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Abstract. The objectives of recent variational multiscale work inbulence have been to
capture all scales consistently and to avoid use of eddyosities altogether. This holds the
promise of more accurate and efficient LES procedures. gwtloirk, we describe a new varia-
tional multiscale formulation, which makes considerabiagpess toward these goals.
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1 SUMMARY

We begin by taking the view that the decomposition into cearsd fine scales is exact. For
example, in the spectral case, the coarse-scale spacstsmfsill Fourier modes beneath some
cut-off wave number and the fine-scale space consists oém@lhining Fourier modes. Con-
sequently, the coarse-scale space has finite dimensioreasérne fine-scale space is infinite
dimensional. The derivation of the coarse- and fine-scalatemns proceeds, first, by substitut-
ing the split of the exact solution into coarse and fine scaliesthe Navier-Stokes equations,
then, second, by projecting this equation into the coanseéfiae-scale subspaces. The projec-
tion into coarse scales results in a finite dimensional syste the coarse-scale component of
the solution, which depends parametrically on the fineescamponent. In the spectral case,
in addition to the usual terms involving the coarse-scalemanent, only the cross-stress and
Reynolds-stress terms involve the fine-scale componenthermrase of non-orthogonal bases,
even the linear terms give rise to coupling between coardefina scales. The coarse-scale
component plays an analogous role to the filtered field in thgsecal approach, but has the
advantage of avoiding all problems associated with homeigygrcommutativity, walls, com-
pressibility, etc. The projection into fine scales resuitan infinite-dimensional system for the
fine-scale component of the solution, which depends pararaky on the coarse-scale compo-
nent. We also assume the cut-off wave number is sufficieattyel that the philosophy of LES
is appropriate. For example, if there is a well-defined iakgub-range, then we assume the
cut-off wave number resides somewhere within it. This aggion enables us to further assume
that the energy content in the fine scales is small comparéxtie coarse scales. This turns out
to be important in our efforts to analytically represent sloéution of the fine-scale equations.
The strategy is to obtain approximate analytical expressfor the fine scales then substitute
them into the coarse-scale equations which are, in turiedahumerically. If the scale de-
composition is performed in space and time, tmdy approximation in the procedure is the
representation of the fine-scale solution. To provide a éaork for the fine-scale approxima-
tion, we assume an infinite perturbation series expansitreébthe fine-scale nonlinear term in
the fine-scale equation. By virtue of the smallness of thedaades, this expansion is expected
to converge rapidly under the circumstances described myroases of practical interest. The
remaining part of the fine-scale Navier-Stokes system iditlearizedoperator which is for-
mally inverted through the use of a matrix Green'’s functibhe combination of a perturbation
series and Green'’s function provides an exact formal swiubf the fine-scale Navier-Stokes
equations. The driving force in these equations is the Niedtiekes system residual computed
from the coarse scales. This expresses the intuitivelyoatsviact that if the coarse scales con-
stitute a good approximation to the solution of the probléme, coarse-scale residual will be
small and the resulting fine-scale solution will be small a&dlwThis is the case we have in
mind and it provides a rational basis for assuming the pestion series converges rapidly.
Note that one cannot use such an argument on the origindigpndiecause in this case the per-
turbation series would almost definitely fail to convergéwe could have used this argument,
we would have solved the Navier-Stokes equations analigtiddnfortunately, this is not the
case.) The formal solution of the fine-scale equations stggarious approximations may be
employed in practical problem solving. We are tempted totbheeword “modeling” because
approximate analytical representations of the fine scalestitute the only approximation and
hence may be thought of as the “modeling” component of thegmteapproach, but we want
to emphasize that this is very different from classical niodedeas which are dominated by
theadditionof ad hoceddy viscosities. We will present numerical results thamdestrate that
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eddy-viscosity terms are unnecessary in the present cgt@anoes. There are two aspects to
the approximation of the fine scales: 1) Approximation of iin&trix Green’s function for the
linearized Navier-Stokes system; and 2) approximatiomefrtonlinearities represented by the
perturbation series. The first and obvious thought for tttedaspect, nonlinearity, is to simply
truncate the perturbation series. This idea is pursuednjuoction with some simple approx-
imations of the Green’s function. It turns out there is cdesable experience in local scaling
approximations of the Green'’s function based on the thebsyabilized methods; Hughels [3],
Hugheset al. [4], Hughes and Sangalll[5], Hughes, Scovazzi and Frerjcd [& Green'’s func-
tion is typically approximated by locally defined algebraperators (i.e., ther"s” of stabilized
methods) multiplied by local values of the coarse-scali ues.

An outline of the presentation is summarized as follows: egit by presenting the math-
ematical details of the variational multiscale theory. sTtepresents our general approach to
LES-style turbulence modeling and is independent of theipg of the discrete spaces utilized
to represent the coarse scales. The relationship betweewnettsion of the variational multi-
scale method and classical stabilized methods is delide#tes noted that that the variational
multiscale method includes additional terms. Both conealpt and from the point of view of
actual implementation, stabilized methods may be viewddsdsrical stepping stones leading
to the more coherent variational multiscale formulatiore hen present our numerical studies
of forced isotropic turbulence ae, = 165 and Re, = oo. (Re, is the Taylor microscale
Reynolds number.) We begin with a description of the appnation spaces consisting of
NURBS elements (non-uniform rational B-splines, see, &ggers|[1B], Piegl and Tiller [12],
Farin [2], and Cohen, Riesenfeld and Elber [1]). In the cdsth@ rectilinear geometry con-
sidered, NURBS reduce to B-splines, which have been adeddat turbulence calculations
previously (see Kravchenko, Moin and Moser [7], Shariff &hoser [14], Kravchenko, Moin
and Shariff [8], and Kwok, Moser and Jiménéz [9]). We emplidyariate linear, quadratic,
and cubic NURBS with periodic boundary conditions. Linearmriate NURBS turn out to be
identical to trilinear hexahedral finite elements, but tighkr-order NURBS are different than
classical higher-order finite elements. We perform a dsparerror analysis for NURBS ver-
sus classical finite elements on simple, linear, one-dimeasadvective and diffusive model
problems, and conclude that NURBS have better approximatioperties than classical finite
elements. We employ meshes33, 643, 1283, and2563 to explore convergence with mesh
refinement f-convergence). We also examine the behavior of increasiey drom linear to
cubic on fixed mesheg{convergence). In the case 8k, = 165, we compare with the DNS
spectral results of Langford and Moser|[10]. Energy speaticathird-order structure functions
are presented. Sample energy spectra results are pregeRtgdre[]1. In the case dte, =
we also clearly see the development of an inertial subralge present results for turbulent
channel flows aRe, = 395. (Re, is the wall-friction Reynolds number.) We employ meshes
of 323 and643. This time the mesh is graded in the wall-normal directiobetter capture the
boundary layer. Again, we consider convergence fromithendk-refinement perspectives. A
striking result is how much better quadratic elements ase tmear elements. For a mesh of
643, the quadratic and cubic results are essentially identiiceile DNS results of Moser, Kim
and Mansour([11] for first- and second-order statistics Fsgere[2), and for a mesh 603 they
are in close agreement. We close with conclusions and stegbfegure directions for research.
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(b) C*'-continuous quadratic NURBS

(c) C%-continuous cubic NURBS
Figure 1: Energy spectra far—refinement.Re) = 165.
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(b) Velocity fluctuations

Figure 2: Turbulent channel flow #@e, = 395 computed on a mesh 6ft* elementsk-refinement interpretation
of results.
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