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Abstract
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inite physical significance, since it embeds a discrete form of the Clausius-Duhem
inequality. Effectively, the proposed stabilization samples the production of entropy
to counter numerical instabilities. The proposed technique is applied to materials
with no shear strength (e.g., fluids), for which there exists a caloric equation of state,
and extensions to the case of materials with shear strength (e.g., solids) are also envi-
sioned. The stabilization operator is incorporated into a mid-point, predictor/multi-
corrector time integration algorithm, which conserves mass, momentum and total
energy. Encouraging numerical results in the context of compressible gas dynamics
confirm the potential of the method.
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1 Introduction

In [25,24], the variational multi-scale approach was applied in finite element
computations of Lagrangian shock hydrodynamics. In that case, a piecewise
linear, continuous approximation in space was adopted for all the solution
variables.

Given the encouraging results in [25], extensions to the case of Q1/P0 finite
element are investigated in the present work. The notation Q1/P0 refers to
the piecewise linear, continuous approximation of the kinematic variables (po-
sition/displacement, velocity, acceleration), and the piecewise constant, dis-
continuous approximation of the thermodynamic variables (density, pressure,
internal energy).

Among the requirements in developing a consistent formulation, conservation
of mass, momentum and total energy are considered essential. In addition, a
straightforward definition of the total energy of the system is also considered
very important. In fact, most of the finite element implementations for shock
hydrodynamics leverage a central difference time integrator in which velocities
are staggered in time with respect to displacements/accelerations (see, e.g.,
[7] for a review of the state of the practice). Although very efficient in terms
of storage and computational cost, such central difference implementations
suffer from a cumbersome definition of the kinetic energy, which involves the
product of algorithmic velocities at two different time instants. This is seen as
a problem by the authors, since, by definition, the algorithmic kinetic energy
is not ensured to be positive [7].

The present paper proposes an alternative approach, in which a mid-point
type integrator is implemented by means of a conservative predictor/multi-
corrector procedure. Thanks to this approach, a straightforward definition
of the total energy is obtained. To the authors’ best knowledge, the proposed
algorithm is new in finite element hydrocode implementations, although a sim-
ilar approach was originally proposed by Caramana, Shashkov and Whalen [8],
in the context of mimetic finite differences. The proposed approach also shares
significant similarities with the space-time integrators discussed in [25].

At the core of the algorithm is a novel, multi-scale operator which controls
hourglass-type instabilities. Applying the multi-scale analysis [17,18] to the
base Galerkin formulation shows how instabilities can be controlled. For ma-
terials with no shear strength (e.g., fluids) the stabilization takes the form of a
pressure enrichment, ultimately dependent on the residual of a rate equation
for the pressure. The residual character of the stabilization preserves the con-
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sistency of the method, and, at the same time, reveals important connections
between numerical instabilities and physical aspects of the problem simulated.
In fact, the pressure equation residual can be interpreted as a statement of the
Clausius-Duhem entropy inequality [1,31,32]. Effectively, the pressure residual
samples and counters the production of entropy due to numerical instabilities.
Previous work has gone in the direction of physical hourglass control design
[3,4,23]: The present work takes an even closer look at the interplay between
physical consistency and numerical instabilities of algorithms.

The proposed approach can be extended to solids with shear strength in two
and three dimensions, for which the stabilizing pressure update residual is
replaced by the residual of the full stress rate equation. In the present work,
however, only computations in two-dimensions for compressible fluids are con-
sidered. The extension to three-dimensional fluids presents some additional
issues, since in that case, half of the space of hourglass modes is represented
by pointwise divergence-free modes, which do not produce any residual in
the rate equation for the pressure. This particular aspect poses an interesting
dilemma: On the one hand, because the fluid is inviscid, the physics of the
problem requires no shear damping, while on the other hand, the numerical
dicretization requires some control for divergence-free modes. In our opinion,
this is not a fault of the multi-scale approach, rather, a drawback of the Q1/P0
formulation which needs to be addressed by any hourglass control technique.
In [26], a control over the divergence-free part of the hourglass space was in-
troduced, using a viscosity operator constructed with the fine-scale deviator
of the velocity gradient, with encouraging results. We hope to report soon on
this subject with extensive computations in three dimensions.

An integral part of the proposed approach is the shock-capturing operator,
in the form of an artificial stress tensor, based on the symmetric part of the
velocity gradient. This choice, already explored in [25], yields an objective
stress tensor, which proves superior to standard artificial viscosity operators,
constructed with the velocity divergence. Whenever spurious homogeneous
shear modes are generated across the shock layer, the tensor viscosity delivers
much improved results, from both the accuracy and robustness standpoints.
In particular, improvements with respect to [25] on the selection of the length
scale in the artificial viscosity are discussed.

The rest of the exposition is organized as follows: The basic equations of La-
grangian hydrodynamics are introduced in Section 2. The variational formula-
tion is established in Section 3, and the time-integration algorithm is described
in Section 4. Section 5 is devoted to the multi-scale analysis and design of the
multi-scale hourglass stabilization. The shock-capturing operator is described
in Section 6. Section 7 contains additional comments on the implementation of
the algorithm, the integration quadratures used, and the time step CFL con-
straints for the method. Results of the numerical tests are analyzed in Section
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Fig. 1. Sketch of the Lagrangian map ϕ.

8. Conclusions and future research perspectives are summarized in Section 9.

2 Equations of Lagrangian shock hydrodynamics

The equations of Lagrangian shock hydrodynamics govern the rate of change
in position, momentum and total energy of a compressible body of fluid, as it
deforms. Let Ω0 and Ω be open sets in Rnd (where nd is the number of spatial
dimensions). The deformation

ϕ : Ω0 → Ω = ϕ(Ω0) , (1)

X 7→ x = ϕ(X, t) , ∀X ∈ Ω0, t ≥ 0 , (2)

is a smooth, invertible map from the original to the current configuration of the
material. Here X is the material coordinate, representing the initial position
of an infinitesimal material particle of the body, and x is the position of that
particle in the current configuration (see Fig. 1). Ω0 is the domain occupied
by the body in its initial configuration, with boundary Γ0. ϕ maps Ω0 to Ω,
the domain occupied by the body in its current configuration, with boundary
Γ. It is also useful to define the deformation gradient, and the deformation
Jacobian determinant :

F = ∇Xϕ, or, FiA =
∂ϕi

∂XA

=
∂xi

∂XA

, (3)

J = det(F ) . (4)

On a domain Ω in the current configuration, the conservative form of the
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equations of Lagrangian hydrodynamics, consisting of mass, momentum and
energy, can be written as follows:

ρ J = ρ0 , (5)

ρ v̇ = ρ g + ∇x· σ , (6)

ρ Ė = ρ g · v + ρ r + ∇x· (σTv + q) , (7)

u̇ = v . (8)

Here, ∇x and ∇x · are the current configuration gradient and divergence opera-
tors, and ˙(·) indicates the material, or Lagrangian, time derivative. u = x−X
is the displacement vector, ρ0 is the reference (initial) density, ρ is the (cur-
rent) density, v is the velocity, g is the body force, σ is the Cauchy stress (a
symmetric tensor), E = ǫ+ v · v/2 is the total energy, the sum of the internal
energy ǫ and the kinetic energy v · v/2, r is the energy source term, and q is
the heat flux. E, ǫ, g, r are measured per unit mass.

Remarks

(1) Equations (6) and (7) are in Lagrangian conservative (or divergence)
form. In fact, the Lagrangian rate of change of an intensive, scalar variable
φ is given by

d

dt

∫

Ω
ρφ dΩ =

d

dt

∫

Ω
ρ0φ dΩ0 =

∫

Ω
ρ0φ̇ dΩ0 =

∫

Ω
ρφ̇ dΩ , (9)

where (5) has been used, together with the identity

ρ0 dΩ0 = ρJ dΩ0 = ρ dΩ . (10)

(2) The kinetic energy equation, the inner product of (6) and the velocity
vector field, can be subtracted from equation (7), yielding

ρǫ̇ = ρ r + ∇xv : σ + ∇x· q , (11)

where, in index notation, σT : ∇xv = σji ∂xi
vj , and ∇xv : σ = σ : ∇xv =

σT : ∇xv, since σ is symmetric. Clearly (11) is not in conservative form.
However, it will be possible to use this equation in appropriate variational
formulations maintaining global conservation properties (see Section 4).

The system of equations (5)–(8) has to be complemented with appropriate
boundary conditions. Assuming that the boundary Γ = ∂Ω is partitioned as
Γ = Γg ∪ Γh, Γg ∩ Γh = ∅, displacement boundary conditions are applied on
Γg, the Dirichlet boundary, and traction boundary conditions are applied on
Γh, the Neumann boundary. Namely,

u|Γg = ubc(x, t) , (12)

σn|Γh = t(x, t) . (13)
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Equations (5)–(8) and boundary conditions (12)-(13) completely define the
evolution of the system, once appropriate initial conditions are specified.

2.1 Constitutive laws

The analysis presented in what follows is specific to materials with no de-
formation strength. In this case, the Cauchy stress σ reduces to an isotropic
tensor, dependent only on the thermodynamic pressure:

σ = −pInd×nd
, (14)

or, in index notation,
σij = −p δij , (15)

with δij the Kronecker tensor. An equation of state of the type

p = p̂(ρ, ǫ) , (16)

is assumed. Equations of state of Mie-Grüneisen type are compatible with
(16), namely

p̂(ρ, ǫ) = f1(ρ) + f2(ρ)ǫ , (17)

and apply to materials such as compressible ideal gases, co-volume gases, high
explosives, and elastic-plastic solids with no strength (a situation that can be
achieved when bulk stresses in the material are larger than shear stresses by
orders of magnitude). For example, ideal gases satisfy (17), with f1 = 0 and
f2 = (γ − 1)ρ, to yield

p̂(ρ, ǫ) = (γ − 1)ρǫ . (18)

3 Variational formulation of Lagrangian hydrodynamics

Finite element approximations leverage a variational statement of the equa-
tions of motion. The first step in the development of a variational form for
(5), (6), (7) (or, (11)), and (8), is to define the (variational) trial spaces for
the kinematic and thermodynamic variables, which characterize the state of
the system. In particular, Sκ denotes the space of admissible displacements,
or more generally, the space of admissible values for the kinematic variables
(displacements, velocities, accelerations). Analogously, Sγ is the space of ad-
missible thermodynamic states. Specific discrete definitions of Sκ and Sγ are
given in the next section, where the discrete form of the variational equations
is presented. For now, it is important to observe that the space Sκ incorporates
the set of essential boundary conditions (12), that is, boundary conditions of
kinematic (Dirichlet) type are imposed strongly. In addition, test spaces can
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be defined: Vκ is the space of variations – compatible with (12) – for the
kinematic variables, and Vγ is the space of variations for the thermodynamic
variables. Using (9) and (10), the variational problem associated with (5), (6),
(11) reads:

Find ρ ∈ Sγ, v ∈ Sκ, and ǫ ∈ Sγ, such that, ∀ψγ ∈ Vγ, and ∀ψκ ∈ Vκ,

0 =
∫

Ω0

ψγ (ρ0 − ρJ) dΩ0 , (19)

0 =
∫

Ω0

ψκ · (ρ0v̇) dΩ0 +
∫

Ω
∇s

x
ψκ : σ dΩ −

∫

Ω
ψκ · (ρg) dΩ

−
∫

Γh
ψκ · t dΓ , (20)

0 =
∫

Ω0

ψγ (ρ0ǫ̇) dΩ0 −
∫

Ω
ψγ (∇s

x
v : σ + ∇x · q + ρr) dΩ , (21)

where ∇s
x

= 1/2(∇x

T + ∇x) is the symmetric part of the gradient operator,
and ∇xv : σ = ∇s

x
v : σ, since σ is symmetric. Notice that the traction (or,

natural) boundary conditions are imposed in (20) through the weak form.

4 Time integration and discrete weak forms

The variational form of the Lagrangian hydrodynamics equations and its con-
servation properties are related to the choice of time-integration algorithm. In
the present work, a mid-point type integration scheme is adopted, which, in
combination with an appropriate predictor/corrector solution strategy, yields
an explicit iterative algorithm. The proposed formulation conserves mass, mo-
mentum and total energy, without resorting to any staggered approach in
time, with striking analogies to the space-time integration presented in [25].
A similar approach is usually adopted in the context of mimetic or compatible
discretizations [8,2].

4.1 Test and trial spaces

In terms of the spatial discretization, the proposed approach is no differ-
ent from standard Lagrangian hydrodynamic finite element methods [7,15].
Kinematic variables are approximated by piecewise-linear, continuous func-
tions (node-centered degrees-of-freedom), and all thermodynamic variables are
approximated by piecewise-constant, discontinuous functions (cell-centered
degrees-of-freedom). Consequently, the test-space for the momentum equa-
tion consists of piecewise-linear, continuous functions, while the test space for
the mass and energy equations is given by piecewise-constant, discontinuous
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functions. The trial function spaces Sh and test function spaces Vh are then
given by:

Sh
κ =

{

ψh
κ ∈ (C0(Ω))nd : ψh

κ

∣

∣

∣

Ωe
∈ (P1(Ωe))

nd,ψh
κ = gbc(t) on Γg

}

, (22)

Vh
κ =

{

ψh
κ ∈ (C0(Ω))nd : ψh

κ

∣

∣

∣

Ωe
∈ (P1(Ωe))

nd,ψh
κ = 0 on Γg

}

, (23)

Sh
γ =

{

ψh
γ ∈ L2(Ω) : ψh

γ

∣

∣

∣

Ωe
∈ P0(Ωe),

}

, (24)

Vh
γ = Sh

γ , (25)

where gbc(t) indicates the essential (Dirichlet) boundary conditions, possibly
dependent on time.

4.2 Variational equations

The momentum and energy balances are considered first. For the sake of sim-
plicity, it is assumed that body forces, heat fluxes and heat sources are absent.
The time step is indicated by ∆t, and the mid-point value of a quantity f is
defined as:

fn+1/2 =
fn + fn+1

2
. (26)

4.2.1 Momentum balance

Find v ∈ Sh
κ , such that, ∀ψh

κ ∈ Vh,
∫

Ω0

ψh
κ · ρ0 (vn+1 − vn) dΩ0

+∆t
∫

Ωn+1/2

(∇xψ
h
κ)n+1/2 : σ̃n+1/2 dΩ − ∆t

∫

Γh
n+1/2

ψh
κ · tn+1/2 dΓ = 0 , (27)

where ∇x is the current configuration gradient operator. Notice the slight abuse
of notation, since the superscript “h”, indicating spatial discretization, should
be applied to all solution variables, discrete gradient operators, and the domain
geometry. This is avoided whenever possible, to favor a simpler presentation of
algebraic expressions. Notice that the physical traction t acts only on the Neu-
mann boundary (i.e., t|Γg = 0), and the notation σ̃ indicates an algorithmic
stress, whose general expression is

σ̃ = σ + σvms + σart , (28)

where σvms is the multi-scale, residual-based stress tensor, designed to control
hourglass instabilities, and σart is the artificial viscosity stress tensor, designed
to capture shock layers.
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It is usual practice in hydrodynamic computations to lump the mass matrix
in the momentum equation, to avoid any matrix inversions in the solution
procedure. The velocity field at time tn is interpolated as

vn =
nnp
∑

B=1

NB(X)vn;B . (29)

Here vn;B and NB(X) are the nd-dimensional vector of velocity degrees-of-
freedom at tn and the shape function, both associated with node B, and
nnp is the number of nodes in the computational mesh. The mass lumping is
achieved applying the following approximation (no index sum is implied unless
expressly stated):

∫

Ωn

NA(X) (ρvi)n dΩ =
∫

Ω0

NA(X)ρ0(vi)n dΩ0

=
nnp
∑

B=1

(∫

Ω0

NA(X)NB(X)ρ0 dΩ0

)

(vi)n;B

≈
nnp
∑

B=1

(∫

Ω0

NA(X) δAB ρ0 dΩ0

)

(vi)n;B

= MA
L (vi)n;A , (30)

where vi and vi are the ith components of v and v, respectively, A = 1, 2, . . . , nnp,
δAB is the Kronecker symbol, and

MA
L =

∫

Ω0

NA(X)ρ0 dΩ0 (31)

is the the mass associated to node A in the global numbering. Defining

[ML] = [diag{{MA
L ,MA

L,MA
L}T}] , (32)

Fn+1/2 = {Fn+1/2;A} , (33)

Fn+1/2;A =
∫

Ωn+1/2

σ̃n+1/2(∇xN
A)n+1/2 dΩ −

∫

Γn+1/2

NAt̃n+1/2 dΓ , (34)

where [ML] is a diagonal [(nd × nnp) × (nd × nnp)]-matrix and Fn+1/2 is a
(nd × nnp)-vector, equation (27) reduces to

[ML] (vn+1 − vn) + ∆t Fn+1/2 = 0 . (35)

4.2.2 Energy balance

Integrating in time (21), yields:
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Find ǫ ∈ Sh
γ , such that, ∀ψh

γ ∈ Vh,

∫

Ω0

ψh
γρ0 (ǫn+1 − ǫn) dΩ0 − ∆t

∫

Ωn+1/2

ψh
γ (∇xv)n+1/2 : σ̃n+1/2 dΩ = 0 . (36)

Recalling that ψγ , ǫ, and ρ are constant over each element, one can introduce
the following definitions:

[Mel] = [diag{Mel}] , (37)

Mel = {Me} , (38)

Me =
∫

Ω0;e

ρ0 dΩ0 . (39)

Wn+1/2 = {Wn+1/2;e} , (40)

Wn+1/2;e =

{

−
∫

Ωn+1/2;e

(∇xv)n+1/2 : σ̃n+1/2 dΩ

}

, (41)

where Ωn+1/2;e is the element domain at time tn+1/2, Mel and Wn+1/2 are nel-
dimensional vectors, and nel is the number of elements in the computational
list. Then, equation (36) reduces to

[Mel] (ǫn+1 − ǫn) + ∆t Wn+1/2 = 0 . (42)

where ǫn and ǫn+1 are the vectors of cell-centered degrees-of-freedom for the
internal energy ǫ at time tn and tn+1, respectively.

4.2.3 Mass balance

The mass conservation equation (19) can be slightly rearranged to yield:

Find ρ ∈ Sh
γ , such that, ∀ψh

γ ∈ Vh,

∫

Ω0

ψh
γρ0 dΩ0 =

∫

Ω0

ψh
γρJ dΩ0 =

∫

Ω
ψh

γρ dΩ . (43)

Integrating the previous equation element-by-element at time tn+1, yields

Mel = [Vn+1]ρn+1 , (44)

where

ρn+1 = {ρn+1;e} , (45)

[Vn+1] = [diag{Vn+1}] , (46)

Vn+1 = {Vn+1;e} , (47)

Vn+1;e =
∫

Ω0;e

Jn+1 dΩ0 = meas(Ωn+1;e) . (48)
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4.2.4 Displacement equations

In order to evaluate (44), the mesh geometry has to be computed at time tn+1.
This is possible by means of the time-discretization of the rate equations for
the position field x, which yields a set of ordinary differential equations for
the vector of node locations, namely

xn+1 − xn − ∆t vn+1/2 = 0 . (49)

4.2.5 Equation of state

The equation of state can be applied at each time step to obtain the pressure
(or, in general, the stress field),

σn+1 = −pn+1I = −p̂(ρn+1, ǫn+1)I . (50)

Expressing (50) in terms of the cell-centered degrees-of-freedom, one obtains

pn+1 = p̂(ρn+1, ǫn+1) , (51)

where

pn+1 = {pn+1;e} , (52)

p̂(ρn+1, ǫn+1) = {p̂(ρn+1;e, ǫn+1;e)} . (53)

4.3 Global conservation properties

Equations (43) and (44) are statements of global and local conservation of
mass, respectively. It is also evident from equation (27) or (35) that the pro-
posed algorithm conserves the total momentum of the system. Proving con-
servation of total energy is somewhat less obvious, and, for this purpose, equa-
tions (27) and (36) are used. Conservation statements are usually proven in
the case of homogenous Neumann boundary conditions, for which the test and
trial function spaces for the velocities coincide (i.e., Sh

κ = Vh
κ ). Evaluating the

sum over all the nodes of (27), with ψh
κ = vn+1/2, the kinetic energy balance

for the system is obtained:

1

2

∫

Ωn+1

ρn+1(v · v)n+1 dΩ − 1

2

∫

Ωn

ρn(v · v)n dΩ

= −∆t
∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ , (54)
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The previous equation is derived using the following identity:

∫

Ω0

ρ0vn+1/2 · (vn+1 − vn) dΩ0 =
1

2

∫

Ω0

ρ0 ((v · v)n+1 − (v · v)n) dΩ0

=
1

2

∫

Ωn+1

ρn+1(v · v)n+1 dΩ

− 1

2

∫

Ωn

ρn(v · v)n dΩ . (55)

Testing (36) with a shape function equal to unity over the entire domain (i.e.,
ψh

γ |Ω0= 1) yields

∫

Ωn+1

(ρǫ)n+1 dΩ −
∫

Ωn

(ρǫ)n dΩ =
∫

Ω0

ρ0 (ǫn+1 − ǫn) dΩ0

= ∆t
∫

Ωn+1/2

(∇xv)n+1/2 : σ̃n+1/2 dΩ . (56)

By summing (54) and (56), and noticing that their right hand sides are equal
and opposite, one can derive the following conservation statement for the total
energy between time steps n and n+ 1:

∫

Ωn+1

ρn+1

(

1

2
(v · v)n+1 + ǫn+1

)

dΩ =
∫

Ωn

ρn

(

1

2
(v · v)n + ǫn

)

dΩ . (57)

The previous derivations can be repeated in the case when mass lumping is
applied. Using (35), an analogue of (54) can be derived, namely,

1

2
vT

n+1[ML]vn+1 −
1

2
vT

n [ML]vn = −vT
n+1/2Fn+1/2 . (58)

Using the vector notation, (56) can be recast as (42) multiplied by 1, a nel-
dimensional vector whose entries are all unity, that is,

MT
el (ǫn+1 − ǫn) = −∆t 1TWn+1/2 . (59)

Finally, realizing that, by definition,

vT
n+1/2Fn+1/2 = −1TWn+1/2 , (60)

a statement of conservation of total energy analogous to (57) can be expressed
as

1

2
vT

n+1[ML]vn+1 + MT
elǫn+1 =

1

2
vT

n [ML]vn + MT
elǫn . (61)

Remarks

(1) Under appropriate boundary conditions, total angular momentum is also
conserved. This is a direct consequence of the symmetry of the stress
tensor and the use of a mid-point time integrator [29].

12



Retrieve loop parameters: nstep, imax

Initialize all variables with initial conditions
Form [ML] and Mel

For n = 0, . . . , nstep (Time-step loop begins)
Set ∆t (respecting the CFL condition)

Predictor: Y
(0)
n+1 = Yn

For i = 0, . . . , imax − 1 (Multi-corrector loop begins)

Assembly: F
(i)
n+1/2

Velocity update: v
(i+1)
n+1 = vn − ∆t[ML]−1F

(i)
n+1/2

Assembly: W
(i,i+1)
n+1/2

Internal energy update: ǫ
(i+1)
n+1 = ǫn − ∆t [Mel]

−1W
(i,i+1)
n+1/2

Position update: x
(i+1)
n+1 = xn + ∆t v

(i+1)
n+1/2

Volume update: V
(i+1)
n+1 = V(x

(i+1)
n+1 )

Density update: ρ
(i+1)
n+1 = [V

(i+1)
n+1 ]−1Mel

Equation of state update: p
(i+1)
n+1 = p̂

(

ρ
(i+1)
n+1 , ǫ

(i+1)
n+1

)

End (Multi-corrector loop ends)

Time update: Yn+1 = Y
(imax)
n+1

End (Time-step loop ends)
Exit

Table 1
Outline of the predictor-multicorrector algorithm. Notice that all matrices are di-
agonal, so that all inverse operations are just vector divisions. Three iterations
of the predictor/multi-corrector were used in the computations. Recall also that
Yn = [xT

n , vT
n ,ρT

n , ǫTn ,pT
n ]T .

(2) The total energy conservation statement (57) is a direct consequence of
the cancellation of the right hand sides of (54) and (56), which are equal
and opposite. This fact is used to derive artificial viscosity and varia-
tional multi-scale stabilization operators which preserve total energy in
the system. In fact, to ensure conservation, it is sufficient that the discrete
expression for the overall σ̃ term remains the same in the momentum and
energy equations.

4.4 A predictor/multi-corrector approach

The algorithm developed so far requires the inversion of a matrix, since the
force and work terms are computed at the mid-point in time, and necessitate
knowledge of the solution at time tn+1. However, a fully explicit algorithm
can be recovered by resorting to a predictor/multi-corrector approach. This
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section is devoted to this purpose.

A number of preliminary definitions are needed. The state of system at time
t = tn is defined by means of the vector Yn = [xT

n , v
T
n ,ρ

T
n , ǫ

T
n , p

T
n ]T . F

(i)
n+1/2

indicates the evaluation of Fn+1/2 using the state Y at iterate (i). The definition
of the iterate of the work vector Wn+1/2 is somewhat different:

W
(i,j)
n+1/2 = {W(i,j)

n+1/2;e} , (62)

W
(i,j)
n+1/2;e =

{

∫

Ω
(i)

n+1/2;e

((∇x)
(i)
n+1/2v

(j)
n+1/2) : σ̃

(i)
n+1/2 dΩ

}

. (63)

Here (∇x)
(i)
n+1/2 and v

(j)
n+1/2 indicate the (current configuration) gradient op-

erator and the velocity field at t = tn+1/2 and iterate i and j, respectively.
This notation is needed to understand how conservation is enforced at each
iteration of the predictor/multi-corrector procedure.

As it can be appreciated in Table 1, the proposed approach consists of a
velocity update, followed, in the order, by internal energy, position, volume,
density and pressure (or, more generally, stress) updates.

Remark (conservation of total energy)
The proposed predictor/multi-corrector approach maintains all the conserva-
tion properties of the base mid-point algorithm it is derived from. The crucial
step in the design of the algorithm is to recognize that the work vector W

(i,i+1)
n+1/2

in Table 1 has to be computed holding the geometry and all the terms in the
integral (63) at iterate (i), with the exception of the velocity vn+1/2, which
is evaluated using the new iterate (i+1), available after the momentum equa-
tion is integrated in time. Using arguments virtually identical to the ones
presented in Section 4.3, it is easy to realize that, indeed, each iterate of the
predictor/multi-corrector conserves total energy, namely

1

2
(v

(i+1)
n+1 )T [ML]v

(i+1)
n+1 + MT

elǫ
(i+1)
n+1 =

1

2
vT

n [ML]vn + MT
elǫn , (64)

since the following cancellation takes place:

(v
(i+1)
n+1/2)

TF
(i)
n+1/2 = −1TW

(i;i+1)
n+1/2 . (65)

The numerical evidence in Figure 6(a), in the context of blast-type flows,
show that the proposed method indeed conserves total energy within machine
precision.
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5 A multi-scale, residual-based hourglass control

The present section develops an analysis of the Lagrangian shock hydrody-
namics equations, using an approach similar to [17,18,20]. The final goal is
to stabilize hourglass instabilities while retaining the global conservation prop-
erties of the underlying discretization. A minimalistic approach is pursued,
in the sense that the simplest and most efficient expression for the hourglass
control term is sought. In the case of materials with no shear strength, the
proposed strategy leads to a stabilization term in the form of a pressure en-
richment, very easy to incorporate in state-of-the-practice hydrocodes.

5.1 Variational multi-scale analysis

Assume that the exact solution for the state Y = [xT ,vT , ρ, ǫ, p]T ∈ S of
the system can be decomposed as Y = Y h + Y ′. Y h ∈ Sh is the mesh- or
coarse-scale solution, represented by the discrete approximation space Sh used
to characterize the solution on the computational grid. Y ′ ∈ S ′ is the subgrid -
or fine-scale solution, the component of the solution which cannot represented
on the computational mesh. Obviously, S = Sh⊕S ′.

In (27)-(36), the explicit notations ψh
κ and ψh

γ were used to indicate that the
equations for the exact state of the system are tested on the discrete test
function space Vh. The superscript “h” for the components of the solution
Y h was omitted in most of the derivations in Section 4, since in that case
there was no risk of confusion. In the discussion that follows, however, it is
important to precisely account for the fine- and coarse-scale spaces. Hence:

v = vh + v′ , (66)

ρ0 = ρh
0 + ρ′0 , (67)

ρ = ρh + ρ′ , (68)

σ = σh + σ′ , (69)

ǫ = ǫh + ǫ′ . (70)

Using the previous decomposition, (20) and (21) reduce to

∫

Ω0

ψh
κ · (ρh

0 + ρ′0)(v̇
h + v̇′) dΩ0 +

∫

Ω
(∇s

x
ψh

κ) : (σh + σ′) dΩ = 0 , (71)
∫

Ω0

ψh
γ (ρh

0 + ρ′0)(ǫ̇
h + ǫ̇′) dΩ0 −

∫

Ω
ψh

γ (∇s
x
(vh + v′)) : (σh + σ′) dΩ = 0 , (72)

where, in order to simplify the analysis, homogenous Dirichlet boundary con-
ditions are imposed for the velocity. No approximation has been made so far,
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and the initial geometry of the computational grid, as well as the displace-
ment field are assumed to be known exactly. At this point, it becomes useful
to decompose the stress σ as follows:

σ = −pI + devσ , (73)

p = −trσ

3
= −1

3

nd
∑

k=1

σkk , (74)

devσ = σ − trσ

3
I = σ + pI . (75)

An analogous decomposition holds for σh and σ′, and the generic symmetric
gradient of a vector w:

∇s
x
w = (∇s

x
·w)I + dev(∇s

x
w) . (76)

Therefore, the stress integrals in (71) and (72) can be recast in terms of the
following expressions:

∫

Ω
(∇s

x
ψh

κ) : σ• dΩ = −
∫

Ω
(∇x ·ψh

κ) : p• dΩ

+
∫

Ω
dev(∇s

x
·ψh

κ) : devσ• dΩ , (77)
∫

Ω
ψh

γ ∇s
x
(v⋄) : σ• dΩ = −

∫

Ω
ψh

γ (∇x · v⋄) : p• dΩ

+
∫

Ω
ψh

γ dev(∇s
x
v⋄) : devσ• dΩ , (78)

where σ• = σh or σ′, p• = ph or p′, and v⋄ = vh or v′. Some additional
assumptions are now needed to derive a simple stabilization operator.

Assumptions I (coarse-scale equations)

(i) Fine-scale terms are considered small with respect to coarse-scale terms.
Therefore, products of fine-scale terms are neglected, being higher-order
corrections.

(ii) Fine-scale components of the node positions and mesh geometry are con-
sidered negligible.

(iii) ρ′0 is considered negligible, since ρ0 is a datum of the problem.
(iv) Time derivatives of the fine-scales are neglected. This quasi-static ap-

proximation is equivalent to assuming that the fine scales adjust instan-
taneously to complement the coarse scales. Some authors [11] have been
arguing in favor of tracking in time the subgrid-scale component in the
solution. However, this would involve the additional computational cost
of storing and integrating in time the fine-scale component of the state
variables. In the current work, this additional cost is avoided.
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(v) The following integral is neglected:

∫

Ω
ψh

γ p
h ∇x · v′ dΩ =

nel
∑

e=1

(

ψh
γ;e p

h
e

∫

Ωe

∇x · v′ dΩ
)

, (79)

where the subscript e indicates the element values of the piecewise con-
stant, discontinuous interpolation for ψh

γ and ph. There are two important
reasons to neglect this term. First of all, the typical velocity instabilities
arising in the base Galerkin formulation are hourglass modes, whose di-
vergence integrates to zero over each element. If an hourglass mode has
to be counterbalanced, the corrective field v′ must lie in the space of
hourglass modes, and its divergence must integrate to zero over each ele-
ment. Therefore, assuming that (79) is negligible or vanishes is equivalent
to posing the correct constraint on the fine-scale velocity space. Another
important reason not to include (79) is that its discretization would yield
a non-conservative formulation. Because a number of non-linear, higher-
order terms have been removed from the original equations, global con-
servation of total energy is not ensured a priori, but has to be checked
and enforced a posteriori.

(vi) In order to obtain a conservative method, the term

∫

Ω
ψh

γ dev(∇s
x
v′) : devσh dΩ (80)

is also neglected. In the case of a fluid, this assumption is not needed,
since devσh vanishes exactly.

With the previous assumptions, (71)–(72) reduce to:

0 =
∫

Ω0

ψh
κ · ρh

0 v̇
h dΩ0

−
∫

Ω
(∇x ·ψκ)

h ph dΩ +
∫

Ω
dev(∇s

x
ψκ)

h : devσh dΩ

−
∫

Ω
(∇x ·ψκ)

h p′ dΩ +
∫

Ω
dev(∇s

x
ψκ)

h : devσ′ dΩ , (81)

0 =
∫

Ω0

ψh
γρ

h
0 ǫ̇

h dΩ0

+
∫

Ω
ψh

γ (∇x · v)h ph dΩ −
∫

Ω
ψh

γ dev(∇s
x
v)h : devσh dΩ

+
∫

Ω
ψh

γ (∇x · v)h p′ dΩ −
∫

Ω
ψh

γ dev(∇s
x
v)h : devσ′ dΩ . (82)

Assumptions II (fine-scale representation)

(vii) The constitutive law of the material is assumed to have the form [14]

σ̇ = ˆ̇σ(σ,∇xv) , (83)

17



where the structure of ˆ̇σ is such that objectivity of the stress update pro-
cedure is ensured. Then, testing the variational formulation on the fine-
scale space V ′, and applying a typical multi-scale approximation to the
subgrid-scale Green’s function operator [25,24], the subgrid-scale stress
σ can be expressed with the ansatz :

σ′ = −τRes
h
σ
, (84)

Res
h
σ

= (LIN(Resσ))h , (85)

Resσ = σ̇ − ˆ̇σ(σ,∇xv) . (86)

where LIN is a linearization operator and τ is an appropriate scaling
term to be defined subsequently. As in many error estimation techniques,
it is assumed that the error σ′ is dependent on the numerical residual of
constitutive equation, Res

h
σ
.

The multi-scale approach pursued so far is very general, and may be exploited
to derive stabilization techniques in the case of materials with very general
constitutive laws, including solids. In the next section, materials with no shear
strength are considered.

5.2 The case of materials with no shear strength

In the case of materials which do not possess shear strength, the terms devσ,
devσh, and devσ′ vanish, and (81)–(82) simplify to

∫

Ω0

ψh
κ · ρh

0 v̇
h dΩ0 −

∫

Ω
(∇x ·ψκ)

h (ph + p′) dΩ = 0 , (87)
∫

Ω0

ψh
γρ

h
0 ǫ̇

h dΩ0 +
∫

Ω
ψh

γ (∇x · v)h (ph + p′) dΩ = 0 . (88)

Remarks

(1) The additional stabilization term is a pressure correction term.
(2) The proposed approach maintains global conservation properties. In fact,

the conservation statements (57), (61), and (64) hold with the substitu-
tion σ̃ = −(ph + p′)I.

It now remains to find an expression for the the subgrid-scale pressure p′.
Using the assumption of smallness of the fine-scales, a Taylor expansion can
be applied to the equation of state (16), namely

p′ = p− ph ≈ LIN(p− ph) = (∂ρp̂)
hρ′ + (∂ǫp̂)

hǫ′ . (89)
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The linearization in (89) and the structure of the residuals for the mass con-
servation and internal energy equations can be exploited to yield

p′ = −τ
(

(∂ρp̂)
h
Res

h
ρ + (∂ǫp̂)

h
Res

h
ǫ

)

, (90)

where

Res
h
ρ = (Resρ)

h , (91)

Resρ = ρ̇+ ρ ∇x · v , (92)

Res
h
ǫ = (Resǫ)

h , (93)

Resǫ = ǫ̇+
p

ρ
∇x · v . (94)

The residual Resρ is actually the mass balance, written in the current config-
uration, namely

0 = J−1ρ̇0 = J−1(ρJ)· = ρ̇+ ρ(J−1J̇) = ρ̇+ ρ∇x · v , (95)

and τ is an appropriate scaling term to be defined subsequently. As previously
pointed out, it is consistent with many error estimation techniques to assume
that the error ρ′ = ρ−ρh in the density is a function of the mass conservation
residual Res

h
ρ . A similar argument can be applied to the fine-scale internal

energy ǫ′. Thus, the subgrid-scale pressure can be expressed as:

p′ = −τ (∂ρp̂ Resρ + ∂ǫp̂ Resǫ)
h

= −τ
(

∂ρp̂ (ρ̇+ ρ ∇x · v) + ∂ǫp̂

(

ǫ̇+
p

ρ
∇x · v

))h

= −τ
(

ṗ+ ρ

(

∂ρp̂+
p

ρ2
∂ǫp̂

)

∇x · v
)h

. (96)

To further simplify the previous expression, some thermodynamic identities
are needed. The first and second law of thermodynamics combined yield the
Gibbs identity [12],

Θdη = dǫ− p

ρ2
dρ , (97)

with η the entropy per unit mass, and Θ the absolute temperature. Hence,

p

ρ2
=

∂ǫ

∂ρ

∣

∣

∣

∣

∣

η

. (98)

19



It is easy then to derive

p′ = −τ


ṗ+ ρ



∂ρp̂+ ∂ǫp̂
∂ǫ

∂ρ

∣

∣

∣

∣

∣

η



∇x · v




h

= −τ


ṗ+ ρ
∂p

∂ρ

∣

∣

∣

∣

∣

η

∇x · v




h

= −τ
(

ṗ+ ρc2s∇x · v
)h

= −τ Res
h
p , (99)

where

Resp = ṗ+ ρc2s∇x · v , (100)

and cs is the (isentropic) speed of sound in the medium. Denoting with he the
element characteristic length scale, the value of τ is defined as

τ = cτ
∆t

2 CFL
=
cτ
2

∆t

max1≤e≤nel

(

cs∆t
he

) =
cτ
2

min
1≤e≤nel

(

he

cs

)

, (101)

where cτ = 7.0 (values in the range [5.0, 15.0] were found appropriate). The
definition in (101) is analogous to the one in [25,24], and prevents the dramatic
reduction of τ when the time step is small. The expression for the multi-scale
stabilization tensor is then

σvms = −p′I = τ Res
h
pI . (102)

In the case of the proposed mid-point algorithm for time integration, (102)
can be recast as:

σvms =
τ

∆t

(

ph
n+1 − ph

n + ∆t
(

ρc2s
)h

n+1/2

(

∇x

h · vh
)

n+1/2

)

I . (103)

Remarks

(1) For a general material, the final expression for σvms is more complicated
than (102), since it involves also the deviator of the tensor σ′. Specific
expressions depend on the structure of the constitutive laws.

(2) It is important to understand that in the case of fluids, fully integrat-
ing the pressure stress terms in the base Galerkin formulation does not
prevent hourglass modes. This is a consequence of the fact that the pres-
sure is approximated with piecewise constants, and factors out of the
force integral. Therefore, some additional stabilization mechanism must
be provided.
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(3) In order to have a non-vanishing multi-scale stabilization term, expres-
sion (103) cannot be integrated with a single-point quadrature at the
centroid of quadrilateral or hexahedral elements, where the divergence
of the velocity vanishes even if spurious hourglass modes are present. In
fact, (103) must be evaluated with multi-point quadratures or equivalent
difference formulas. The result summarized in (102)–(103) applies to a
very general class of materials, since the only assumption made is the
existence of the equation of state (16).

5.2.1 A rational thermodynamic interpretation

The structure of the pressure residual Resp is related to the Clausius-Duhem
inequality for an adiabatic process of a non-dissipative material. To prove
this point, the approach of rational thermodynamics [1,31,32] is adopted. The
energy balance equation can be arranged as:

ρΘη̇ = −∇x · q + ρr + Dint , (104)

where

Dint
def
= ρΘη̇ − ρǫ̇− p∇x · v . (105)

The Clausius-Duhem inequality [32] requires that Dint ≥ 0. Using mass con-
servation, ∇x · v = −ρ̇/ρ and

ρDint = pρ̇+ ρ2Θη̇ − ρ2ǫ̇ ≥ 0 . (106)

Assume there exists a caloric equation of state [12], that is, a function ǫ̃(ρ, η)
(convex with respect to ρ−1 and η) such that ǫ = ǫ̃(ρ, η). Substituting this into
(106) yields

ρDint = (p− ρ2∂ρǫ̃)ρ̇ + ρ2(Θ − ∂η ǫ̃)η̇ ≥ 0 , (107)

which is required to hold for all admissible thermodynamic processes. By the
Coleman-Noll energy principle [1], this implies that

p = ρ2∂ρǫ̃(ρ, η) and Θ = ∂η ǫ̃(ρ, η) . (108)

Thus Dint = 0, and (104) reduces to

ρΘη̇ = −∇x · q + ρr . (109)

The only sources of entropy production are thermal diffusion and external
heat sources. This is a well known result for non-dissipative materials [9,32]:
A process is adiabatic (−∇x · q + ρr = 0) if and only if it is isentropic (η̇ = 0).
The previous developments imply the existence of a pressure function

p
def
= p̃(ρ, η) = ρ2∂ρǫ̃(ρ, η) . (110)
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Define by

cs
def
=
√

∂ρ p̃(ρ, η) , (111)

the isentropic speed of sound in the material. The time derivative of the pres-
sure function results in

ṗ = c2sρ̇+ ∂η p̃(ρ, η) η̇ . (112)

Again, using conservation of mass ρ̇ = −ρ∇x · v this may be written as

ṗ+ ρc2s∇x · v = ∂ηp̃(ρ, η) η̇ . (113)

Assuming an adiabatic process this reduces to

ṗ+ ρc2s∇x · v = Resp = 0 , (114)

the pressure residual.

Remark

(1) In practice Res
h
p is a measure of the entropy production due to the nu-

merical discretization. In regions of smooth flow, Res
h
p should vanish, but

because of numerical instabilities, numerical entropy can be generated.
(2) The previous analysis for perfect materials also shows that the assump-

tion of smallness of the fine scales implies the concept of isentropic flow.
(3) When shock waves are present in the material, the analysis in the present

section does not apply. From a physical point of view, a shock wave is
an infinitely thin layer in which the flow does not behave as a perfect
material, due to internal dissipation mechanisms. From a numerical point
of view, a shock-capturing operator typically smears the discontinuity
over a few cells of the computational grid. Shock-capturing operators
usually have the form of an artificial dissipation, and introduce in the
material an irreversible internal mechanism.

5.2.2 Multi-scale stabilization revisited as hourglass control

To understand that the proposed pressure enrichment acts as an hourglass
control, let us decompose the divergence of a vector wh into its average value
over an element and the fluctuation with respect to the average. Namely,

∇x

h ·wh = ∇x

h ·wh + ∇̃x

h ·wh , (115)

∇x
h ·wh =

1

meas(Ωe)

∫

Ωe

∇x

h ·wh dΩ =
1

meas(Ωe)

∫

Γe

wh · ndΓ . (116)

By definition, ∇x
h ·wh and ∇̃x

h ·wh are orthogonal in the L2 sense. Consider
the structure of the stabilization term developed in the previous section. The
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expressions (87) and (88) can be rearranged as:

∫

Ωe

(∇x

h ·ψh
κ) p

′ dΩ = −
∫

Ωe

(∇x

h ·ψh
κ)τ

(

ṗh +
(

ρc2s
)h ∇x

h · vh
)

dΩ

= −
∫

Ωe

(∇x

h ·ψh
κ)τ

(

ṗh +
(

ρc2s
)h ∇x

h · vh + ∇̃x

h · vh

)

dΩ

= −
∫

Ωe

(∇x

h ·ψh
κ)τ

(

ṗh +
(

ρc2s
)h ∇x

h · vh

)

dΩ

− τ
(

ρc2s
)h

∫

Ωe

(

∇x

h ·ψh
κ

)

(

∇̃x

h · vh

)

dΩ

= − τ
(

ṗh + ρc2s ∇x

h · vh
)

e

∫

Ωe

(

∇x

h ·ψh
κ

)

dΩ

+ HG1;e , (117)
∫

Ωe

(∇x

h · vh) p′ dΩ = − τ
(

ṗh +
(

ρc2s
)h ∇x

h · vh

)

e
∇x

h · vh meas(Ωe)

+ HG2;e , (118)

with

HG1;e = −τ
∫

Ωe

(

ρc2s
)h
(

∇̃x
h ·ψh

κ

)(

∇̃x
h · vh

)

dΩ , (119)

HG2;e = −τ
∫

Ωe

(

ρc2s
)h
(

∇̃x

h · vh

)2

dΩ . (120)

To provide an interpretation of (117)–(118), it is important to realize that, for
the proposed second-order in time algorithm,

(

ṗh +
(

ρc2s
)h ∇x

h · vh

)

e
=
(

ṗh −
(

c2s
)h
ρ̇h
)

e

≈ ∆t
(

ph
n+1 − ph

n −
(

c2s
)h

n+1/2

(

ρh
n+1 − ρh

n

)

)

e

= O(∆t2) . (121)

When hourglass modes arise, the expression in (121) tends to be much smaller
than the terms HG1;e and HG2;e, which represent the discretization of a (∇x ·)-
(∇x ·) dissipative operator acting on the hourglass modes.

Remarks

(1) In regions where a shock is present and the artificial viscosity operator is
active, (121) may not hold.

(2) Notice that HG1;e and HG2;e scale with the square of the speed of sound
and the density of the material, similarly to many hourglass control vis-
cosities [5].

(3) In order for the hourglass control to work, the HG1;e and HG2;e terms
must be evaluated at locations where the discrete divergence operator is
non-vanishing. Therefore, the velocity divergence in (103) requires either
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full integration or equivalent, less expensive, finite-difference formulas.
Instead, the thermodynamic variables require only one evaluation per
element.

(4) As already mentioned in the introduction, the extension to three dimen-
sions is non-trivial, since, in that case, half of the space of hourglass
modes is represented by pointwise divergence-free modes, which do not
produce any residual in the rate equation for the pressure. A possible so-
lution to this problem is presented in [26], in which an artificial viscosity
based on the fluctuation of the deviator of the velocity gradient (75) is
used to control divergence-free hourglass modes. Encouraging (although
preliminary) results have been obtained with this approach.

The previous observations can also be used to define an alternative class of
hourglass operators. The basic idea is to define a time interpolation for (ρc2s)

h,
so that, element-by-element, (ṗh +ρhc2s ∇x

h · vh)e vanishes exactly. This can be
done with a secant approximation of ρc2s, enforcing explicitly

(

ρc2s
)h

n+1/2

def
=
ph

n+1 − ph
n

∆t∇x

h · vh
. (122)

If this is the case, the stabilization term reduces to:

∫

Ωe

(∇x

h ·ψh
κ) p

′ dΩ = HG1;e , (123)

∫

Ωe

(∇x

h · vh) p′ dΩ = HG2;e . (124)

This alternative class of stabilization operators is clearly augmenting the orig-
inal variational formulation by means of a purely dissipative operator. A dif-
ferent choice of the scaling for τ is also possible in this case, namely,

τ̃e = τ̃ |Ωe
= τ

he

cs ∆t
, (125)

where τ is defined as in (101), and this time cτ = 3.0 (values in the range
[1.0, 7.0] were found appropriate). The notation he represents a characteristic
element mesh length, for which many possible definitions can be used. If he =
(meas(Ωe))

1/nd is chosen, then the stabilization term introduced would scale
like the viscous part of the Flanagan-Belytschko hourglass control [13,33,14,5].
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6 Artificial viscosity and discontinuity capturing operator

The discontinuity capturing operator is implemented as follows:

σart =











ρ νart∇s
x
v , if ∇x · v < 0 ,

0nd×nd
, otherwise .

(126)

Remarks

(1) The use of the symmetric gradient in the definition of σart ensures, at
the continuum level, objectivity of the artificial viscosity operator.

(2) The definition (126) is more effective in damping artificial pure shear
motion, with respect to the more common definition [7]

σart = − (ρ νart∇x · v) I . (127)

Artificially produced homogeneous shear motion can have disruptive con-
sequences on shock hydrodynamics computations of fluids, since it is not
resisted by hourglass controls (of any type), nor the discretized physical
stress.

Several choices of the artificial viscosity parameter νart are possible. Among
the most commonly used,

νKur =



cKur2

γ − 1

4
νV NR +

√

(

cKur2

γ − 1

4
νV NR

)2

+ c2Kur1
c2s



hart , (128)

with cKur1 = cKur2 = 1, γ the isentropic constant in the gas, and

νV NR = |∇x · v|hart . (129)

Another possible choice is

νL+V NR = c1cshart + c2|∇x · v|h2
art , (130)

which was used in the computations of Section 8, with constants c1 = 0.5
and c2 = 1.2. The expression for the so-called Kuropatenko viscosity νKur

[21] holds only for an ideal gas, but can be generalized for any material. The
expression for νL+V NR is already general enough to include all materials sat-
isfying (15)–(16). The length-scale hart needs to be defined according to one
main requirement: It should stably sample a mesh length along the normal
to the shock front. This means that, for a given mesh, hart should not vary
abruptly for small changes in the direction of the shock normal. An effective
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definition was found to be

hart =
2

√

nT
sh

(

F 2F
T
2

)−1
nsh

, (131)

F 2 =
∂x

∂ξ
, (132)

where nsh is a unit vector in the direction normal to the shock front, and
F 2 the gradient of the mapping from the parent domain to the element in
the current configuration. In practice,

(

F 2F
T
2

)

measures the stretch in the
direction given by nsh. A plot of the envelope of hart as the shock normal
angle spans the interval [0, 360]-degrees is presented in Figure 2, for various
quadrilateral elements. This definition is analogous to the one adopted in [19].
An effective approximation to nsh is given by:

nsh =
∇xfb

||∇xfb||
, (133)

fb =
||v||l2

max1≤e≤nel
(||v||l2)

+ 10−3 ρ̂

max1≤e≤nel
(ρ̂)

, (134)

where ||v||l2 =
√
v · v is the velocity magnitude, and ρ̂ is the nodal projection

of the density, namely

ρ̂ =
nnp
∑

A=1

ρ̂ANA(X) , (135)

ρ̂A =

nel

A
e=1

∫

Ωe

NA ρ dΩ

nel

A
e=1

∫

Ωe

NA dΩ

=

nel

A
e=1

(

ρe

∫

Ωe

NA dΩ
)

nel

A
e=1

∫

Ωe

NA dΩ

, (136)

with A the assembly operator [16,5].

Remarks

(1) The definitions (133)–(134) are meant to use primarily the gradient of
the velocity magnitude as a measure of the shock normal. There are a
number of cases – such as implosions with radial or spherical symmetry –
in which the simple use of the gradient of the velocity norm may produce
noisy results in the region preceding the shock location. This is why fb

rather then ||v||l2 is introduced. The use of the gradient of the projected
nodal density is reminiscent of [30].

(2) The tensor σart just defined is evaluated at the midpoint in time, together
with the other terms contributing to the nodal forces. Collocation at the
mid-point in time ensures incremental objectivity of the tensor σart [28].
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Fig. 2. Sketch of the length-scale hart as a function of the direction of nsh. The plots
show the envelope of hart as the angle that nsh forms with the x1-axis varies from
0 to 360 degrees. Notice the smooth transition of the length-scale near the corners
of the elements.

7 General considerations on implementation

7.1 Numerical quadratures

First and foremost, as already noted, the divergence of the velocity in the
pressure residual Res

h
p vanishes at the centroid of quadrilateral or hexahedral

elements. Therefore, four/eight-point quadratures must be used to compute
the stabilization term. Notice that all other terms in the pressure residual are
constant over each of the elements, and do not need multi-point evaluation.
The hourglass control for divergence-free shear modes in three dimensions also
require multi-point quadratures.

Second, when the shock capturing operator is active, non-linear coupling ef-
fects may take place between the artificial viscosity and the multi-scale stabi-
lization operator, as already mentioned. The optimal choice is to integrate both
the artificial viscosity and the multi-scale operator with the same quadrature
rule. With this approach, incidentally, the computational cost for the multi-
scale operator is negligible with respect to the cost of the artificial viscosity,
since the divergence of the velocity is needed by both. Some examples of the ef-
fects of single-point and multi-point integration for the viscosity are presented
in Section 8.3.

To understand why superior results are obtained when the multi-scale and

27



artificial viscosity operators share the same quadrature rule, one needs to
recall that where the artificial dissipation is active, the multi-scale approach
is not strictly applicable. A single-point evaluation of the artificial viscosity
is equivalent to enforcing that the value of the artificial viscosity is constant
over the entire element. Especially in the case of rapid transients, this may
be a coarse approximation. Indeed, on a particular element of the mesh, the
artificial viscosity may be active only in just a few of the quadrature points.
Single-point integration redistributes the effect of the artificial viscosity over
the entire element, generating a spurious pressure residual at the quadrature
points where there should be no artificial dissipation. In the end, the multi-
scale approach, which leverages a local evaluation of the residual, may be
affected by the incorrect evaluation of the artificial dissipation.

In terms of quadrature rules, the details of the implementation can be then
summarized as follows:

(1) The integral of the physical stress term σ is evaluated with a single-point
quadrate at the centroid of the element.

(2) The multi-scale residual-based stabilization operator is computed with
multi-point quadratures.

(3) Unless otherwise specified, it should be implicitly assumed that the arti-
ficial viscosity operator is integrated with full quadrature.

7.2 Hourglass stabilization and artificial viscosity parameters

Most of the numerical results are obtained using the multi-scale operator as
defined in (103). This method is denoted by VMS-I, and the choice cτ = 7 is
made to evaluate expression (101) (a range of recommended values could be
[5.0, 15.0]). In addition, some computations using the approach of (119)–(120)
are performed. This method is denoted by VMS-II, and the choice cτ = 3 is
made to evaluate expression (125) (a range of recommended values could be
[1.0, 5.0]).

In order to compare the proposed multi-scale method with existing approaches,
a viscous-type hourglass control à la Flanagan-Belytschko [5,13,14,33] is also
used: This method is referred to as FB. Unless otherwise specified, the con-
stant parameter is chosen to be cFB = 0.15. Typical recommended values
[14] span the interval [0.05, 0.15]. The choice of making the hourglass control
as dissipative as possible within the recommended range has the purpose of
maximizing robustness. The hourglass control proposed in [13] incorporates
viscous and stiffness operators, while in the simulations presented herein only
the viscous part is retained. It is the opinion of the authors that incorporating
artificial stiffness in the hourglass control is questionable in the case of a fluid.
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In any case, the results for compressible flow computations using a stiffness
control in [6] are not provably superior.

An artificial viscosity of type (130) is used in all computations, with c1 = 0.5
and c2 = 1.2.

7.3 CFL condition

The following constraint on the time step has been adopted:

∆t=CFL
h2

min

νtot +
√

ν2
tot + (cshmin)2

, (137)

where

νtot = νart + max(cshe, νhg) , (138)

and

νhg =



























τ∆tc2s , for VMS-I ,

τ̃∆tc2s , for VMS-II ,

cFBhecs , for FB ,

(139)

hmin = min
1≤A≤nnp

hA . (140)

Here, hmin is the minimum of the node distances. This definition of the time-
step constraint is similar to the one adopted in the LS-DYNA algorithm [15].

8 Numerical computations in two dimensions

8.1 Acoustic pulse computations and hourglass control

A very interesting test to check the effect of the hourglass control is to prop-
agate an acoustic pulse on a mesh in which the nodes are initially located
according to an hourglass pattern (see Fig. 3(a)). For this specific test, the
shock-capturing operator is not applied. The initial conditions are
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(a) Initial mesh with nodes positioned according to a typical hourglass pattern.

(b) Elevation plot of the x1-component of the velocity. Top: No hourglass con-
trol. Center: VMS-I. Bottom: FB.

(c) No hourglass control,
zoomed view from Fig-
ure 3(b).

(d) VMS-I hourglass con-
trol, zoomed view from
Figure 3(b).

(e) FB hourglass control,
zoomed view from Fig-
ure 3(b).

Fig. 3. Acoustic pulse test on an hourglass-shaped mesh. Notice the fluctuations in
the velocity at the foot of the left- and right-moving acoustic waves, in the case of
no hourglass control (Fig. 3(c)). These instabilities are absent when the VMS-I (Fig.
3(d)) or FB (Fig. 3(e)) stabilization is applied.

v0 =ω , (141)

ρ0 =1 + ω , (142)

p0 =1 + ω , (143)

ω(X)=











0.1(1 − cos((2π/λ)(X −Xoff )) , 0 ≤ X −Xoff ≤ λ ,

0 , otherwise ,
(144)

where λ, the wavelength is taken equal to one fourth of the length the domain
Ω0, and Xoff = −λ. As time progresses three waves are generated (see Fig.
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(a) Initial mesh.

(b) Density color plot at T = 0.7: VMS-I stabilization.

(c) Density color plot at T = 0.7: FB stabilization.

Fig. 4. Saltzmann test: Comparison between VMS-I and FB.

3(b)):

(1) A large amplitude acoustic wave moving from left to right.
(2) A smaller amplitude acoustic wave moving from right to left.
(3) A standing (i.e., motionless) entropy wave, characterized by a fluctuation

in density and internal energy (not visible in Fig. 3(b)).

It can be seen in Figure 3(c) that, when no control is applied, the hourglass
modes manifest themselves as oscillations in the velocity. Since the pressure is
approximated by piecewise functions which are constant over each element, it
is well-known that hourglass modes would arise even if multiple-point quadra-
ture were used. This fact was confirmed in computations, not reported here
for the sake of brevity. As the VMS-I stabilization is applied (Fig. 3(d)), the
instabilities disappear. For the purposed of comparison, Figure 3(e) shows the
results for the FB hourglass control. The results of the VMS-I and FB stabi-
lizations are virtually identical.
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Fig. 5. Saltzmann test: The VMS-I approach is compared against the exact solution.
The solution is plotted as a function of the coordinate x1. On the left column:
Pressure, density and internal energy. On the right column: Horizontal velocity v1,
vertical velocity v2, and artificial viscosity νart. The exact solution is represented by
the continuous line, the dots represent all the nodal values of the numerical solution
(the x2-coordinate locations are projected onto a single plane).

8.2 Saltzmann test

The Saltzmann test evaluates the ability of a distorted mesh to capture the
features of a planar shock. A rectangular domain of gas (γ = 5/3) is initially
at rest.

As it can be seen from the results in Figures 4(b) and 5), aside from some
over-/under-shoot near the boundaries, the numerical and exact solution show
fair agreement. A reason for the over-/under-shoot near the boundaries may
be the inaccurate representation of homogeneous gradients on general unstruc-
tured meshes for the piecewise constant approximation of the pressure [10]. An
analogous result is obtained when the Flanagan-Belytschko hourglass control
is applied instead of the multi-scale control (Fig. 4(c)).
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(b) Total energy relative error.

Fig. 6. Energy history for the two-dimensional Sedov test. Figure 6(a) shows the
time history of the kinetic (red) and internal (blue) energies, normalized with respect
to the initial total energy, E tot

0 . Figure 6(b) shows the time history of the relative
error on the total energy (E tot(t) − E tot

0 )/E tot
0 . Notice that the scale of the vertical

axis is multiplied by 10−14.

8.3 Sedov test

The Sedov test is a multi-dimensional blast test. An exact solution with cylin-
drical symmetry is derived with self-similarity arguments in [27].

The proposed version of the Sedov blast test is performed on the [0, 1.1] ×
[0, 1.1] quadrant, subdivided into 45×45 squares, and assesses the ability of the
method to respect the cylindrical symmetry. The initial mesh configuration,
for the sake of brevity, is not shown. The initial density has a uniform unit
distribution, γ = 1.4, and the energy is “zero” (actually, 10−14) everywhere,
except the first square zone on the bottom left corner of the quadrant, near
the origin, where it takes the value 409.7.

The boundary conditions for the Sedov test, which require vanishing normal
components of the velocities, imply that the total energy must be conserved
inside the computational domain. Figure 6(a) shows the time-history of the
total kinetic energy and the total internal energy, normalized with respect to
the initial total energy, E tot

0 = E tot(t0). Figure 6(b) shows that the relative
error in the total energy is on the order of 10−14, confirming that this quantity
is conserved throughout the simulation, within the machine precision.

Figure 7 shows a comparison of the results when no stabilization and VMS-I

stabilization are applied. The computation cannot be run to completion, with-
out stabilization, since an hourglass pattern develops (see Fig. 7(a)). As a
consequence, the distance between some of the nodes decreases progressively
during the simulation, forcing the same behavior in the time step, due to the
CFL constraint. On the contrary, the VMS-I approach runs to completion
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(a) Mesh deformation, no stabilization. (b) Mesh deformation, VMS-I.

(c) Density color plot, no stabilization. (d) Density color plot, VMS-I.

Fig. 7. Two-dimensional Sedov test. Left Column: No hourglass stabilization. Right
column: VMS-I with full-integration of the shock-capturing term. When no stabi-
lization is applied, it is clearly visible a pronounced hourglass pattern, which forces
the computation to stop before completion.

and with a very smooth mesh and density profiles (Figs. 7(b) and 7(d)). The
six pictures composing Figure 8 show an interesting comparison between the
effect of the VMS-I, VMS-II, and FB approaches in combination with differ-
ent quadrature rules for the artificial viscosity. The effects of non-linear cou-
pling between the artificial viscosity and the VMS-I stabilization term appear
clear in Figure 8(c). The best result in terms of smoothness of the final grid
configuration and absence of note-to-node oscillations is given by the VMS-I

method with full integration of the shock-capturing term (Fig. 8(d)). If the
VMS-I method is combined with single-point integration quadrature, the mesh
distortion increases considerably near the origin (Fig. 8(c)). For single-point
integration quadrature, the VMS-II method offers superior results (Fig. 8(e)).
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(a) FB, single-point integration
quadrature for σart.

(b) FB, four-point integration
quadrature for σart.

(c) VMS-I, single-point integration
quadrature for σart.

(d) VMS-I, four-point integration
quadrature for σart.

(e) VMS-II, single-point integration
quadrature for σart.

(f) VMS-II, four-point integration
quadrature for σart.

Fig. 8. Two-dimensional Sedov test, comparison of the FB, VMS-I, and VMS-II sta-
bilization approaches. Left column: Single-point integration for σart. Right column:
four-point integration for σart.
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(a) FB, cFB = 0.05, cτ = 7. (b) FB, cFB = 0.08, cτ = 7.

(c) FB, cFB = 0.12, cτ = 7. (d) FB, cFB = 0.15, cτ = 7.

Fig. 9. Two-dimensional Sedov test, zoomed view near the origin. Comparison of the
VMS-I and FB stabilization approaches, for different value of the constant parameter
in the FB hourglass viscosity. For all four pictures, FB in red, VMS-I in blue.

However, when VMS-II is combined with full-quadrature, probably because of
the incomplete definition of the pressure residual, the results are less accurate
than for the VMS-I method. Figures 8(a) and 8(b) show the results for the
FB hourglass control and a constant cFB = 0.15. The FB yields the best
results with single-point integration quadrature integration, but it is somewhat
inferior to the VMS-I method when full integration is performed. To see more
clearly this last point, Figure 9 shows a comparison of the VMS-I and the FB

approaches, as the constant in the FB viscosity spans the interval [0.05, 0.15].

For low values of cFB, an hourglass pattern, originating in the large element
in the lower left corner of the domain, is clearly visible in Figure 9(a). As
the constant cFB is increased (see Figs. 9(b), 9(c), and 9(d)), the hourglass
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Fig. 10. Two-dimensional Sedov test: Comparison with the exact solution. VMS-I

with fully-integrated artificial viscosity. On the left column, from the top down:
Pressure, density and internal energy. On the right column, from top down: Ra-
dial velocity vr, tangential velocity vt, and artificial viscosity νart. Each variable is
plotted as a function of the radius r =

√

x2
1 + x2

2. All solution points are rotated
around the origin to align on a single radial plane. Results in the case of single-point
integration for the artificial viscosity only, and single-point integration for the entire
stress tensor σ̃ with Flanagan-Belytschko hourglass control are virtually identical.

pattern, although increasingly more damped, persists.

Quantitative comparison between the VMS-I approach and the exact solution
to the Sedov problem are shown in Figure 10: When full integration is applied,
the VMS-II and FB yield very similar results. It is worthwhile to notice the
peak of the density value at approximately 5.5, against the exact value of 6.0.
This is a very accurate result, considering the coarseness of the initial mesh.
In the proposed test, perfect cylindrical symmetry is not expected, since, due
to the geometry of the mesh and initial/boundary conditions, the geometrical
axis of symmetry is the bi-secant of the quadrant. Notice then the perfectly
mirrored pattern in the solution for the tangential component of the velocity.
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(a) Mesh deformation.

(b) Density color plot.

Fig. 11. Two-dimensional Noh test on a Cartesian mesh, VMS-I with fully-integrated
artificial viscosity.
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Fig. 12. Two-dimensional Noh test: Comparison with the exact solution. VMS-I with
fully-integrated artificial viscosity. On the left column, from the top down: Pressure,
density and internal energy. On the right column, from top down: Radial velocity
vr, tangential velocity vt, and artificial viscosity νart. Each variable is plotted as a
function of the radius r =

√

x2
1 + x2

2. All solution points are rotated around the
origin to align on a single radial plane.

8.4 Noh test

The Noh [22] test is an implosion test. The velocity has an initial uniform radial
distribution (the velocity field points to the origin, and has unit magnitude,
except at the origin, where it is forced to zero). The initial energy should be
zero, but for practical purposes the value 10−14 is used. The constant γ = 5/3
is applied to all computations. The exact solution for the density behind the
shock is 16.0 and decays as 1 + t/r in front of the shock, where t is time and

r =
√

x2
1 + x2

2 is the radius. The pressure past the shock takes the value 16/3.
The shock speed is 1/3, so that at the final time of 0.6 in the computation,
the discontinuity is found at r = 0.2.

8.4.1 Noh test on a Cartesian quadrant

Similarly to the case of the Sedov test, a Cartesian quadrant [0, 1] × [0, 1]
is initially subdivided into 50 × 50 squares. Mesh deformation and density
color plots are presented in Figure 11: The smoothness of the shocked grid
is appreciable. Comparison with the exact solution are presented in Figure
12. The results show smoothness in all variables, and values of the plateaus
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(a) Trisector mesh. (b) Radial mesh.

Fig. 13. Two-dimensional Noh test on a radial trisector mesh. The initial mesh
is given by an hexagonal pattern at the center, with a transition to a radially
symmetric pattern towards the outside boundary, as shown in Figure 13(a). The
mesh is composed of three identical sectors, rotated by 120 and 240 degrees with
respect to one another. Figure 13(b) presents a radially symmetric mesh, composed
of 36 elements along the circumference, and 24 along the radius, which is used to
generate a reference solution.

for the density and pressure are in good agreement with the exact solution,
considering the coarseness of the mesh (for extensive studies on this problem,
see, e.g., [22]).

8.4.2 Noh test on a mesh with trisector symmetry

From this variant of the two-dimensional Noh test, very important conclusions
can be drawn on some aspects of the artificial viscosity implementation. In
particular, this is an interesting test for comparing the performance of σart

as defined in (126) with respect to more classical definition (127). Due to
the initial node configuration (see Fig. 13(a)), the shocked mesh tends to
produce homogenous shear modes along the secant lines at 0, 120, and 240
degrees. Shear-induced, “jet-like” patterns can be clearly seen in Figure 14.
The hourglass control is no help in this case, since pure shear motion is point-
wise divergence-free, and two-dimensional hourglass modes are not divergence-
free. The situation is much improved in the case when the artificial stress σart

is defined according to (126). As can be seen in Figure 15, shear motion is
appropriately damped in the shock layer, and does not propagate to the rest
of the flow. Consequently, mesh smoothness, and the accuracy of the solution
are much improved (see Fig. 16).
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(a) Mesh deformation.

(b) Density color plot.

Fig. 14. Two-dimensional Noh test on the trisector mesh. FB with the artificial
stress tensor σart defined as in (127).
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(a) Mesh deformation.

(b) Density color plot.

Fig. 15. Two-dimensional Noh test on the trisector mesh. VMS-I with the artificial
stress tensor σart is defined as in (126). Very similar results are obtained with FB.
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Fig. 16. Two-dimensional Noh test: Comparison with the exact solution (continuous
red curve) of the results of Figure 14 (red dots) and Figure 15 (blue dots). The
continuous black line represents the solution on the radially symmetric mesh of
Figure 13(b), using the tensor artificial viscosity (126). The components of the
solution are presented as in Figure 12.

9 Summary

A new multi-scale method for Lagrangian shock hydrodynamics has been pre-
sented. The formulation of the proposed method in the context of Q1/P0
finite elements makes it widely applicable to state-of the-practice hydrody-
namic algorithms. The proposed method builds on a mid-point time integrator
implemented as a conservative predictor/multicorrector scheme.

The stabilization augments the original Galerkin formulation without per-
turbing its global conservation properties. The multi-scale approach leads to a
consistent method, in which instabilities (typically, of hourglass type) are con-
trolled by the stabilizing effect of an appropriate pressure residual. By rational
thermodynamic arguments, it has been shown that the pressure residual is tied
to the Clausius-Duhem inequality, and, effectively, measures the creation of
entropy due to instabilities in the numerical discretization. These arguments
imply the physical consistency of the multi-scale stabilization. Connections
with previous work on physical hourglass stabilization have been drawn. How-
ever, the proposed approach takes the discussion to a new level, since, in past
developments, many aspects of the interplay between physics and numerics
have been overlooked.
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Numerical results in two dimensions in the case of compressible gas dynamics
show that the method has comparable and in some cases superior perfor-
mance to state-of-the-practice techniques for hourglass control. In the case
of three-dimensional flows, divergence-free, hourglass modes associated with
non-homogeneous shear may be present and need stabilization. This fact pin-
points a major disadvantage in fluid computations of the Q1/P0 element,
which requires stabilization of fine-scale shear modes, although inviscid flu-
ids have no shear-strength or shear-damping mechanisms. In particular, the
pressure residual cannot detect the divergence-free unstable hourglass modes,
and additional stabilization mechanisms acting on the deviator of the velocity
gradient are required [26]. In this context, the multi-scale analysis provides a
new perspective, and allows for a more flexible design of hourglass viscosities
aimed at damping such instabilities. In light of the encouraging exploratory
simulations in [26], more work is needed to fully investigate the robustness and
accuracy properties of the proposed framework for three-dimensional compu-
tations of inviscid fluids.

In the case of solids, instead, the “plain-vanilla” multi-scale approach should
incorporate all the necessary stabilization mechanism for Q1/P0 formulations
in two an three space dimensions. This is due to the fact that, for materi-
als with shear strength, the stabilizing residual is given by the stress update
equation, which provides the necessary physical mechanisms for the control of
the entire space of hourglass modes.

Of great importance are also the extensions of the proposed multi-scale ap-
proach to more complex computations, involving multi-material, multi-physics
applications.
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