shock is 16 and decays as 1 + t/r in front
of the shock, where t is time and r =

√
x2 + y2 is the radius. The final time is 0.6, for which the shock,

traveling at a velocity 1/3, is found at r = 0.2.
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Figure 28. Initial configuration for mesh (a), 3,160 triangular elements, 1,601 nodes.

Figure 29. Initial configuration for mesh (b), 3,052 triangular elements, 1,541 nodes.
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Figure 30. Zoom of the initial grid near the origin (left) and of the initial velocity (right). Top:
Mesh (a). Center: Mesh (b). Bottom: Mesh (c), 12,376 triangular elements, 6,217 nodes.
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Figure 31. Noh test on mesh (a): Final grid (above) and density color plot (below).
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Figure 32. Noh test on mesh (b): Final grid (above) and density color plot (below).
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Figure 33. Noh test on mesh (c): Final grid (above) and density color plot (below).
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Figure 34. Noh test on a quadrant: Density elevation plots. Top: Mesh (a). Center: Mesh (b).
Bottom: Mesh (c).
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Figure 35. Noh test performance comparison. Left: Mesh (a). Center: Mesh (b). Right: Mesh

(c). Along the rows from top to bottom are plotted – as a function of the radius r =
√

x2 + y2

– pressure, radial velocity vr, normalized tangential velocity (vt/ max(|vr |)), and nodal density,
respectively. The exact solution is represented by the continuous line, the dots represent the nodal
values of the numerical solution. All plots contain information from each angularly-displaced radial
line.
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The numerical results are presented in terms of the final grid configuration and density color plot in
Figure 31 for mesh (a), Figure 32 for mesh (b) and Figure 33 for mesh (c). Density elevation plots on the
same scale are compared in Figure 34. A quantitative comparison is presented in Figure 35. Considering
the coarseness of meshes (a) and (b), the solutions in terms of pressure, radial velocity and nodal density
are satisfactory. Some wall effect is visible near the origin. It is more pronounced in mesh (b) than in
mesh (a). For meshes (a) and (b), cylindrical symmetry is reasonably well preserved, in the sense that
points at the same radial location but different angular locations maintain such property in the final stage
of the simulation (these points overlap in the radial plots of Fig. 35). It is important also to realize that
the solution for mesh (a) is somewhat inferior, due to a slight rotation of the grid (see the normalized
tangential velocity plot). Meshes (a) and (b), although possessing a different geometry, perform almost
equivalently in terms of pressure, radial velocity and density. There is very good reliability with respect
to changes in mesh topology.

Mesh (c) provides a more accurate solution than meshes (a) and (b): The shock front is sharper and
the plateaus of the pressure and density are closer to the exact value. However, very close to the origin,
the wall effect is somewhat more intense in amplitude. The reader should notice that convergence is not
at risk, since the extent of the region where wall effects are present is actually smaller than in meshes
(a) or (b), so that in an L2- or L1-sense, the numerical solution is converging to the exact solution. The
intensity of the wall effect tends also to break symmetry in that region, a fact that can be explained as
follows: Because of the grid-generation strategy for cases (b) and (c), the elements at the origin deteriorate
in quality (in terms of skewness and aspect ratio) as the meshes get finer. Mesh (c) is finer than mesh
(b), but of poorer quality in a neighborhood of the origin. This may explain the occurrence larger errors,
which eventually affect symmetry.

10.3.2 Orthogonal grids on the unit quadrant

The next variants are even more demanding, since they are performed on meshes that do not posses
cylindrical symmetry. We considered three meshing strategies for a Noh test on the quadrant [0, 1]× [0, 1]:
a mesh of 50 × 50 square Q1 elements, indicated as mesh (I), and two P1 meshes obtained by splitting
each of the square along one or the other diagonal (mesh (II) and mesh (III)). A view near the origin
of the initial grids used is presented in Figure 36. Zero normal velocity (“roller”) boundary conditions
are imposed along the bottom and left boundaries, corresponding to the x- and y-axis. Such boundary
conditions are not exactly the same as symmetry boundary conditions specified in [8, 7], but the results
show good agreement. The simulations for this set of meshes were performed at CFL = 0.9.

Deformed grids and density color plots are presented in Figures 37–39. A comparison of elevation plots
for the density is presented in Figure 40, while quantitative comparisons are presented in Figure 41. The
first observation to be made is that the mesh does not possess radial symmetry, but just an approximate
(machine precision) axis of symmetry given by the bi-secant of the quadrant (the line from the origin at
a 45o-degree angle). This symmetry can be best checked by looking at the normalized tangential velocity
plots in Figure 41. In order to preserve symmetry with respect to the quadrant bisecant, the plot of the
tangential velocity must be perfectly symmetric about the horizontal axis. Although hard to see by the
unexperienced eye, symmetry is mildly broken for mesh (I). Notwithstanding this fact, the solution in
terms of pressure, radial velocity and density is quite good. In particular, the density profile for the mesh
(I) appears very smooth. The smallest error for the density is however observed on mesh (II), while mesh
(III) tends to be noisier. There is an explanation for this fact: Element edges in mesh (II) are better
aligned with the shock front than the edges of mesh (III), which possess the worst alignment.
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Figure 36. Initial meshes and velocity conditions for the Noh test on a quadrant. Top: Mesh (I).
Center: Mesh (II). Bottom: Mesh (III).
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Figure 37. Noh test on a quadrant, mesh (I). Top: Deformed grid. Bottom: Contour plot of the
density.
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Figure 38. Noh test on a quadrant, mesh (II). Top: Deformed grid. Bottom: Contour plot of the
density.
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Figure 39. Noh test on a quadrant, mesh (III). Top: Deformed grid. Bottom: Contour plot of
the density.
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Figure 40. Noh test: Density elevation plots. Top: Mesh (I). Center: Mesh (II). Bottom: Mesh
(III).
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Figure 41. Noh test performance comparison. Left: Mesh (I). Center: Mesh (II). Right: Mesh

(III). Along the rows from top to bottom are plotted – as a function of the radius r =
√

x2 + y2

– pressure, radial velocity vr, normalized tangential velocity (vt/ max(|vr |)), and nodal density,
respectively. The exact solution is represented by the continuous line, the dots represent the nodal
values of the numerical solution. All plots contain information from each angularly-displaced radial
line.
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Figure 42. Results from [8] on the Noh test on the quadrant. The mesh is the same as the
quadrilateral mesh (I). Above: Mesh deformation. Center: isolines for the density. Bottom: Density
radial plot.
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Overall, the quality of the presented results for the Noh test and its variants on both quadrilateral and
triangular elements is in good agreement with state-of-the-art computations on quadrilaterals [8, 7] (see
Fig. 42).

10.4 Sedov two-dimensional blast test

The proposed version of the Sedov blast test (an exact solution using self-similarity arguments can be
found in [44]) assesses again the ability of the method to represent a cylindrical shock-wave pattern using
a cartesian mesh.

A first set of three variants was computed on the [0, 1.1]× [0, 1.1] quadrant, with similar topology to the
meshes (I), (II), and (III) adopted for the Noh test. We will keep the same nomenclature, indicating with
mesh (I) a Q1 mesh of 45 × 45 squares, and with mesh (II) and (III), the P1 grids obtained by splitting
each of the elements of mesh (I) in half along the diagonals. The initial mesh configurations, for the sake
of brevity, are not shown, being very similar to the ones used in the Noh test.

The initial density has a uniform unit distribution, the energy is “zero” (actually 10−14) everywhere,
except the first square zone on the bottom left corner of the quadrant, near the origin, where it takes the
value 409.7. For all computations, the value γ = 1.4 was used. Results in terms of the deformed grids and
density contour plots are presented in Figures 43–45. Elevation plots of the nodal density are presented
in Figure 46. Quantitative plots are pesented in Figure 47. The simulations for this set of meshes were
performed at CFL = 0.9. The quality of the results is fairly high. Notice that the shock waves possess
the correct arrival time, and the slight undershoot in the velocity for the triangular meshes. The density
plots are in good agreement with the exact solution, and mesh (II) seems to deliver the best performance.

Additional qualitative plots for an anisotropic mesh of aspect ratio 1:2 are shown in Figure 48. From
the contour plot of the density, the circular profile of the shock front is quite evident. Figure 49 shows
results for an half-plane blast. It can be clearly seen that symmetry is preserved.
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Figure 43. Sedov test on mesh (I). Top: Deformed grid. Bottom: Density contour plot.
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Figure 44. Sedov test on mesh (II). Top: Deformed grid. Bottom: Density contour plot.
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Figure 45. Sedov test on mesh (III). Top: Deformed grid. Bottom: Density contour plot.
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Figure 46. Sedov test: Density elevation plots. Top: Mesh (I). Center: Mesh (II). Bottom: Mesh
(III).
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Figure 47. Sedov test performance comparison. Left: Mesh (I). Center: Mesh (II). Right: Mesh

(III). Along the rows from top to bottom are plotted – as a function of the radius r =
√

x2 + y2

– pressure, radial velocity vr, normalized tangential velocity (vt/ max(|vr |)), and nodal density,
respectively. The exact solution is represented by the continuous line, the dots represent the nodal
values of the numerical solution. All plots contain information from each angularly-displaced radial
line.
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Figure 48. Sedov test on 1:2 aspect ratio anisotropic mesh. Top: Grid deformation. Bottom:
Density contour plot.
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Figure 49. Sedov test on the half plane, quadrialteral mesh. Top: Grid deformation. Bottom:
Density contour plot.
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11 Summary

A new SUPG approach to Lagrangian hydrodynamics has been proposed and described in detail. The
main features of the method are:

1. A very natural representation of the gradients of thermodynamic variables, with very positive conse-
quences in all test cases in which geometrical symmetries of the solution do not match the geometrical
structure of the mesh.

2. The method addresses the issue of appropriate pressure gradient representation from a different
perspective with respect to mimetic/compatible finite difference discretizations [8]. A compatible
discretization uses the standard, cell-centered, piecewise constant approximation for the pressure,
and develops a consistent way of representing its gradient on the edges of the cells. The SUPG
approach developed herein adopts isoparametric elements, for which there is a natural description of
gradient operators in the interiors of the elements.

3. The formulation has been developed for the fairly large class of materials obeying Mie-Grüneisen
equations of state.

Numerical results have indicated that a natural representation of the pressure gradients obtained with
isoparametric finite element has very positive consequences on the overall quality of solutions.

The method has been proven to be reliable and accurate not only for isoparametric quadrilateral
elements, but also for triangular P1 elements, and can be extended, if needed, to higher-order elements.

Three-dimensional extensions, although more involved in their implementation, are not foreseen to
present any additional theoretical issues, and are currently under development.

Additional work is needed to improve the artificial viscosity operator, and to address the issue of
positivity preservation for pressure. However, the quality of the results is already very encouraging, and
demonstrates the potential of the method.

The capability of combining simplex and brick elements on the same computational mesh is under
development. The goal is to attain greater flexibility in mesh generation.

Further developments are anticipated in the direction of an Arbitrary Lagrangian Eulerian (ALE)
formulation, and more complex constitutive laws. Additional research in the case of materials with strength
for structural mechanics applications is also currently envisioned.
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Appendix

A An introduction to SUPG stabilization

The reader familiar with classical Lagrangian hydrocode technology, but unfamiliar with the SUPG ap-
proach, may have some difficulty in grasping the key aspects of the formulation presented herein. It
is therefore felt useful to give a brief review of the method in the simple context of the steady scalar
advection-diffusion problem in one dimension

c∂xφ − κ∂xxφ = f , on [0, 1] (134)

with Dirichlet boundary conditions applied at the ends of the interval [0, 1]. Let us consider the Galerkin
formulation which makes use of piecewise linear, globally continuous basis functions with local support,
and reads

−
∫ 1

0
c∂xwhφhdx +

∫ 1

0
κ∂xwh∂xφhdx −

∫ 1

0
whfdx = 0 (135)

The boundary conditions are embedded in the function space representing φh and wh is assumed to vanish
on the boundary. On a uniform partition [0, 1] =

⋃nel
e=1[xe, xe+1], the assembly of the advective first

derivative integrals results in the central difference stencil:

A+1

A
e=A

(
−
∫ xe

xe−1

∂xwhcφhdx

)
= c ∆x

φh
A+1 − φh

A−1

2∆x
(136)

where A is the assembly operator [2, 20], and φh
A−1 and φh

A+1 are nodal degrees-of-freedom of the

approximate solution φh. Since the central difference scheme is prone to node-to-node oscillations near
sharp layers of the solution, a standard Galerkin formulation is not robust in the advection-dominated case
(i.e., |c| → ∞). A more robust approach would be to use an upwind difference,

c
∂φ

∂x
≈ H(c)c

φh
A − φh

A−1

∆x
+ (1 − H(c))c

φh
A+1 − φh

A

∆x
(137)

where H(c) is the Heaviside function, equal to one if c > 0 and zero otherwise. Unfortunately, a simple-
minded incorporation of the upwinding concept into a Galerkin formulation would lead to lack of consistency
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and, ultimately, lack of optimal convergence rates. One of the key innovations proposed with the SUPG
stabilization method was to incorporate upwinding in a variationally consistent way, leading to optimal
convergence rates in the entire range of choices for the advection-diffusion parameters c and κ.

The starting point of the SUPG method is the observation that an upwind discretization can be obtained
by perturbing the central difference stencil using an appropriate numerical viscosity:

H(c)c
φh

A − φh
A−1

∆x
+ (1 − H(c))c

φh
A+1 − φh

A

∆x

= c
φh

A+1 − φh
A−1

2∆x
+

|c|∆x

2

φh
A+1 − 2φh

A + φh
A−1

∆x2
(138)

A variationally consistent way of recovering (138) is given by the SUPG method:

−
∫ 1

0
c∂xwhφhdx +

∫ 1

0
κ∂xwh∂xφhdx −

∫ 1

0
fwhdx

−
nel∑

e=1

∫ xe

xe−1

L∗
advw

hτRes(φh)dx = 0 (139)

where L∗
adv = −c∂x is the adjoint of the advective part of the differential operator, and Res(φh) =

c∂xφh + κ∂xxφh − f is the strong residual. The scalar parameter τ is a function of the element Péclet
number Peh = c∆x/(2κ), and yields a nodally exact solution for piecewise-constant f , for all values of
Peh:

τ =
∆x

2|c|

(
coth Peh − 1

Peh

)
(140)

This result holds on a non-uniform mesh with τ defined element-wise [21].

Note that

lim
Peh→∞

(
coth Peh − 1

Peh

)
= 1 (141)

lim
Peh→0

(
coth Peh − 1

Peh

)
=

|c|∆x

6κ
(142)

In the advection-dominated case, of particular interest in Lagrangian hydrodynamics, the two-element
assembly of the term

A+1

A
e=A

∫ xe

xe−1

−L∗
advw

hτc∂xφhdx =
A+1

A
e=A

∫ xe

xe−1

∆x|c|
2

∂xwh ∂xφh

= ∆x
|c|∆x

2

φh
A+1 − 2φh

A + φh
A−1

∆x2
(143)

yields the numerical viscosity in (138). The full stabilization operator also includes a term depending on
the force f :

A+1

A
e=A

∫ xe

xe−1

−L∗
advw

hτfdx =
A+1

A
e=A

∫ xe

xe−1

∆x|c|
2

∂xwh f (144)
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Due to (144), the SUPG approach retains a residual-consistent structure, and is clearly different from plain
upwinding.

Remark 26 Consistency is due to the residual structure of the stabilization operator.

Remark 27 Effectively, −τL∗
advw

h is a perturbation to the test function, from which the name Streamline-
Upwind Petrov-Galerkin (SUPG) formulation derived.

Remark 28 It can be proved that the SUPG method entails optimal convergence rates for all values of the
local Péclet number Peh. In multiple dimensions it is not possible to recover a nodally exact approximation
to the solution, but optimal error estimates still hold.

Remark 29 It is very easy to generalize the formulation to unsteady flows, when a space-time formulation
is adopted.

B One-dimensional stabilization [46]

In the following derivations, A0 and Ai refer only to the momentum and energy blocks of the same matrices,
since stabilization is not applied to the ODE relating rate of displacements to velocities. A fairly standard
multi-dimensional definition of the τ matrix, can be found in Hauke and Hughes [18, 19], who extend to
non-symmetric hyperbolic systems the work of Shakib, Hughes and Johan [46]):

τ = A−1
0

(
C2 +

(
∂ξ0

∂t

)2

I +
∂ξi

∂Xj

∂ξi

∂Xk
ÂjÂk

)−1/2

(145)

where Â1 = A1A
−1
0 and ξi are the coordinates in the parent domain of each element, and ξ0 refers to the

time axis. For an ideal gas in one dimension:

∂ξi

∂Xj

∂ξi

∂Xk
ÂjÂk =

(
2

∆X

)2

Â1
2

(146)

Therefore:

Â1 = A1A
−1
0 =

[
0 1
γ

γ−1p 0

] [
ρ0 0

0 J
γ−1

]−1

=

[
0 1
γ

γ−1p 0

] [ 1
ρ0

0

0 γ−1
J

]

=

[
0 γ−1

J
γ

γ−1
p
ρ0

0

]
(147)

Â1
2

=

[
γp
ρ0J 0

0 γp
ρ0J

]
=
(cs

J

)2
I2×2 (148)

with cs =
√

γp
ρ =

√
γpJ
ρ0

. It is important to realize that the form of the SUPG stabilization is dependent

on the function spaces adopted, and in particular on the time-integration strategy.
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B.1 Second-order time integrator

For the second-order time integrator developed here, ∂ξ0
∂t = 2

∆t and

τ = A0
−1

((
2

∆t

)2

I2×2 +

(
2 cs

J ∆X

)2

I2×2

)−1/2

=
∆t/2√
1 + α2

A0
−1

=
∆t

2
√

1 + α2

[ 1
ρ0

0

0 γ−1
J

]
(149)

where α = cs∆t
J∆X is the local Courant number.
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