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Abstract

In recent years multiscale approaches have had a tremendous impact on the analysis of

complex problems in Science and Engineering. The multiscale concept originally proposed

by T.J.R. Hughes and co-workers is adopted and extended to new applications. The key

idea of the multiscale paradigm is to decompose the solution into coarse scales (directly

simulated) and fine scales (modeled or omitted in the numerical simulations). The effect

of the fine scales on the coarse scales is exploited by means of approximate, local Green’s

function problems, which ultimately yield a subgrid-scale operator in the coarse-scale

equations, in the form of a subgrid model and/or stabilization term.

This thesis is organized in three parts: Lagrangian hydrodynamics; multiscale Dis-

continuous Galerkin methods for advection-diffusion problems; and large eddy simulation

of turbulence. More specifically, in Part I a new multiscale streamline-upwinded Petrov-

Galerkin (SUPG) method is developed for Lagrangian hydrodynamic flow simulations.

The multiscale interpretation of SUPG methods is also exploited to design a new artificial

viscosity operator, in order to obtain a stable discontinuity capturing scheme. In Part

II, the multiscale view is used to develop a new Discontinuous Galerkin finite element

method for the advection-diffusion equation, in which the continuous and discontinuous

representations of the solution are linked via local multiscale problems. Finally, in Part

III, the multiscale analysis is applied to turbulent flow simulations, and a proposed new

class of large eddy simulation models is tested with good results in transitional turbulent

flows.

The work presented illustrates that the multiscale framework can provide a unifying

view within which many apparently different phenomena can be analyzed.
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Chapter 1

Introduction

In the past thirty years the role of multiscale approaches in the analysis of complex

problems in Science and Engineering has grown in importance considerably.

The multiscale concept originally proposed by Hughes et al. [34] is adopted and ex-

tended to new applications. A decomposition of the solution of a system of equations

into coarse scales (directly simulated) and fine scales (modeled or omitted in the numer-

ical simulations) is the key idea of the multiscale paradigm. The effect of the fine scales

on the coarse-scale dynamics is accounted for through local Green’s function problems,

ultimately responsible for the generation of a subgrid model and/or stabilization term in

the equations for the coarse scales.

This thesis is organized in three parts: Lagrangian hydrodynamics; multiscale discon-

tinuous Galerkin methods for advection-diffusion problems; and large eddy simulation of

turbulence. A detailed introduction to each specific part follows.

The work presented illustrates that the multiscale framework can provide a unify-

ing analysis and modeling tool for complex dynamical systems, so that each part of

the present dissertation can be intended as a particular manifestation of the multiscale

paradigm.

Part I: HYDRO-SUPG for Shock Hydrodynamics

In Part I of this dissertation thesis, a new, multiscale, Streamline Upwinded Petrov-

Galerkin (SUPG) method for the simulation of Lagrangian hydrodynamic flows will be

1
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presented. In the literature, algorithms for Lagrangian hydrodynamics are termed hy-

drocodes, which suggests the name HYDRO-SUPG for the proposed method. The typical

field of application of such algorithms is time-accurate, transient analysis of mechanical

systems undergoing high-rate, large deformations.

In hydrodynamic flows, fields of kinematic and thermodynamic variables are expressed

in a Lagrangian reference frame, and characterize a medium with no shear strength, so

that only pressure (normal) stresses can be applied to the material. In this regard, any

mechanical system for which the pressure stresses are dominant by orders of magnitude

with respect to shear stresses can be considered a hydrodynamic flow. In particular, the

terminology “hydrodynamic” does not refer to an implied incompressibility constraint,

and most of the hydrocode simulations are compressible flow computations. In more

recent years, the definition of Lagrangian hydrodynamics has been weakened to include

media with shear strength and Arbitrary Eulerian Lagrangian formulations in some in-

stances, but throughout the following chapters, the discussion will be limited to the strict

definition.

State of the art hydrocodes are based upon a continuous, piecewise-linear, node-

centered approximation of the kinematic variables (displacements and velocities), while

they hinge upon a discontinuous, piecewise-constant, cell-centered discretization for the

thermodynamic variables (such as density, internal energy, pressure, etc.). Such choice of

function spaces is clearly motivated by the observation that a combination of piecewise

linear kinematic variables and staggered, piecewise constant thermodynamic variables

leads to overall second-order accuracy in space. Furthermore, the piecewise-constant in-

terpolation of thermodynamic quantities entails conservation properties typical of finite

volume formulations, and finally, second-order temporal accuracy is obtained by stagger-

ing in time the velocities with respect to all other variables. Because this formulation

is intrinsically unstable in the presence of shock discontinuities, a stabilizing artificial

viscosity was first introduced by Von Neumann and Richtmyer [66], proportional to the

square of the mesh spacing and the velocity gradients. The original idea of Von Neu-

mann and Richtmyer was to smooth the solution in the presence of shocks, allowing coarse

meshes to properly capture the entropy solution (i.e., the solution satisfying conservation

laws and the entropy condition), while maintaining accuracy (by scaling the viscosity
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with the square of the mesh spacing). This very ingenious concept was the key factor

in the broad success of hydrocode technology, together with ease of implementation in

multidimensional computations. Hydrocodes are still very competitive with respect to

the most advanced compressible flow solvers, since the latter present problematic issues

in their generalization to multiple dimensions.

Hydrocodes were born during the years of the Manhattan Project at Los Alamos [66],

but they soon found application in the most diverse fields, from blast computations to

crash and contact dynamics simulations (widely used in the car and construction industry

as well as in earthquake engineering), from semiconductor devices design to Astrophysics.

In the following discussion, the focus will be on engineering applications.

Due to the limited availability of computational resources, the initial implementations

of the late 40’s and 50’s, made extensive use of symmetries (planar, cylindrical, or spher-

ical) in order to reduce a multidimensional problem to a one-dimensional problem. As

computers grew more and more powerful, the process of extending hydrocodes to com-

plex, fully multi-dimensional geometries, witnessed the rise of a number of problematic

issues.

A first problem was due to the detection of so-called acoustic instabilities in the

flows, particularly evident in multidimensional calculations, although already present in

the one-dimensional case. Such instabilities appear typically in the form of a tail of node-

to-node oscillations past shocks. Kuropatenko [47] showed that a Godunov-type Riemann

solver for Lagrangian hydrodynamics entails the generation of an artificial viscosity term

scaling as the Von Neumann-Richtmyer viscosity in the limit for strong shocks and as the

product of the local speed of sound and the mesh spacing in the limit for weak shocks:

we will refer to the latter as the “Kuropatenko scaling”. The modification of the original

idea of Von Neumann-Richtmyer using the Kuropatenko scaling produces a correction

only first-order accurate, but since it is applied only to the shock region, the overall

accuracy is good.

Further developments in the field of artificial viscosities have led to the incorporation

of Total Variation Diminishing (TVD), and Total Variation Bounded (TVB) approaches

into the original viscosities. In these approaches, the strategy is to use a low- (first-) order

viscosity which ensures robustness under all practical conditions and build a higher-order
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viscosity by applying limiting to the Von Neumann-Richtmyer scaling of the viscosity.

A second class of issues is related to manifestations of the Ladizenskaya-Brezzi-

Babǔska (LBB) condition, in term of so-called hourglass instabilities and element locking.

Hourglass modes are node-to-node oscillations that affect simulations on quadrilat-

erals and hexahedra, due to zero-energy modes that cannot be “sensed” by the degrees

of freedom of the elements whenever low order quadratures are applied. In production

hydrocodes, these modes are filtered out or ad hoc hourglass control is applied.

Locking is a phenomenon arising whenever the material is subject to an incompress-

ibility constraint, either due to a limit behavior (as in plasticity) or the intrinsic consti-

tutive laws of certain materials (e.g., rubber). If triangular or tetrahedral elements are

used, then the displacements permitted by the degrees-of-freedom of the element may

not be sufficient to ensure the correct kinematics. As a consequence, the element locks,

that is, does not deform according to the physical displacement field but allows only rigid

translation (which can reduce to no motion if one edge of the element is on a boundary

where zero displacement conditions are enforced). Therefore, the locking phenomenon

is usually associated with the intrinsically higher stiffness that triangular/tetrahedral

elements have with respect to quadrilateral/hexahedral elements of equal order.

Occurrence of locking and intense acoustic instabilities for triangular elements are

the main reasons why most of production hydrocodes are based on quadrilateral and

hexahedral elements. However, when the computations involve very complex geometries,

the tool of automatic grid generation on tetrahedral meshes can represent a significant

advantage in the overall analysis and design process.

In the present dissertation, a completely new approach is proposed, based on the mul-

tiscale paradigm of Hughes et al. [34], and its potential is demonstrated with numerical

tests.

Returning for a moment to the issue of acoustic instabilities, a multiscale analysis

as in [34] – not reported here due to lengthy, although not conceptually complex, com-

putations – reveals that the locally-linearized sub-grid scale problem for the Lagrangian

hydrodynamic systems is governed by a wave propagation Green’s function kernel.

In practice, the multiscale paradigm is based upon a splitting of the trial- and test-

function spaces into subspaces of coarse (i.e., numerically resolved) scales and fine (i.e.,
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sub-grid) scales. The subspaces are assumed linearly independent, so that the original

weak formulation of the hydrodynamic equations can be decomposed into a coarse (re-

solved) scale problem and a sub-grid (unresolved) scale problem. For nonlinear systems,

the multiscale analysis involves a local (i.e., element-by-element) linearization of the

subgrid-scale problem. Subsequent to linearization, a formal solution for the subgrid-

scale component is found in terms of the residual of the coarse-scale solution. This

technique can be thought of as a local linearization followed by the application of an

infinite-dimensional Shur’s complement approach.

The resolvent operator for the sub-grid problem is obviously an integral operator,

expressed in terms of a kernel which is the small scale Green’s function operator. In the

particular case of Lagrangian hydrodynamics such kernel is given by the Green’s function

for the wave equation. Now, SUPG stabilization terms in the coarse scale equations can

be seen as terms arising from an approximation of the sub-grid resolvent operator.

Therefore, not only the multiscale framework reveals that the Kuropatenko analysis

is correct and that instability of acoustic nature can arise in hydrodynamic flows, but

also provides a way to avoid such instabilities, since all variants of SUPG stabilization

terms can be interpreted as approximations to the resolvent operator for the sub-grid

problem.

The great advantage of an SUPG stabilization is that the it can be proved to provide

optimal error estimates, so that stability does not compromise accuracy.

Additionally, it is well-known from the extensive literature on the subject that SUPG

stabilized methods do not suffer from hourglassing or locking (for this second issue,

refer to the work of Miniatty and co-workers [45, 50–52]), so that the potential for new

generation hydrocodes on unstructured tetrahedral or hexahedral meshes appears clear.

A simple SUPG method is however not sufficient in the stabilization of strong shocks:

for this purpose, a new multiscale viscosity will be presented. The key feature that

distinguishes the proposed viscosity from all the viscosities previously adopted in the

hydrocode literature, is the fact that it is residual-based: this will ensure the viscosity

not to perturb the accuracy of the method in the case of smooth flows.

The rest of the exposition is organized as follows: in chapter 2 the basic equations

of Lagrangian hydrodynamics are introduced, in both integral and differential form. A
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review of previous work on artificial viscosities is outlined in chapter 3. The variational

formulation is established in chapter 4, while chapter 5 is devoted to the design of the

stabilization terms. The analysis of a novel discontinuity capturing operator, based on

multiscale concepts, is presented in chapter 6. Chapter 7 summarizes a predictor/multi-

corrector algorithm used for time integration, and, finally, numerical results are presented

in chapter 8.

Part II: A Multiscale Link between CG/DG Worlds

The discontinuous Galerkin (DG) method was developed for problems of neutron trans-

port approximately 30 years ago by Reed and Hill [61]. Early works of note include the

paper of Lesaint and Raviart [48] on the same subject, and the paper of Johnson, Navert

and Pitkaranta [44] who, in the context of advection dominated processes, synthesized

it with stabilized methods and performed a complete mathematical analysis. The inter-

est in DG developed very slowly but has accelerated significantly in recent years. The

compendium of papers in [11] provides valuable summaries of the current state-of-the-art

and introductions to the literature.

The DG method is felt to have advantages of robustness over the classical continuous

Galerkin (CG) method, especially for first-order differential operators associated with

hyperbolic equations, and better conditioning of resultant linear equation systems leading

to improved iterative performance. There is also an opportunity to link DG with the

numerical fluxes (i.e., solutions of the one-dimensional Riemann problem) used in finite

volume methods and develop higher-order accurate procedures for wave-propagation.

These attributes have led to numerous applications in fluids where the CG method has

often proved inadequate. There has also been recent interest in applying DG to elliptic

problems so that advective-diffusive phenomena can be modeled. For a review of work in

this area, see Arnold et al. [1]. Recent studies include Brezzi et al. [4] , Dawson[6], and

Hughes, Masud and Wan [36]. There has been very little work in structural mechanics

so far but interest is beginning to grow. See for example, Engel et al.[13] and Brezzi et

al. [5].

Despite the increased interest in DG methods, there are shortcomings that limit their
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practical utility. Foremost among these is the size of the DG equation system for in-

terpolations linear and higher. By virtue of the fact the trial functions are completely

discontinuous, there is no sharing of degrees-of-freedom at element boundaries. Conse-

quently, the size of the solution space “explodes”. For example, assuming about seven

linear tetrahedral elements per node, the DG system involves approximately 28 times the

number of unknowns of the corresponding CG system (see Hughes et al. [33]). Storage

and solution cost are, obviously, adversely affected by this issue, which seems the main

reason for the small commercial impact the DG method has had so far. In addition, it

has been observed that the robustness of DG is somewhat exaggerated. Simple, one-

dimensional examples of pure advection and pure diffusion were shown to give rise to

spurious oscillations in Hughes et al. [33].

The proposed new approach begins with a typical continuous finite element space.

By releasing all continuity requirements, we associate to it a completely discontinuous

space. Then we apply standard, global DG formulations to the discontinuous space. The

unique feature of our formulation is the use of local, element-wise problems, employing

the same DG method, to define the discontinuous field in terms of the degrees-of-freedom

of the continuous field. The local problems employ weakly imposed boundary conditions

and the solutions are still discontinuous but they are parameterized by the degrees-of-

freedom of the much smaller continuous space. The global problem has the equation size

and structure of a CG method but it is indeed a DG method. The local problems serve

to project the solution into a reduced dimensional manifold that expresses the partial

differential structure of the problem considered. This aspect is seen to be related to

methods used in wave propagation problems, relying on numerical fluxes inspired by

local Riemann solutions but here the local problems are solved numerically using simple

basis functions. The interesting result is that the new method gives more accurate and

robust results than the global DG method, in particular, eliminating the deficiencies noted

by Hughes et al. [33] previously, and, at the same time, the storage and computational

effort are significantly reduced. As may be obvious from the description, the method has

a multiscale interpretation.

The new method is demonstrated on simple test cases of advection-diffusion. Con-

vergence studies for this case are also presented. However, the ideas are quite general
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and may be applied to arbitrary partial differential equation systems. Chapter 9 is de-

voted to the introduction of the advection-diffusion problem, to prepare the ground for

the global DG formulation presented in chapter 10. Three variants of the discretization

of the Laplace operator will be analyzed: the symmetric, neutral, and skew-symmetric

form. The numerical results of chapter 12 will show that the symmetric form leads to

superior results in both the diffusive and convective limit.

Part III: Multiscale Methods in Turbulence

Variational multiscale concepts for Large Eddy Simulation (LES) were first introduced

in [28]. The basic idea was to use variational projections in place of the traditional

filtered equations approach and to focus modeling on fine-scale equations rather than

coarse-scale equations. Avoidance of filters eliminates many difficulties associated with

the traditional approach, namely, inhomogeneous non-commutative filters necessary for

wall-bounded flows, use of complex filtered quantities in compressible flows, problem, etc.

In addition, modeling confined to the fine-scale equations retains numerical consis-

tency in the coarse-scale equations and thus permits full rate-of-convergence of the un-

derlying numerical method in contrast with the usual approach which limits convergence

rate due to artificial viscosity effects in the fully resolved scales (O(h4/3) in the case of

Smagorinsky-type models).

Initial versions of the variational multiscale method focused on dividing resolved scales

into coarse and fine designations and including eddy viscosities, inspired by traditional

models, only in the fine scale equations and acting only on the fine scales. This version

was studied in [29, 30, 54] and found to work very well on homogeneous isotropic flows

and fully-developed equilibrium and non-equilibrium turbulent channel flows. Static eddy

viscosity models were employed in these studies but superior results were subsequently

obtained through the use of dynamic models, as reported in [26] and [31]. Good numerical

results were obtained with this approach by other of investigators [12, 43, 59, 60, 68].

Particular mention should be made of the work of Farhat and Koobus [15], and Koobus

and Farhat [46], who have implemented this procedure in an unstructured mesh, finite

volume, compressible flow code, and applied it very successfully to a number of complex

industrial flows.
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This initial version of the variational multiscale concept appears to have already

demonstrated its viability and practical utility and is already arguably superior to tradi-

tional LES turbulence modeling approaches. Nevertheless, there is still significant room

for improvement. The use of traditional eddy viscosities to represent fine-scale dissipa-

tion under all conditions may be an inefficient mechanism in some instances. Employing

an eddy viscosity in the resolved fine scales to represent turbulent dissipation introduces

a consistency error which results in the resolved fine scales being “sacrificed” to retain

full consistency in the coarse scales. This procedure is felt to be “inefficient” because

approximately 7/8 of the resolved scales are typically ascribed to the fine scales.

Another shortcoming noted for the initial version of the variational multiscale method

is too small an energy transfer to unresolved modes when the discretization is very coarse

(see, e.g., [31]). This phenomenon is also occasionally noted for some traditional models,

such as the dynamic Smagorinsky model on coarse meshes [31] but seems to be somewhat

more pronounced for the multiscale version of the dynamic model.

The objectives of recent multiscale work have been to capture all scales consistency

with a technique that does not rely on an eddy viscosity. The following chapters will de-

scribe a new variational multiscale formulation which makes considerable progress toward

these goals. The basic ingredients of the new technique are the multiscale decomposition

of the solution and an asymptotic expansion applied to the local subgrid-scale problems.

Initiatory numerical results demonstrate that, under certain conditions, the technique

holds the promise of much more accurate and efficient LES procedures, in which the role

of eddy viscosities will be reduced.

The proposed method bridges the gap between turbulence modeling and Green’s func-

tion techniques typical of SUPG stabilization, as will be clear in the following discussion.

These newer variational multiscale ideas, and the older variants, were implemented in a

finite volume code that has enjoyed widespread use in turbulence simulations (see [55]).

Following along the lines of the DNS investigations of Durbin and Jacobs [40, 41], by-

pass transition of a boundary layer is examined from the point of view of the variational

multiscale and classical LES.
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The organization of the exposition is as follows. Chapter 13 presents the general con-

cepts of the multiscale approach, with emphasis on the Navier-Stokes equations. Chap-

ter 14 represents an instructive example on how the concept is applied to the Burgers

equation, a simplified model that can highlight how the dynamics of the small scales is

characterized by the asymptotic expansion concept. Finally, chapter 15 is devoted to the

application of the new concept to large eddy simulation studies of bypass transition to

turbulence.
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Chapter 2

Equations for Lagrangian

Hydrodynamics

In this chapter, conservation laws in Lagrangian coordinates are derived. Although going

through the detailed derivation may seem pedantic to the expert researcher, this step is

considered necessary. In fact, standard hydrocode formulations use simplifications of

the basic equations, which hinge upon the assumption of piecewise-constant fields in

space/time for the thermodynamic variables. Due to the fact that in the newly proposed

formulation the thermodynamic variables are approximated by continuous piecewise-

linear functions, the usual simplifications no longer apply. Unless the correct conservative

form of the equations is adopted, one cannot expect conservation properties to hold true.

2.1 General conservation laws

Let us define the transformation ϕ from a reference configuration X (in our case the

initial configuration state) to another configuration state x(X, t), the so-called current

configuration, (in our case the Eulerian coordinate frame),

ϕ : V (open) ∈ R
nd → R

nd (2.1)

X 7→ x = ϕ(X, t) (2.2)

13



14 CHAPTER 2. EQUATIONS FOR LAGRANGIAN HYDRODYNAMICS

where nd is the number of spatial dimensions. The deformation gradient is defined

as F = Grad ϕ, that is FiA =
∂xi

∂XA

, i, A ∈ {1, . . . , nd}, and J = detF is the Jacobian

determinant of the transformation. (The Einstein summation convention for repeated

indices is used throughout.)

Starting in a very abstract framework, we can write a general master balance law:

d

dt

(∫

V

ρ A dV
)

=

∫

V

ρ B dV +

∫

S

C · n dS (2.3)

where ρ is the density, and S = ∂V is the boundary of the current configuration domain V.

Note also that V(X, t) = ϕ(V ), S(X , t) = ϕ(S). A, B, and C will be defined later, on a

case-by-case basis: in particular, A is the specific (i.e. per unit mass) conserved quantity,

B is its specific rate of production/destruction, and C is the flux across the boundary S.

Specifically, A and B can be either scalar or vector quantities, and, correspondingly, C
will be either a vector or tensor quantity.

It will prove useful to introduce the following formulas from classical continuum me-

chanics:

∫

V

. . . dV =

∫

V

. . . JdV (2.4)
∫

S

. . . n dS =

∫

S

. . . JF−T NdS

=

∫

S

. . . cofF NdS (Piola Transformation) (2.5)

where V is the volume occupied by some portion of material in the reference configuration,

n is the outward normal to the surface S in the current (transformed) configuration, while

N is the outward normal to the surface S of the body in the reference configuration. In

index notation, (2.5) reads

nidS = J
∂XA

∂xi

NAdS (2.6)
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Let us apply the master balance law (2.3) with A = 1, B = 0, C = 0. Using (2.4), we

readily obtain the mass conservation law:

d

dt

(∫

V

ρdV
)

=
d

dt

(∫

V

ρJdV

)
= 0 (2.7)

Equation (2.7) holds for any volume V , and, in Lagrangian coordinates, the volume V ,

associated to a mass in the initial (reference) configuration, is not a function of time.

Therefore:

ρ J = ρ0(X) (2.8)

Note that ρ0(X) represents the reference configuration density, but in a Lagrangian

setting, it is also the density distribution of the initial state of the system, that is

ρ(X, t = 0) = ρ0(X) (2.9)

The momentum equation can be obtained similarly by setting:

A = v , the velocity,

B = g , the internal or body forces,

C = σ , the tensor representing the surface momentum fluxes, or surface stresses.

d

dt

(∫

V

ρ v dV
)

=

∫

V

ρ g dV +

∫

S

σn dS (2.10)

By transforming (2.10) to the original configuration and using (2.8), it is easily seen that

d

dt

(∫

V

ρ0 v dV

)
=

∫

V

ρ0 g dV +

∫

S

σF−T NJ dS

=

∫

V

ρ0 g dV +

∫

S

PN dS (2.11)

where P = JσF−T = σ cofF is the first Piola stress tensor. Again, (2.11) must hold

for any volume V , and, in addition,

d

dt

(∫

V (X)

ρ0(X) v dV

)
=

∫

V (X)

ρ0(X) v̇ dV
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Applying the Gauss divergence theorem in the reference configuration yields

ρ0 v̇ = ρ0 g + DivP (2.12)

or, in index notation,

ρ0 v̇i = ρ0 gi +
∂PiA

∂XA
(2.13)

The energy equation is obtained by setting:

A = E = e+ v2

2
, the specific total energy (the sum of the internal energy e and the

kinetic energy v2

2
= vivi

2
).

B = g · v + r , the sum of g · v, the specific power due to body forces, and the specific

rate of internal energy production r,

C = v · σ + q , the sum of v · σ, the power per unit area due to forces acting on the

surface S, and the heat fluxes q transmitted across S.

d

dt

(∫

V

ρ E dV
)

=

∫

V

ρ (v · g + r) dV +

∫

S

(v σ + q) · n dS (2.14)

Analogously to the case of (2.11), for the reference configuration, (2.14) reads

d

dt

(∫

V

ρ0 E dV

)
=

∫

V

ρ0 (v · g + r) dV +

∫

S

(vP + Q) ·N dS (2.15)

where Q = JqF−T = q cofF is the Piola-transformed heat flux. Application of the

divergence theorem in the reference configuration and evaluation of the dependencies on

X and t of the various quantities yield:

ρ0 Ė = ρ0 g · v + ρ0 r + Div(v · P + Q) (2.16)

or

ρ0 Ė = ρ0 (ė+ viv̇i) = ρ0 givi + ρ0 r +
∂

∂XA

(viPiA +QA) (2.17)
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So far, the equations have been formulated under the only assumption of the La-

grangian reference frame. Constitutive laws need to be specified: In the next section,

attention will be focused on the hydrodynamic systems.

2.2 Hydrodynamics principles

The hydrodynamic flow assumption implies a number of simplifications in the general

formulation given by (2.8), (2.12), and (2.16). For hydrodynamic flows, shear stresses

are neglected and the following constitutive relation is used for the stress tensor σ:

σ = −pInd×nd
(2.18)

or, in index notation,

σij = −p δij (2.19)

with δij , the Kronecker tensor. The constitutive law for the pressure, or equation of state

(EOS), can be cast in the so-called Mie-Grüneisen form, namely:

p = f1(ρ; ρr, er) + f2(ρ; ρr, er) e (2.20)

where ρr and er are fixed reference thermodynamic states. Equation (2.20) can be suc-

cinctly expressed as

p = f1(ρ) + f2(ρ) e (2.21)

If f1 = 0 and f2 = (γ − 1) ρ, the equation of state for ideal gases is recovered:

p = (γ − 1) ρ e (2.22)

In the following derivations, the general form (2.21) will be used, since it incorporates

into a unique framework constitutive laws of very different nature, such as hydrodynamic

fluids, ideal gases, co-volume gases, elastic-plastic solids with no strength (situation that

can be achieved when bulk stresses in the material are larger than shear stresses by orders

of magnitude), high explosives, etc.
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It will prove very useful, for the derivations in the next sections, to recast (2.21) as

follows

e = g1(ρ) + g2(ρ) p (2.23)

g1 = −f1

f2
(2.24)

g2 =
1

f2

(2.25)

and also introduce the derivatives

g′1 =
∂g1

∂ρ
= −f

′
1f2 − f1f

′
2

f 2
2

= −f
′
1

f2

+
f1f

′
2

f 2
2

(2.26)

g′2 =
∂g2

∂ρ
= − f

′
2

f 2
2

(2.27)

For ideal gases, (2.24)–(2.27) read

g1 = 0 (2.28)

g2 =
1

(γ − 1)ρ
(2.29)

g′1 = 0 (2.30)

g′2 = − 1

(γ − 1)ρ2
(2.31)

In order to close the equations (which contain terms in F and J), it is necessary

to have information regarding the deformation undergone by the original configuration,

through the following quantities:

u ≡ x−X = ϕ(X, t)−X (displacement field definition) (2.32)

F ≡ ∂ϕ

∂X
= 1 +

∂u

∂X
(2.33)

J ≡ det(F ) (2.34)

with the underlaying assumption that J > 0, that is, volume inversions are not allowed.

The classical displacements/velocities relation

u̇ = v (2.35)
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closes the kinematics of the problem. We will also assume, for the sake of simplicity, the

absence of body forces, heat transfer, and internal sources of energy, so that the complete

set of equations – written in conservative form – amounts to:

u̇ = v (2.36)

ρ0 v̇ = DivP (2.37)

ρ0 Ė = Div(v ·P ) (2.38)

ρ J = ρ0 (2.39)

It is important to note a fact (see for example Ciarlet[10] for a proof):

DivP = Div(σ cofF )

= (Grad σ) cofF + σ(Div cofF )

= Jdiv σ (2.40)

where div is the divergence in the deformed configuration reference system. The so-called

Piola identity

Div cofF ≡ 0 (2.41)

was used in the derivation of (2.40). This result will be very useful in order to simplify

the hydrodynamics equations in multiple dimensions.

2.3 The one-dimensional hydrodynamics equations

The one-dimensional hydrodynamic flow assumption allows further simplification of equa-

tions (2.36)–(2.39): In the one dimensional case, X is actually a scalar, so that:

X ≡ X1 = X (2.42)

x ≡ x1 = x = ϕ(X, t) (2.43)

u ≡ x−X = ϕ(X, t)−X = u (2.44)
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F ≡ F1 = F =
∂ϕ

∂X
= 1 +

∂u

∂X
(2.45)

J ≡ det(F ) =
∂ϕ

∂X
≡ F (2.46)

In particular, (2.46) leads to the following simplification for the Piola stress tensor:

P = JσF−T = JσJ−1 = −p (2.47)

where J−1 is always well defined, since the mapping ϕ is always invertible.

The complete set of equations is given by

u̇ = v (2.48)

ρ0 v̇ = − ∂p

∂X
(2.49)

ρ0 Ė = − ∂

∂X
(vp) (2.50)

ρ J = ρ0 (2.51)

Equations (2.48-2.50) can be recast into vector form as

U̇ + F 1,1 + Z = 0 (2.52)

where F 1,1 =
∂F 1

∂X1

, and

U =





u

ρ0v

ρ0E




F 1 =





0

p

pv




Z =





−v
0

0




(2.53)

It will be very useful for future derivations, to rearrange equations (2.48-2.50) in quasi-

linear form, as follows:

A0Ẏ + A1Y ,1 + CY = 0 (2.54)

where

A0 =
∂U

∂Y
A1 =

∂F 1

∂Y
(2.55)
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are the Jacobian matrices for the temporal and spatial fluxes, respectively. We still

have to specify which variables are going to be the entries of Y . It becomes clear by just

performing a few attempts, that if continuous piecewise-linear functions for the kinematic

and at least one of the thermodynamic variables are to be used, then the pressure is the

natural candidate in the definition of Y .

In fact, alternative options, such as conservation variables, for which the total energy

E is chosen as the last entry in Y , cause the problem of taking derivatives of J with

respect to X when computing the matrix A1. The first derivative of J with respect to

X involves the second derivative of the displacement u with respect to X, which would

be defined as a Dirac distribution over element edges if piecewise linear interpolation is

used.

The following definition of Y will be then used, corresponding to some sort of primitive

variables formulation:

Y =





u

v

p




(2.56)

The following algebraic manipulations apply to Ė:

ρ0Ė = ρ0(ė+ vv̇)

= ρ0 ( (g′1 + g′2 p)ρ̇ + g2ṗ ) + ρ0vv̇ ( using (2.23), (2.26), (2.27) )

= −(g′1 + g′2 p)
ρ2

0

J2
J̇ + ρ0 g2ṗ+ ρ0vv̇ ( using (2.8) )

= ρ0 g2ṗ− (g′1 + g′2 p)
ρ2

0

J2

∂v

∂X
+ ρ0vv̇ (2.57)

where we have used the fact that J̇ = ∂u̇
∂X

= ∂v
∂X

.

The second term on the last line of (2.57) does not contain a temporal derivative,

and is therefore incorporated in the definition of the Jacobian A1. Rearrangement of the

terms according to the structure of (2.54), yields:

A0 =





1 0 0

0 ρ0 0

0 ρ0v ρ0 g2

(
ρ0

J

)



 , A1 =





0 0 0

0 0 1

0 Ψ
(

ρ0

J
, p
)

v



 , C =





0 −1 0

0 0 0

0 0 0



 (2.58)
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where, using (2.8),

Ψ
(ρ0

J
, p
)

= p −
(ρ0

J

)2 (
g′1

(ρ0

J

)
+ g′2

(ρ0

J

)
p
)

(2.59)

In the case of an ideal gas, using (2.8), (2.23), (2.30), (2.31), equation (2.57) leads to

ρ0Ė =
J

γ − 1
ṗ+

p

γ − 1

∂v

∂X
+ ρ0vv̇ (2.60)

so that (2.58) become

A0 =





1 0 0

0 ρ0 0

0 ρ0v
J

γ−1




, A1 =





0 0 0

0 0 1

0 γ
γ−1

p v




(2.61)

2.4 The two-dimensional hydrodynamics equations

The extension to the multidimensional case is now straightforward, having already prac-

ticed, in the one-dimensional case, the typical manipulations involved. Because the

computations are not very onerous in the case of two-dimensional flow, it would be good

practice to start from there in the effort to generalize the current approach to higher

dimensions.

The reader will soon realize that the whole primitive variables approach hinges on

the fact that the relation between total energy E and pressure p is never much more

complicated than the result of the algebraic manipulations in (2.57). This is truly the

key to the multidimensional generalization, leading to important simplifications in the

form of the stabilization terms, as the reader will see in Section 5.

The following notation is adopted for the two-dimensional case:

X ≡



 X1

X2



 (2.62)

x ≡



 x1

x2



 =



 ϕ1(X1, X2, t)

ϕ2(X1, X2, t)



 (2.63)
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u ≡ x−X =



 ϕ1(X1, X2, t)

ϕ2(X1, X2, t)



−



 X1

X2



 =



 u1

u2



 (2.64)

F ≡ ∂ϕ

∂X
= I2×2 +

∂u

∂X
=



 1 + u1,1 u2,1

u1,2 1 + u2,2



 (2.65)

J ≡ det(F ) = (1 + u1,1)(1 + u2,2)− u2,1u1,2 (2.66)

where the notation

ui,A =
∂ui

∂XA
(2.67)

has been used in (2.65) and (2.66), to provide a compact notation. In particular, (2.18)

and (2.65) lead to the following expression for the Piola stress tensor:

P = JσF−T = −p



 1 + u2,2 −u2,1

−u1,2 1 + u1,1



 (2.68)

In turn, (2.35) becomes now: 

 u̇1

u̇2



 =



 v1

v2



 (2.69)

As usual, it is possible to express the system in vector form:

U̇ + F 1,1 + F 2,2 + Z = 0 (2.70)

with, F i,A =
∂F i

∂XA

, and

U =





u1

u2

ρ0v1

ρ0v2

ρ0E





Z =





−v1

−v2

0

0

0





(2.71)
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F 1 =





0

0

p(1 + u2,2)

−pu1,2

pv1(1 + u2,2)− pv2u1,2





F 2 =





0

0

−pu2,1

p(1 + u1,1)

−pv1u2,1 + pv2(1 + u1,1)





(2.72)

The quasilinear form of (2.70) reads:

A0Ẏ + A1Y ,1 + A2Y ,2 + CY = 0 (2.73)

with

A0 =
∂U

∂Y
A1 =

∂F 1

∂Y
A2 =

∂F 2

∂Y
(2.74)

As for the one-dimensional case, the choice of primitive variables prompts algebraic ma-

nipulations similar to (2.57):

ρ0Ė = ρ0(ė+ v1v̇1 + v2v̇2)

= ρ0 ( (g′1 + g′2 p)ρ̇ + g2ṗ ) + ρ0v1v̇1 + ρ0v2v̇2

= ρ0 g2 ṗ− (g′1 + g′2 p)
ρ2

0

J2
J̇ + ρ0v1v̇1 + ρ0v2v̇2 (2.75)

with

J̇ =
∂

∂t

∣∣∣∣
X

((1 + u1,1)(1 + u2,2)− u2,1u1,2)

= (1 + u2,2)v1,1 − u1,2v2,1 (term contributing to A1)

−u2,1v1,2 + (1 + u1,1)v2,2 (term contributing to A2) (2.76)

It is important now to notice a very important cancellation in the second-derivative terms

relative to the momentum and energy equations in (2.73), due to (2.40), as anticipated

in section 2.2.
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In fact we can clearly see that:

F 1,1 + F 2,2 =





0

0

p,1(1 + u2,2) + pu2,21 − p,2u2,1 − pu2,12

−p,1u1,2 − pu1,21 + p,2(1 + u1,1) + pu1,12

(F 1,1 + F 2,2)5





=





0

0

p,1(1 + u2,2)− p,2u2,1

−p,1u1,2 + p,2(1 + u1,1)

(F 1,1 + F 2,2)5





(2.77)

due to commutativity of second mixed derivatives, with

(F 1,1 + F 2,2)5 = p,1v1(1 + u2,2) + pv1,1(1 + u2,2) + pv1u2,21

−p,1v2u1,2 − pv2,1u1,2 − pv2u1,21

−p,2v1u2,1 − pv1,2u2,1 − pv1u2,12

+p,2v2(1 + u1,1) + pv2,2(1 + u1,1) + pv2u1,12

= (v1(1 + u2,2)− v2u1,2)p,1

+(−v1u2,1 + v2(1 + u1,1))p,2

+(1 + u2,2)pv1,1 − u1,2pv2,1

−u2,1pv1,2 + (1 + u1,1)pv2,2 (2.78)

Arrangement of the terms according to the structure of (2.73), yields:

A0 =





1 0 0 0 0

0 1 0 0 0

0 0 ρ0 0 0

0 0 0 ρ0 0

0 0 ρ0v1 ρ0v2 ρ0g2

(
ρ0

J
, p
)





, C =





0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





(2.79)
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A1 =





0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 (1 + u2,2)Ψ
(

ρ0

J
, p
)
− u1,2Ψ

(
ρ0

J
, p
)

v1(1 + u2,2)− v2u1,2





(2.80)

A2 =





0 0 0 0 0

0 0 0 0 0

0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 −u2,1Ψ
(

ρ0

J
, p
)

(1 + u1,1)Ψ
(

ρ0

J
, p
)
−v1u2,1 + v2(1 + u1,1)





(2.81)

with Ψ
(

ρ0

J
, p
)

defined in (2.59).

For an ideal gas, Ψ
(

ρ0

J
, p
)

= γ
γ−1

p, so that:

A0 =





1 0 0 0 0

0 1 0 0 0

0 0 ρ0 0 0

0 0 0 ρ0 0

0 0 ρ0v1 ρ0v2
J

γ−1





(2.82)

A1 =





0 0 0 0 0

0 0 0 0 0

0 0 0 0 1 + u2,2

0 0 0 0 −u1,2

0 0 γ
γ−1

p (1 + u2,2) − γ
γ−1

p u1,2 v1(1 + u2,2)− v2u1,2





(2.83)
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A2 =





0 0 0 0 0

0 0 0 0 0

0 0 0 0 −u2,1

0 0 0 0 1 + u1,1

0 0 − γ
γ−1

p u2,1
γ

γ−1
p (1 + u1,1) −v1u2,1 + v2(1 + u1,1)





(2.84)
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Chapter 3

A Review on Past and Present

Hydrocode Technology

As a first step in the development of a new framework for Lagrangian hydrodynamic

computations, it is important to review previous hydrocode technology. The basic nu-

merical architecture with which the vast majority of hydrocodes are implemented will

be presented, together with a historical review on the design of artificial viscosities. In

order to convey the clearest possible picture, the one-dimensional equations have been

chosen as a model problem.

3.1 A one-dimensional example

The model problem to be studied is readily expressed by the following equations:

u̇ = v (3.1)

ρ0 v̇ = −∂(p + q)

∂X
(3.2)

ρ0 Ė = − ∂

∂X
(v (p+ q)) (3.3)

where q is an appropriate artificial viscosity, yet to be defined, representing – in terms

of multiscale analysis – the effect of the sub-grid (mesh-unresolved) component of the

solution onto the (mesh-) resolved component of the solution.

29
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Figure 3.1: Sketch of the typical hydrocode numerical discretization in space and time
for the one dimensional case on a uniform mesh. Blue circles indicate location of the
displacements degrees-of-freedom; black squares are relative to densities, pressure, energy
and any other thermodynamic variables (staggered in space); blue diamonds refer to
velocities (staggered in time); black diamonds indicate artificial viscosities.

3.2 Hydrocode numerical architecture

In a typical hydrocode implementation, the equations are solved adopting a continuous,

piecewise-linear (node-centered) representation for velocities and displacements, and a

discontinuous, piecewise constant (cell-centered) representation for all the thermody-

namic variables. The time integration is realized by means of a mid-point rule for the

displacements, leading to staggering of the velocities in time with respect to all other

variables (see Fig. 3.1 for a sketch of the numerical discretization in space/time).

This extremely ingenious algorithm is very simple from the implementation point of

view and, consequently, very fast. On the other hand, the presented choice of func-

tion spaces poses a flexibility problem, since the mentioned staggered algorithm is very

difficult to generalize to tetrahedral, unstructured meshes, of crucial importance in en-

gineering applications, and, in fact, the use of hydrocodes is currently limited almost

exclusively to quadrilateral/hexahedral meshes. When shocks occur in the flow, the pre-

sented hydrocode formulation becomes unstable, so that an artificial viscous flux q was
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designed by Von Neumann and Richtmyer to stabilize the computations, while preserving

conservation and accuracy. The viscous nature of the stabilizing term is also responsible

for selecting the solution satisfying the entropy condition among all possible solutions of

the conservation laws. The discussion of the artificial viscosity concept is postponed to

section 3.3.1, while in the following discussion, emphasis will be given to the details of

the numerical implementation.

3.2.1 Variational formulation

The domain to be considered is the one-dimensional interval V = [Xl, Xr] = ∪eVe (Ve

are the volumes of the cell/elements). For the sake of simplicity, only Dirichlet boundary

conditions will be assumed, so that the variational form reads:

Find uh ∈ Wh, vh ∈ Wh
g , eh ∈ Uh, such that, for all ϕh, φh ∈ Wh

0 , and ψh ∈ Uh:

nel∑

e=1

∫

Ve

ϕh u̇h −
nel∑

e=1

∫

Ve

ϕhvh = 0 (3.4)

nel∑

e=1

∫

Ve

φh ρ0v̇h + {φh (ph + qh)}|Xr
Xl
−

nel∑

e=1

∫

Ve

∂φh

∂X
(ph + qh) = 0 (3.5)

nel∑

e=1

∫

Ve

ψh

{
ρ0ėh + (ph + qh)

∂v

∂X

}
= 0 (3.6)

where:

Uh =
{
w ∈ L2(V ) : w ∈ P0(V

e)
}

(3.7)

Wh =
{
w ∈ C0(V ) ∩H1(V ) : w ∈ P1(V

e)
}

(3.8)

Wh
g =

{
w ∈ C0(V ) ∩H1(V ) : w ∈ P1(V

e), w(Xl) = gl, w(Xr) = gr

}
(3.9)

Wh
0 =

{
w ∈ C0(V ) ∩H1(V ) : w ∈ P1(V

e), w(Xl) = 0, w(Xr) = 0
}

(3.10)

Pm(V e) is the space of polynomials of degree less or equal to m on the element (or cell)

V e, Wh is an affine set of continuous piecewise polynomials, Wh
g is subset of functions

in Wh satisfying some prescribed Dirichlet boundary conditions, and Wh
0 is the corre-

sponding vector space with homogeneous Dirichlet boundary conditions. Uh is the space

of discontinuous functions constant over each element/cell.
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Introducing a basis for the function spaces previously defined, and applying the re-

placement ah = v̇h yields

(uh, vh, ah) =

nnp∑

i=1

(u, v, a)i φ
i
h, φi

h ∈ Wh, (pcw. linears) (3.11)

(ρ0, ph, eh, qh) =

nel∑

i=1

(ρ0, p, e, q)i+1/2 ψ
i
h, ψi

h ∈ Uh, (constants) (3.12)

Notice that the discretized displacement equation is an ordinary differential equation

in the degrees-of-freedom for the displacements. The artificial viscous flux q is discretized

as qh, analogously to a pressure term. In classical hydrocode implementations, the fol-

lowing derivation

0 = ρ̇0 =
∂

∂t
(ρ J) ⇒ ρ̇ = − ρ

J
J̇ (3.13)

∂

∂t

(
1

ρ

)
= − 1

ρ2
ρ̇ =

1

ρ J
J̇ (3.14)

=
1

ρ0

J̇ (multi-dimensional flow) (3.15)

=
1

ρ0

∂v

∂X
(one-dimensional flow) (3.16)

it used to simplify (3.6) to

nel∑

e=1

∫

Ve

ψh ρ0

{
ėh + (ph + qh)

∂

∂t

(
1

ρ

)}
= 0 (3.17)

3.2.2 Central-differences time integrator

A mid-point rule is usually applied to the displacement and momentum equations, which

are staggered with respect to one another. For the energy equation, at least in one-

dimensional computations, (3.17) is integrated in time by just expressing the time deriva-

tives in terms of discrete differences. Since all the quantities in the energy equation are

second-order accurate in time, as a consequence, also the updated value of the energy

enjoys second-order accuracy.

The final result is an explicit algorithm summarized in the following sequence of steps

(the reader may refer to the sketch in Fig. 3.1):



3.2. HYDROCODE NUMERICAL ARCHITECTURE 33

Momentum I. Assemble the acceleration vector,

an
i = (ML−1

)ii(F
ext
i − F int

i ) (3.18)

with

F int
i = −

(
nel

A
e=1

∫

Ve

∂φh

∂X
(ph + qh)

)

i

(3.19)

F ext
i = −

(
(ph(Xr) + qh(Xr))χXr

− (ph(Xl) + qh(Xl))χXl

)

i
(3.20)

(ML−1

)ii = −
(

nel

A
e=1

∫

Ve

ρ0Naδab

)

i

(3.21)

where Na is the local shape function, δab is the Kronecker tensor, and A is the

assembly operator. χ
Xl

and χ
Xr

are the characteristic functions on the left and

right boundary faces, respectively (i.e., nodes, in the one-dimensional case): The

local contributions to the external force vector are assembled only on the boundary

elements.

Momentum II. Integrate in time the velocities (mid-point at the half time-step)

v
n+1/2
i = v

n−1/2
i +

an
i

2
(∆tn + ∆tn−1) (3.22)

Displacements. Integrate in time the displacements/current configuration (mid-point

rule)

un+1
i = un

i + v
n+1/2
i ∆tn or xn+1

i = xn
i + v

n+1/2
i ∆tn (3.23)

Density. Update the density according to

(
1

ρn+1
i+1/2

)

=

(
1

ρn
i+1/2

)
xn+1

i+1 − xn+1
i

xn
i+1 − xn

i

(3.24)
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Energy. Notice that there is not even assembly to perform, given the finite-volume type

approximation for the thermodynamic variables involved:

en+1
i+1/2 = en

i+1/2 −
1

2

(
pn

i+1/2 + pn+1
i+1/2 + q

n+1/2
i+1/2 + q

n−1/2
i+1/2

)( 1

ρn+1
i+1/2

− 1

ρn
i+1/2

)

(3.25)

Applying the equation of state (2.21) to (3.25), yields:

en+1
i+1/2 =

en
i+1/2 − 1

2

(
pn

i+1/2 + f1(ρ
n+1
i+1/2) + q

n+1/2
i+1/2 + q

n−1/2
i+1/2

)(
1

ρn+1
i+1/2

− 1
ρn

i+1/2

)

1 +
f2(ρn+1

i+1/2
)

2

(
1

ρn+1
i+1/2

− 1
ρn

i

)

(3.26)

Pressure. The equation of state (2.21) can be used again for the update of the pressure,

according to

pn+1
i+1/2 = f1(ρ

n+1
i+1/2) + f2(ρ

n+1
i+1/2) e

n+1
i+1/2 (3.27)

The formulation proposed is a prototype of the typical approaches followed in production

hydrocodes. A few variants are possible, especially regarding time integration strategies

for velocities/displacements and the energy update.

The presented implementation was adopted to generate benchmark results for the

numerical experiments discussed in section 8.

3.3 Artificial viscosities

The formulation outlined in the previous section is not stable in the presence of shocks,

unless the artificial viscosity operator q is activated. The early concept of artificial

viscosity dates back to the years of the Manhattan Project at Los Alamos and it is

due to Von Neumann and Richtmyer [66]. The following sections will describe the main

aspects of the original concept and its latest developments.
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3.3.1 The original idea of Von Neumann and Richtmyer

The original design by Von Neumann and Richtmyer [66] for a nonlinear artificial viscosity

reads as follows:

q ≈ qV N−R =





−ρ (cV N−R h)2 |∂xv| ∂xv, for ∂xv < 0

0, otherwise

= −ρ (cV N−R h)2 |∂xv| ∂xv χ{∂xv < 0} (3.28)

where all the gradients are with respect to the current configuration, h is a measure of the

current configuration mesh size and χ is the indicator function. The artificial viscosity

is applied only in the case of compressions (∂xv < 0), and is set to zero in the case of

expansions, for which the solution is smooth. More simply, transforming the gradients

back to the reference configuration,

q ≈ qV N−R = −ρ0

J
(cV N−R ∆X)2

∣∣∣∣
∂v

∂X

∣∣∣∣
∂v

∂X
χ

{
∂v

∂X
< 0

}
(3.29)

For a detailed explanation of the method by Von Neumann and Richtmyer the reader can

refer to their original paper [66], in which a thorough analysis is presented, from both

the physical and numerical perspective. A summary of the main issues addressed in the

original paper is presented in the following list of remarks.

Remarks

1. The viscosity qV N−R is activated (i.e., non-negligible or non-zero) when high (neg-

ative) velocity gradients are present, as in the case of shocks.

2. qV N−R is not activated by contact discontinuities (CD), that is, interfaces with an

abrupt change of entropy.

3. qV N−R smoothes the solution (all the variables and not only the velocity) when the

gradients are too large to be resolved by the numerical discretization.

4. qV N−R scales quadratically with respect to the mesh size, so it becomes negligible

as the mesh is refined, and it is consistent with an algorithm second-order accurate

in space.
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5. qV N−R is consistent with respect to conservation laws, because it vanishes away

from shocks. Therefore the Rankine-Hugoniot relations are satisfied if the volume

used to compute the conserved quantities budgets extends far enough away from

the shock location.

The simplicity of the idea of Von Neumann and Richtmyer and its consistency with

respect to conservation laws and second-order schemes was the key to its success.

3.3.2 Further improvements

After the original formulation, a number of researchers, mainly in the United States and

the former Soviet Union, expanded the capabilities of artificial viscosity models. One

main point to be made, is that at the time of the Manhattan Project, the computational

power was very limited, and the interest of the researchers was to evaluate feasibility

of certain design concepts before developing small- or full-scale experimental programs.

Therefore, at least in the early years, the nonlinear viscosities were applied only to one-

dimensional problems, or problems in two/three dimensions that could be reduced by

cylindrical or spherical symmetry to a one-dimensional system of equations.

Later on, the success of artificial viscosities spurred the researchers in the attempt to

compute fully three-dimensional problems, and a number of issues arose, hidden behind

the “one-dimensionality” of the simulations undertaken until then. It was observed (see

Wilkins [67] for a comprehensive review on artificial viscosity models and account of

references) that, in some instances, so-called “linear acoustic instabilities” were arising

both in one- and multi-dimensional computations, for which additional stabilization was

required.

A couple of decades after the original paper of Von Neumann and Richtmyer, a

modification was successfully proposed by Kuropatenko [47], and became an integral

part of the artificial viscosity techniques implemented to date. The rationale behind the

modification was the fact that the Rankine-Hugoniot conditions lead to an expression

relating the pressure on each side of the shock as follows:

P1 = P0 +
γ + 1

4
ρ0(∆U)2 + ρ0|∆U |

√(
γ + 1

4

)2

(∆U)2 + c2s (3.30)
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It can be shown that (3.30) is the typical equation to be solved when seeking the solution

to a local (cell) Riemann problem in Godunov-type methods. Furthermore, by means

of asymptotic analysis, Kuropatenko [47] argued that the artificial viscosity behaves like

γ+1
2
ρ |∇v|∆x2 in the limit of strong shocks and like ρcs∆x in the limit of weak shocks.

The initial concept proposed by Kuropatenko was further modified to achieve more

straightforward implementations, and the typical form currently used is:

qK = qV N−R + qLIN (3.31)

with

qLIN = −ρ cLIN h cs |∂xv| χ{∂xv < 0} (3.32)

where cs is the local sound speed.

3.3.3 A remark on “acoustic instabilities”

The acoustic instabilities mentioned in the previous section, in the opinion of the author,

are actually “an old friend”. In fact it can be shown by means of a multiscale analysis

that the linearized sub-grid scale Green’s function problem for the SUPG stabilization

of the hydrodynamic equations is given by a wave-equation kernel. Therefore, it seems

that what Kuropatenko [47] was actually trying to obtain from his analysis, was some

sort of SUPG stabilization for multidimensional hyperbolic systems.

The correspondence is not perfectly stringent, since the choice of interpolation spaces

for the pressures are different for stabilized Galerkin methods and hydrocodes implemen-

tations, but the occurrence of instabilities for weak shocks conditions seems to indicate

that also the hydrocode formulations need some sort of SUPG stabilization.

In chapter 5, the full SUPG approach is pursued and detailed, using equal-order,

continuous, linear interpolation for both kinematic and thermodynamic variables.

3.3.4 The state of the art on artificial viscosities

At the moment, further developments on the artificial viscosity concept have been pro-

posed, such as the application of flux limiters leading to total variation diminishing/total
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variation bounded (TVD/TVB) artificial viscosities (see, e.g., the work by Christiansen

[9], or the paper by Benson [3] for a thorough review of recent advances in hydrocode

technology). While these ideas provide an improvement in some instances (sharper shock

profiles), the present state of research indicates that the artificial viscosities cannot com-

pletely prevent node-to-node oscillations.

3.3.5 Additional issues in multiple dimensions

Usually hydrocodes are developed on structured or unstructured quadrilateral or hexa-

hedral grids. There are very few examples with triangular or tetrahedral meshes, mainly

because tetrahedral elements are intrinsically stiffer than hexahedral ones, and suffer less

from hourglass instability, although this aspect is not regarded as an advantage in the

hydrocode community, due to the fear of locking occurrence in the incompressibility limit

(of great importance since many materials are intrinsically incompressible or assume such

behavior for large plastic deformations).

SUPG stabilization acts correcting such behavior in triangular-type meshes, and it

is well-documented that SUPG-stabilized finite elements do not suffer from hourglass

instability either. For this reason, SUPG stabilization, may represent a framework with

significant potential for new generation hydrocodes.



Chapter 4

Variational Formulations

The present chapter introduces the variational formulation that will be the basis for the

novel SUPG framework outlined in chapter 5. The choice of the variational formulation

and the time-marching method are defining the performance of the discretization. In

our case, special care was devoted to the choice of the time integration, optimizing it for

SUPG stabilization purposes. The following sections detail the derivations for a first-

and second-order time accurate algorithms.

4.1 A note on time integrators and stabilization

It is well known in the research community of stabilized finite element methods, that

the stabilization design is crucial for strongly unsteady flows. In our particular case,

the presence/formation of strong shocks and the typical unsteadiness of any Lagrangian

hydrodynamics simulation pose an important problem on the overall performance of the

method.

It is also well known that space-time formulations are very well suited to devise good

stabilization terms for unsteady, convective-dominated systems, since the temporal axis

is almost treated as an additional spatial axis. Although it is possible to devise good

stabilized methods based upon a semi-discrete formulation, the space-time framework

eases significantly the task.

Previous implementations of Euler and Navier-Stokes equations using an Eulerian

39
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reference frame – as in [24], [25], [63], and [64] – have resorted to continuous–in–space/dis-

continuous–in–time formulations, which are second-order accurate in space, and first- or

third-order accurate in time. It can be argued that both approaches do not offer the best

compromise between accuracy and computational complexity:

• First-order schemes are not accurate, unless convergence to a steady state condition

is the goal of the simulation, in which the steady state solution enjoys second-order

spatial accuracy.

• Third-order discontinuous Galerkin (DG)-in-time algorithms are, in a sense, ex-

cessively accurate, since the global error in the simulation will be dominated by

the spatial error (second-order in the mesh spacing). For implicit time integration,

advantage can be taken by increasing the time-step to larger values with respect to

second-order algorithms.

However, third order methods require twice as much storage and between two and

four times more computational effort than first-order methods, due to the fact that

they invoke a discontinuous piecewise-linear discretization in time, requiring the

update of two full solution vectors per time-step.

Possible variants as in Shakib, Hughes and Johan [64] reduce the onerous problem of

the time-step solve by splitting the original problem into two separate updates, each

as expensive as a first-order solve. This second approach, although less expensive

than the standard one, is more expensive than a scheme that only invokes a single

solution vector solve.

In the following sections, a second-order formulation will be presented and detailed, as

it represents a very good compromise between accuracy and efficiency. The proposed

formulation will be developed in parallel with the classical first-order approach.
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4.2 Two time-integration algorithms

Two different time-integrators will be presented momentarily. In order to clarify their

structure, it is useful to refer to the simple example of the (generally nonlinear) ordinary

differential equation (ODE):

ẏ = f(y(t)) (4.1)

y(0) = y0 (4.2)

The space-time formulation for (4.1)–(4.2) reads:

w(t−n+1)y(t
−
n+1)− w(t+n )y(t−n )−

∫ tn+1

tn

( w,s(s)y(s) + w(s)f(y(s)) ) ds = 0 (4.3)

The numerical scheme will be entirely defined by the function spaces used to represent

the solution y and the test function w.

4.2.1 A first-order Discontinuous-Galerkin time integrator

The first order algorithm proposed is the most widely know discontinuous-in-time algo-

rithm for ODE integration. The reader should refer to Shakib, Hughes and Johan [64]

and references therein for a complete analysis.

The function spaces are fixed so that both test and trial functions are discontinuous,

piecewise-constant, along time-intervals, so that equation (4.3) yields:

w(t−n+1)y(t
−
n+1)− w(t+n )y(t−n )−

∫ tn+1

tn

w(s)f(y(s)) ds = 0 (4.4)

where w(s) = χ{]tn, tn+1]} and y(s) = y(t−n+1)χ{]tn, tn+1]}, implying

y(t−n+1)− y(t−n )−∆tnf(y(t−n+1) = 0 (4.5)

In the case of linear systems, that is if f(y) = ay, (4.5) reduces to the well-known

backward Euler method:

yn+1 − yn = a∆tnyn+1 (4.6)
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t 

+ 

− 

− 

+ 

Figure 4.1: First-order algorithm: Sketch of the typical solution (blue) and test function
(red).

where the super index “−” has been dropped for convenience. Figure 4.1 shows the

solution and typical test function for the first-order time integrator.

4.2.2 A second-order Petrov-Galerkin time integrator

A higher order time integrator can be obtained via a space-time algorithm based on

continuous, piecewise-linear trial functions in both space and time.

The method dates back to Aziz and Monk [2], Hulme [38], Jamet [42]. Recent ref-

erences, which also contain a detailed review of the various contributions, applications

to parabolic and second-order hyperbolic problems, and global error analysis, are Estep

and French [14], French [17, 18], French and Jensen [19], and French and Paterson [20].

If the function spaces are fixed so that the test functions are discontinuous, piecewise-

constant, and the trial functions are continuous piecewise-linear, (4.3) reduces to:

w(t−n+1)y(tn+1)− w(t+n )y(tn)−
∫ tn+1

tn

w(s)f(y(s)) ds = 0 (4.7)

The current formulation can be proved to be second-order accurate, and requires only one

update (i.e., y(tn+1)). Additionally, it has some nice energy preserving properties when

applied to Hamiltonian systems, although this does not represent a crucial feature in the

present case. For linear systems (f(y) = ay), equation (4.7) reduces to the trapezoidal
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t 

+ 

− 

Figure 4.2: Second-order algorithm: Sketch of the typical solution (blue) and test function
(red).

time-integration rule for the nodal degrees-of-freedom yk = y(tk)

yn+1 − yn =
a∆tn

2
(yn+1 + yn) (4.8)

and to the well-known Crank-Nicolson scheme, in the case of a general linear partial

differential equations (PDE). Figure 4.2 shows the solution and typical test function for

the first-order time integrator.

4.3 Space-time variational formulations

Given a partition 0 < t1 < t2 < . . . < tN = T of the time interval I =]0, T [, let

In =]tn, tn+1[, so that ]0, T [=
⋃N−1

n=0 In. The space-time domain Q = V ×I can be divided

into time slabs

Qn = V × In (4.9)

with boundary Pn = S × In. A sketch of the general discretization in space-time is

presented in Figure 4.3. It can be seen easily that, in general, the elements can assume

fairly complex shapes in space-time. In what follows however, the numerical implemen-

tations will only make use of discretizations prismatic in time, for which the domain V

is further partitioned into space-subdomains V e (elements in space) fixed with respect
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Figure 4.3: General finite element discretization in space-time.

to time. Thus V =
⋃nel

e=1 V
e, and, consequently, a typical space-time element is given by

the prism

Qe
n = V e × In (4.10)

It will be also assumed that the space-time boundary is partitioned as Pn = P g
n ∪ P h

n ,

P g
n ∩ P h

n = ∅ (i.e., P h
n is divided into a Dirichlet boundary P g

n and a Neumann boundary

P h
n ). Using the notation V (X, t±n ) = limt→t±n

V (X, t), the classical space-time variational

formulation is defined as follows:
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Find Y h ∈ Sh
n , such that ∀W h ∈ Vh

n

B(W h,Y h) + SUPG(W h,Y h) +DC(W h,Y h) = F(W h) (4.11)

with

B(W h,Y h) =

∫

V

W h(X, t−n+1) ·U(Y h(X, t−n+1))dV

−
∫

V

W h(X, t+n ) ·U(Y h(X, t−n ))dV

+

∫

Qn

(
−W h

,t ·U(Y h)−W h
,i · F i(Y

h) + W h ·Z(Y h)
)

dQ

+

∫

P g
n

W h · F i(Y
h)Ni dP (4.12)

F(W h) = −
∫

P h
n

W h ·H dP (4.13)

where H represent the Neumann flux, and the form B(W h,Y h), the stabilization term

SUPG(W h,Y h) and the Discontinuity Capturing operator DC(W h,Y h) are linear in

the first argument, and nonlinear in the second. The choice of the spaces Sh
n and Vh

n will

completely define the time integrator, causing (4.13) to further simplify.

4.3.1 A note on global conservation

It is important to realize that the formulation is globally conservative. In fact, suppose

to set equal to unity one of the entries of the test vector W h, corresponding to the

momentum or energy equations, and let the remaining entries be zero. Namely, W h
i = 1,

for some i ∈ {nd + 1, . . . , 2nd + 1}, and W h
j = 0 if j 6= i. This choice is possible because

the test functions are linear in space and constant in time. Then, (4.11) reduces to:

∫

V

U i(Y
h(X, t−n+1)) dV =

∫

V

U i(Y
h(X, t−n )) dV

−
∫

P g
n

W h · F i(Y
h)Ni dP −

∫

P h
n

W h ·H dP (4.14)

which is a statement of conservation from time t−n to time t−n+1 for the U i entry of the con-

servation variables vector U , provided the boundary integrals vanish. In order to realize
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how (4.14) is obtained, notice that, by definition (see (5.9) and (6.1)), SUPG(W h,Y h)

and DC(W h,Y h) vanish if W h is a constant, and so happens for W h
,t and W h

,i. Finally,

Z(Y h), has zero entries for the momentum and energy equation, since it is not a true

source term, but, rather, a kinematic term containing the components of the velocity

field for the displacement equations.

4.3.2 Euler-Lagrange equations

The formulation is best understood through the Euler-Lagrange equations, obtained by

integration by parts, once sufficient regularity of the solution has been assumed:

∫

Qn

W h ·
{
U ,t(Y

h) + F i,i(Y
h) + Z(Y h)

}
dQ

+

∫

V

W h(X, t+n ) ·
{
U(Y h(X, t+n ))−U(Y h(X, t−n ))

}
dV

−
∫

P h
n

W h ·
{
F i(Y

h)Ni −H
}
dP

+SUPG(W h,Y h) +DC(W h,Y h) = 0 (4.15)

As it can be easily observed, the integral on the first line is testing the system of PDEs

inside the space-time domain, the integral on the second line enforces weak continuity

of the solution across slabs, yielding a Time-Discontinuous Galerkin method, upwinded

in time, in order to satisfy the causality principle of temporal evolution. The space-

time surface integral on the third line tests the Neumann boundary conditions (Dirichlet

conditions will be embedded in the definition of the trial functions), while the last two

terms are yet to be defined.

4.3.3 First-order formulation

In terms of function spaces, the first-order algorithm can be obtained by assuming that

both the trial space Sh
n and test function space Vh

n are given by functions that are continu-

ous, piecewise-linear in space and discontinuous, piecewise-constant in time (see Fig. 4.4

for details in the one-dimensional case). Of course the trial/test functions differ because
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Figure 4.4: Local test functions for the first/second-order time integrator, in the one-
dimensional case. The functions shown also represent the local trial function space for
the first-order time integrator. ξ is the local space coordinate, while η is the local time
coordinate.

of the boundary conditions.

Sh
n =

{
V h : V h ∈ (C0(Q))m, V h

∣∣
Qe

n
∈ (P1(Q

e
n))m,V h = g(t) on P g

n

}
(4.16)

Vh
n =

{
W h : W h

∣∣
V
∈ (C0(V ))m,

W h
∣∣
Qe

n
∈ (P1(V

e)×P0(In))m,V h = 0 on P g
n

}
(4.17)

with m = 2nd + 1, nd ∈ {1, 2, 3}. g is the vector of Dirichlet boundary conditions, and

P g
n is the portion of Pn where Dirichlet boundary conditions are imposed. Pk(Q

e
n) and

Pk(V
e) are the spaces of polynomials of degree less or equal to k, on the domains Qe

n and

V e, respectively. Therefore (4.13) yields:

0 =

∫

V

(
W h(X, t−n+1) ·U(Y h(X, t−n+1))−W h(X, t+n ) ·U(Y h(X, t−n ))

)
dV

−∆tn

∫

V

W h
,i(X, t−n+1) · F i(Y

h(X, t−n+1)) dV

+∆tn

∫

V

W h(X, t−n+1) ·Z(Y h(X, t−n+1)) dV

+∆tn

(∫

Sg
n

W h · F i

(
Y h(X , t−n+1)

)
Ni dS +

∫

Sh
n

W h ·H dS

)

+SUPG(W h,Y h) +DC(W h,Y h) (4.18)

where the Stabilization term SUPG(W h,Y h) and the Discontinuity Capturing operator

DC(W h,Y h) are both linear in the first argument, and nonlinear in the second.
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Figure 4.5: Local trial functions for the second-order time integrator, in the one-
dimensional case. ξ is the local space coordinate, while η is the local time coordinate.

4.3.4 Second-order formulation

In terms of function spaces, we will assume that the trial function space Sh
n is given

by the piecewise-linear, continuous functions on P = S×]0, T [, while the test function

space Vh
n will be given by functions that are continuous piecewise-linear in space and

discontinuous, piecewise-constant in time (see Fig. 4.5 for details in the one-dimensional

case). Therefore:

Sh
n =

{
V h : V h ∈ (C0(Q))m, V h

∣∣
Qe

n
∈ (P1(Q

e
n))m,V h = g(t) on P g

n

}
(4.19)

Vh
n =

{
W h : W h

∣∣
V e ∈ (C0(V ))m,

W h
∣∣
Qe

n
∈ (P1(V

e)×P0(In))m, V h = 0 on P g
n

}
(4.20)

with m = 2nd + 1, nd ∈ {1, 2, 3}.
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Equation (4.13) reduces to

0 =

∫

V

W h(X, t−n+1) ·U(Y h(X, tn+1))−W h(X, t+n ) ·U(Y h(X, tn)) dV

+

∫

Qn

(
−W h

,i · F i(Y
h) + W h ·Z(Y h)

)
dQ

+

∫

P g
n

W h · F i(Y
h)NidP +

∫

P h
n

W h ·H dP

+SUPG(W h,Y h) +DC(W h,Y h) (4.21)

where this time, since Y h is continuous in space and time, there is no need to distinguish

between positive and negative limit values for a certain instant in time.
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Chapter 5

SUPG Stabilization

This chapter is devoted to the implementation of the SUPG stabilization. Stabilization

is based upon a local linearized analysis, and provides a way to circumvent the intrinsic

instability of a Galerkin formulation for linear-in-space trial/test functions. The stabi-

lization of hyperbolic system of conservation laws is very well established nowadays and

one can refer to the paper by Shakib, Hughes and Johan [64] for an exhaustive review.

It is also documented in the literature that SUPG stabilization prevents the occur-

rence of hourglass and locking phenomena, providing a stable framework for further

development of discontinuity capturing operators.

The sketch of a multiscale analysis will also be presented in order to introduce a few

important observations about the nature of the so-called acoustic instabilities. It was

felt that the details of the calculations, performed according to the framework in [34],

were not crucial for the thorough understanding of the ideas proposed, and that instead,

a simple outline of the main steps involved would have been more beneficial.

5.1 A multiscale perspective on instabilities

Let us start from the variational form of the Lagrangian hydrodynamics equations (4.11),

in which we assume, at the abstract level, that it is possible to have full knowledge about

the exact solution Y ∈ S, where S is the abstract counterpart of the finite dimensional

space Sh
n defining the numerical solution Y h (introduced in chapter 4).

51
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We will also define W ∈ V, where again, V is the abstract counterpart of Vh
n . Hence,

(4.11) reduces to:

B(W ,Y ) = F(W ) (5.1)

Notice that the SUPG and DC operators have not been included, since they will be later

defined as functions of the residual, vanishing everywhere if Y is exact. In particular,

the following derivations will show how the SUPG operator is derived. For the sake of

simplicity, we will assume that no body forces or Neumann conditions are applied, so

that F(W ) ≡ 0, throughout.

Let us now decompose the solution into a coarse-scale component, or mesh solution

Y h ∈ Sh
n (the component of Y resolved by the numerical mesh), and a fine-scale or

subgrid component Y ′ ∈ S ′, (S ′ = V/Vh
n is the complement of Vh

n to V). Analogously,

the test function W can be decomposed as W = W h + W ′, W ′ ∈ V ′
n = V/Vh

n . It is

very reasonable to assume that V ′ and Vh
n are linearly independent, as well as S ′ and Sh

n .

This leads to a decomposition of the original problem into two subproblems, namely:

B(W h,Y h + Y ′) = 0 (mesh-scale problem) (5.2)

B(W ′,Y h + Y ′) = 0 (subgrid-scale problem) (5.3)

The multiscale analysis approach as outlined in [34] would proceed by making a local

linearization approximation for the subgrid-scale problem (5.3). On each element, the

nonlinear operators are linearized about a local base solution (for example the average

values of Y h over each element). Linerization will allow to use the quasi-linear form

of the Lagrangian hydrodynamics equations, once an advective operator Ladv and the

residual Res are defined:

Ladv = A0
∂

∂t
+ Ai

∂

∂Xi

(5.4)

Res = L = A0
∂

∂t
+ Ai

∂

∂Xi

+ C (5.5)
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Here 1 ≤ i ≤ nd, and the repeated index notation has been used. Equation (5.3) will

then transform, after linearization, to:

(W ′,LY ′) = −(W ′,LY h) = −(W ′,Res(Y h)) (5.6)

where (·, ·) indicates the L2 inner product over the space-time slab. Equation (5.6) has

to be intended in a loose sense, since it does not include boundary terms, omitted for

the sake of brevity. Formally, one can now invert (5.6) by means of an inverse integral

operator L−1, involving a Green’s function kernel G′

Y ′|Qe
n
(X) = −

∫

Qe
n

G′ Res(Y h) dQ (5.7)

Although this is only a formal step, it becomes apparent, after detailed derivations are

carried out, that:

1. The Lagrangian hydrodynamic equations simplify, after linearization, to the wave

equation. If the reader is not convinced, it is easy to verify the assertion in the

case of compressible gas dynamics: it is well known that the linearization of the

compressible Euler equations is given by the equations of acoustics, which are wave

propagation equations. Hence, G′ can be proved to be a typical wave propagation

Green’s function kernel.

2. The multiscale analysis confirms the argument of Kuropatenko regarding acoustic

instabilities. In the limit of weak shocks, or, more appropriately, isentropic com-

pressions, the solution is smooth enough to be amenable to local linearization, and

the presented multiscale analysis applies.

3. Finally, the multiscale framework provides an alternative cure for the acoustic

instabilities, based on Green’s function concepts rather than simple scaling argu-

ments, with potential for improved robustness with respect to Kuropatenko-type

corrections for artificial viscosities. SUPG stabilization methods are based on such

concepts.
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5.2 General form of SUPG stabilization

In SUPG-type approaches, the following approximation of the local Green’s function G′

is adopted:

Y ′|Qe
n
(X) = −

∫

Qe
n

G′(X, X̃) Res(Y h(X̃)) dQX̃

≈ −
∫

Qe
n

τ (X) δ(X̃ −X) Res(Y h(X̃)) dQX̃

= −τ (X) Res(Y h(X)) (5.8)

where δ(·) is the Dirac delta. In stabilized methods, the approximation for Y ′|Qe
n

is sub-

stituted back into the mesh-scale equation, to yield the following form of the stabilization

term:

SUPG(W h,Y h) =

(nel)n∑

e=1

∫

Qe
n

(L∗
advW h) · τ Res(Y h)︸ ︷︷ ︸

≈Y
′
|Qe

n

dQ (5.9)

where L∗
adv is the adjoint of Ladv, and τ is a tensor.

In the present work, we use the definition of τ as in the article by Shakib, Hughes

and Johan [64], to which the reader can refer for the general framework and a complete

list of references on the subject:

τ = A−1
0

(

C̃
2
+

(
∂ξ0
∂t

)2

I(2nd+1)×(2nd+1) +
∂ξi
∂Xj

∂ξi
∂Xk

ÃjÃk

)−1/2

(5.10)

where Ãj = AjA
−1
0 , C̃ = CA−1

0 , ξ0 is the element local time coordinate (relative to

the parent domain in time), and ξi are the element local spatial coordinates. Note also

that the SUPG stabilization, in the case of piecewise-constant in time test functions, is

equivalent to the GLS and Multiscale (or adjoint) stabilization, since the time derivative

of the test function vanishes.
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5.3 Stabilization in the Lagrangian framework

In the framework of Lagrangian hydrodynamics it is possible to radically simplify the

computations of the stabilization terms. It is easily seen by carrying over the calcula-

tion of stabilization terms by brute force (the one-dimensional example is instructive in

this regard), that stabilization truly affects only the momentum and energy equations.

The rationale is that the kinematic equations relating the rates of displacement to the

velocities are actually ODEs in the degrees-of-freedom of the discrete solution, so that

stabilization - peculiar to boundary value problems (BVPs) for PDEs - is not needed. If

the reader is not convinced by this argument, it is sufficient to carry over the full deriva-

tion of stabilization terms, and to observe that, as a result of lengthy calculations, the

stabilized kinematic equations equal their original version multiplied by a factor different

from unity (1/2 in the one-dimensional case).

In a more practical approach, it is possible then to reformulate the structure of the

matrix τ as follows:

τ =



 0nd×nd
0nd×(nd+1)

0(nd+1)×nd
τ̂ (nd+1)×(nd+1)



 (5.11)

As it is easily realized, in the case of one, two and three dimensions in space, instead

of computing (either numerically or algebraically before hand) a τ tensor of size 3 × 3,

5× 5, or 7× 7, it is sufficient to compute just the τ̂ tensor of size 2× 2, 3× 3, or 4× 4,

respectively.

5.4 One-dimensional gas dynamic case

The one-dimensional case for an ideal gas is an interesting application of the definition

(5.10) of τ : We retain just the lower right 2× 2 blocks of the matrices defined in (2.58),

and we denote those blocks by a “hat”, according to the definition of τ̂ :

Â0 =



 ρ0 0

ρ0v
J

γ−1



 Â1 =



 0 1

γ
γ−1

p v



 (5.12)
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Note also that the lower right block of C is zero, so that we do not need to account for

it. Now,
∂ξi
∂Xj

∂ξi
∂Xk

ÂjÂk =

(
2

∆X

)2

Â1

2
(5.13)

and the computation of Â1
2

yields:

˜̂
A1 = Â1Â0

−1
=



 0 1

γ
γ−1

p v







 ρ0 0

ρ0v
J

γ−1




−1

=



 0 1

γ
γ−1

p v








1
ρ0

0

−γ−1
J
v γ−1

J





=



 −γ−1
J
v γ−1

J

γ
γ−1

p
ρ0
− γ−1

J
v2 γ−1

J
v



 (5.14)

˜̂
A2

1 =




γp
ρ0J

0

0 γp
ρ0J



 =
(cs
J

)2

I2×2 (5.15)

with cs =
√

γp
ρ

=
√

γpJ
ρ0

. It is important to realize that the form of the SUPG stabilization

is dependent on the function spaces adopted, and in particular on the time-integration

strategy.

5.4.1 First-order time integrator

Noticing that for constant-in-time discontinuous test/trial functions, ∂ξ0
∂t
≡ 0, one can

easily see that (5.10) simplifies as:

τ̂ = Â0
−1

((
2 cs
J ∆X

)2

I2×2

)−1/2

=
J ∆X

2 cs
Â0

−1
= ∆t

J ∆X

2 cs∆t
Â0

−1
=

∆t

2α
Â0

−1

=
∆t

2α




1
ρ0

0

−γ−1
J
v γ−1

J



 (5.16)

where α = cs∆t
J∆X

, is the mesh Courant number.
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5.4.2 Second-order time integrator

For the second order case, ∂ξ0
∂t

= 2
∆t

and

τ̂ = Â0

−1

((
2

∆t

)2

I2×2 +

(
2 cs
J ∆X

)2

I2×2

)−1/2

=
∆t/2√
1 + α2

Â0
−1

=
∆t

2
√

1 + α2




1
ρ0

0

−γ−1
J
v γ−1

J



 (5.17)

An alternative definition of τ̂ is:

τ̂ = Â0

−1
(
| ˜̂C|+ 2

∆t
I2×2 +

2 cs
J ∆X

| ˜̂A1|
)−1

(5.18)

where, in the present case,
˜̂
C = 0. Given the hyperbolicity of the system, Â1 has

real eigenvalues with linearly independent eigenvectors, so that equation (5.18) can be

computed by an eigenvalue expansion of Â1, as follows:

˜̂
A1 = Q Λ Q−1 (5.19)

where

˜̂
A1 = Q Λ Q−1 (5.20)

Λ =




−
√

γp
ρ0J

0

0
√

γp
ρ0J



 =



 −
cs

J
0

0 cs

J



 (5.21)

Q =




1 1

v −
q

γpJ
ρ0

γ−1
v +

q

γpJ
ρ0

γ−1



 =



 1 1

v − cs

γ−1
v + cs

γ−1



 (5.22)
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It is then easy to check that | ˜̂A1| = Q |Λ| Q−1 = Q cs/JI2×2 Q−1 = cs/JI2×2, so

that, finally,

τ̂ =
∆t/2

1 + α
Â0

−1
=

∆t

2(1 + α)




1
ρ0

0

−γ−1
J
v γ−1

J



 (5.23)

Definitions (5.17) and (5.23) have been tested and compared with one another, leading

to very similar results. Definition (5.17) produce somewhat less stabilization and is used

in section 8, where numerical experiments are presented.

5.5 Two-dimensional hydrodynamic case

In the multidimensional case, the computation of the stabilization parameter is more

involved, due to the fact that evaluation of the negative square root of a (nd+1)×(nd+1)

tensor is needed. However, in the case of two spatial dimensions, there is a very elegant

derivation due to Franca [16] for a 3×3-matrix which addresses this issue. The algorithm

is presented in appendix A, and for more details the reader can refer to the original paper

[16]. Therefore, the two-dimensional tensor τ̂ can be computed as follows:

1. Compute the matrix:

B = ˆ̃
C 2 +

(
∂ξ0
∂t

)2

I3×3 +
2∑

i,j,k=1

∂ξi
∂Xj

∂ξi
∂Xk

ˆ̃
Aj

ˆ̃
Ak (5.24)

where ˆ̃
C = 0.

2. Use Franca’s algorithm to compute B−1/2.

3. Compute:

τ̂ = Â0

−1
B−1/2 (5.25)

For the more challenging three-dimensional case, analogous techniques can be used to

compute τ̂ , some of which are presented by Shakib, Hughes and Johan [64].



Chapter 6

Multiscale Discontinuity Capturing

The design of the Discontinuity Capturing (DC) operator is essential to the overall per-

formance of the numerical method. Shocks must be smoothed in a band of possibly no

more than 3-4 elements across the discontinuities.

A vast literature is available nowadays on discontinuity capturing operators for fi-

nite element methods (see [25] and [64] for a comprehensive survey of the most suc-

cessful techniques). Such operators usually take the form of a residual-based artificial

viscosity, rapidly vanishing when the solution is fairly smooth, as for isentropic compres-

sions/expansions.

However, when a number of preliminary tests was performed, it was found that arti-

ficial viscosities scaled as suggested in [25] or [64] were not sufficiently robust to preserve

reasonable accuracy for the energy and densities in blast- and implosion-type computa-

tions. The strongly unsteady character of Lagrangian hydrodynamics simulations may

be the main reason why the scalings of previous literature, mostly designed for steady or

quasi-steady flows, could not perform well in the most demanding transient simulations.

In addition, it was found that the time-step limitations in the case of such DC operators

were particularly severe, making them inefficient for transient analysis applications.

It appeared clear that a new design for the DC operator – specifically tailored for

hydrodynamic flows – was needed, and the following sections will serve this purpose.
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6.1 A few design requirements

Following the work by Caramana, Shashkov and Whalen [8], Christiensen [9], Noh [53]

and Wilkins [67], design requirements can be summarized as follows:

1. Dissipativity : the DC operator must be a dissipative operator (i.e., it must dissipate

energy), possibly – but not necessarily – defined through a viscosity operator.

2. Galilean Invariance: the DC operator must be invariant under Galilean transfor-

mations of coordinates.

3. Rotation invariance: it is advisable, especially in problems involving convergent

flows, for the DC operator to be invariant under rotations.

4. The model should not introduce artificial dissipation along a surface of constant

phase (a surface along which the magnitude of the velocity is constant, with a

possible change in direction). An example of a surface of constant phase is a shock

front, either planar or curved, as in the case of cylindrical or spherical symmetry.

5. The DC operator must vanish for expansions, since the solution is smooth enough

to be accurately computed by the underlying numerical discretization. It is also

advisable for the DC operator to vanish in a zone of uniform compression, for which

a second-order code can represent the exact solution. Finally, it is of interest that

the transition from zones in which the DC operator is inactive, to zones in which

it is different from zero, be continuous.

The presented goals for a good DC operator will be achieved using concepts and tech-

niques familiar in stabilized finite element methods for compressible flows.

6.2 A novel discontinuity capturing operator

In Lagrangian hydrodynamics, the natural way (also in terms of implementation) of

expressing the DC operators is to do it in current configuration. A slightly different

approach will be followed here, and the DC operator will be initially defined in the

reference configuration, and only subsequently rephrased in the current configuration.
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DC(W h,Y h) =

(nel)n∑

e=1

∫

(Qe
n)

X

νDC Gij W ,Xi
· Â0Y ,Xj

dQ
X

(6.1)

νDC = 4C1

(√
v′ · [gij]−1 v′

2

)βB (
(S : S)1/2

)1−βB
χ {(b⊗ b) :S < 0}

= 4C1

(√
v′ · [gij]−1 v′

2(S : S)1/2

)

︸ ︷︷ ︸
residual based

βB

(S : S)1/2 χ {(b⊗ b) :S < 0}︸ ︷︷ ︸
V.Neumann-Richtmyer

(6.2)

The following definitions apply:

Gij =

[
∂ξk
∂Xi

∂ξk
∂Xj

]−1

gij =

[
∂ξk
∂xi

∂ξk
∂xj

]−1

(6.3)






v′

p′





= Y ′ =−τ̂ R̂es(Y h)= −




τ̂

(mom)
nd×(nd+1)

τ̂
(energy)
1×(nd+1)










Res
(mom)
nd×1 (Y h)

Res
(energy)
1×1 (Y h)





(6.4)

b = v̇/‖v̇‖l2 (6.5)

S =
1

2

(
(grad v)T + grad v

)

=
1

2

(
F−T (Grad v)T + Grad v F−1

)
(6.6)

(grad φ)i =
∂φ

∂xi
(6.7)

βB ∈ [0, 1] is a parameter, which blends the effect of the classical Von Neumann-Richtmyer

scaling with a new scaling based on the subgrid-scale velocity v′, Gij is the metric tensor

map from the reference configuration to the parent domain, and gij is the metric tensor

map from the current configuration to the parent domain. Â0 is equal to the Jacobian

A0, where only the block relative to the momentum and energy equations is retained,

using the same notation on the previous section on SUPG stabilization. Therefore, the

DC operator is not applied to the kinematic equations of displacements, as we should

expect.
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6.2.1 Rationale behind the multiscale viscosity

Rewriting (6.1) in the current configuration, and assuming that all variables are dis-

cretized with piece-wise linear interpolation yields:

DC(W h,Y h) =

(nel)n∑

e=1

∫

(Qe
n)x

νDC gij W ,xi
· J−1Â0Y ,xj

dQx (6.8)

The index x in (Qe
n)x and dQx indicates that the space/time domain and its measure are

defined in the current configuration rather than the reference (original) configuration. It

is possible now to proceed with the analysis of the various terms present in expressions

(6.8) and (6.2):

• The term 1/JA0 can be thought of as a Jacobian in the current configuration, so

that the effect of the DC operator is to smooth jumps in the momentum and total

energy.

• By introducing the parameter βB, the proposed viscosity is blending the classical

Von Neumann scaling with a multiscale, residual-based scaling. This allows re-

covery of higher-order accuracy when mild compressions are happening in smooth

regions of the flow, while oscillations are appropriately damped for strong shocks.

• χb is a “switch”, a characteristic function, triggered by negative values of the

deviatoric strain rate along the direction of b. It is not advisable to just use the

negative values of the velocity divergence, since this alternative definition can cause

loss of accuracy when compressions are due to streamline divergence rather than

shocks (see e.g. Wilkins [67] for a detailed discussion).

• b is the unit vector in the direction of the acceleration v̇. An approximation to b

can be given by:

b ≈ grad p

‖grad p‖l2
(6.9)

whenever the acceleration is too expensive to compute.

• The term v′ can be thought of as an approximate “sub-grid velocity”. Let us

consider the momentum equations. Correspondingly, there will be a nd × (nd + 1)
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block of τ̂ (the nd upper rows of τ̂ ), namely τ̂ (mom), such that:

v′ = −τ̂ (mom) R̂es(Y h) (6.10)

The fact that v′ is actually a velocity can be argued from detailed dimensional

analysis applied to the structure of τ̂ (mom) and R̂es(Y h).

This is the key idea introduced with the new nonlinear DC operator. The term v′2

2
,

corresponds to a sub-grid kinetic energy: each component v′i is formed according

to the multiscale analysis as in Hughes et al. [34].

v′(X, t) = −
nel∑

e=1

∫

Qe
n

g′(X, X̃; t, t̃) ˆRes(Y h(X̃, t̃)) dQ̃ (6.11)

≈ −
nel∑

e=1

∫

Qe
n

τ̂ (mom)δ(X − X̃; t− t̃) ˆRes(Y h(X̃, t̃)) dQ̃

≈ −τ̂ (mom) ˆRes(Y h(X, t)) (6.12)

from which (6.10) is easily deduced, as an approximation to (6.11). According to

[34], τ̂ is considered as an approximation to the integral operator providing the

solution to the sub-grid scale problem over the space/time element Qe
n. The kernel

of such integral operator is the element Green’s function

{G′(X , X̃; t, t̃)}(mom) ≈ τ̂ (mom)δ(X − X̃; t− t̃) (6.13)

acting on the residual of the numerical discretization, approximated by means of a

localization hypothesis.

One of the most important consequences of the proposed definition, is that whenever

the residual is zero (consider for example the case of uniform compression for a second-

order finite element formulation) so is the DC operator. In addition, residual-based

mechanisms will be very small in the vicinity of well-resolved flow features, retaining

higher-order accuracy thereby. At the same time, the largest residuals (usually related to

the occurrence of discontinuities in the flow) produce the largest amounts of dissipation.
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Let us now analyze if the proposed model verifies the design requirements specified

in section 6.1:

1. Dissipativity : by definition, the DC operator is a dissipative operator.

2. Galilean/Rotation Invariance: the proposed DC operator is based upon S (well-

known to be invariant under Galilean/Rotation maps) and residuals, which are just

the Euler equations in Lagrangian form, invariant in the first place.

3. In order not to introduce artificial dissipation along a surface of constant phase, b

is chosen to be a unit vector in the direction of the acceleration v̇, as suggested

by Wilkins [67]. A cruder approximation of the acceleration would be the pressure

gradient grad p. Because of the presence of the term b⊗b, if one of the coordinates

is aligned in the direction of the acceleration, the whole DC operator activates only

if the gradient along b is negative.

4. The DC operator does vanish for expansions, according to the specification of the

switch χb. Also, it vanishes for uniform compression, because in the case of a

continuous piecewise-linear basis, linear fields can be represented exactly, so that

the residual vanishes and so does the viscosity. Formally, it is not possible to

prove continuous transition from zones in which the viscosity is inactive, to zones

of compression. However, it is worthwhile mentioning that the residual structure

is such that if we consider a moving front and the band of elements needed to

resolve it numerically, the residual is going to peak at the center of the band and

decrease toward the boundaries. Outside the band the viscosity is forced to zero by

the switch, but, in the vicinity of the boundary of the band, the residual R̂es(Y )

might already have decreased its value by orders of magnitude with a “partial”

recovery of the smooth transition requirement.
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6.2.2 One-dimensional case

In the one-dimensional case, it is easily seen that:

DC(W h,Y h) =

(nel)n∑

e=1

∫

Qe
n

νDC
∆X2

4
W ,X · Â0Y ,X dQ (6.14)

νDC =
4C1

J

( |v′|
∆X

)βB

|∂Xv|1−βB χ {∂xv < 0} (6.15)

where ∆X is the mesh spacing in the original configuration, and there is no ambiguity

in requiring ∂v
∂X

< 0 to switch on the viscosity, since ∂v
∂x

= J ∂v
∂X

with J > 0 (in this case

the negative rate of strain in the acceleration direction or negative divergence condition

are exactly the same). In terms of the current configuration, one has:

DC(W h,Y h) =

(nel)n∑

e=1

∫

(Qe
n)x

νDC
∆x2

4
W ,x ·

1

J
Â0Y ,x dQx (6.16)

νDC = 4C1

( |v′|
∆x

)βB

|∂xv|1−βB χ {∂xv < 0} (6.17)

yielding:

DC(W h,Y h) = C1

(nel)n∑

e=1

∫

(Qe
n)x

{
(|v′|/∆x)βB |∂xv|1−βB ∆x2

W ,x · J−1Â0Y ,x χ {∂xv < 0}
}
dQx (6.18)

Notice now that the term J−1Â0 is exactly the Jacobian of the transformation from the

set of variables Y to the conservation variables in the current (deformed) configuration.

To better understand the nature of the proposed DC operator, suppose to set βB =

0, so that the artificial viscosity becomes independent of the residual. The proposed

viscosity reduces then to a modified Von Neumann-Richtmyer viscosity à la Noh [53].

The similarity is striking, although the form of the proposed operator is not exactly

equal to the one developed by Noh. In particular, in [53] the rationale for the beneficial

effects of the introduction of an artificial heat flux in the energy equation is not supported

by analytical considerations, but mainly relies on empirical considerations.
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Instead, from the analysis presented herein it appears clear that:

• The form of the proposed artificial viscosity is designed so that it smoothes the

solution in the direction of the generalized gradient.

• As a result, the DC operator acts on the full vector of conservation variables, and,

in the energy equation (see, e.g. (2.58) and (2.79)), is composed of an artificial

work and an artificial heat flux term.



Chapter 7

Predictor/Multi-corrector

Algorithm

In order for the proposed approach to be competitive with the state of the art hydrocodes,

explicit time integration is required. An explicit time integrator can be defined very

naturally by means of a Newton nonlinear iterative solver.

More generally, each iteration of the Newton solver can be considered as a pass of a

predictor/multi-corrector algorithm, in which the initial guess (predictor) is given by the

solution vector of the discretized Lagrangian hydrodynamics equations at the previous

time step. Because in general the tangent matrix for the Newton algorithm is non-

diagonal, the predictor/multi-corrector results in an implicit scheme.

However, if mass lumping is used, or, equivalently, if nodal quadratures in space are

used in the assembly of the tangent matrix, an explicit algorithm is generated, in which

the matrix solves of the implicit counterpart are substituted by vector divisions.

A detailed explanation of the theoretical framework for this class of time-integration

algorithms is presented in Hughes [27] p.562, while the paper by Shakib, Hughes and Jo-

han [64] is very useful for an example of the implementation in the context of compressible

flow computations in Eulerian coordinates.

In the following sections, a unifying abstract framework will be presented and applied

to the first- and second-order algorithms introduced in chapter 4.

67
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7.1 The nonlinear algebraic system of equations

The first step in the numerical solution of the Lagrangian hydrodynamic equations is the

assembly of an algebraic system of equations. Because the PDEs for hydrodynamic flows

are clearly nonlinear, an appropriate linearization of the (nonlinear) algebraic system

of equations arising from the discretization is needed. The next section is devoted to

the symbolic forming of the nonlinear algebraic system, while its linearization will be

undertaken subsequently. It is now necessary to differentiate between the first- and

second-order case, since a detailed representation of the nonlinear algebraic system is

needed.

7.1.1 First-order time integrator

Both the solution Y h and test function W h are assumed continuous in space but dis-

continuous and piecewise constant in time. Only time-slabs given by a single element in

time will be considered, so that the solution and test vector functions, for each time-slab,

can be expressed as:

Y h(X, t) =

nnp∑

A=1

NA(X)yA;(n+1) (7.1)

W h(X, t) =

nnp∑

A=1

NA(X)wA;(n+1) (7.2)

with X ∈ V, t ∈ In =]tn, tn+1[. In general, yA;(n) is the global nodal unknown at time tn

and node A in the global node ordering. In what follows, global ordering will always be

denoted by upper-case letters.

Also, let (Lh
adv)A and (Lh)B be the discrete equivalent of (5.4) and (5.5), that is,

recalling W h
,t = Y h

,t = 0:

(Lh
adv)A = AiNA,i (7.3)

(Lh)B = AiNB,i + CNB (7.4)



7.1. THE NONLINEAR ALGEBRAIC SYSTEM OF EQUATIONS 69

Substituting (7.1) and (7.2) into (4.18), and performing the trivial integration in time,

one obtains

0 =

nnp∑

A=1

wA ·
{∫

V

NA U

(
nnp∑

B=1

NByB;(n+1)

)
−NAU

(
nnp∑

B=1

NByB;(n)

)
dV

−∆tn

∫

V

NA,i
F i

(
nnp∑

B=1

NByB;(n+1)

)

dV

+∆tn

∫

V

NAC

nnp∑

B=1

NByB;(n+1) dV

+∆tn

∫

S

NA · F i

(
nnp∑

B=1

NByB;(n+1)

)
Ni dS

+∆tn

nel∑

e=1

∫

V e

(Lh
adv)A · τ

nnp∑

B=1

(Lh)ByB;(n+1) dVe

+DC
(

NA,

nnp∑

B=1

NByB;(n+1)

)}
(7.5)

7.1.2 Second-order time integrator

The solution Y h is continuous in space-time while the test function W h is continuous

in space but discontinuous and piecewise constant in time. On a single time-slab, the

solution and test vector functions can be expressed as:

Y h(X, t) =

nnp∑

A=1

NA(X)
(
π+

n (t)yA;(n+1) + π−
n (t)yA;(n)

)
(7.6)

W h(X, t) =

nnp∑

A=1

NA(X)wA;(n+1) (7.7)

with X ∈ V, t ∈ In, and

π+
n (t) =

t− tn
∆t

(7.8)

π−
n (t) =

tn+1 − t
∆t

(7.9)
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Also, let

(Lh
adv)A = AiNA,i (7.10)

(Lh
±)B = A0NBπ

±
,t + AiNB,iπ

± + CNBπ
± (7.11)

Substitution of (7.6) and (7.7) into (4.21) yields

0 =

nnp∑

A=1

wA ·
{∫

V

NA U

(
nnp∑

B=1

NByB;(n+1)

)
−NAU

(
nnp∑

B=1

NByB;(n)

)
dV

−
∫

Qn

NA,i
F i

(
nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)

dQ

+

∫

Qn

NAC

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
dQ

+

∫

Pn

NA · F i

(
nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)
Ni dP

+

nel∑

e=1

∫

Qe
n

(Lh
adv)A · τ

nnp∑

B=1

(
(Lh

+)ByB;(n+1) + (Lh
−)ByB;(n)

)
dQe

n

+DC
(

NA,

nnp∑

B=1

NB

(
π+

n yB;(n+1) + π−
n yB;(n)

)
)}

(7.12)

7.2 Newton iterative solver

Since on the interval In the nodal values yB;(n) are known from the previous time-step,

the system can be therefore abstractly represented as:

w · G̃(y(n+1); y(n)) = 0 (7.13)

and since (7.13) has to old for any w, we obtain:

G̃(y(n+1); y(n)) = 0 (7.14)
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Here a unifying notation is used, since G̃ may originate either from the first- or second-

order algorithm. The Newton iteration reads:

G̃(y(n+1); y(n)) ≈ G̃(y(i); y(n)) + ∂yG̃(y(i); y(n)) δy = 0 (7.15)

with δy = (y(i+1) − y(i)). Here the upper index (i) refers to an iterate of the Newton

algorithm, while the lower index (n) refers to the solution at time t−n . Starting from

(7.15) we can also accommodate for boundary conditions of Dirichlet type, by removing

the rows of G̃ corresponding to nodes on the Dirichlet part of the boundary, and moving

to the right hand side products of the respective columns of ∂yG̃(y(i); y(n)) multiplied

by the corresponding known nodal values. Equation (7.15) can be therefore rewritten as:

M ∗(i)

δy = −R(i) (7.16)

where the more convenient notation

M ∗(i)

= ∂yG(y(i); y(n)) (7.17)

R(i) = G(y(i); y(n)) (7.18)

has been used, and G and ∂yG are obtained from G̃ and ∂yG̃, respectively, after

Dirichlet boundary conditions have been accounted for.

The values of the tensor τ and the DC operator are computed using the solution at the

previous iterate: therefore they are said to be “frozen” or “lagged” at the previous iterate.

The lagging practice simplifies the otherwise tedious and inefficient implementation of

the SUPG and DC contributions to the tangent matrix. The number of terms to be

lagged is the minimum amount of terms that renders the discrete operators linear in the

nodal unknowns. As the Newton iteration converges, the distance between two successive

iterates tends to zero, and so do the slight discrepancies between the true and lagged

discrete operators.
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7.3 Assembly

First, the assembly of G and R will be described, secondly, possible options for ex-

plicit/implicit and block-explicit/implicit time integration will be discussed. The assem-

bled system of equations can be represented according to:

R(i) =
nel

A
e=1

Re;(i)
a (7.19)

M ∗(i)

=
nel

A
e=1

M
e;(i)
ab (7.20)

where A is the finite element assembly operator, and Re;(i)
a , M

e;(i)
ab are the element

(therefore local) contributions to the residual and tangent matrix, respectively. Once

more, a distinction between the first- and second- order method is required. As a note on

implementation, the two methods have been implemented by just changing the element

definition at the local level, preserving the entire data structure for the solution and the

interactive Newton solver. This task has been eased by the fact that both algorithms

require the update of only a single solution vector.

7.3.1 First-order time integrator

For the first-order case, it is more convenient to perform the trivial integration in time

(recall that the test/trial functions are constant-in-time) so that the local (i)-iterate at

tn+1 and the local solution at tn can be defined as:

Y e;(i)(X) =

nen∑

a=1

N e
a(X)y(i)

a (7.21)

Y e
(n)(X) =

nen∑

a=1

N e
a(X)y(n);a (7.22)

where N e
a is the local shape function in space. The vector ya;(n) represents the value of

the solution at time tn, while the vector y
(i)
a is the value of the Newton iterate of the

solution, both evaluated at the locally-indexed node a. It will be always assumed that

the lower case indexes denote local ordering. nen is the number of element nodes in space

(e.g. nen = 3 for triangles, nen = 4 for tetrahedra).
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With the previous assumptions, Re;(i)
a , M

e;(i)
ab are defined as follows:

Re;(i)
a =

∫

V e

N e
a U(Y e;(i))−N e

a U(Y e
(n)) dV

+∆tn

∫

V e

(
−N e

a,i
Fi(Y

e;(i)) + N e
aC Y e;(i)

)
dV

+∆tn

∫

Se

N e
a · Fi(Y

e;(i)) Ni dS

+∆tn

∫

V e

AjN
e
a,j
· τ
(
AkY

e;(i)
,k + CY e;(i)

)
dV

+∆tn DCe
s(N

e
A,Y

e;(i)) (7.23)

M
e;(i)
ab =

∫

V e

N e
aA0N

e
b dV

+∆tn

∫

V e

−N e
a,i

AiN
e
b + N e

aC N e
b dV

+∆tn

∫

Se

N e
aAiN

e
b Ni dS

+∆tn

∫

V e

AjN
e
a,j
· τ
(
AkN

e
b,k

+ CN e
b

)
dV

+∆tn
∂DCe

s

∂y
(N e

a,N
e
b; Y

e;(i)) (7.24)

where, for convenience, the trivial integration in time has been performed and

DCe(N e
A,Y

e;(i)) = ∆tn DCe
s(N

e
A,Y

e;(i)) (7.25)

∂DCe

∂y
(N e

a,N
e
b; Y

e;(i)) = ∆tn
∂DCe

s

∂y
(N e

a,N
e
b; Y

e;(i)) (7.26)

7.3.2 Second-order time integrator

The local solution can be expressed – with a full space-time characterization – as:

Y e;(i)(X, t) =
nen∑

a=1

N e
a(X)

(
πe;+

n (t)y(i)
a + πe;−

n (t)ya;(n)

)
(7.27)

where N e
a, analogously to the implementation of the first-order time integrator, is the

local shape function in space, πe;±
n are the local trial shape function in time. The two-level
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splitting of the solution in time is very useful in the implementation phase: the space-

time elements are in fact prismatic in time, so that the implementation complexity for

the space-time element is only marginally larger than for its purely spatial counterpart,

even in the three-dimensional case. With the previous assumptions,

Re;(i)
a =

∫

V e

N e
a U
(
Y e;(i)(X, tn+1)

)
−N e

a U
(
Y e;(i)(X, tn)

)
dV

+

∫

Qe
n

−N e
a,i

F i

(
Y e;(i)(X, t)

)
+ N e

aC Y e;(i)(X, t) dQ

+

∫

P e
n

N e
a · F i

(
Y e;(i)(X, t)

)
Ni dP

+

∫

Qe
n

AjN
e
a,j
· τ
(
A0Y

e;(i)
,t (X, t) + AkY

e;(i)
,k (X, t) + CY e;(i)(X, t)

)
dQ

+ DCe(N e
A,Y

e;(i)) (7.28)

M
e;(i)
ab =

∫

V e

N e
aA0N

e
b dV

+

∫

Qe
n

−N e
a,i

AiN
e
b + N e

aC N e
b dQ

+

∫

P e
n

N e
aAiN

e
b Ni dP

+

∫

Qe
n

AjN
e
a,j
· τ
(
A0N

e
bπ

e;+
n,t

+ AkN
e
b,k
πe;+

n + CN e
bπ

e;+
n

)
dQ

+
∂DCe

∂y
(N e

a,N
e
b, π

e;+
n ; Y e;(i)) (7.29)

7.4 Predictor/multi-corrector outline

The whole time-step scheme is summarized in Table 7.1. Depending on how the matrix

M ∗(i)

is formed, the algorithm presented can result in an explicit or implicit scheme.

Although the form of the tangent matrix M ∗(i)

may change, the expression for the

discrete residual vector R(i) stays the same. Therefore, only the direction of search of

the new iterate would change. As long as M ∗(i)

is not steering the solution out of the

basin of convergence of the iterative solver, the residual R(i) will always be driven to zero

as the iteration proceeds.
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Retreive loop parameters: nstep, imax

Initialize: set y(0)

For n = 0, . . . , nstep (Time-step loop begins)
Predictor: y(0) = y(n)

Set ∆t (respecting the CFL condition)

For i = 0, . . . , imax − 1 (Multi-corrector loop begins)

Form R(i)(y(i); y(n))

Form M ∗(i)

(y(i))

Solve M ∗(i)

δy(i) = R(i)(y(i); y(n))

Corrector: y(i+1) = y(i) + δy(i)

End (Multi-corrector loop ends)

Time update: y(n+1) = yimax

End (Time-step loop ends)
Exit

Table 7.1: Outline of the predictor-multicorrector algorithm.

7.4.1 Implicit algorithm

If M ∗(i)

is assembled from the full M
e;(i)
ab (i.e. the full expressions (7.24) or (7.29) are used,

respectively), then the resulting scheme is implicit. Usually this means more flexibility

in the choice of the time-step, since the scheme is unconditionally stable. Of course,

accuracy would require time-steps close to the ones prescribed by the CFL condition. By

an appropriate reordering of the nodal unknowns, (7.16) can be recast as:





M ∗(i)

uu 0 M ∗(i)

uv

0 M ∗(i)

pp M ∗(i)

pv

0 M ∗(i)

vp M ∗(i)

vv









δu(i)

δp(i)

δv(i)




= −





R(i)
u

R(i)
p

R(i)
v




(7.30)

In what follows, the super-index (i) will be dropped, without loss of generality. Let

M ∗
ΦΦ

=



 M ∗
pp M ∗

pv

M ∗
vp M ∗

vv



 , δΦ =



 δp

δv



 , RΦ =



 Rp

Rv



 (7.31)
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If block Gauss elimination is applied, it is possible to solve for the displacements after

velocities and pressure have been updated, according to the sequence:

δΦ = −M ∗−1

ΦΦ
RΦ (7.32)

δu = −M ∗−1

uu (Ru + M ∗
uvδv) (7.33)

It will be clear from the derivations in Section 7.5, that the update of the displacements

never involves a true system solve, even in the implicit case, since the displacement

equations have ODE rather than PDE character.

7.4.2 Explicit algorithm

One of the major issues in hydrocode technology is fast time integration. An explicit al-

gorithm is now presented, with the specific goal of high performance for production-type

implementations. The explicit scheme is stable, provided a CFL-type condition is satis-

fied. More details on the abstract framework are presented in the book by Hughes [27],

p. 562. The tangent matrix M ∗(i)

is non-diagonal, but – as it will be clear shortly –

it is possible to step through a block Gauss elimination involving only diagonal matrix

inversions, which are trivial vector divides.

As a side note, the structure of the algorithm closely relates to the typical time-

marching schemes for hydrocodes. The key features of the proposed explicit approach

can be enumerated as follows:

1. The tangent matrix M ∗(i)

is assembled from a local matrix M
e;(i)
ab involving just

the first of the terms in (7.24) or (7.29), namely:

M
e;(i)
ab =

∫

V e

N e
aA0N

e
b dV (7.34)

and in particular, the displacements are updated according to (7.32)–(7.33).

2. Specifically, M ∗(i)

is assembled using nodal quadrature in space (row-sum mass

lumping), yielding a diagonal tangent matrix: M ∗(i) ←ML(i)

.
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3. On the other hand, Gauss quadratures have been used for the algebraic residual R(i)

(two-point quadratures have been the choice in the one-dimensional case, while in

the multidimensional case simplifications are possible, by means of tailored single-

point quadratures).

4. The system is solved by block elimination with a further development of the strat-

egy outlined in Section 7.4.2: first the increments of the velocities are computed,

followed by the displacement and (finally) pressure increments.

Issues related to the non-diagonal structure of A0 are obviated by this approach, since

all the blocks to be inverted are diagonal. The system to be solved is (the index i has

been dropped):





ML
uu 0 0

0 ML
pp ML

pv

0 0 ML
vv









δu(i)

δp(i)

δv(i)




= −





R(i)
u

R(i)
p

R(i)
v




(7.35)

Assembly of (7.34) renders ML an upper triangular block matrix (with diagonal blocks).

The non-diagonal blocks ML
uv, ML

pv originate from the assembly of the off-diagonal

entries in the matrix A0, while contributions involving the Ai’s are absent, by definition

of ML. Backward block-Gaussian elimination yields

δv = −ML−1

vv Rv (7.36)

δu = −ML−1

uu Ru

= −ML−1

uu Ru (7.37)

δp = −ML−1

pp (Rp + ML
pvM

L−1

vv Rv)

= −ML−1

pp (Rp + ML
pvδv) (7.38)

where all the matrices to be inverted, due to lumping, are now diagonal. Note that

ML
pp is a function of u and v, already updated before the pressure stage in the block

elimination. It is therefore possible to update also the entries of ML
pp, before (trivially)

inverting it. This might result in an increase in the iteration rate of convergence.
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7.5 Time-integration strategy for displacements

This section is entirely devoted to explain how the displacements have to be properly

updated. Distinctions will be made between the implicit and explicit cases, and within

each case, between the first- and second-order sub-cases.

In conclusion, it will be observed that the original [(2nd +1)×nnp]× [(2nd +1)×nnp]

global system solve for the nodal values of uA, vA, and pA (1 ≤ A ≤ nnp) can be

decomposed into a [(nd +1)×nnp]× [(nd +1)×nnp] system solve for the nodal unknowns

vA and pA followed by a simple [nd × nnp]× [nd × nnp] ODE update for uA.

7.5.1 Implicit algorithm

Let us recall the general space-time discretization:

0 =

∫

V

wh(X, t−n+1) · uh(X, t−n+1) dV −
∫

V

wh(X, t+n ) · uh(X, t−n ) dV

−
∫

Qn

wh(X, t) · vh(X, t) dQ (7.39)

First-order time integrator

Starting from (7.5), and extracting the displacements equations, one obtains:

0 =

nnp∑

A,B=1

wA ·
{∫

V

NA NBuB;(n+1) −NANBuB;(n) dV

+∆tn

∫

V

NANBvB;(n+1) dV

}
(7.40)

and, in a more compact notation,

Msu
(i+1) −Msun = ∆tnMsv

(i+1) (7.41)

where u(i+1)/v(i+1) and un/vn are used to denote the nodal displacements/velocities at

the iterate i or time tn, respectively, andMs is the spatial mass matrix for continuous,

piecewise linear functions, that is,

Ms =

∫

V

NANB dV (7.42)
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Note that v(i+1) is a known quantity, since it has been computed from the mo-

mentum/energy block of the system. Differentiating (7.41), according to the Newton

paradigm, leads to:

Ms

(
δu(i) −∆tnδv

(i)
)

= −Ms

(
u(i) − un −∆tnv(i)

)
(7.43)

Since no mass lumping is applied on the right hand side (RHS), the mass matrices

(identical for velocities and displacements due to the choice of function spaces) readily

simplify. Furthermore, when the displacements are updated, the new velocity increments

are already available, and can be considered as known quantities. Therefore, the update

of the nodal displacements does not involve any matrix solve, and is given by the classical

implicit Euler algorithm for ODEs:

δu(i) = ∆tnδv
(i) −

(
u(i) − un −∆tnv

(i)
)

(7.44)

Second-order time integrator

For the second-order case, the procedure closely follows the previous derivation. Note

however that, for the second-order case, the trial functions are not constant in time over

single-element time slabs any more. A simplified version of (7.12) is obtained for the

displacements:

0 =

nnp∑

A,B=1

wA ·
{∫

V

NA NBuB;(n+1) −NANBuB;(n) dV

+

∫

Qn

NA NB

(
π+

n vB;(n+1) + π−
n vB;(n)

)
dQ

}
(7.45)

or, by performing the integration in space and time, and using a simplified notation,

Msu
(i+1) −Msun =

∆tn
2

(
Msv

(i+1) + Msvn

)
(7.46)

or, in incremental form,

Ms

(
δu(i) − ∆tn

2
δv(i)

)
= −Ms

(
u(i) − un −

∆tn
2

(
v(i) + vn

))
(7.47)
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Once again, M s readily simplifies, and comparing with (4.8), it is easily recognized the

trapezoidal rule:

u(i+1) = un +
∆tn
2

(
v(i+1) + vn

)
(7.48)

or

δu(i) =
∆tn
2
δv(i) −

(
u(i) − un −

∆tn
2

(
v(i) + vn

))
(7.49)

7.5.2 Explicit algorithm

For the explicit method, the matrices on the left hand side (LHS) of (7.43) and (7.47)

are lumped, so that – strictly speaking – they cannot simplify, although there are still

no matrix solves to perform. The results for first- and second-order time integrators are

briefly stated below.

First order time integrator

δu(i) = −(ML
s )−1Ms

(
u(i) − un −∆tnv(i)

)
(7.50)

Second order time integrator

δu(i) = −(ML
s )−1Ms

(
u(i) − un −

∆tn
2

(
v(i) + vn

))
(7.51)



Chapter 8

Numerical Experiments and

Conclusions

An efficient and accurate method for compressible flows must be tested on two very

important issues. The first issue is robustness under shock conditions (discontinuities

must be properly captured, without dangerous over/under-shoots), the second is accuracy

in regions where the solution is smooth.

In order to assess the performance of the Hydro-SUPG formulation, tests from one-

dimensional gas dynamics have been performed, ranging from acoustic wave propagation

studies to blast and implosion computations. The performance of the proposed approach

is compared with a classical one-dimensional hydrocode formulation as presented in the

introductory section 3.

Detailed analysis of the numerical test for one-dimensional gas dynamics shows that

the Hydro-SUPG approach delivers comparable or superior accuracy with respect to a

prototypical hydrocode implementation. In terms of computational cost – evaluated in

terms of cumulative number of iterations to target time – the Hydro-SUPG method

results in a more expensive algorithm, although still very competitive with the classical

hydrocode implementations. Since the proposed method – still in its initial exploratory

stage – is far from having been optimized, its potential for Lagrangian Hydrodynamics

appears clear. In addition, SUPG approaches for hyperbolic system of conservation

laws are very well suited for computations on multi-dimensional unstructured tetrahedral

meshes, a combination very little explored by classical hydrocode approaches to date.

81
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8.1 One-dimensional gas dynamics

The present section is devoted to the analysis of numerical experiments in the case of

one-dimensional gas dynamics. A number of general considerations on the details of the

simulations is presented first, followed by comments on the results.

8.1.1 General remarks

A point of departure in the discussion is presenting the overall solution update strategy,

which can be summarized as follows:

1. The primitive variables u, v, p are solved for in the numerical computation.

2. The Jacobian determinant J is then computed from the displacement field u.

3. The density ρ is post-processed using the mass conservation (2.8).

4. The internal energy e is post-processed using the equation of state (constitutive

law) (2.21).

Note that energy and density are not directly used in the computation. Any time they

appear in the variational form, their expressions in terms of the initial density ρ0, the

Jacobian J , the pressure p and the specific heat ratio γ are used. In this sense, they do

not need to be specifically computed. However, in the post-processing phase of the results

of a simulation, it is important to the analyst to represent these variables accurately.

8.1.2 On the accurate computation of density and energy

The initial density ρ0 has been assumed piecewise-constant over elements and discontin-

uous from element to element. Since u is linear, recalling (2.8) and (2.33)-(2.34), J is

discontinuous piecewise-constant. Specifically, J involves derivatives of u, and is there-

fore an intrinsically less accurate quantity (see, e.g., the plot for J on the bottom right

corner of Fig. 8.8). Obviously, the degradation in accuracy migrates to e and ρ, in the

form of node-to-node oscillations with point-wise errors up to 5–10%.

One way to post-process ρ retaining accuracy, is to first compute its cell-centered

representation as ρ = ρ0 J , and finally redefine it as a nodal quantity by means of an
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averaging over co-volumes. With this procedure, the results – especially in shock-tube

tests – underwent a dramatic improvement: this technique will be referred to as the

co-volume average post-processing.

Other strategies are possible, and for this reason it is important to know what worked

less accurately, as the assumption that all quantities – including ρ0, ρ, e – are continuous,

piecewise-linear.

Special care has also been taken in the post-processing of the internal energy e. It

has been found beneficial to apply a smoothing operator to the vector of nodal degrees-

of-freedom for the pressure, before using it to compute the internal energy. Namely:

{pavg}i =

nnp∑

j=1

Gijpj (8.1)

where Gij = (meas(covi))
−1Mij , Mij is the mass matrix operator, and meas(covi) is the

average measure of the co-volume centered at node i (coincident, for one-dimensional,

uniform meshes, to the length of the mesh interval). This type of pressure post-processing

has been used throughout all simulations presented herein.

One point to be made is that accuracy of the method must not be confused with

representation issues of the reconstructed energy and density fields, which never enter

directly the computation. Although there is a certain degree of arbitrariness in the choice

of the post-processing, the very good results that will be observed in the forthcoming

sections show that the proposed reconstruction technique is very accurate.

8.1.3 Proper setting of the density initial condition

Having the pressure piecewise-linear and the initial density ρ0 piecewise-constant posed

some issues on how to setup the initial conditions. The strategy that proved the best for

the purpose of oscillation-free results was to interpolate the exact initial density distribu-

tion with a continuous piecewise-linear distribution ρ
(nodal)
0 , and average it subsequently

over the cells (i.e., the elements), in order to retrieve a piecewise-constant distribution

ρ
(cell)
0 . This seems the most natural choice, since, taken the one-dimensional case as an

example, if we consider an element where an initial discontinuity is located, the pressure

would vary linearly between the left and right values and there would be ambiguity in
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setting the element centered ρ
(cell)
0 equal to either the corresponding left or right values

of ρ
(nodal)
0 . By cell-averaging ρ

(nodal)
0 , a better match was obtained between pressure and

density in the initial condition. This technique is straightforward to generalize to the

multi-dimensional case, using cell-averaging in multiple dimensions.

We add, as a proviso, that if the initial conditions are discontinuous, it is not ad-

visable to L2-project them onto the continuous finite element basis (different is the case

if a discontinuous basis is used), since Gibbs phenomena may arise in the vicinity of

discontinuities.

A simpler and more accurate approach would be just to define the initial nodal values

as the nodal interpolant of the exact initial condition.

8.1.4 Optimization of the DC parameters

A number of tests has been performed initially on the proposed class of nonlinear vis-

cosities, in order to assess their overall performance and tune their parameters.

In particular, it was observed that a blending parameter βB = 1/4 yielded the best

results for the second-order variant of the Hydro-SUPG scheme, while the choice βB = 1/2

was better suited for the first-order variant (not presented here). Test performed are not

conclusive in this regard, but for all the following numerical examples, the following

choices were adopted:

First-order time integrator: C1 = 3, βB = 1/2. Several test showed that constants

in the range C1 ∈ [1, 6] where delivering good performance.

Second-order time integrator: C1 = 3, βB = 1/4. Good performance was observed

for C1 ∈ [1, 6].

One point to be made is that the viscosities were more sensitive to βB than C1: This was

expected, since the former is changing the scaling of the viscosity, while the latter allows

fine-tuning adjustments.

Typically, the tuning requires just a few simulations, and is usually much easier than

for the case of Von Neumann-Richtmyer viscosities, due to the fact that the proposed

approach is residual-based, hence very localized. Away from shock discontinuities, the
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residual is almost nil, so that unless the parameters used are very far from the optimal

range, good results are obtained.

In the following discussion, results obtained with a prototypical one-dimensional hy-

drocode (as detailed in section 3) will also be presented. In that case, the artificial

viscosity has the form given by (3.31), with cV NR
= 1.5, and cLIN = .06, a very popular

choice, as documented by Benson [3].

8.1.5 Explicit versus implicit

For all test presented, the explicit version of the code has been used, being the most prob-

able candidate for large-scale computations, since no algebraic system solve is required

at each iteration.

The implicit and explicit versions were compared keeping the number of iterations

fixed, and the implicit proved superior for all test cases. Hence, showing only the results

for the explicit version represents a conservative approach. As a general remark, provided

the nonlinear solver converges, both implicit and explicit versions yield the same limit

solution as the number of iterations tends to infinity. Therefore, differences can be

appreciated only if a few nonlinear iterations are performed per time-step.

In terms of future research, it seems also viable the opportunity to implement an

element-by-element implicit/explicit algorithm (see [27] p. 559 and [35] for details), since

the lack of CFL restrictions in implicit sub-domains can allow a larger global time-step.

8.1.6 Physical versus “artificial” CFL condition

This section is the true core of the implementation strategy, and it is of capital importance

for obtaining reliable, robust, and accurate simulations.

In a nutshell, when using artificial viscosities to construct DC operators, the numerics

cannot distinguish whether such viscosities are a manifestation of a physical phenomenon

or just a “stabilizing artifact”.

Therefore, together with the standard definition of the Courant-Friedrichs-Levy (CFL)

condition for advection, a diffusion CFL condition must be applied. Failing to account for

artificial diffusion leads to “computational disasters”, as preliminary simulations showed,
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especially in the early times of computations, when the artificial viscosities typically

dominate the time constraints.

To fix the notation let us define an advective global Courant number CFLadv:

CFLadv = max
1≤j≤nel

αj (8.2)

where αj corresponds to the parameter α (defined in section 5.4.2) relative to the element

j. Let us also introduce the diffusive Courant number CFLq:

CFLq = max
1≤j≤nel

(
2νDCj

∆t

∆X2
j

)
(8.3)

The stability limit in the explicit version of the proposed algorithm is given by:

CFL = max(CFLadv, CFLq) ≤ 1 (8.4)

Typically, the threshold 1 is never used, for safety reasons, and the combined CFL

parameter is taken smaller than unity (CFL ∈ [0.5, 0.9] is a common range of values).

The CFL condition (8.4) is better understood when recast in terms of the maximum

allowed time step:

∆tCFLadv
= min

1≤j≤nel

(
CFLadv

∆XjJj

cj

)
(8.5)

∆tCFLq = min
1≤j≤nel

(
CFLq

2∆X2
j

νDCj

)
(8.6)

Clearly, the combined CFL condition yields:

∆tCFLmax = min(∆tCFLadv
,∆tCFLadv

) (8.7)

In all the simulations of Riemann-type problems, for which the CFL restrictions are

severe, the history of ∆tCFLadv
, ∆tCFLq , and ∆tCFLmax will be presented.

To conclude this section, it is now important to note what should be the properties of

an efficient numerical algorithm based on artificial viscosity DC operators. In practice,

the aim is to have limitations on the time-step only due to the true physics of the
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problem. Therefore one would hope to have ∆tCFLmax = ∆tCFLadv
. In fact, whenever

the restriction on the time step comes from the artificial diffusion, one is forced to pay

the price of smaller time-steps in order to have a stable scheme. It will be shown in

the extensive numerical experiments that the proposed DC operator yields diffusive CFL

condition that are less restrictive than the advective CFL condition, with the exception

of very few time-steps (usually less than ten) in the early stages of the simulation. In this

sense, the proposed DC operator is practically optimal, since it stabilizes strong shocks

without causing additional restrictions on the time-step limits. It will also be observed

that this is not usually the case for the standard Von Neumann-Richtmyer viscosity.

8.1.7 Time integration strategy

In order to quantify the nonlinear solver convergence, it was found satisfactory to use

a tolerance ǫp acting on the relative correction of the pressure iterate. In the proposed

implementation, the Newton iteration proceeds as long as:

∑nnp

A=1 |δpA|∑nnp

A=1 |pA|
> ǫp = 3× 10−4 (8.8)

The number of iterations was fixed in certain situations, and left free to vary in others.

The history of the number of iterations is presented for all Riemann problems tested.

Typically, whenever new features appear in the solution (either in terms of the computed

or post-processed variables), the number of iterations increases locally in time and reduces

subsequently, as the numerics resolves the occurring features. As a simple example, if a

new plateau is formed in the density or energy, the code will take more iterations in the

early instants of its formation, while the number of iterations will decrease as soon as

the plateau is captured by 5-10 elements.

Overall, the number of iterations is therefore reasonable, with most of the tests aver-

aging within 3-4 iterations. Of course, two-iterations runs were performed, with a slight

degradation in accuracy for the less demanding tests, and a more pronounced degradation

for the more demanding tests.

As a general rule, it was found that running larger time-steps and iterating up to 3-4

times was better than running smaller time-steps and iterating only twice, since the key
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parameter, the cumulative number of iterations, relative to the final simulation time, was

lower using the first strategy.

“Investing in the initial transient pays off . . . ”

Usually, the most demanding simulations require special care in the early stages of the

time evolution. Therefore, the approach followed was to allow a larger number of iter-

ations for the first ten time-step of most simulations, and reduce the threshold of the

maximum number of iterations subsequently (typically to only three iterations).

As a result, unwanted oscillations arising in the first couple of time-steps were success-

fully cured. In the early time-steps the numerics adjusts to the combination of initial and

boundary conditions, and after this phase is elapsed, the system settles into its evolving

state, making increasingly easier the convergence of the corrector. Although it may not

seem so evident, the improvement on the accuracy was consistent.

In addition, just for the first of the predictor/corrector passes (and for only the first

ten time steps), a check on the intensity of the artificial viscosity was made: if the time

step constraint, based upon the new estimate of the solution (and artificial viscosity), was

more restrictive than the one initially provided for the predictor step, then the time step

was reduced and the predictor/corrector iteration restarted. Obviously, the additional

cost of repeating part of the calculations was involved, but since only the first ten time

steps were affected by such strategy, the impact on the overall computational cost of the

simulation was minimal.

8.2 Acoustic wave propagation problem

The first test presented is an acoustic problem in which an initial pulse propagates in

a one-dimensional domain. This test assesses the ability of the numerical scheme to

propagate without damping acoustic disturbances, and, in practice, only a truly second-

or higher-order numerical scheme can deliver satisfactory performance.

First- and second-order algorithm solutions are shown in Figures 8.1 and 8.3, while

Figure 8.2 shows the solution when a classical hydrocode formulation is applied as out-

lined in chapter 3.
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Figure 8.1: First-order scheme Hydro-SUPG solution for the acoustic wave propagation
test case. The initial condition is in red. Notice the damping of the solution as time
progresses, especially evident in the pressure and velocity plots for the right-moving wave.

The test, similarly to what is reported in Shakib, Hughes, and Johan [64], consists of

the following initial conditions at time t = 0:

u0 = 0 (8.9)

v0 = c̃ S (8.10)

ρ0 = ρ̃ (1 + S) (8.11)

p0 = ρ̃ c̃2 (1 + S) (8.12)

with ρ̃ = 1, c̃ = 1, and, defining λ as the wavelength,

S(X) =





(ρ̃/104)(1− cos((2π/λ)(X −Xoff)), 0 ≤ X −Xoff ≤ λ,

0, otherwise,
(8.13)
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Figure 8.2: Hydrocode solution for the acoustic wave propagation test case. The initial
condition is in red. The scheme seems to deliver good performance, although a closer
look reveals that the disturbances are slightly damped by the artificial viscosity acting
in compression (see Fig. 8.4), and for long times would eventually dissipate completely.

In practice the initial field is a cosine pulse superposed to a constant field, 10,000 times

larger in magnitude. Xoff is an offset point with respect to the origin of the coordinate

system.

The domain is V = [−1, 1], discretized with a uniform mesh of 200 elements, and the

choices λ = 1/2 and Xoff = −1/2 were made. Therefore the initial acoustic disturbance

is initially located on the interval [−1/2, 0], and is expected to propagate with wave speed

c0.

The first-order method and the hydrocode have been run at CFL = 0.9, since the

simulation was unstable further approaching the stability threshold of CFL = 1. Sur-

prisingly enough, it is possible with the second-order to run at CFL = 1. For the

second-order Hydro-SUPG method, other simulations were performed for CFL ∈ [0.5, 1]
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Figure 8.3: Second-order Hydro-SUPG solution for the acoustic wave propagation test
case. The initial condition is in red. It is noticeable the extremely good performance of
the scheme, since virtually no damping is produced and the disturbances relative to the
three waves, once formed, maintain their respective magnitude, as time progresses in the
simulation.

and no significant differences where observed with respect to the case CFL = 1, pre-

sented herein. For the given tolerance on the pressure, two iterations were needed for the

first-order scheme and three iterations for the second-order scheme.

It is interesting to observe that three waves are actually generated by the initial

condition (8.9)–(8.13):

1. A (forward) right-moving wave of larger amplitude.

2. A (reverse) left-moving wave, which eventually bounces off the left wall, due to the

zero displacement Dirichlet boundary condition.

3. A standing entropy wave, which persists in the original position (see the density

and energy plots).
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Figure 8.4: Pressure at t = 0.338, 0.507, 0.676. Comparison between the first-order
Hydro-SUPG (left), the hydrocode solution (middle) and the second-order Hydro-SUPG
(right) for the right moving acoustic wave. The three curves in each plot show the
pressures corresponding to the last three sample times of Figures 8.1, 8.2 and 8.3. Severe
damping is noticeable for the first-order solution. Although mild, damping is still present
in the hydrocode solution (compare the upper plots, where a zoomed view is presented),
while the second-order Hydro-SUPG solution is practically undamped, a very remarkable
result.

Eventually, the waves will bounce off the boundaries at X = −1 and X = +1, where

Dirchlet zero velocity boundary conditions are imposed.

In the case of Hydro-SUPG, the stabilization and DC operators were active at all

times, in the sense that they were not turned off. However, due to the smoothness of the

solution, the residual was negligible, and so were both the stabilization and discontinu-

ity capturing terms. The solution is actually indistinguishable from the plain Galerkin

solution (with stabilization/DC operators turned off).

Damping of the waves is severe for the first-order case, and milder for the hydrocode

solutions (see Fig. 8.4, and compare the magnitude of the pressure peaks as time pro-

gresses). On the other hand, optimal performance is obtained with the second-order

Hydro-SUPG scheme, for which damping is virtually absent.

It is important to stress once more that the key factor for the good performance of

the second-order SUPG algorithm is the residual nature of the stabilization/viscosity.
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Figure ρ
(L)
0 ρ

(R)
0 p

(L)
0 p

(R)
0 v

(L)
0 v

(R)
0 γ

8.5 & 8.6 1.0 1.0 0.4 0.4 -2.0 2.0 1.4
8.7 & 8.8 1.0 0.125 1.0 0.1 0.0 0.0 1.4
8.9 & 8.10 1.0 1.0 1000 0.01 0.0 0.0 1.4
8.11 & 8.12 1.0 1.0 0.01 100 0.0 0.0 1.4
8.13 & 8.14 5.99924 5.99242 460.894 46.0950 19.5975 -6.19633 1.4
8.15 & 8.16 – 1.0 – 0.0 – -1.0 5/3

Table 8.1: Initial condition for the Riemann problem suite from Toro [65], and the one-
dimensional Noh [53] test (last row of the table).

Figure ρ
(L)
∗ ρ

(R)
∗ p∗ v∗ M∗ (Shock Mach no.)

8.5 & 8.6 0.02185 0.02185 0.00189 0.0000 No shocks
8.7 & 8.8 0.42632 0.26557 0.30313 0.92745 1.65563
8.9 & 8.10 0.57506 5.99924 460.894 19.5975 198.760
8.11 & 8.12 5.99242 0.57511 46.0950 -6.19633 62.8581
8.13 & 8.14 14.2823 31.0426 1691.64 8.68975 1.813523 / 5.621311
8.15 & 8.16 4.0 – 4/3 0.0 ∞

Table 8.2: Intermediate state values for the Riemann problem suite from Toro [65], as
well as the Noh [53] test.

8.3 A suite of Riemann problems

In the following sections a suite of Riemann problems from the book by Toro [65] is

solved, with the purpose of comparing the performance of the Hydro-SUPG second-order

implementation against the prototypical hydrocode implementation, under a very broad

range of conditions. In addition, the planar version of the implosion test devised by

Noh [53] will be presented.

Table 8.1 summarizes the initial conditions and Table 8.2 presents the intermediate

(star -) state values – computed solving an exact Riemann problem – at the final time of

the simulation.

Table 8.3 presents the parameters and the statistics relative to the tests performed.

All tests were performed on a 100-element uniform mesh. As a general remark, it was

observed that the hydrocode solutions were developing much stronger oscillations in

the transient phase before the final time, compared to the corresponding Hydro-SUPG

solutions. For the sake of brevity, the corresponding early stage results will be omitted.
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Method Test Fig. CFL Ni−P/C NP/C Avg. it. Nt IT Tfinal

H-CODE 123 8.5 .9 – – – 7 – 0.15
H-SUPG2nd 123 8.6 .9 7 3 4.8571 7 34 0.15

H-CODE Sod 8.7 .9 – – – 41 – 0.25
H-SUPG2nd Sod 8.8 .9 7 3 3.4750 40 139 0.25

H-CODE LWC 8.9 .9 – – – 50 – 0.012
H-SUPG2nd LWC 8.10 .9 7 3 3.9231 39 153 0.012

H-CODE RWC 8.11 .9 – – – 46 – 0.035
H-SUPG2nd RWC 8.12 .9 7 3 4.2086 35 141 0.035

H-CODE 2SH 8.13 .9 – – – 107 – 0.035
H-SUPG2nd 2SH 8.14 .9 7 3 3.3626 91 306 0.035

H-CODE NOH 8.15 .9 – – – 119 – 0.6
H-SUPG2nd NOH 8.16 .9 4 3 3.0893 112 346 0.6

Table 8.3: Summary of the tests. All simulations were performed on a uniform grid of
100 elements. H-CODE and H-SUPG2nd, stand for hydrocode and second-order Hydro-
SUPG, respectively. Nt is the number of time-steps to reach the target time Tfinal.
Ni−P/C is the maximum number of predictor/corrector passes (including repetition of
the predictor pass due to CFL constraints) allowed in the first 10 time-steps. NP/C is the
maximum number of predictor/corrector passes allowed after the first 10 time-steps. IT is
the cumulative number of iteration to target, used as measure of the overall cost to reach
the time Tfinal in the simulation. All the simulations were performed using the explicit
variant and at the maximum Courant number (CFL) allowing stable computations.

8.3.1 123 problem

The so-called 123 problem assesses whether or not a numerical scheme delivers higher-

order performance under severe expansion conditions.

The true challenge for this test is to obtain an accurate solution for the energy. Notice

that the initial condition for the Hydro-SUPG simulation is such that the initial states

present an off-set of half a cell to the right, resulting in different evaluation points for

the solution as it can be seen comparing the plots of the energy e and Jacobian J .

It can be easily checked in [49] and [65] that substantially none of the typical Eule-

rian state-of-the-art methods considered higher-order, based on MUSCL, ENO, WENO,

WAFT, CLAW, or more advanced approaches passes satisfactorily the 123 test case.

On the other other hand, Lagrangian-type methods are extremely accurate for this

type of problems as it can be seen in Figures 8.5 and 8.6, where the computed solutions

are practically always on top of the exact solution.
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Figure 8.5: Hydrocode solution for the 123 problem. Exact solution is black, computed
is red (continuous with dots). Notice the accuracy with which the expansion hull is
captured, due also to the fact that the artificial viscosity (top-right corner) is virtually
zero. On the top-left corner, the history of ∆tCFLadv

(red), ∆tCFLq (blue), and ∆tCFLmax

(black) is presented: The CFL condition is dominated by the advective constraint.

For the Hydro-SUPG version, when the threshold ǫp for the nonlinear solver was

reduced, the results were almost indistinguishable from the exact solution, at the price

of an increase in the number of iterations.

8.3.2 Sod’s problem

The Sod’s test is a classical for one-dimensional gas dynamics. Both hydrocode and

SUPG algorithm were run at CFL = 0.9.

Notice however that the hydrocode tends to be affected by the time-step constraint
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Figure 8.6: Hydro-SUPG second-order variant. Notice the very good performance for
the energy component of the solution. This is due to a very accurate representation
of velocities and displacements. The plots are organized as in Figure 8.5, the artificial
viscous flux q replaced by the history of the number of iterations of the predictor/corrector
per time step.

due to the artificial viscosity, a trend to be seen in most of the test. This behavior is

not optimal, since the DC operator causes the simulation to slow down with respect the

constraint imposed by the advective CFL condition.

As one can see in Figure 8.8, after the first two time-steps, the SUPG approach is

optimal in terms of the CFL restriction, since the time-step constraint is entirely due to

the advective CFL condition.

The hydrocode delivers good performance, but a pronounced overshoot is present

in the energy plot and the velocity shows low accuracy in the representation of the

solution past the shock front. The Hydro-SUPG results, instead, show a well captured

energy plateau: The slight smearing of the contact discontinuity is due to the linear
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Figure 8.7: Hydrocode solution for the classical Sod’s problem. The shock is captured
with some wiggles, and the expansion presents a moderate overshoot. The energy is not
computed accurately in the upper plateau. On the top-left corner the time-step history
of ∆tCFLadv

(red), ∆tCFLq (blue), and ∆tCFLmax (black).

approximation for the pressure. In particular, it was observed in mesh refinement studies

that the contact discontinuity spans usually two-three elements, independent of the mesh

spacing. The number of iterations is between three and four, although good results were

obtained also with two-three iterations only.

8.3.3 Left-half of Colella-Woodward’s blast

The present and following sections are devoted to test accuracy and robustness in blast-

type computations, with shocks in increasing intensity.

The hydrocode computation shows again lack of optimality in the time-step limita-

tions, even more evident than in the Sod’s test case. In addition, mild wiggles are present
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Figure 8.8: Hydro-SUPG, second-order scheme solution for the classical Sod’s problem.
The energy is very accurate, the contact is properly captured within two/three elements.

in the proximity of the shock front for velocity and pressure.

The second-order Hydro-SUPG scheme delivers much better performance, both in

terms of monotonicity of the solution and time-step limitations. The overshoot in the

velocity at the end of the expansion is more moderate than for the hydrocode plots. The

fact that a scheme based on piecewise linear continuous interpolation of all variables could

deliver such performance for blast-type computations is quite surprising, and indicative

of flexibility of the DC operator design.

One detail that might escape the eye is that, occasionally, the pressure can take neg-

ative values ahead of the shock. The calculations of τ and the CFL condition involve

the speed of sound in the medium, for which the square root of the pressure is needed:

If the pressure is negative, a complex sound speed is produced. As an academic rather
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Figure 8.9: Left-half of the Colella-Woodward’s blast: Hydrocode solution. Notice the
pronounced over/under-shoot for the velocity/pressure at the beginning of the expansion
(about X = −.25). Furthermore, wiggles are present past the shock front in the velocity
and pressure plots.

than practical remark, when complex arithmetic was used in the computations (to allow

complex sound speeds), the real part of the solution resulted very accurate. The inconve-

nience of complex arithmetic has been avoided by taking the positive part of the pressure

(i.e., max{0, p}) when computing the stable time-step and the τ tensor.

The explanation for the good performance of the code has to do with the fact that

for Lagrangian coordinates, a negative pressure may not lead to a negative density, since

the density is computed using the initial density (positive) and the Jacobian (positive by

definition). Therefore, a very mild negative pressure is not causing volume inversions,

which were never experienced in this case.
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Figure 8.10: Left-half of the Colella-Woodward’s blast: Second-order Hydro-SUPG so-
lution. The over/under-shoots are practically absent for velocity and pressure. The
plateau for the density is properly captured, and the limitations on the time-step are
almost entirely due to the advective effects.

The energy does not show negative values, since the co-volume post-processing was

used and nodes of negative pressure were usually isolated between nodes in which the

pressure was positive.

8.3.4 Right-half of Colella-Woodward’s blast

For the right-half of the Colella-Woodward’s blast, considerations almost identical to the

ones outlined in the previous section hold. The test is presented for completeness.
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Figure 8.11: Right-half of the Colella-Woodward’s blast: Hydrocode solution. Comments
are analogous to the ones in Figure 8.9.

8.3.5 Two-shock problem

The two-shock test is one of the most demanding test of this suite in terms of robustness.

This is mainly due to the fact that the interaction of two strong shocks produces a contact

discontinuity which needs to be appropriately represented.

The hydrocode shows again sub-optimality of time-stepping, but it is otherwise fairly

good in terms of performance, accuracy and robustness. It is worthwhile mentioning

that the two-shock test has features very similar to implosion calculations, due to the

fact that the shocks are mostly generated by kinetic (velocity) effects: it is very notice-

able the strong compression undergone by the computational domain, by comparing its

overall length in the final and initial (reference) configuration (the ends of the domain

are originally at Xmin = −1 and Xmax = +1), in Figure 8.13, or 8.14.
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Figure 8.12: Right-half of the Colella-Woodward’s blast: Second-order Hydro-SUPG
solution. Comments are analogous to the ones in Figure 8.10.

The hydrocode solution suffers from a few wiggles in the velocity and pressure plots,

still present in the energy, which suffers also from over/under-shoots as the density. Al-

though over/under-shoots are present in the hydro-SUPG solution, wiggles are practically

absent and the quality of the pressure and velocity solutions (directly computed) is prac-

tically perfect. The Hydro-SUPG method also shows practically optimal behavior at all

times with regard to the time-stepping limitations.

8.3.6 Planar Noh’s test

The Noh test is an implosion computation in which a bar of gas is rammed into a hard,

zero velocity boundary condition (last node on the left of the computational domain).

In particular, the initial pressure of the gas is set to zero, to obtain an infinite strength



8.3. A SUITE OF RIEMANN PROBLEMS 103

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

u 
(d

is
pl

ac
em

en
ts

)

−1 −0.5 0 0.5 1
−10

0

10

20

v 
(v

el
oc

ity
)

−1 −0.5 0 0.5 1
0

500

1000

1500

2000

p 
(p

re
ss

ur
e)

x

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

q 
(a

rt
. v

is
c.

)

−1 −0.5 0 0.5 1
0

10

20

30

40

ρ 
(d

en
si

ty
)

−1 −0.5 0 0.5 1
0

100

200

300

e 
(e

ne
rg

y)

−1 −0.5 0 0.5 1
0

0.5

1
J 

(J
ac

ob
ia

n)

x

20 40 60 80 100
0

0.5

1

x 10
−3

∆ 
t(

C
F

L=
0.

9)

time step

Figure 8.13: Hydrocode solution for the two-shock problem. Over/under-shoots are
present for density and energy, and wiggles are present in energy, velocity and pressure
plots. The solution is otherwise good.

shock. This test, together with the two-shock test, is the more challenging for robustness

in the entire suite.

The hydrocode delivers good performance, it is still sub-optimal as far as time inte-

gration is concerned, and presents a few wiggles in the solution past the shock front.

However, the most remarkable feature is the presence of overheating in the element

facing the left boundary, where it is very noticeable a spike in the energy and a severe

dip in the density (see Fig. 8.15).

This is not the case for the Hydro-SUPG method (see Fig. 8.16), for which over-

heating is absent. This fact can be attributed to the more complex structure of the

DC operator with respect to the standard Von Neumann-Richtmyer viscosity, and the
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Figure 8.14: Second-order Hydro-SUPG solution for the two-shock problem. Overshoots
and undershoots are present in the density and energy, but comparable in magnitude
with the ones observed in the hydrocode simulation. Virtually no oscillations are present
in the velocity and pressure plots, and the time-step limitations are almost always due
to advective effects.

striking similarities of the resulting DC operator with the Noh viscosity [53], which, in

fact, was designed to avoid the overheating phenomenon.

8.4 Conclusions and Future Directions

A robust and accurate SUPG approach to Lagrangian hydrodynamics has been proposed

and successfully implemented in the case of one-dimensional gas dynamics problems.

Notice also that only three iterations are sufficient for an accurate solution with Hydro-

SUPG, a very important result for larger-scale implementations in multiple dimensions.
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Figure 8.15: Hydrocode solution for the one-dimensional, planar Noh’s test.

The algorithm proposed in this dissertation proves robust under very different condi-

tions, from acoustic wave propagation simulations to blast computations, and in combi-

nation with careful time-stepping strategies delivers very interesting performance.

The approach originates from a multiscale analysis of the Lagrangian hydrodynamics

equations, and possesses a residual nature as a key feature. The underlaying goal of the

proposed approach is to tackle challenging problems in multiple dimensions on triangu-

lar/tetrahedral meshes, for which a vast literature documents the very good performance

of SUPG-type methods.



106 CHAPTER 8. NUMERICAL EXPERIMENTS AND CONCLUSIONS

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

u 
(d

is
pl

ac
em

en
ts

)

−1 −0.5 0 0.5 1

−1

−0.5

0

v 
(v

el
oc

ity
)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

p 
(p

re
ss

ur
e)

x

−1 −0.5 0 0.5 1
0

2

4

6

ρ 
(d

en
si

ty
)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

e 
(e

ne
rg

y)

−1 −0.5 0 0.5 1
0

0.5

1

J 
(J

ac
ob

ia
n)

x

20 40 60 80 100
0

0.005

0.01

0.015

0.02

∆ 
t(

C
F

L=
0.

9)

time step
20 40 60 80 100 120 140

0

1

2

3

4

P
/C

 It
er

at
io

ns

time step

Figure 8.16: Second-order Hydro-SUPG for the one-dimensional, planar Noh’s test.

In this sense, it is appears natural to foresee as a future research path the imple-

mentation of the proposed concept in multiple dimensions, using the already provided

multi-dimensional framework, as outlined in previous chapters.
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Chapter 9

Linear Advection-Diffusion:

Strong Form and Discontinuous

Galerkin Notation

The present chapter is devoted to the definition of the advection-diffusion problem in a

multi-dimensional domain. The chapter also develops the notation and definitions neces-

sary for Discontinuous Galerkin formulations presented in chapter 10 and 11. Although

the problem is linear, the introduction of a force term makes the discussion very inter-

esting, since, typically, nonlinear problems are solved by means of local linearization, as

in the case of Newton solvers, for which the force term is represented by the residual of

the equations, driven to zero through the iterations.

9.1 The strong form of the problem

Let Ω be a bounded domain in R
nd, and let a be a vector-valued function defined on Ω.

It will prove useful to define also a partition of the boundary Γ = ∂Ω as follows:

Γ− = {x ∈ Γ : a(x) ·n(x) ≤ 0} (9.1)

Γ+ = {x ∈ Γ : a(x) ·n(x) > 0} (9.2)
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Γ−Γ−

Γ+Γ+

Γ
ΓhΓh

ΓgΓg

Γ−
hΓ−
h Γ+

hΓ+
h

Γ+
gΓ+
gΓ−

gΓ−
g

Figure 9.1: Illustration of boundary partitions.

where n is the outward unit normal with respect to Γ. Γ− will be referred to as the

inflow boundary and Γ+ as the outflow boundary. The strong form of the problem to be

solved is:






a · ∇φ − κ ∆φ = f in Ω

φ = g on Γg

(−aφχΓ−

h
+ κ∇φ) · n = h on Γh

(9.3)

where Γg is the part of the boundary where Dirichlet boundary conditions are imposed,

and Γh is the portion of the boundary where Neumann conditions are imposed. χΓ−

h
is

the characteristic function of the set Γ−
h . Note also that Γ = Γh ∪ Γg, Γh ∩ Γg = ∅, and

Γ∓
g = Γg ∩ Γ∓ (9.4)

Γ∓
h = Γh ∩ Γ∓ (9.5)

Therefore, the meaning of the third equality in (9.3) is that the total flux (convective

plus diffusive) is imposed at the Neumann inflow boundary Γ−
h and the diffusive flux only

is specified at the Neumann outflow boundary Γ+
h . The vector a ∈ R

nd , nd ∈ {1, 2, 3}
is the convective field, assumed divergence-free, with ai ∈ C1(Ω), i ∈ {1, . . . , nd}, and

κ, a positive constant, is the diffusivity parameter.
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9.2 General definitions and notation

for the Discontinuous Galerkin method

A number of very important definitions and identities must be presented in order to pave

the way for the global Discontinuous Galerkin (gDG) formulation of chapter 10.

In order to make the following exposition consistent, we will assume that the domain

Ω in R
nd is polygonal. This can be considered as an intermediate step introducing a

discretized geometry, in which the boundaries may no longer be smooth as they were

depicted in Figure 9.1. The notation for inflow and outflow boundary partitions will be

maintained, but normals will be defined on boundary (polygonal) edges and so forth for

all other relevant quantities.

Let Th be a regular family of elements T generating a partition of Ω. For example, T

can be thought of as a triangle/tetrahedron, or quadrilateral/hexahedron, in two/three

dimensions, respectively. Let hT denote the diameter of T and h = maxT∈Th
hT . Let also

Eh be the set of all edges (including edges on the boundary Γ) and Eo
h the set of internal

edges (excluding edges on the boundary Γ), that is

Eh = Eo
h ∪ Γ (9.6)

Eg
h = Eo

h ∪ Γg (9.7)

Eh
h = Eo

h ∪ Γh (9.8)

By edges, we mean a manifold of dimension nd − 1, representing the interface between

two elements: for example, true edges for a two-dimensional triangular mesh, or faces

for a three-dimensional tetrahedral mesh. It is also natural to define a partition of the

element boundary ∂T (see Fig. 9.3):

Γ−
T = {x ∈ ∂T : a(x) · n(x) ≤ 0} (9.9)

Γ+
T = {x ∈ ∂T : a(x) · n(x) > 0} (9.10)

Here Γ∓
T represents the element inflow/outflow boundary, respectively, so that ∂T = ΓT =

Γ+
T ∪ Γ−

T . In order to derive a DG formulation, jumps and averages for scalar and vector



112 CHAPTER 9. LINEAR ADVECTION-DIFFUSION

Figure 9.2: Schematics of the normals and +/− regions for an edge with respect to the
convective field a.

functions have to be defined on the edges of Th. Therefore, for an interior edge e ∈ Eo
h,

let T1 and T2 be the two elements sharing it, and by n1 and n2 their respective outward-

pointing unit normals. Accordingly, let ϕ be a scalar field, and ϕi := ϕ|Ti
, i = 1, 2. For

e ∈ Eo
h:

〈ϕ〉 :=
1

2
(ϕ1 + ϕ2) (9.11)

[[ϕ]] := ϕ1n1 + ϕ2n2 (9.12)

Analogously, let τ be a vector field, piecewise smooth on Th, therefore on e ∈ Eo
h:

〈τ 〉 :=
1

2
(τ 1 + τ 2) (9.13)

[[τ ]] := τ 1 ·n1 + τ 2 · n2 (9.14)

Notice that, by definition of “[[ ]]”, the jump of a scalar quantity is a vector and the

jump of a vector quantity is a scalar. Definitions (9.12) and (9.14) do not depend on the

ordering of the elements Ti.

However, because the formulations to be analyzed involve advection (skew-symmetric

with respect to sign reversal), ϕ−/τ− (resp. ϕ+/τ+) will be used throughout to indicate

the upwind (resp. downwind) values of the the scalar/vector field ϕ/τ with respect to

edge e (see Fig. 9.2 for a sketch of the geometrical setting). This definition is obviously
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Figure 9.3: Schematics of the inflow and outflow boundaries for an element with respect
to the convective field a.

not invariant to ordering of the elements, because advection is not symmetric with respect

to orientation reversal.

It is now important to specialize the previous formulas to the edges/faces on the

boundary Γ of Ω.

[[ϕ]] = ϕ n, 〈τ 〉 = τ , ∀e ∈ Γ (9.15)

It will not be necessary to specify 〈ϕ〉 and [[τ ]] on the boundary Γ, and their value there

can therefore remain undefined. By observing that

[[ϕτ ]] = ϕ+τ+ · n+ + ϕ−τ− · n−

=
1

2

(
2ϕ+τ+ · n+ + 2ϕ−τ− · n−

)

=
ϕ+ + ϕ−

2

(
τ+ · n+ + τ− ·n−

)
+

τ+ + τ−

2
·
(
ϕ+n+ + ϕ−n−

)

= 〈ϕ〉[[τ ]] + 〈τ 〉 · [[ϕ]] (9.16)

and accounting for (9.15), the following unbiased or ordering invariant identity, which is

very useful in gDG formulations, is readily obtained:

∑

T∈Th

∫

∂T

τ · n ϕ =
∑

e∈Eh

∫

e

〈τ 〉 · [[ϕ]] +
∑

e∈Eo
h

∫

e

[[τ ]]〈ϕ〉 (9.17)
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Also, when manipulating expressions involving the convective fluxes, the following

observation will prove very useful:

[[ϕτ ]] = ϕ+τ+ · n+ + ϕ−τ− · n−

= ϕ+τ+ · n+ + ϕ±τ∓ · n− + ϕ±τ∓ ·n+ + ϕ−τ− · n−

= ϕ±[[τ ]] + [[ϕ]] · τ∓ (9.18)

which implies the following integral identity:

∑

T∈Th

∫

∂T

τ · n ϕ =
∑

e∈Eo
h

(∫

e

ϕ±[[τ ]] +

∫

e

[[ϕ]] · τ∓

)
+
∑

e∈Γ

∫

e

ϕ τ · n (9.19)

This last result will also be used to recover the Euler-Lagrange form of variational prob-

lems. Finally, the following approximation space is introduced:

V k
h = {v ∈ L2(Ω) : v|T ∈ Pk(T ), ∀T ∈ Th} (9.20)

where Pk is the space of polynomials of degree less than or equal to k.



Chapter 10

Global Weak Formulations

In this chapter a global DG (gDG) method is presented and will serve as an underlying

framework for the solution of the advection/diffusion problem. Furthermore, it will be

shown in chapter 11, that the local DG formulation (lDG) corresponds to the restriction

of the gDG formulation to a single element. Therefore, the gDG formulation presented

herein can be considered as the foundation of the entire method.

A skew-symmetric, a neutral, and a symmetric primal formulation of the gDG method

will be introduced. They will be integrated in a single global formulation by introducing

an integer switch s, taking the values +1, 0, and -1, respectively.

The symmetric form is the only one to yield a symmetric discretization of the Laplace

operator, with very important consequences. In fact the symmetric form is the only one

to be adjoint consistent, following the definition in Arnold et al. [1], with important

implications on convergence rates. Methods that are not adjoint consistent cannot be

proved to converge with optimal rates, and it will be shown in chapter 12 that both the

skew-symmetric and neutral gDG formulations do not converge with optimal rates.

Furthermore, it will be shown numerically (again in chapter 12) that the symmetric

discretization leads to monotone solutions inside the boundary layer regions, even for

coarse meshes, while this is not the case for the other two discretizations.
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10.1 A conservative primal formulation

One of the most important design requirements for DG formulations is conservation. In

the present primal formulation a new approach is taken to enforce conservation of the

flux σ := aφh − κ∇φh of the solution φh. The global DG formulation reads:

0 =
∑

T∈Th

(
−
∫

T

∇µh · (aφh − κ∇φh)−
∫

T

µhf

)

+
∑

e∈Eo
h

∫

e

[[µh]] · (aφ−
h − κ∇φ−

h ) + s κ∇µ−
h · [[φh]]

+
∑

e∈Γg

∫

e

(
µha · n(χΓ−

g
g + χΓ+

g
φh) + s κ∇µh · n(φh − g)− κ∇φh · nµh

)

+
∑

e∈Γh

∫

e

µh

(
(aφh)χΓ+

h
· n− h

)

+ǫ
∑

e∈Eo
h

∫

e

κ

h⊥
[[µh]] · [[φh]] + ǫ

∑

e∈Γg

∫

e

κ

h⊥
µh(φh − g). (10.1)

Note that s is an integer with sign, that can take the values +1 (skew-symmetric form

of the discretized diffusion operator), −1 (symmetric form) or 0 (neutral form). The

non-dimensional parameter ǫ is to be chosen small, and the following definition will be

used:

h⊥ =
meas(T+) + meas(T−)

2 meas(e)
(10.2)

where T−/T+ are the upwind/downwind elements with respect to the edge e. Roughly

speaking, h⊥ is a length scale in the direction perpendicular to the edge e, of size close

to the segment joining the barycenters of T∓.

Euler-Lagrange equations for the global problem

In order to make sense of the proposed formulation, it is very instructive to recover the

Euler-Lagrange equations by means of an integration-by-parts.
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Figure 10.1: Sketch portraying the h⊥ definition for two triangular adjacent triangular
elements.

Use of identity (9.17) with τ = κ∇φh and identity (9.19) with τ = aφh in (10.1)

yields:

0 =
∑

T∈Th

(∫

T

µh (∇· (aφh − κ∇φh)− f)

)

+
∑

e∈Eo
h

∫

e

−µ+
h [[aφh − κ∇φh]] + s κ∇µ−

h · [[φh]]

+
∑

e∈Γg

∫

e

(−µhaχΓ−
g

+ s κ∇µh) · n(φh − g)

+
∑

e∈Γh

∫

e

µh

(
(−aφhχΓ−

h
+ κ∇φh) · n− h

)

+ǫ




∑

e∈Eo
h

∫

e

κ

h⊥
[[µh]] · [[φh]] +

∑

e∈Γg

∫

e

κ

h⊥
µh(φh − g)



 (10.3)

The reader can easily see how the global DG formulation has been designed:

• The first term in the second line of (10.3) is enforcing continuity of the total flux

across internal element interfaces. In particular, it is easy to realize that the term

represents an upwinded total flux, since the jump of the fluxes upwind and downwind

of an edge are weighted by the downwind test function µ+
h . Therefore, in one single

step, the fluxes are conserved and “upwinded”.
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• In the third line of (10.3), Dirichlet boundary conditions are weakly enforced and

tested against the test total flux (the total flux constructed with the test function

µh) at the inflow, while at the outflow they are tested only against the adjoint

viscous flux. This choice has a natural meaning when analyzing two important limit

cases: In the advection dominated limit, the outflow boundary condition is severely

weakened, so that the flow is substantially influenced by the inflow condition, as

expected in the purely hyperbolic case; when diffusion dominates, the problem

gains strong ellipticity, so that the boundary condition must be felt everywhere in

the Dirichlet portion of the boundary.

• In the fourth line of (10.3), Neumann conditions are imposed according to the same

rationale for the Dirichlet conditions. The total flux aφh−κ∇φh is imposed at the

inflow, while only the diffusive flux is specified at the outflow.

• The terms multiplied by the parameter ǫ, in the fifth line of (10.3), serve the purpose

of eliminating a nontrivial kernel in the discrete diffusive operator, in the limit as

a→ 0.

• There is an extra interior penalty term
∑

e∈Eo
h

∫
e
κ∇µ−

h · [[φh]] that arises from con-

sistency requirements. This is a residual term, in the sense that substitution of the

exact (smooth) solution causes it to vanish.



Chapter 11

Local Formulations

The following discussion represents the core of the entire second part of the presented

dissertation, and a few words are felt necessary to guide the reader through the steps

involved.

So far, a global DG formulation has been introduced, and three variants have been

outlined. The key of the method is now to condense degrees-of-freedom (DOF) at a

local (element) level, in order to obtain a reduced representation of the global system by

means of the data structure typical of the Continuous Galerkin (CG) method.

The gain in terms of both memory storage and computational time is therefore sur-

prisingly high. For example, for linear isoparametric elements on a three-dimensional

tetrahedral mesh, the ratio of the number of DOF per mesh node for a DG method

versus the corresponding CG method is 28.

The framework in which the goal of DOF reduction will be achieved is a multiscale

analysis of the gDG method, in which the discontinuous, discrete solution φh is decom-

posed into a continuous part φh and a discontinuous correction φ′
h.

At a local level, the discontinuous correction φ′
h is condensed in terms of the continuous

part φh by means of local DG problems in which weak continuity constraint is imposed

between φh and φh.

The condensed discontinuous solution φh = φh + φ′
h can then be substituted into the

global formulation, and the final result is a system in which only the continuous DOF

relative to φh are to be computed.

The local problems may be then used to reconstruct φh, from the computed φh.
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For symmetry purposes, condensation is also applied to the local test functions. From

numerical experiments, it appears clear that this step is responsible for preserving the

accuracy of the method. The condensation of the DG test functions is performed without

introducing the body-force term in the local problems, in order to generate a standard

square system of linear algebraic equations.

In the one-dimensional case, it will be shown that the overall procedure not only is

very effective in reconstructing the DG solution, but also it usually yields better quality

(i.e., more stable, more accurate) solutions, even with respect to a full-scale global com-

putation, in which no condensation is performed. The reason for this amazing fact is that

the local problem acts as a stabilization for the gDG formulation. As will become clear

from the following analysis, the method forces the discontinuous correction to vanish in

the diffusion dominated limit without forcing, so that the global formulation tends to

the continuous one, as viscosity dominates. As the numerical computations will demon-

strate, even non-self-adjoint consistent methods deliver optimal convergence rates, when

the proposed condensation is applied. The quality of the solution for non-self-adjoint

methods is still doomed by lack of monotonicity whenever coarse meshes are used to cap-

ture boundary layers, but at least from the point of view of convergence rates, problems

disappear.

11.1 Local problem I: linking the continuous

and discontinuous solutions

Two approaches to the local DG (lDG) problem will be presented. The first approach

is based purely on the exchange of “information” from φh to φh along the boundaries of

the element by means of weakly enforced continuity constraints. The second, instead, is

based on a full multiscale decomposition of the discrete solution φh and can be applied

to any type of finite element discretization. It is important to realize the equivalence

between the two approaches when the local basis is such that the local CG/DG solutions

can be uniquely defined by their traces on element edges (e.g., isoparametric elements on

triangles and tetrahedra, or serendipity elements on quadrilateral or hexahedral meshes).
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11.1.1 Local problem solution via weak continuity constraints

In order to link the discontinuous field φh to a continuous field φh (amenable to a much

less expensive data structure) the following local (i.e., element-by-element) DG problem

is solved, imposing weak continuity between φh and φh on ΓT :

Find φh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

0 = −
∫

T

∇v · (aφh − κ∇φh)−
∫

T

vf + ǫ

∫

ΓT

κ

h⊥
v (φh − φh)

+

∫

Γ+
T

vφha · n +

∫

Γ−

T

vφha · n

+

∫

ΓT

s κ∇v · n(φh − φh)−
∫

ΓT

κ∇φh · nv (11.1)

where v is a local test function. As usual, the local formulation is best understood once

the Euler-Lagrange equations are presented:

0 =

∫

T

v (∇· (aφh − κ∇φh)− f) + ǫ

∫

ΓT

κ

h⊥
v (φh − φh)

+

∫

Γ−

T

va · n(φh − φh)−
∫

ΓT

s κ∇v · n(φh − φh) (11.2)

More succinctly, (11.1) can be expressed as:

Find φh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, φh) = F (v; f, φh) (11.3)

with

B(v, φh) = −
∫

T

∇v · (aφh − κ∇φh) + ǫ

∫

ΓT

κ

h⊥
vφh +

∫

Γ+
T

vφha · n

+

∫

ΓT

s κ∇v · nφh −
∫

ΓT

κ∇φh ·nv (11.4)

F (v; f, φh) =

∫

T

vf +BΓ(v, φh) (11.5)

where B(v, φh) is the bilinear form generated by the DG method, and F (v; f, φh) is a

linear form in v which is also linear both in φh and f (therefore trilinear in v, φh, and f)
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In particular, by comparison, it can be easily seen that

BΓ(v, φh) = ǫ

∫

ΓT

κ

h⊥
vφh −

∫

Γ−

T

vφha · n +

∫

ΓT

s κ∇v ·nφh (11.6)

Once a local basis is selected for both the test and trial functions, equation (11.3) yields

a system of algebraic equations. Applying a Galerkin discretization yields:

v =
∑

j

vjψj (11.7)

φh =
∑

j

Φjψj (11.8)

φh =
∑

j

Φjψj (11.9)

f =
∑

j

fjψj (11.10)

where ψj are the local test/trial functions and vj , Φj , and Φj are the local DOF for the

test function, the φh|T , and φh|T solution, respectively. Using linear independence of the

basis, (11.3) reduces to

S Φel = S Φel + M f el (11.11)

Sij = B(ψi, ψj) (11.12)

Sij = BΓ(ψi, ψj) (11.13)

Mij =

∫

T

ψiψj (11.14)

where Φel = [Φ1,Φ2, . . . ,Φnel
]t and Φel = [Φ1,Φ2, . . . ,Φnel

]t are the vectors for the local

DOF, and f el = [f1, f2, . . . , fnel
]t is the vector of corresponding (local) body-force values.

In order to solve problem (11.11), the matrix S must be invertible. Hence, for higher-

order elements, with interior nodes, Φel will not include interior DOF. Consequently this

method fails. However, it is applicable to the class of isoparametric elements that includes

triangular/tetrahedral elements, and quadrilateral/hexahedral serendipity elements up to

quadratics.
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Provided S is invertible, it is possible to express Φel in terms of Φel and f el:

Φel = T h
φhφh

Φel + T h
φhf f el (11.15)

where T h
φhφh

= S−1 S and T h
φhf = S−1 M . We refer to this expression as the resolvent.

11.1.2 Local problem solution via multiscale decomposition

The following discussion describes a more general multiscale technique applicable under

the condition that the number of local DOF is the same for both φh|T and φ|T , and the

degrees-of-freedom are defined in such a way that the resulting matrix S is invertible.

This is the case for p-refinement on higher-order isoparametric elements in which the local

degrees-of-freedom for the continuous and discontinuous parts of the solution are exactly

the same (locally), so that invertibility is straightforward. Other choices are possible,

with fairly general finite element discretizations, even outside the isoparametric class.

The alternative approach consists in splitting the solution as φh = φh +φ′
h, and using

bilinearity of B(·, ·) to perform the following manipulation:

B(v, φh) = B(v, φh + φ′
h) = B(v, φh) + B(v, φ′

h) (11.16)

so that the original problem (11.3) is recast as:

Find φ′
h ∈ V k

h (T ) such that, ∀v ∈ V k
h (T ):

B(v, φ′
h) = Res(v; f, φh) (11.17)

where Res(v; f, φh) is the residual of the continuous (coarse-scale) solution. Notice in

particular that the term Res(v; f, φh) reads:

Res(v; f, φh) = F (v; f, φh)− B(v, φh) (11.18)

or, specifically,

Res(v; f, φh) = −
∫

T

(
∇v ·

(
aφh − κ∇φh

)
+ vf

)
+

∫

ΓT

v(aφh − κ∇φh) ·n (11.19)
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Comparing (11.19) with (11.4) and (11.5), it is immediately realized that the local

problem for the discontinuous correction φ′
h corresponds to the localized DG method

with weakly enforced homogeneous Dirichlet boundary conditions and a a right hand

side driven by the residual of the coarse-scale component φh. The strict relationship with

the multiscale analysis as presented in Hughes et al. [34] is then evident.

The similarity can be appreciated more easily in the local algebraic problem,

S Φ′
el = S Φel − S Φel + M f el (11.20)

from which:

Φ′
el = T h

φ′
hφh

Φel + T h
φhf f el (11.21)

with

T h
φ′

hφh
= T h

φhφh
− InlDOF×nlDOF

(11.22)

where nlDOF is the number of local DOF.

11.2 Local problem II: linking the continuous and

discontinuous test functions

The discontinuous test field µh is also linked to a continuous test field µh. From an

algebraic point of view, unless this link is performed, the matrix generated by the linear

problem in question will not be square (and therefore not invertible).

Weak continuity constraint approach

Find µh ∈ V k
h (T ) such that, ∀v ∈ V k

h (T ):

B(v, µh) = F (v; 0, µh) (11.23)
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Multiscale approach

Find µ′
h ∈ V k

h (T ) such that, ∀v ∈ V k
h (T ):

B(v, µ′
h) = Res(v; 0, µh) (11.24)

The choice f = 0 is dictated by the fact that it leads to a square algebraic system

for the global formulation. Inserting the f would have produced a constrained algebraic

problem whose solution feasibility is unclear.



126 CHAPTER 11. LOCAL FORMULATIONS



Chapter 12

Numerical Experiments and

Conclusions

The numerical experiments presented herein are intended to outline the implementation

details of the method and, most importantly, to assess its overall performance. As it

will be clear from the analysis of the results, the proposed approach allows an intrinsic

stabilization of the underlying global DG formulation, even in cases in which adjoint

consistency, hence L2 error estimates, are not ensured.

The detailed analysis of the one-dimensional case will also highlight the nature of the

local problem resolvent mapping, which links the discontinuous and continuous solutions.

As will be clear from the derivations, the method circumvents the adjoint consistency

issues since, in the limit for diffusion dominated flows (in the absence of body-force), the

affine mapping tends to the identity, forcing the full solution φh to become continuous,

and identical to φh.

As a consequence, the solution improves dramatically, since continuous discretizations

are much better suited for the Laplace operator than discontinuous ones.

12.1 One-dimensional scalar equation

Without loss of generality, it will be assumed throughout the following sections a = aex,

with a positive. It will also be assumed, for simplicity, f = cf , constant.
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The exact solution of the strong form (9.3) is therefore easily computed as:

φ(x) = φ0 + (φL − φ0)
1− ePeL

x
L

1− ePeL
+

2F
PeL

(
x

L
− 1− ePeL

x
L

1− ePeL

)
(12.1)

where φ0 and φL are the Dirichlet boundary conditions imposed at x = 0 and x = L,

PeL = |a|L/κ, and

F =
cf L

2

2κ
(12.2)

is a non-dimensional body-force coefficient. In the limit PeL → 0, (12.1) yields:

φ(x) = φ0 + (φL − φ0 + F)
x

L
−F

(x
L

)2

(12.3)

12.1.1 Weak (primal) formulation in one dimension

It is now worthwhile to recast (10.1) for the one-dimensional case, since many simplifi-

cations arise. For simplicity, Neumann-type boundary conditions have been omitted:

Find φh ∈ V k
h ([xe, xe+1]), e ∈ {1, 2, . . . , nel}, such that, ∀µh ∈ V k

h ([xe, xe+1]):

0 = −
nel∑

el=1

∫ xe+1

xe

( ∂xµh (aφh − κ ∂xφh) + µhf)

+

nel∑

e=2

{
(−µ+

h + µ−
h )(aφ−

h − κ ∂xφ
−
h ) + s κ ∂xµ

−
h (−φ+

h + φ−
h )

+ǫκ/h⊥(−µ+
h + µ−

h )(−φ+
h + φ−

h )
}

x=xe

+

{
+µhaφh + ǫ

κ

h⊥
µh(φh − φL) + s κ ∂xµh(φh − φL)− κ ∂xφh µh

}

x=L

+

{
−µhaφ0 + ǫ

κ

h⊥
µh(φh − φ0)− s κ ∂xµh(φh − φ0) + κ ∂xφh µh

}

x=0

(12.4)

where the notation {η}x=x̃ stands for η evaluated at x̃, e ∈ {1, 2, . . . , nnp} are the nodes

of the mesh, and {xe| e = 2, . . . , nnp − 1 = nel} is the set of interior nodes.
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12.1.2 Local problem I: from φh to φh

A fully detailed analysis of the local problems will be presented next, including limit

behavior and feasibility regions for the parameter ǫ.

Weak continuity constraint approach

The local problem reads:

B(v, φh) = F (v; f, φh) (12.5)

with

B(v, φh) = −
∫ xe+1

xe

∂xv (aφh − κ ∂xφh)

+

{
v aφh + ǫ

κ

h⊥
v φh + s κ ∂xv φh − κ ∂xφh v

}

x=xe+1

+

{
ǫ
κ

h⊥
v φh − s κ ∂xv φh + κ ∂xφh v

}

x=xe

(12.6)

F (v; f, φh) =

∫

T

vf +BΓ(v, φh) (12.7)

BΓ(v, φh) = +

{
ǫ
κ

h⊥
v φh + s κ ∂xv φh

}

x=xe+1

+

{
−v aφh + ǫ

κ

h⊥
v φh − s κ ∂xv φh

}

x=xe

(12.8)

Piecewise linear interpolation will be used for the continuous and discontinuous parts

of the solution, as well as the test functions. Once the local problem is solved, the

discontinuous solution φh can be linked to its continuous part φh and the forcing term f

by means of a resolvent mapping. Let

Φel =



 φl
h

φr
h



 , Φel =



 φ
l

h

φ
r

h



 , f el =



 f l

f r



 (12.9)
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where the index l and r stand for the left and right value of the element domain, the

local resolvent affine mapping is:

Φel = T h
φφ

Φel + T h
φf f el (12.10)

Calculations allow T h
φφ

and T h
φf to be expressed as

T h
φφ

=
1/2

∆(Peh, s, ǫ)



 (2Peh + ǫ)(Peh + 2s+ ǫ) −(2s + ǫ)Peh

Peh(2Peh + 2s+ ǫ) ǫ(Peh + 2s+ ǫ)



 (12.11)

T h
φf =

h2/(12κ)

∆(Peh, s, ǫ)



 Peh + 3s+ 2ǫ −Peh + 3s+ ǫ

3Peh + 3s+ ǫ 3Peh + 3s+ 2ǫ



 (12.12)

where

∆(Peh, s, ǫ) = Pe2h + (s+ ǫ)Peh + ǫ(s + ǫ/2) (12.13)

Peh =
|a|h
2κ

(12.14)

The previous expressions account for the possible choices of s, and all three forms will

s = +1 s = 0 s = −1
∆ Peh(Peh + 1) Pe2h Peh(Peh − 1)

+ǫ(Peh + 1) + ǫ2/2 +(Peh + ǫ)2 +ǫ(Peh − 1) + ǫ2/2

∆ > 0? always always for ǫ > 1−Peh+
√

1−Pe2h
for ǫ > 0 for ǫ > 0 and ǫ < 1−Peh−

√
1−Pe2h

Table 12.1: Analysis on the sign of the determinant ∆(Peh, s, ǫ).

be compared in a later section.

Notice that special care has to be taken for the determinant, since for s = −1, it can

vanish for certain combinations of Peh and ǫ. An analysis of the sign of the determinant

is presented in Table 12.1, assuming a > 0⇒ Peh > 0. The locus of ∆ = 0 in the plane

[Peh/ǫ] is shown in Figure 12.1, together with a three-dimensional plot of the function

∆(Peh, ǫ).
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Figure 12.1: Locus of ∆ = 0 for s = −1 on the [Peh/ǫ]-plane (left) and on a three
dimensional view of the function ∆(Peh, ǫ) (right). It is easily seen that ǫ > 2 prevents
the determinant to vanish for any Péclet number.

Multiscale approach

Since the elements are isoparametric and the degrees-of-freedom of the local solution are

its nodal values, the multiscale approach is perfectly equivalent to the weak continuity

constraint approach. Only the symbolic form and the final mapping will be therefore

presented, for the sake of completeness.

Φ′
el = T h

φ′
hφh

Φel + T h
φhf f el (12.15)

with T h
φ′

hφh
= T h

φhφh
− I2×2 given by:

T h
φ′

hφh
=

1

2∆



 2sPeh − ǫ(s+ ǫ) −s(2Peh + ǫ)

2Pe2h + s(2Peh − ǫ) −2Pe2h − (2Peh + ǫ)(s + ǫ)



 (12.16)

12.1.3 Limit behavior of resolvent mapping

The aim of the present section is to clarify the nature of the local problem. In fact, it is

important to consider the diffusion and advection dominated limits to grasp the nature

of the local condensation. Taking limits:

lim
Peh→0

T h
φhφh

=



 1 0

0 1



 (12.17)
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lim
Peh→∞

T h
φhφh

=



 1 0

1 0



 (12.18)

lim
Peh→0

T h
φhf =

h

6κǫ(2s+ ǫ)



 3s+ 2ǫ 3s+ ǫ

3s+ ǫ 3s+ 2ǫ



 (12.19)

lim
Peh→∞

T h
φhf = 02×2 (12.20)

From (12.17) it is easily seen that, φh → φh in the diffusive limit without body-force,

while from (12.18) it can be observed that, in the advective limit, full upwinding is

performed, that is φh|[xe,xe+1] → φh(xe)χ|[xe,xe+1], for a positive. Notice also that, due to

the fact that in the diffusive limit T h
φhf does not vanish, in general the continuous part

of the solution φh will not be equal to the full solution φh when a force f is present.

12.1.4 Local problem II: from µ to µ

Given the fact that the problem of linking µ to µ is the same as the one of linking φh to

φh, with the exception that the forcing term f is not accounted for, the result is



 µl
h

µr
h



 = T h
µhµh



 µl
h

µr
h



 (12.21)

or 

 µ′l
h

µ′r
h



 = T h
µ′

hµh



 µl
h

µr
h



 (12.22)

with T h
µµ = T h

φφ
and T h

µ′µ = T h
φ′φ

.

12.1.5 Numerical results

The numerical experiments show that the proposed method delivers very good perfor-

mance when the symmetric (s = −1) formulation is used. Because of the lack of adjoint

consistency in the global formulation, the quality of the solution in terms of accuracy

and (possibly) monotonicity is not as good in the case of the neutral (s = 0) and skew-

symmetric (s = +1) forms.
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Figure 12.2: Solution plots in terms of varying Péclet number, on uniform grid of 4
elements, with no body-force: Left, s = +1 (skew); Middle, s = 0 (neutral); Right,
s = −1 (symmetric). Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, exact solution; black, Galerkin SUPG-stabilized solution
with optimal τ (almost always overlapped with the φh solution).

Nevertheless, while the latter two gDG formulations do not even show second-order

convergence rate in the L2-norm, it is quite remarkable that optimal convergence rate is

recovered in the corresponding version with local condensation. As is well understood, a

continuous discretization is optimal for the Laplace equation, and the local condensation,

as the mesh is refined, forces the discontinuous part φh closer and closer to the continuous

part φh.

Effect of Péclet number

In Figures 12.2 and 12.3, the three proposed versions of the primal global formulation

are compared – with and without the body-force f – for PeL = 1, 24, and 640 (L is the
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Figure 12.3: Solution plots in terms of varying Péclet number, on uniform grid of 4
elements, with body-force f = 1: Left, s = +1 (skew); Middle, s = 0 (neutral); Right,
s = −1 (symmetric). Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, exact solution; black, Galerkin SUPG-stabilized solution
with optimal τ (almost always overlapped with the φh solution).

overall length of the computational domain).

As one can see, the results are practically perfect for the plots on the right column

of each figure, corresponding to the symmetric formulation. Unwanted oscillations are

present for the other formulations, particularly evident in the left column plots (skew

form).

The following observations may be made:

1. The solution φh of the multiscale approach (cyan) is practically on top of the

gDG solution (without local condensation, magenta), whenever the gDG solution

is accurate, and tends to improve on it whenever the latter shows over/under-

shoots. This beneficial effect is due to the fact that, in practice, the local problem
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Figure 12.4: Solution plots in terms of varying mesh size, on uniform grid of 2/8/32
elements, PeL = 27, without body-force. Left, s = +1 (skew); Middle, s = 0 (neutral);
Right, s = −1 (symmetric). Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, exact solution; black, Galerkin SUPG-stabilized solution
with optimal τ (almost always overlapped with the φh solution).

acts as a stabilization, with very important consequences on the convergence rates.

2. The choice of the parameter ǫ is crucial in order to have a good method. It was found

that the choice ǫ = 2.001 (slightly larger than the threshold 2) was very effective

for the symmetric method, while in the case of non-symmetric formulations, the

results did not show strong dependence on the choice of ǫ.

Effect of mesh refinement

It is now important to observe that accuracy is affected in particular in the range of

medium-to-high Péclet numbers. The quality of the solution does not seem extremely
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Figure 12.5: Solution plots in terms of varying mesh size, on uniform grid of 2/8/32
elements, PeL = 27, with body-force f = 1: Left, s = +1 (skew); Middle, s = 0 (neutral);
Right, s = −1 (symmetric). Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, exact solution; black, Galerkin SUPG-stabilized solution
with optimal τ (almost always overlapped with the φh solution).

poor for the non-symmetric methods when PeL is very small.

Therefore, Figures 12.4 and 12.5 are presented to highlight the behavior of the solu-

tions in the intermediate range (PeL = 27), with zero and non-zero body-force, respec-

tively.

Notice that, as the mesh is refined, the quality of the solution is fairly good for all

methods, but oscillations are still present for the non-symmetric versions. Also, notice

the poorer accuracy for the global DG solutions for the non-symmetric versions, when

compared to the corresponding locally stabilized versions.
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Figure 12.6: Convergence rates, skew-symmetric (s = +1) version, without body-force.
Blue, φh; cyan (light blue), φh; magenta, global DG solution without local condensation;
red, Pe2h slope; black, Galerkin SUPG-stabilized solution with optimal τ . Again, even if
the global DG formulation alone does not show second-order convergence rate, the locally
condensed version (φh) regains optimal convergence.

Convergence rates

The symmetric version of the method clearly shows second-order convergence rate (Fig.

12.8). In addition, it is worthwhile noticing that:

1. The discontinuous part of the solution is about as accurate as the solution of the

gDG method (magenta curves).

2. The solutions of the proposed multiscale method are better than the SUPG solu-

tions for all Péclet numbers Peh larger than (approximately) unity. Note that the

SUPG solution with the optimal choice of the parameter τ is nodally exact in the
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Figure 12.7: Convergence rates, neutral (s = 0) version, without body-force. Blue, φh;
cyan (light blue), φh; magenta, global DG solution without local condensation; red, Pe2h
slope; black, Galerkin SUPG-stabilized solution with optimal τ . Notice that even if the
global DG formulation alone does not show second-order convergence rate, the locally
condensed version (φh) regains optimal convergence.

one-dimensional case, and, as a consequence, all the error is due to interpolation.

The multiscale method, instead, does have both numerical and interpolation error

components, but the discontinuous approximation allows large gains in terms of the

L2-error inside the boundary layer region. The gain is more and more consistent as

Peh increases, while for Peh ≪ 1, the continuous discretization used in the SUPG

approach yields the best results, since diffusion dominates.

3. One remarkable fact, clear from the result in Figures 12.6 and 12.7 is that local

condensation provides a very beneficial effect on the convergence rate of the non-

symmetric methods. Due to the lack of adjoint consistency, non-symmetric gDG
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Figure 12.8: Convergence rates, symmetric (s = −1) version, without body-force. Blue,
φh; cyan (light blue), φh; magenta, global DG solution without local condensation; red,
Pe2h slope; black, Galerkin SUPG-stabilized solution with optimal τ .

methods deliver convergence rates lower than second-order, while the respective

locally condensed solutions are second-order accurate. The non-symmetric formu-

lations are not preferred due to the fact that they lack monotonicity in the bound-

ary layer, a very important issue when tackling more challenging (e.g., nonlinear)

problems.

4. The L1-norm of the error is plotted in Figure 12.11, showing a behavior very similar

to the L2-norm plots.

5. The H1 broken semi-norm of the error is presented in Figure 12.10. The definition
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Figure 12.9: Convergence rates in the L2-norm of the error, symmetric (s = −1) version,
with body-force f = 1. Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, Pe2h slope; black, Galerkin SUPG-stabilized solution
with optimal τ .

of broken semi-norm reads:

[]η[]21 =
∑

T∈Th

∫

T

|∇η|2 =
∑

T∈Th

|η|21,e (12.23)

The continuous component of the solution φh is very close in performance to the

SUPG optimal solution. The discontinuous part is slightly poorer, but it still

delivers optimal convergence rate.
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Figure 12.10: Convergence rates in the H1 broken semi-norm of the error, symmetric
(s = −1) version, with body-force f = 1. Blue, φh; cyan (light blue), φh; magenta, global
DG solution without local condensation; red, Pe1h slope; black, Galerkin SUPG-stabilized
solution with optimal τ .

12.2 Conclusions and Future Directions

A completely new approach, blending the advantages of the continuous and discontinuous

Galerkin methods into a unique framework, has been proposed and preliminary numerical

tests for the linear advection-diffusion problem showed a significant potential. The role

of the local problem has been explored and its implications on the convergence rates

and overall quality of the solution for the tests performed has proved of great help in

understanding the nature of the method.

The possibility of computing discontinuous Galerkin approximations at the cost of the

continuous Galerkin counterparts, if confirmed in more challenging problems, might have
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Figure 12.11: Convergence rates in the L1-norm of the error, symmetric (s = −1) version,
with body-force f = 1. Blue, φh; cyan (light blue), φh; magenta, global DG solution
without local condensation; red, Pe2h slope; black, Galerkin SUPG-stabilized solution
with optimal τ .

a significant impact on the way DG methods will be designed in the future. It is natural

therefore to look forward and outline as a future research pathway the generalization of

the proposed method to more complex, multi-dimensional, nonlinear applications.

Little is known also in terms of how to analyze methods of this kind, and how to

prove convergence in a more general setting. This constitutes another important avenue

for future work.

As a note, the name Magic Carpet for the method has been chosen since the dis-

continuous correction of the local problem acts as a magic trick in allowing accurate

and robust solutions, considerably less expensive than their full discontinuous Galerkin

counterparts.
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The discontinuous solutions to the local problems (i.e., the sum of the continuous parts

and discontinuous corrections) feel at times convection (like streamers in the wind), at

times diffusion, at times the forcing term: They work like magic and look like flying

carpets.
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Part III

Multiscale Methods in Turbulence
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Chapter 13

A General Framework

The present chapter develops the general multiscale framework applied to the incom-

pressible Navier-Stokes equations. A multiscale decomposition of the solution into coarse

and fine scales is introduced. Combined with an asymptotic expansion, the decomposi-

tion generates a cascade of multiscale problems for the fine scale solution. The validity

and applicability of the asymptotic expansion to problems of practical interest will be

discussed.

13.1 Incompressible Navier-Stokes equations

The initial/boundary-value problem consists of solving the following equations for u :

Q→ R
d, the velocity, and p : Q→ R, the pressure (divided by density),

∂u

∂t
+ ∇ · (u⊗ u) + ∇p = ν∆u + f in Q (13.1)

∇ · u = 0 in Q (13.2)

u = 0 on P (13.3)

u(0+) = u(0−) on Ω (13.4)

where f : Q→ R
d is the given body force (per unit volume); ν is the kinematic viscosity,

assumed positive and constant; u(0−) : Ω → R
d is the given initial velocity; and ⊗

denotes the tensor product (e.g., in component notation [u⊗ v]ij = uivj).

147
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Equations (13.1)-(13.4) are, respectively, the linear momentum balance, the incom-

pressibility constraint, the no-slip boundary condition and the initial condition.

13.1.1 Space-time formulation

We consider a Galerkin space-time formulation with weakly imposed initial condition.

Let V = V(Q) denote the trial solution and weighting function spaces, which are assumed

to be identical. We assume U = {u, p} ∈ V implies u = 0 on P and
∫
Ω
p(t) dΩ = 0 for

all t ∈ ]0, T [. The variational formulation is stated as follows:

Find U ∈ V such that ∀W = {w, q} ∈ V:

B(W ,U) = B1(W ,U) +B2(W ,U ,U) = (W ,F ) (13.5)

with

B1(W ,U) = (w(T−),u(T−))Ω −
(
∂w

∂t
,u

)

Q

+ (q,∇ · u)Q − (∇ ·w, p)Q + (∇sw, 2ν∇su)
Q

(13.6)

B2(W ,U ,V ) = − (∇w,u⊗ v)
Q

(13.7)

(W ,F ) = (w,f)Q + (w(0+),u(0−))Ω (13.8)

where V = {v, r}. This formulation implies weak satisfaction of the momentum equa-

tions and incompressibility constraint, in addition to the initial condition. The boundary

condition is built into the definition of V.

Remarks

1. u(0−) is viewed as known when computing the solution in Q.

2. The standard weak formulation corresponding to the discontinuous Galerkin method

with respect to time is obtained by replacing [0, T ] by [tn, tn+1], n = 0, 1, 2, . . . and

summing over the space-time slabs

Qn = Ω×]tn, tn+1[ . (13.9)

In this case we view (13.5)-(13.8) as the variational equation for a typical slab.
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3. The conditions ∇ · u = 0 on Q and u = 0 on P imply

(∇u,u⊗ u)
Q

= 0 . (13.10)

In the discrete case this term may need to be altered to preserve this property. See

Quarteroni and Valli [58], p.435.

13.2 Separation of scales

Let us decompose V as follows:

V = V ⊕ V ′ (13.11)

where V is identified with a standard finite dimensional space. Various characterizations

of V ′ are possible. Note that V ′ is ∞-dimensional. The over-bar and prime notations

are used to connote large and small scales. All resolved scales in V are viewed as coarse

scales, obviating the issue of inefficiency ab initio. Furthermore, the decomposition into

coarse and fine scales is considered exact. For example, in the spectral case, the coarse-

scale space consists of all Fourier modes beneath some cut-off wave number (i.e. the

highest Fourier coefficient computed in the simulation) and the fine-scale space consists

of all remaining Fourier modes. Other interpretations are possible: in hierarchical finite

element methods, V ′ can be represented by the levels of refinement (h or p-refinement),

in stabilized methods V ′ can be the space of bubbles, etc.

The derivation of the coarse- and fine-scale equations proceeds, first, by substituting

the decomposed solution into the Navier-Stokes equations, then, by projecting this equa-

tion into the coarse- and fine-scale subspaces. The projection into coarse scales yields a

finite dimensional system for the coarse-scale component of the solution, which depends

parametrically on the fine-scale component.
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Therefore, (13.11) enables us to decompose (13.5) into two sub-problems:

B(W ,U + U ′) = B1(W ,U + U ′) +B2(W ,U + U ′,U + U ′)

= (W ,F ) (13.12)

B(W ′,U + U ′) = B1(W
′,U + U ′) +B2(W

′,U + U ′,U + U ′)

= (W ′,F ) (13.13)

in which

U = U + U ′

W = W + W ′
(13.14)

U ,W ∈ V and U ′,W ′ ∈ V ′. Consider equation (13.13) and expand the terms using

linearity of the bilinear form B1(·, ·) and trilinear form B2(·, ·, ·):

BU (W ′,U ′) +B2(W
′,U ′,U ′) = (W ′,Res(U)) (13.15)

where

BU (W ′,U ′) = B1(W
′,U ′) +B2(W

′,U ′,U) +B2(W
′,U ,U ′) (13.16)

(W ′,Res(U)) = (W ′,F )− B1(W
′,U)− B2(W

′,U ,U) (13.17)

The term B2(W ,U ′,U ′), according to classical LES notation, will be referred as the

Reynolds stress term, and the sum B2(W ,U ′,U)+B2(W ,U ,U ′) will be referred as the

cross stress term. In the spectral case, the coupling of coarse and large scales is due to

the cross and Reynolds stress terms exclusively. In the case of non-orthogonal bases, even

the linear terms give rise to coupling between coarse and fine scales. The coarse-scale

component plays an analogous role to the filtered field in the classical approach, but

has the advantage of avoiding all problems associated with homogeneity, commutativity,

walls, compressibility, etc.

It will also be assumed that the cut-off wave number is sufficiently large that the phi-

losophy of LES is appropriate. For example, if there is a well-defined inertial sub-range,

then we assume the cut-off wave number resides somewhere within it. This assumption

enables us to further assume that the energy content in the fine scales is small compared
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with the coarse scales. This turns out to be crucial in our efforts to analytically represent

the solution of the fine-scale equations.

The strategy is to obtain approximate analytical expressions for the fine scales then

substitute them into the coarse-scale equations which are, in turn, solved numerically. If

the scale decomposition is performed in space and time, the only approximation in the

procedure is the representation of the fine-scale solution.

Remark

U and U ′ may be considered as “projections” of U onto V and V ′, respectively. The

terminology “projections” is used loosely, because U and U ′ are obtained from U by

solving coupled nonlinear problems, viz.,

B(W ,U + U ′) = B(W ,U) (13.18)

B(W ′,U + U ′) = B(W ′,U) . (13.19)

U represents the part of U which lives in V, and thus clearly is a large-scale representation

of U . Likewise, U ′ is a small-scale representation of U .

13.3 An asymptotic expansion for the small scales

To provide a framework for the fine-scale approximation, we assume an infinite pertur-

bation series expansion to treat the fine-scale nonlinear term in the fine-scale equation.

By virtue of the smallness of the fine scales, this expansion is expected to converge

rapidly in many cases of practical interest. The remaining part of the fine-scale Navier-

Stokes system is the linearized operator which is formally inverted through the use of a

Green’s function. The combination of a perturbation series and Green’s function provides

an exact formal solution of the fine-scale Navier-Stokes equations. The driving force in

these equations is the Navier-Stokes system residual computed from the coarse scales.

This expresses the intuitively obvious fact that if the coarse scales constitute a good

approximation to the solution of the problem, the coarse-scale residual will be small

and the resulting fine-scale solution will be small as well, providing a rational basis for
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assuming the perturbation series converges rapidly. Note that one cannot use such an

argument on the original problem because in this case the perturbation series would

almost definitely fail to converge (in fact this argument could be used, one would solve

the Navier-Stokes equations analytically).

Let us assume then U ′ is small in some sense. From the multiscale analysis, it is well-

known that U ′ is related to the residual of the large scale equation, namely Res(U).

Using this fact, if the residual of the large scale equations is assumed small, so is U ′, and

it is possible to apply the following asymptotic expansion:

U ′ = εU ′
1 + ε2U ′

2 + ε3U ′
3 + . . . =

∞∑

n=1

εnU ′
n (13.20)

where we enforce ε =
∥∥Res(U)

∥∥. Technically, ‖·‖ should be the dual norm, since this

is the norm that makes sense for the residual. However, by means of a posteriori error-

estimation techniques, it is possible to relate the mentioned dual norm to the energy

norm, much easier to implement for practical purposes. In fact, by way of the lifting

operator, (13.17), Res(U ) ∈ (V ′)∗ ⊂ L2. Thus, in the following derivations, ‖·‖ will

indicate an energy-type norm.

Let us therefore rewrite (13.15) in terms of the proposed expansion:

BU

(

W ′,

∞∑

n=1

εnU ′
n

)

+B2

(

W ′,

∞∑

n=1

εnU ′
n,

∞∑

n=1

εnU ′
n

)

= ε
(
W ′, R̂(U)

)
, (13.21)

where

R̂(U) =
Res(U)∥∥Res(U)

∥∥ (13.22)

Notice that, by linearity, BU (·, ·) can be written as:

BU

(
W ′,

∞∑

n=1

εnU ′
n

)
=

∞∑

n=1

εnBU (W ′,U ′
n) , (13.23)

while the second term requires further consideration.
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We expand it as follows:

B2 (W ′ , εU ′
1 + ε2U ′

2 + ε3U ′
3 + . . . , εU ′

1 + ε2U ′
2 + ε3U ′

3 + . . .
)

= ε2B2 (W ′,U ′
1,U

′
1)

+ ε3 [B2 (W ′,U ′
1,U

′
2) +B2 (W ′,U ′

2,U
′
1)]

+ ε4 [B2 (W ′,U ′
1,U

′
3) +B2 (W ′,U ′

2,U
′
2) +B2 (W ′,U ′

3,U
′
1)]

+ . . . (13.24)

A recurrence formula can be easily computed if we refer to the following scheme:

ε2 → B2 (W ′,U ′
1,U

′
1)

ε3 → B2 (W ′,U ′
1,U

′
2) B2 (W ′,U ′

2,U
′
1)

ε4 → B2 (W ′,U ′
1,U

′
3) B2 (W ′,U ′

2,U
′
2) B2 (W ′,U ′

3,U
′
1)

ε5 → . . . . . . . . . . . .

Hence:

B2

(

W ′,

∞∑

n=1

εnU ′
n,

∞∑

n=1

εnU ′
n

)

=

∞∑

n=2

εn

n−1∑

j=1

B2

(
W ′,U ′

j ,U
′
n−j

)
(13.25)

The full expansion of the equation can be compactly written as follows:

∞∑

n=1

εnBU (W ′,U ′
n) +

∞∑

n=2

εn
n−1∑

j=1

B2

(
W ′,U ′

j ,U
′
n−j

)
= ε

(
W ′, R̂(U)

)
(13.26)

Equating like coefficients, we obtain a sequence of linear equations coupled through their

right hand sides (RHS):

For n = 1 BU (W ′,U ′
1) =

(
W ′, R̂(U)

)
(13.27)

For n ≥ 2 BU (W ′,U ′
n) = −

n−1∑

j=1

B2

(
W ′,U ′

j,U
′
n−j

)
(13.28)

The bilinear operator BU (·, ·) is the same for all the equations in the asymptotic cascade,

and can be inverted through Green’s function techniques, or, since the analytic solution
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is usually very hard to find, using an approximation of the Green’s function. The Green’s

function concept can be introduced in an abstract sense through a resolvent operator:

M ′
U
(·) : V ′∗ → V ′ (13.29)

F(·) 7→ V ′ (13.30)

such that

BU (W ′,V ′) = F(W ′) (13.31)

If a sequence of operators Fj : V ′ → R (i.e., Fj ∈ V ′∗) is defined as:

For n = 1 F1(W
′) = F1(W

′; R̂(U))

=
(
W ′, R̂(U)

)
(13.32)

For n ≥ 2 Fn(W
′) = Fn(W ′; U ′

1, . . . ,U
′
n−1)

= −
n−1∑

j=1

B2

(
W ′,U ′

j ,U
′
n−j

)
(13.33)

then it is possible to reformulate the sequence of problems (13.27)-(13.28) as:

U ′
n = M ′

U
(Fn), n = 1, 2, . . . (13.34)

Notice that in the cascade of problems (13.27)–(13.28) (or (13.32)–(13.33)) the level n

correction in the asymptotic expansion depends on terms on the RHS which involve the

residual of the coarse-scale component and levels of the asymptotic expansions from 1 to

n− 1. Therefore the asymptotic expansion provides a solution method to the nonlinear

problem by means of a cascade of linear systems.

Finally, once U ′ is computed, it can be substituted into (13.12), in order to account

for the effect of the small scales onto to the large ones. The substitution closes the

equations; (13.12) can then be solved only in terms of the U component.

The formal solution of the fine-scale equations suggests various approximations may

be employed in practical problem solving. One would be tempted to use the word “mod-

eling” because approximate analytical representations of the fine scales constitute the
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only approximation and hence may be thought of as the “modeling” component of the

present approach. It is important however to emphasize that it is very different from

classical modeling ideas which are dominated by the addition of ad hoc eddy viscosities.

Numerical results will demonstrate eddy viscosities are unnecessary in some circum-

stances. There are two aspects to the approximation of the fine scales:

1. Approximation of the Green’s function for the linearized Navier-Stokes system.

2. Approximation of the nonlinearities represented by the perturbation series.

The first and obvious thought for the latter aspect, nonlinearity, is to simply trun-

cate the perturbation series. This idea is investigated, in conjunction with some simple

approximations of the Green’s function. It turns out there is considerable experience

in local scaling approximations of the Green’s function based on the theory of stabilized

methods [32, 34, 37]. The Green’s function is typically approximated by locally defined

algebraic operators (i.e., the “τ ’s” of stabilized methods) multiplied by local values of the

coarse-scale residual. With this approximation of the solution of the linearized operator,

nonlinearities can be easily accounted for in perturbation series fashion.
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Chapter 14

Numerical Experiments with the

Burgers’ Equation

A number of preliminary experiments with the Burgers equation will be presented in this

chapter, devoted to highlight the nonlinear dynamics of the subgrid-scale component of

the solution, with special emphasis on the analysis of the asymptotic expansion. The

following discussion will form the background for a new modeling approach for large

eddy simulation of the Navier-Stokes presented in chapter 15.

14.1 Strong form of the Burgers’ equation

The initial/boundary-value problem (in non-dimensional form) consists of seeking u :

Q→ R, the velocity, (where Q = Ω× [0, T ], with Ω = T[0,l], the l-periodic 1-torus), such

that

u,t +

(
u2

2

)

,x

=
1

Re
u,xx + f on Q (14.1)

u(0+) = u(0−) on Ω (14.2)

Re is the Reynolds number (its precise definition is given in Appendix B). The length

scale used to form Re is not the physical length l̃ of the computational domain (tilde de-

notes dimensional quantities), but is instead L̃ = 1/k̃f , the inverse of the wavenumber at

which the Fourier spectrum of the stochastic forcing peaks. Hence, the non-dimensional

157
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parameter l in the definition of the torus T[0,l] is in general different from unity, and in

the specific case of the following numerical tests, l = 6, that is, the forcing spectrum

peaks at a wavelength equal to 1/6 of the domain length. u(0−) : Ω → R is the given

initial velocity, and the forcing f : Q→ R is taken to be a Gaussian, white-in-time field

with variance given by

< f(x, t)f(x′, s) >= F (|x− x′|)δ(t− s) (14.3)

where < · >, stands for an ensemble average, which can be replaced by an average in

time due to stationarity of the stochastic process.

14.1.1 Space-time formulation

We consider a Galerkin space-time formulation with weakly imposed initial condition.

Let V = V(Q) denote the trial solution and weighting function spaces, which are assumed

to be identical. The variational formulation is stated as follows:

Find u ∈ V such that ∀w ∈ V

B(w, u) = B1(w, u) +B2(w, u, u) = (w, f) (14.4)

where, for v ∈ V

B1(w, u) = (w(T−), u(T−))Ω − (w,t, u)Q +
1

Re
(w,x, u,x)Q

(14.5)

B2(w, u, v) = −
(
w,x,

uv

2

)

Q

(14.6)

(w, f) = (w, f)Q + (w(0+), u(0−))Ω (14.7)

14.2 Separation of scales and asymptotics

As for the case of the Navier-Stokes equations in chapter 13, let V = V ⊕ V ′, so that:

B(w, u+ u′) = B1(w, u+ u′) +B2(w, u+ u′, u+ u′) = (w, f) (14.8)

B(w′, u+ u′) = B1(w
′, u+ u′) +B2(w

′, u+ u′, u+ u′) = (w′, f) (14.9)
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in which the following scale decomposition is adopted:

u = u+ u′ (14.10)

w = w + w′ (14.11)

u, w ∈ V and u′, w′ ∈ V ′. Consider equation (14.9) and expand the terms using linearity

of the bilinear form B1(·, ·) and trilinear form B2(·, ·, ·):

Bu(w
′, u′) +B2(w

′, u′, u′) = (w′, Res(u)) (14.12)

where

Bu(w
′, u′) = B1(w

′, u′) +B2(w
′, u′, u) +B2(w

′, u, u′) (14.13)

(w′, Res(u)) = (w′, f)−B1(w
′, u)−B2(w

′, u, u) (14.14)

Assuming u′ is small and expanding:

u′ = εu′1 + ε2u′2 + ε3u′3 + . . . =
∞∑

n=1

εnu′n (14.15)

where ε = ‖Res(u)‖. Carrying out the necessary derivations yields:

∞∑

n=1

εnBu (w′, u′n) +
∞∑

n=2

εn
n−1∑

j=1

B2

(
w′, u′j, u

′
n−j

)
= ε

(
w′, R̂(u)

)
(14.16)

with R̂(u) = Res(u)/ ‖Res(u)‖. Equating like coefficients, we obtain a cascade of linear

equation coupled through their right hand sides:

For n = 1 Bu (w′, u′1) =
(
w′, R̂(u)

)
(14.17)

For n ≥ 2 Bu (w′, u′n) = −
n−1∑

j=1

B2

(
w′, u′j, u

′
n−j

)
(14.18)

The bilinear operator Bu (·, ·) can be inverted through a Green’s function (or at least its

discrete version), and the solution can be reconstructed from its asymptotic expansion.
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Once u′ is computed, it can be substituted into (14.8), in order to account for the

effect of the small scales onto to the large ones. As in chapter 13, it is possible to abstract

the Green’s function concept by the resolvent operator:

M ′
u(·) : V ′∗ → V ′ (14.19)

F(·) 7→ v′ (14.20)

such that

Bu(w
′, v′) = F(w′) (14.21)

As before, the sequence of operators Fj : V ′ → R (i.e., Fj ∈ V ′∗) is introduced:

For n = 1 F1(w
′) = F1(w

′; R̂(u))

=
(
w′, R̂(u)

)
(14.22)

For n ≥ 2 Fn(w
′) = Fn(w

′; u′1, . . . , u
′
n−1)

= −
n−1∑

j=1

B2

(
w′, u′j, u

′
n−j

)
(14.23)

Therefore, (14.17)–(14.18) reduce to the following cascade of equations is obtained:

u′n = M ′
u
(Fn), n = 1, 2, . . . (14.24)

14.3 Small-scale dynamics

The simplicity of the Burgers equation allows the solution of (14.8) and (14.17)–(14.18),

to study the nonlinear subgrid-scale dynamics of the asymptotic expansion. In practical

implementations, the cascade of equations (14.17)–(14.18) is solved for only approxi-

mately, but in this particular case, the brute force solution can provide some insight on

the energy redistribution patterns among the terms in the asymptotic expansion.
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To solve (14.17)–(14.18), in essence, we just need to compute a certain number of

times the solution to a system of the form:

Bu (w′, u′n) = (w′,Fn) (14.25)

in which Fn represent the right hand side term in equations (14.17)–(14.18), correspond-

ing to the component u′n. In order to simplify the notation in what follows, the subscript

n will be dropped from Fn and u′n.

We proceed introducing a basis for V ′. If we consider that Bu : V ′ × V ′ → R, we can

easily see that the correct expressions for both the test function w′ and the solution u′

in a classical Galerkin formulation are given by:

w′(x, t) =

n′
np∑

A=1

N ′
Aw

′
A (14.26)

u′(x, t) =

n′
np∑

A=1

N ′
Au

′
A (14.27)

where n′
np (possibly infinite) is the number of degrees-of-freedom characterizing the space

V ′ of the solution, and N ′
A is the shape function associated with the degree-of-freedom

u′A. The discretization adopted leads to a linear matrix problem:

n′
np∑

B=1

Bu(N
′
A, N

′
B) u′B = (N ′

A,F), A = 1, 2, . . . , n′
np

(14.28)

or

n′
np∑

B=1

[K u ]AB U ′
B = FA, A = 1, 2, . . . , n′

np (14.29)

where we have used the linearity in the second argument of Bu(·, ·), and

[K u ]AB = Bu(N
′
A, N

′
B) ∈ R

n′
np×n′

np. (14.30)
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Therefore we have:

u′B =

n′
np∑

A=1

[K−1
u
]BAFA, B = 1, 2, . . . , n′

np (14.31)

u′(x, t) =

n′
np∑

B=1

N ′
B(x, t)U ′

B

=

n′
np∑

A,B=1

N ′
B(x, t)(K−1

u
)BAFA

=

∫

Q̃

n′
np∑

A,B=1

N ′
B(x, t)(K−1

u
)BAN

′
A(x̃, t̃)F(x̃, t̃)dQ̃

=

∫

Q̃

Gu(x, t; x̃, t̃)F(x̃, t̃)dQ̃ . (14.32)

where

Gu(x, t; x̃, t̃) =

n′
np∑

A,B=1

N ′
B(x, t)(K−1

u )BAN
′
A(x̃, t̃) (14.33)

is the Green’s function for the linear problem, and in particular Gu ∈ R. Appendix B.3

contains the details of the implementation of the numerical Green’s function concept,

which can also be understood in terms of a generalized Shur’s complement formula. At

the numerical level, n′
np is taken large enough to incorporate all significant dynamics of

the Burgers’ equation with the set of coarse and fine scales.

14.4 Numerical testing.

The numerical implementation of the Burgers’ equation simulation is documented in

Appendix B. The algorithm is a multiscale variant of a classical Bubnov-Galerkin for-

mulation with piecewise continuous interpolation on a uniform mesh. The large-scale

equation is solved at each time-step using a (nonlinear) Newton iterative solver, and a

triadiagonal solver is adopted for the cascade of linearized fine-scale problems.
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Figure 14.1: Re = 1000, 1024 elements, ∆t = 0.001. Statistics for Pope’s forcing (see
Appendix B.5.2 for details). The shocks are producing very pronounced negative cusps
in the gradient of the solution (bottom right plot). The negative gradient of the solution
scales with the Reynolds number: the magnitude of the negative cusps in the solution
gradient, observable in the bottom right plot, is approximately equal to the value of the
Reynolds number.

The dynamics of the Burgers’ equation can shed some light on how energy redis-

tributes among the various terms of the asymptotic expansion and the resulting general

considerations can be applied to the much more complex Navier-Stokes equations. The

nonlinearities in Burgers’ equation are mainly due to shocks, that cannot be represented

accurately on coarse meshes . At the same time, a shock can be thought of as a boundary

layer of extreme sharpness.

In this regard, the representation of sharp gradients with coarse meshes becomes an

issue that involves the mathematical and numerical aspects of function representation.

The proposed analysis tends to direct the attention on such numerical representation
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problems, that are common to more complex systems (e.g., the Navier-Stokes equations).

Some of the commonalities will be outlined in the next chapter on bypass transition

simulations.

14.4.1 Preliminary calculations.

Preliminary studies have been devoted to outline the basic chaotic dynamics of the

randomly forced Burgers’ equation. Figure 14.1 shows the result of a simulation at

Re = 1000, with 1024 elements, and ∆t = .001 using S.B. Pope’s implementation of the

stochastic forcing (see Appendix B.5 and [56] for more details).
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Figure 14.2: Comparison of spectra for Re=1000. Black: 4096 elements, ∆t = 0.0005;
red: 1024 elements, ∆t = 0.001. It can be appreciated that the range of low/medium
wavenumbers (kj = 2πj/L) is not influenced by the increase in resolution. On the
contrary, high wavenumbers are sensitive to a change in resolution.
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The solution has evolved for 50 non-dimensional time units from a randomly generated

initial condition and sampling has been performed over the subsequent Ts = 50 time

units. As it can be clearly seen, pronounced negative cusps in the gradient of the solution

are forming due to shock occurrences. The plots in Figure 14.1 are presented just for

illustration purposes, since, as will be clear from subsequent analysis, the resolution in

this case is not adequate to characterize the dynamics of highest wavenumbers in the

Fourier spectrum of the solution.

In fact, Figure 14.2 shows a mesh sensitivity analysis at Re=1000, for which it is no-

ticeable that the representation of the high-wavenumber range for the energy spectrum of

the solution is inaccurate (recall that the definition of the wavenumber kj is kj = 2πj/L).

Reducing the accuracy is not beneficial for the correct representation of high wavenum-

bers, while low wavenumbers (corresponding to the coarsest scales in the simulation) are

practically unaffected. Since the small-scale dynamics needs to be characterized properly,

the analysis confirms that the finer mesh should be used.

Re number of elements ∆t Ts (Sampling Duration)
100 1024 0.001 100

1000 4096 0.0005 100
2000 4096 0.0005 100

Table 14.1: Effect of the Reynolds number. All the simulations have been performed
without the asymptotic expansion, retaining only the large scales, and using a resolution
providing adequate accuracy with respect to the corresponding Reynolds number.

14.4.2 Effect of the Reynolds number.

Table 14.1 summarizes the tests performed, with adequate meshes and increments of the

time integration. 4096 elements have been used for the higher Reynolds numbers, to

accurately compute the spectrum for high wavenumbers.

In this case, no asymptotic expansion has been applied, and all the scales in the

simulation are coarse scales, according to the notation previously introduced, although

the resolution of the mesh ensures that there is virtually no energy in the modes past

the cutoff of the Nyquist wavenumber kcutoff = π
h

(the highest wavenumber sampled by

the mesh of element spacing h).
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Figure 14.3: Comparison of spectra for the three simulations outlined in Table 14.1.
Notice the formation of a plateau as the Reynolds number increases.

A comparison of spectra is presented in Figure 14.3, for a random forcing applied as

suggested in Appendix B. As Re → ∞, a plateau forms in the compensated spectrum,

corresponding to a k−2 decay in the energy spectrum. Such decay is originated by the

formation of shocks in the solution, whose Fourier coefficients decay as k−1.

The plateau in the spectrum is fairly pronounced in the case of Re = 2000, given the

very steep gradients produced (see Fig. 14.4). Notice that in the case Re = 100, the k−2

range is not present, since viscosity does not allow the shocks to be sharp enough.

14.4.3 Multiscale dynamics.

For the case with the highest Reynolds number of Table 14.1, corresponding toRe = 2000,

the multiscale approach of section 14.3 was subsequently applied. Section 14.3 is sufficient

for the comprehension of the basic approach, but the interested reader can find all the

details of the implementation in section B.3 of the Appendix.
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Figure 14.4: Solution of the stochastically forced Burgers equation for Re = 2000, corre-
sponding to the parameters on the third row of table 14.1.

large scales: V

small scales: V ′

Figure 14.5: A sketch of the refinement strategy: coarse scales are in blue and small
scales in red.

In this case the total number of 4096 degrees-of-freedom has been split into 512

degrees of freedom associated to a coarser mesh of spacing L/512 (L is the measure of

the computational domain) and n′
np = 4096− 512 degrees-of-freedom, associated with a

nested refinement. A sketch of the refinement strategy is depicted in Figure 14.5. The

time duration for the statistical sample was Ts = 400 non-dimensional time units (8×105

time steps), to achieve convergence for the spectra of the small scale components. As

in the previous simulation at Re = 2000, the time-step was fixed as ∆t = 5 × 10−4.

In particular, Figure 14.6 shows the results for respectively nae = 1, 2, 3, 7 terms in the

asymptotic expansion.

The top plot shows the decay in the square-root of the spectrum, E
1/2
u u, for the coarse
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scale solution u. The plot immediately below shows the square-root of the spectrum,

E
1/2
u′
1u′

1
, of the first component of the asymptotic expansions and so forth for the higher

terms in the asymptotic expansion, plotted in descending order.

Several curves are plotted in color on each of the three lower plots of Figure 14.6.

Each color corresponds to terms of the expansion truncated at the particular term nae.

For example, red corresponds to terms of the asymptotic expansion truncated at nae = 7,

green to a truncation at nae = 3 and so forth. Consequently, the very bottom plot of

Figure 14.6 shows the term u′3 in the asymptotic expansion for a truncation at the third

(nae = 3, green) and seventh (nae = 7, red) term (curves for a truncation at the first and

second term are obviously not present). A few observations can be made:

1. The order of magnitude of the peak of E
1/2

u′
1u′

1
is about 1% of the peak of E

1/2
u u, and

for successive corrections, the magnitude of the peaks for the E
1/2
u′

ju′
j
’s (with j ≥ 2)

is about 0.1% of the one of E
1/2
u u. Therefore, the hypothesis of smallness of u′

with respect to u is confirmed. Furthermore, it appears clear that if the separation

of scales between coarse and fine scales in not extreme, the first term of the the

expansion is sufficient to capture the bulk effects of the subgrid-scale space, in terms

of the spectrum of u and its integral in wave-space, the variance.

2. Notice that when taking Fourier transforms, a “signature” of the finite element

discretization appears in the plots for E
1/2

u′
1u′

1
and E

1/2

u′
2u′

2
(second and third from

the top), appearing as bubble-like bumps in the energy distribution for the high

wavenumbers. However, one should realize that the energy content of the mentioned

bumps is fairly small.

3. The graph of E
1/2
u′
1u′

1
is almost unaffected by changes in the truncation threshold

nae, as the curves for nae = 1, 2, 3, 7 overlap. This fact is of crucial importance,

since it tells that the linear correction u′1 is very well characterized by just the

expansion truncated at the first term. Notice also that the first term, once the

numerical Green’s function is appropriately approximated, corresponds to an en-

hanced SUPG-type approach in which the small-scale component of the solution is

substituted in the full cross-stress sum as well as in the Reynolds-stresses (in the

case of classical stabilized methods, the subgrid component is substituted into only
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Figure 14.6: Square root of the energy spectrum. Top plot: u. Second plot from top:
u′1 term of the asymptotic expansion for the small scale component of the solution.
Third plot from top: u′2. Fourth plot from top: u′3. The range of values of normalized
wavenumbers on the abscissa is from 1 to 256 for the top plot, while the lower plots range
from 1 to 2048 (the black vertical separators represent intervals of 256 wave numbers).
Also, for the plots of the terms in the asymptotic expansion, black refers to an expansion
truncated at the first term (nae = 1), blue refers to a truncation at the second term
(nae = 2), green to a truncation at the third (nae = 3), and red is for a truncation at the
seventh term (nae = 7).
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one of the two terms in the cross-stress sum, either B2(w
′, u′, u) or B2(w

′, u, u′)).

4. For higher terms u′j (j ≥ 2), energy does redistribute as the truncation in the

asymptotic expansion is changed. However, it is clear from the picture that a fairly

small amount of energy is contained in these terms.

5. Note also that for higher terms in the asymptotic expansion, the spectrum is spread

across a broader band of wavenumbers. Most of the energy in the case of u′1 is

concentrated in a band four times larger than the coarse scale band.

The conclusion from this analysis is that in the limit of applicability of the asymptotic

expansion, most of the subgrid energy resides only in the first term of the expansion, so

that new approaches to modeling can leverage this fact.



Chapter 15

Applications to Bypass Transition

Phenomena and Conclusions

A new variational model for turbulence simulations will be proposed in what follows, and

numerical results for bypass transition in boundary layers will be presented. The model

hinges upon a generalization of the discussion outlined in the previous chapter regarding

Burgers’ equation experiments.

15.1 Bridging the gap with turbulence

It is important to recapitulate the results at the end of the previous chapter. If the mesh is

not too coarse, then the subgrid scale component of the solution is fairly small compared

with the coarse scale solution and the asymptotic expansion can be applied. Furthermore,

it was observed that only the first term of the expansion, the linear contribution, was

significantly larger than all nonlinear contributions coming from higher terms in the

asymptotic expansion. This fact is not just a feature of the Burgers’ equation, but also of

more complex systems. For example, let us consider Figure 15.1, relative to a multiscale

analysis applied to the Navier-Stokes equations in the case of homogeneous isotropic

turbulence. The computations are courtesy of Alan Wray [69], and were performed on

a fairly resolved mesh in spectral (Fourier) space, for a Reynolds number Reλ = 90.

For decaying homogeneous turbulence, the Reynolds number Reλ is computed with the

Taylor microscale (the autocorrelation characteristic length-scale of the turbulent signal),
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Figure 15.1: Spectral eddy viscosity for a splitting of the scales in which Fourier modes
in a spectral ball of radius ksplit = 32 are considered as coarse scales and the remaining
complement to a total of 1603 modes – equivalent to 793 wavenumbers – represent the
fine scales. The total transfer of energy is in black, green represent the cross-stress con-
tribution to the total transfer, red depicts the Reynolds stress contribution. Simulation
performed by A.A. Wray.

and decays to zero as the simulation progresses. The initial condition was generated

by a synthetic turbulent flow with prescribed spectrum and random phases, but the

statistical sampling was started only later on, to allow the Navier-Stokes dynamics to

develop adequately. The value of Reλ refers then to the time at which the statistical

sampling began. Figure 15.1 presents the so-called spectral eddy viscosity, a measure of

the energy transfer from the coarse scales to the fine scales. The spectral eddy viscosity

relative to a certain wavenumber magnitude |k| quantifies how much energy is transferred

from the coarse scales on the sphere of radius k (defined by the wavenumbers kx, ky, kz

such that
√
k2

x + k2
y + k2

z = |k|) to the fine scales past the cutoff ksplit. For a detailed

explanation about energy transfers in homogeneous isotropic turbulence, the reader can

refer to [29]. In particular, Figure 15.1 shows how much energy is transferred from each

k-sphere of wavenumbers in the ball of radius ksplit = 32 to wavenumbers outside that
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ball (the fine scales, i.e., the complement of the ball to the total of 1603 modes computed,

equivalent to 793 wavenumbers).

It is very noticeable that most of the energy transfer from the coarse scales is due

to cross-stress terms, which are actually represented by the linear part of the turbulent

stresses. Turbulent flows are dominated by the Kolmogorov cascade, an inertial transfer

of energy from coarse to fine scales: as the Reynolds number increases, the cascade spans

a broader and broader range of scales.

If the space of coarse scales is reduced, the effect of the Reynolds stresses becomes

more evident, in the sense that the plateau in red rises to higher values, until the profile

of the total transfer almost coincides with it. In particular we can outline to trends for

the energy transfer, as we vary the size of the set of coarse scales in a direct numerical

simulation (DNS):

1. If the coarse space is much smaller than the total space of modes, the energy transfer

is dominated by the highly nonlinear Reynolds stress dynamics.

2. If the coarse space is covering a non-negligible portion of the total amount of modes

computed, the energy transfer is dominated by the linear dynamics of the cross

stresses.

Thus, it appears clear that a linearization approach for the cross stresses can be applied

in the second case, performing a large eddy simulation without incorporating a model

of the Reynolds stresses. It should also be observed that in general, the space of coarse

scale has to be very small to start observing strong nonlinear dynamics, and for many

large eddy simulations reported in the literature, the turbulent flows are typically in the

second situation rather then the first, or somewhat in between the two.

15.2 A new multiscale approach

In practice, only the first term in the asymptotic expansion (13.20) will be accounted for

at the modeling level, and it appears clear that the first subgrid equation (13.27) in the

expansion corresponds to a local linearization of the Navier-Stokes equations.
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SUPG approaches can be interpreted as ways of approximately solving the mentioned

equation, by means of the substitution:

U ′ ≈ U ′
1 ≈ −τRes(U) (15.1)

where (15.1) has to be intended in a variational/distributional sense. Res(U) is the

residual of the coarse scale equation, and τ can be thought of as an approximation of

the subgrid Green’s integral operator (for an extensive discussion on how to approximate

the Green’s integral operator and a complete list of references, refer to the chapter in

the Encyclopedia of Computational Mechanics by Hughes, Scovazzi and Franca [37]).

Substitution of the proposed approximation for U ′ into (13.12) yields a subgrid-scale

model. This procedure can be generalized to all the terms in the asymptotic cascade,

since the right hand side of the equation for U ′
2 is a function of U ′

1, so that, recursively,

additional contributions can be added to the approximation for U ′.

Notice that the local linearization is an approach substantially different from Rapid

Distortion Theory (RDT, see [39] for a comprehensive review), since RDT is usually ap-

plied to the theoretical analysis of flow instabilities and turbulent shear/boundary layers

under restrictive conditions, and, furthermore, the linearization is about the statistical

mean flow, and not the coarse scale solution. Finally, the coarse-scale dynamics is fully

nonlinear while RDT is, as a matter of fact, a linearization of the complete Navier-Stokes

equations.

15.3 Applications to bypass transition studies

Bypass transition is a phenomenon that occurs whenever the free-stream of a laminar base

flow is injected with sufficiently energetic germs of turbulence. Under such conditions,

the classical Orr-Sommerfeld mechanism for instability and transition to turbulence is

bypassed and the flow undergoes an early transition, due to the formation of streaky

structures, also termed Klebanoff modes. Figure 15.3 shows the typical patterns of the

flow. In particular, the following simulations refer to a case study where the turbulent

intensity is about 3% of the free-stream velocity U0, analogously to the experiments

performed by Roach and Brierley [62].
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Figure 15.2: Sketch of the computational domain for the large eddy simulation studies
of bypass transition. The domain is a parallelepiped of dimensions Lx × Ly × Lz =
620 δ0 × 40 δ0 × 30 δ0. δ0 is the inflow boundary layer displacement thickness (laminar
flow), and the inflow momentum thickness is θ0 = 0.1336 δ0. (Courtesy of V.M. Calo.)

The reader is encouraged to read the Ph.D. thesis of V.M. Calo [7], who performed the

simulations using a modification of the finite-volume/finite-difference implementation of

the problem and kindly provided the pictures presented herein. The thesis of V.M. Calo

includes an exhaustive discussion about the computational burdens successfully overcome

in implementing the problem correctly from a numerical and physical perspective. The

reader should also consult [40, 41], for an earlier direct numerical simulation aimed at

analyzing the physics of bypass transition.

Simulation parameters
Lx 620 δ0
Ly 40 δ0
Lz 30 δ0
θ0 0.1336 δ0
Reδ0 795

Resolutions studied

Test Nx Ny Nz mesh ratio

Full DNS 2048 180 192 1
LES 1/2 1024 90 96 (1/2)3

LES 1/4 512 48 48 (1/4)3

LES 1/8 256 32 32 (1/8)3

Table 15.1: Several bypass transition simulations were performed. The results presented
herein are relative to the LES 1/4 denomination, corresponding to a coarsening of the
mesh by a factor 1/4 in each of the spatial directions. The mesh is stretched at the wall
using an hyperbolic tangent map.
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The numerical simulations have been performed using a variant of a classical second-

order, fully-staggered, central difference scheme (see [55], and references therein for an

account of the original scheme and subsequent development of the numerical architec-

ture). The mesh was logically structured and the resolution used in the simulations is

detailed in Table 15.1.

Figure 15.3: Full Direct Numerical Simulation. Visualization of the streamwise ve-
locity fluctuations (blue/red are positive/negative fluctuations) generated by germs of
turbulence at the inflow in the free-stream (positive/negative vorticity is plotted in
cyan/yellow). The decay of free-stream turbulence as the flow is advected downstream
of the inflow is visible in the upper plot. Streaky structures form at the bottom of the
boundary layer (see the zoomed view on the lower visualization), and develop instabilities
that eventually transition to turbulence. (Plots courtesy of V.M. Calo.)

Velocity and pressure equations are decoupled by means of an approximate factoriza-

tion technique, leading to a Poisson problem for the pressures. The scheme was proved

energy-conservative on uniform meshes. The boundary conditions are outlined in the
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Figure 15.4: Turbulent intensity decay as a function of Rex = U∞x/ν, for DNS and
various LES (corresponding to the LES 1/4 mesh denomination, differing for the type
of model used). Red: no model; green: multiscale model as in Hughes et al. [30]; blue:
new model based on SUPG stabilization and asymptotic expansions; magenta: dynamic
model of Germano et. al[21]; black: DNS of Jacobs and Durbin [40, 41]; +: experimental
measurements from [62]. It was found of crucial importance to match the free-stream
turbulence decay, in order to appropriately characterize the transition dynamics, for all
methods and all mesh refinements. This is a very interesting example of close coupling
between numerics and physics. (Plot courtesy of V.M. Calo.)

sketch in Figure 15.2. The computational domain is a parallelepiped of dimensions

Lx × Ly × Lz = 620 δ0 × 40 δ0 × 30 δ0. δ0 is the inflow boundary layer displacement

thickness, defined as the distance from the wall at which the streamwise velocity u has

regained 99% of the free-stream value. The inflow momentum thickness is θ0 = 0.1336 δ0,

according to the theory of laminar boundary layers.

Special care was devoted to the inflow conditions, since it was observed that the free-

stream turbulent intensity was spuriously damped by the numerics across the layer of

inflow volumes (the layer of volumes which have one of their faces laying on the inflow

boundary). Matching the turbulent decay with respect to a reference direct numerical

simulation (DNS) [40, 41] rather than the inflow turbulent intensity produced a dramatic

improvement in the results, also in terms of trends in mesh refinement studies.
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A plot of the decay of turbulent intensity from the inflow to downstream is presented

in Figure 15.4, in the case of a the mesh for the LES 1/4 simulations. It is felt important

to say a few words clarifying the purpose of the simulations performed. As one can notice

in Figure 15.4, the experimental curve for the decay of the free-stream turbulence is far

apart from the corresponding DNS curve. Hence, there are two separate issues to be

considered here: The consistency of DNS with experimental conditions and the effect of

LES modeling. The first of the two mentioned issues will not be addressed here, since it

investigates the meaning of closeness between experimental and numerical conditions in

turbulence, a field of research in itself. The second is instead the matter of the following

discussion, and one should therefore compare results to the DNS output, for which the

simulation conditions can be monitored and matched more closely. Therefore, the reader

should keep in mind that although experimental results are presented for the sake of

completeness, only the DNS results should be used as a benchmark.

In order to implement the proposed model, a reconstruction of the residual was

needed, a non-trivial aspect in the case of a finite-volume/finite-difference implemen-

tation, for which a standard variational formulation is usually not available. By in-

terpreting the finite volume formulation as a variant of a finite element method à la

Raviart-Thomas, the residual was reconstructed as a cell-centered quantity. Although

the reconstruction may not be as precise as in the case of a standard finite element

formulation, the numerical performance of the implementation proves its effectiveness.

15.3.1 Analysis of the results.

Figure 15.5 is for the large eddy simulation denoted “LES 1/4”, for which the mesh is

coarsened by a factor of four in each Cartesian direction. It shows the non-dimensional

skin friction coefficient defined as:

Cf =
τw

1/2ρU2
0

(15.2)

where τw is the shear stress at the wall, ρ is the density of the fluid, assumed constant

in the present case, and U0 is the free-stream velocity. It was found that in the case of

the test termed LES 1/8, the numerics were incapable of representing either the laminar
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Figure 15.5: Skin friction coefficient as a function of Rex = U∞x/ν. Red: no model;
green: multiscale model as in Hughes et al. [30]; blue: new model based on SUPG
stabilization and asymptotic expansions; magenta: dynamic model of Germano et. al[21];
black: DNS of Jacobs and Durbin [40, 41]; +: experimental measurements from [62].
(Plot courtesy of V.M. Calo.)

region of the boundary layer or the free-stream turbulence decay due to too few points

in the wall normal direction. This was not an issue of LES modeling, rather, a matter of

turbulence sustainability in the free-stream flow.

The dynamic model produced excessive smearing on the skin friction coefficient cf

in the transitional region, and the numerical results were also found very dependent on

the definition of the mesh characteristic length scale (needed to set up the least square

procedure to determine the dynamic coefficient). In addition, there was pronounced

dependence of the results on mesh refinement [7]. The combination of the three aspects

proved the dynamic model less robust than the newly proposed method, which exhibited

correct trends across all meshes.
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15.4 Conclusions

A new method, based on ideas inherited from SUPG stabilization and Green’s function

concepts, was developed and tested on the challenging problem of bypass transition, and

superior results were noted. In particular, the new concept bridges the gap between

subgrid-scale stabilization and turbulence modeling.

The potential for a new pathway in LES modeling was confirmed in numerical studies,

although more testing is needed, on a wider variety of physical flows and numerical

frameworks (e.g., spectral, finite difference and finite element methods). In particular, the

enormous (and often underestimated) impact that the numerical discretization method

has on the results was experienced.

Finally, although the model is based upon the assumption that the subgrid scales are

effectively small with respect to the mesh resolved scales, the tests performed could not

assess the magnitude of “small”. It is expected that as the mesh is successively coarsened,

the linearized framework would be less and less appropriate, but, due to issues related

to free-stream turbulence sustainability, it was not possible to achieve this limit in the

present computations. This is in fact a good sign for the effectiveness of the model, and

probably an indicator of its flexibility in more challenging conditions.

Further research will therefore be oriented to the implementation of the method under

a wider variety of conditions, either from the physical, numerical, or combined perspec-

tives.



Appendix A

An Algorithm for the Square Root

of a 3× 3 Positive Definite Matrix

The present algorithm is presented in detail by Franca [16].

Step 1: Compute invariants IB, IIB and IIIB of B:

IB = trB (A.1)

IIB =
1

2

(
I2
B − tr(B2)

)
(A.2)

IIIB = detB (A.3)

k = I2
B − 3IIB (A.4)

Step 2: Check isotropy of the tensor B, if k ≤ toll, with toll close to machine accuracy,

go to Step 3. Otherwise skip Step 3 and go to Step 4.

Step 3: Isotropic case. Compute B1/2 and B−1/2:

λ =

(
IB
3

)1/2

(A.5)

B1/2 = λ I3×3 (A.6)

B−1/2 = λ−1 I3×3 (A.7)

End the computation.
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Step 4: Non-isotropic case. Compute the largest eigenvalue (Cartan method):

l = IB

(
I2
B −

9

2
IIB

)
+

27

2
IIIB (A.8)

φ = arccos

(
l

k3/2

)
(A.9)

λ2 =
1

3

(
IB + 2k1/2 cos

(
φ

3

))
(A.10)

Step 5: Non-isotropic case. Compute invariants of U = B1/2 (λ is the positive root of

λ2 since B1/2 ≥ 0, by definition):

IIIU = III
1/2
B (A.11)

IU = λ+

(
−λ2 + IB +

2 IIIU
λ

)1/2

(A.12)

IIU =
I2
U − IB

2
(A.13)

Step 6: Non-isotropic case. Compute U = B−1/2:

B1/2 =
1

IU IIU − IIIU
(
IU IIIU I3×3 + (I2

U − IIU)B −B2
)

(A.14)

B−1/2 =
1

IIIU

(
IIU I3×3 − IUB1/2 + B

)
(A.15)

End computation.



Appendix B

Numerical Implementation of the

Multiscale Analysis for the Burgers’

Equation

In this section of the appendix, the details of the numerical testing performed on the

nonlinear Burgers’ equation are presented. The numerical time integrator used is a

generalized trapezoidal rule combined with a Newton solver. Piece-wise linear continuous

interpolation has been used for the discretization of the solution.

B.1 The dimensional problem.

The dimensional Burgers’ equation reads:

ũ,t̃ +

(
ũ2

2

)

,x̃

= νũ,x̃x̃ + f̃ (B.1)

The forcing f̃ is taken to be a Gaussian, white-in-time field with variance given by

< f(x̃, t̃)f(x̃′, s̃)) >= F (|x̃− x̃′|)δ(t̃− s̃) (B.2)

where < · >, stands for an ensemble average, equivalent to an average in time due to the

statistical stationarity of the problem.
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The spectrum of the forcing must also respect the following constraints:

∫ ∞

0

k̃2F̃ (k̃) = ξ̃3
f (B.3)

| ˆ̃f |2 ∝ F̃ ∼ k̃4e
−

„

k̃
k̃f

«2

(B.4)

To be clear regarding the notation used, here “ ·̃ ” means a dimensional quantity, k̃f is

the (dimensional) wavenumber about which the spectrum
˜̂
F peaks, ξ̃f is a scale for the

velocity gradient of the solution ũ.

B.2 The non-dimensional problem.

We now would like to rephrase the Burgers’ equation in non-dimensional form, the only

one that make sense from a physical point of view, since it highlights the only non-

dimensional parameters of importance for the system. We therefore introduce scales for

time (T̃ ), length (L̃), velocity (Ũ), whose magnitude will be specified later, when intuition

about the dominant features of the system in question will be clearer. For the moment

we will just fix:

ũ = Ũu (B.5)

x̃ = L̃x (B.6)

t̃ = T̃ t = L̃/Ũt (B.7)

k̃ = k/L̃ (B.8)

f̃ = f̃0f (B.9)

Notice that in the normalization used for the time-scale, we are implying that the time

scale is dominated by convection effects. We can therefore write the Burgers’ equation

as follows:
Ũ2

L̃
u,t +

Ũ2

L̃

(
u2

2

)

,x

= ν
Ũ

L̃2
u,xx + f̃0f (B.10)
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Dividing (B.10) by Ũ2

L̃
, we get:

u,t +

(
u2

2

)

,x

=
1

Re
u,xx +

f̃0L̃

Ũ2
f (B.11)

where Re = Ũ L̃
ν

, is the Reynolds number. We still need to define the scales with which

we are normalizing the equation, and that the term G = f̃0L̃

Ũ2 represents the ratio between

the forcing and the convection effects in the system. In our particular case the motion is

generated by the forcing and we would expect

G = O(1). (B.12)

Let us now specify the scales involved in the system dynamics. Since the forcing acts

with a spectrum peaking at k̃f , it is natural to use L̃ = 1/k̃f . Also, due to (B.3) and the

fact that ξ̃f has the dimension of a velocity gradient, we would have:

Ũ = ξ̃f/k̃f (B.13)

L̃ = 1/k̃f (B.14)

T̃ = ξ̃f (B.15)

and consequently f̃0 ∼ ξ̃2
f/k̃f (so far, by “∼” we mean “has the same dimension of”, with

no implication regarding the order of magnitude).

B.3 Semi-discrete Formulation

Let uk represent the algorithmic solution at time tk. The time step is denoted ∆t =

tk+1 − tk. It proves convenient to employ the jump operator, viz.,

[v] = vk+1 − vk (B.16)

〈v〉 =
vk+1 + vk

2
(B.17)

〈v〉α = αvk+1 + (1− α)vk α ∈ [0, 1] (B.18)

(〈v〉α),x = 〈v,x〉α (B.19)
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The algorithm implemented is a semi-discrete variational formulation of (14.4), given

by the well-known generalized trapezoidal rule:

1

∆t
(w, [u])Ω −

(
w,x,
〈u〉2

α

2

)

Ω

+
1

Re
(w,x, (〈u〉α),x)Ω = (w, fk+1/2)Ω (B.20)

B.3.1 Large scale equation

Separation of Scales

The usual decomposition into coarse an fine scales yields:

[u+ u′] = [u] + [u′] = uk+1 − uk + [u′] (B.21)

〈u+ u′〉α = αuk+1 + (1− α)uk + 〈u′〉α (B.22)

〈u+ u′〉2
α

=
(
αuk+1 + (1− α)uk + 〈u′〉α

)2

= α2(uk+1)2 + 2α
(
(1− α)uk + 〈u′〉α

)
uk+1

+
(
(1− α)uk + 〈u′〉α

)2
(B.23)

We then substitute (B.22), (B.23) and (B.21) into (B.20):

1

∆t

(
w, uk+1 − uk + [u′]

)
Ω

+
1

Re

(
w,x, αu

k+1
,x + (1− α)uk

,x + 〈u′,x〉α
)
Ω

− 1

2

(
w,x, α

2(uk+1)2 + 2α
(
(1− α)uk + 〈u′〉α

)
uk+1

)
Ω

− 1

2

(
w,x,

(
(1− α)uk + 〈u′〉α

)2)

Ω

=
(
w, f

k+1/2
)

Ω
+
(
w, f ′k+1/2

)
Ω

(B.24)

The proposed time discretization is second order in time for the Burger’s equation prob-

lem in the case α = 1/2. In fact, we can easily check this claim by a Taylor expansion

of the solution around the point tk+ 1
2 . All the linear terms are delivering second-order

accuracy, the only term require special care is the nonlinear term.

uk+1 = uk+1/2 + u
k+1/2
,t

∆t

2
+ u

k+1/2
,tt

(∆t/2)2

2!
+O(∆t3) (B.25)

uk = uk+1/2 − uk+1/2
,t

∆t

2
+ u

k+1/2
,tt

(∆t/2)2

2!
+O(∆t3) (B.26)
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from which, collecting like terms and simplifying,

ukuk+1 =
(
uk+1/2

)2
+O(∆t2) (B.27)

The numerical tests and experiments performed were always run at α = 1/2 + ∆t, for

which second-order accuracy is still preserved and stability is achieved (the stable range

of values for α is α ∈ (1/2, 1]).

Assembly of the large scale system

If we decompose the space of the test functions, according to (14.11), and we assume w

and w′ linearly independent, we obtain a formula for the large scale equation:

BLIN(w, uk+1; 〈u′〉α, uk) +BNL(w, uk+1) = F (w; 〈u′〉α, uk) (B.28)

where

BLIN(w, uk+1; 〈u′〉α, uk) =
1

∆t

(
w, uk+1

)
Ω

+
α

Re

(
w,x, u

k+1
,x

)
Ω

−α(w,x, {〈u′〉α + (1− α)uk} uk+1)Ω (B.29)

BNL(w, uk+1) = −α
2

2

(
w,
(
uk+1

)2)

Ω
(B.30)

F (w; 〈u′〉α, uk) =
1

∆t
(w, uk − [u′])Ω −

1

Re
(w,x, (1− α)uk

,x + 〈u′,x〉α)Ω

+

(
w,x,
〈u′〉2

α

2
+

(1− α)2

2
(uk)2

)

Ω

+
(
w,x, (1− α)〈u′〉αuk

)
Ω

+
(
w, f

k+1/2
)

Ω
+
(
w, f ′k+1/2

)
Ω

(B.31)

We can now introduce two bases functions, for the spaces V and V ′ respectively:

w(x, t) =

nnp∑

A=1

N)A(x)wA(t) = N W (B.32)

u(x, t) =

nnp∑

A=1

NA(x)wA(t) = N U (B.33)
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w′(x, t) =

n′
np∑

A′=1

N ′
A′(x)w′

A′(t) = N ′W ′ (B.34)

u′(x, t) =

n′
np∑

A′=1

N ′
A′(x)u′A′(t) = N ′U ′ (B.35)

Therefore (B.29), (B.30), and (B.31) can be rewritten in matrix form as follows:

{
ALIN

ĀB̄

[
〈U ′〉α,U

k
]

+ ANL
ĀB̄

[
U

k+1
]}

U
k+1

B̄ = F Ā

[
〈U ′〉α,U

k
]

(B.36)

where

F Ā

[
〈U ′〉α,U

k
]

=

{
K∆t − (1− α)

{
KRe +

(1− α)

2
Kuk

+ K〈u′〉α

}}

ĀB̄

U
k

B̄

−K∆t
ĀB′ [U

′
B′ ]−

{
KRe +

1

2
K〈u′〉α

}

ĀB′

〈U ′
B′〉α

+M ĀB̄F
k+1/2

B̄ + M ĀB′F
′k+1/2
B′ (B.37)

ALIN
ĀB̄

[
〈U ′〉α,U

k
]

=
{

K∆t + αKRe + αK{〈u′〉α+(1−α)uk}
}

ĀB̄
(B.38)

ANL
ĀB̄

[
U

k+1
]

=
α2

2
Kuk+1

ĀB̄ (B.39)

with

K∆t
AB =

1

∆t
MAB =

(
NA,

NB

∆t

)

Ω

(B.40)

KRe
AB =

1

Re

(
NA,x , NB,x

)
Ω

(B.41)

Kv
AB = −

(
NA,x , vNB

)
Ω

(B.42)

MAB = (NA, NB)Ω (B.43)
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Newton iteration

We implement for the large scale equation a Newton iteration nonlinear solver, in order

to preserve the nature of the nonlinear interaction. Let us set:

Gν =
{
ALIN

ĀB̄

[
〈U ′〉α ,U

k
]

+ ANL
ĀB̄

[
U

ν]}
U

ν

B̄ − FĀ

[
〈U ′〉α,U

k
]

(B.44)

The Newton iteration reads:





δU = −

(
∂G
∂U

∣∣∣
ν

)−1

Gν

U
ν+1

= U
ν

+ δU
(B.45)

where
∂G

∂U

∣∣∣∣
ν

=
{
ALIN

ĀB̄

[
〈U ′〉α,U

k
]

+ α2Kuν
}

ĀB̄
(B.46)

is the Jacobian matrix generated by differentiating with respect to U
ν

the vector G. Note

that the Newton iteration requires the values of 〈U ′〉α,U
k

as data. Therefore at each

step of the iteration the term 〈U ′〉α must be updated through the small scale equation.

B.3.2 Small scale equation

For the small scale equation, the use an asymptotic expansion method (a linearization

procedure) bypasses the Newton iteration.

Separation of scales

In the case of the small scale equations it will prove more convenient to decompose the

terms as follows:

[u+ u′] = [u] + [u′] = [u] + u′k+ − u′k+ (B.47)

〈u+ u′〉α = 〈u〉α + αu′k+1 + (1− α)u′k (B.48)

〈u+ u′〉2
α

=
(
αu′k+1 + (1− α)u′k + 〈u〉α

)2

= α2(u′k+1)2 + 2α
(
(1− α)u′k + 〈u〉α

)
u′k+1

+
(
(1− α)u′k + 〈u〉α

)2
(B.49)
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We then substitute (B.48), (B.49) and (B.47) into (B.20), in which we replace w bay

w′, since we are interested in the small scales:

1

∆t

(
w′, u′k+1 − u′k + [u]

)
Ω

+
1

Re

(
w′

,x, αu
′k+1
,x + (1− α)u′k,x+ < u,x >α

)
Ω

− 1

2

(
w′

,x, α
2(u′k+1)2 + 2α

(
(1− α)u′k + 〈u〉α

)
u′k+1

)
Ω

− 1

2

(
w′

,x,
(
(1− α)u′k + 〈u〉α

)2)

Ω

=
(
w′, f

k+1/2
)

Ω
+
(
w′, f ′k+1/2

)
Ω

(B.50)

Asymptotic expansion of the nonlinearities

If we decompose the space of the test functions, according to (14.11), and we assume w

and w′ linearly independent, we obtain a formula for the large scale equation:

BLIN(w′, u′k+1; 〈u〉α, u′k) +BNL(w′, u′k+1, u′k) = < Resu, w′ >V ′∗,V ′

+F (w′; 〈u〉α, u′k) (B.51)

where

BLIN(w′, u′k+1; 〈u〉α , u′k) =
1

∆t

(
w′, u′k+1

)
Ω

+
α

Re

(
w′

,x, u
′k+1
,x

)
Ω

−α(w′
,x, 〈u〉α u′k+1)Ω (B.52)

BNL(w′, u′k+1, u′k) = −1

2

(
w′

,x, α
2
(
u′k+1

)2
+ 2α(1− α)u′k+1u′k

)

Ω

−1

2

(
w′

,x, (1− α)2(u′k)2
)
Ω

(B.53)

F (w′; 〈u〉α , u′k) =
1

∆t
(w′, u′k)Ω −

1

Re
(w′

,x, (1− α)u′k,x)Ω

+
(
w′

,x, (1− α)〈u〉αu′k
)
Ω

+
(
w′, f ′k+1/2

)
Ω

(B.54)

< Resu, w′ >V ′∗,V ′ =
(
w′, f

k+1/2
)

Ω
− 1

∆t
(w′, [u])Ω

− 1

Re
(w′

,x, < u,x >α)Ω +

(
w′

,x,
〈u〉2

α

2

)

Ω

(B.55)
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We are now ready to perform an asymptotic expansion of the nonlinear terms. Let

us set as usual:

u′ =

∞∑

j=1

εjũj (B.56)

As it easily understood, there is no problem involved in the linear terms, since it trivially

verified that, for a linear operator L:

L(
∞∑

j=1

εjũj) =
∞∑

j=1

εjL(ũj) (B.57)

It is also assumed that < Res u, w′ >V ′∗,V ′= O(ε). The only term we have to take care

of, is BNL(w′, u′k+1, u′k). It is easily seen that if a =
∑∞

j=1 ε
jaj , and b =

∑∞
j=1 ε

jbj , then

ab =
∑∞

n=2 ε
j
∑n−1

j=1 ajbn−j . Therefore:

BNL(w′,

∞∑

j=1

εjuk+1
j ,

∞∑

j=1

εjuk
j ) = −1

2

∞∑

n=2

εn

n−1∑

j=1

(
w′, α2ũk+1

j ũk+1
n−j

+2α(1− α)ũk+1
j ũk

n−j

+(1− α)2ũjũ
k
n−j)

2
)
Ω

= −
∞∑

n=2

εnFAE(w′, {ũk+1
j }n−1

1 ) (B.58)

where we have set:

FAE(w′, {ũk+1
j }n−1

1 ) =
1

2

n−1∑

j=1

(
w′, αũk+1

j < ũn−j >α

+(1− α) < ũj >α ũ
k
n−j

)
Ω

(B.59)

We can summarize the asymptotic expansion procedure as follows (for convenience, we

will set uj = εjũj, for j = 1, 2, . . . ,∞):

For n = 1: BLIN(w′, uk+1
1 ; 〈u〉α, uk

1) = < Resu, w′ >V ′∗,V ′

+F (w′; 〈u〉α, uk
1) (B.60)

For n ≥ 2: BLIN(w′, uk+1
n ; 〈u〉α , uk

n) = F (w′; 〈u〉α, uk
n)

+FAE(w′, {uk+1
j }n−1

1 ) (B.61)
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Assembly of the small scale system

Recalling (B.32–B.35) and (B.40–B.43), we have:

For j = 1: ALIN
A′B′

[
〈U〉α

]
U k+1

1B′
= F A′

[
〈U〉α,U k

1

]

+Ru
A′ (B.62)

For n ≥ 2: ALIN
A′B′

[
〈U〉α

]
U k+1

nB′
= F A′

[
〈U〉α,U k

n

]

+F AE
A′

[
{U k+1

jB′
}n−1

1

]
(B.63)

with

ALIN
A′B′

[
〈U〉α

]
=

{
K∆t + αKRe + αK〈u〉α

}

A′B′

(B.64)

Ru
A′ = MA′B̄F

k+1/2

B̄

−
{

K∆t
A′B̄[U B̄] +

{
KRe +

1

2
K〈u〉α

}

A′B̄

〈U B̄〉α
}

(B.65)

F A′

[
〈U〉α,U k

n

]
=

{
K∆t − (1− α)

{
KRe + K〈u〉α

}}

A′B′

U k
nB′

+MA′B′F k+1/2
nB′

(B.66)

F AE
A′

[
{U k+1

jB′
}n−1

1

]
= −1

2

n−1∑

j=1

{
αK

〈un−j〉α
A′B′ U k+1

jB′
+ (1− α)K

〈uj〉α
A′B′ U k

n−jB′

}
(B.67)

A summary of the algorithm: multiscale Newton iteration

1. Do one iteration of the Newton solver for the Large Scale equation (assume initially

U ′ν = U ′k, since a guess for U ′ν+1 is not available).

2. Use U
ν+1

to form 〈U〉α to solve a cascade of linear systems for U ν+1
n , n = 1, 2, . . ..

3. Do another iteration of the Newton solver for the Large Scale equation (use U ′ν+1 =
∑

n U ν+1
n computed in 2 to form 〈U ′〉α).

4. Iterate from 2 until ‖δν‖ =
‖U ν+1 −U

ν‖
‖U‖

≤ β (β is a predefined threshold).



B.4. PRELIMINARY TESTING FOR THE UNFORCED CASE 193

B.4 Preliminary Testing for the unforced case

In Figure B.1, a comparison between exact solution and numerical solution without

asymptotic expansion (large scales only) is shown for an initial condition given by a sine

wave. In this case the Reynolds number is formed using the length L̃ = 1 of the torus, the

magnitude of the initial velocity ũ0, and the viscosity ν, as Re = ũ0L̃
ν

. For this case 2048

elements were used, with ∆t = 0.001 and Re = 100. The numerical solution overlaps the

exact solution almost everywhere in the 1-periodic torus T.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
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0.6

0.8

1

initial condition 

Figure B.1: Re = 100, 2048 elements, and ∆t = 0.001. The initial solution is represented
by the continuous blue line, the exact solution is represented by the dash/dotted red line, the
numerical solution is represented by the blue dots.

B.5 Generation of random forcing.

Two techniques for the generation of a random forcing term in the stochastically forced

Burgers equation will be presented and compared. As it will be clear from the following

discussion, the two approaches, although different, lead to very similar numerical results.
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B.5.1 Generation of the forcing according to T. Gotoh.

Following the approach by Gotoh [22, 23], a stochastic forcing which is white-in-time and

with Gaussian Fourier spectrum can be generated (in wavenumber space) as follows:

1. For each wavenumber k̃, two Standard Normal N(0, dt̃) (i.e. Gaussian of mean zero

and variance dt̃) Random Variables are generated: a(k̃) and b(k̃).

2. Recalling that a(k̃), b(k̃) = N(0, dt̃) (normal distributions), the spectrum is defined

as

A(k̃)2 = k̃4e
−

„

k̃
k̃f

«2

(B.68)

F̃ (k̃) = 2 < |A(k̃)2[a(k̃) + ib(k̃)]|2 > dk̃

= 2A(k̃)2[< a(k̃)2 > + < b(k̃)2 >]dk̃ (a(k̃), b(k̃) = N(0, dt̃))

= 4A(k̃)2dk̃dt̃ (B.69)

Here dk̃ = 2π
l̃

= 1
6
, (l̃ = 12π in our case, is the length of the computational

domain). The factor dt̃ comes into play because F̃ (k̃) is the Fourier transform of

the autocorrelation function (an ensemble average), or, by stationarity of the signal,

the integral in time of the spectra. The 2 factor in the first row of (B.68) is due

to the fact that to each wavenumber k̃ there corresponds a wavenumber −k̃, which

contributes to the same wavelength.

3. The single Fourier coefficient of the spectrum is expressed as:

ˆ̃
f = C1

√
F̃ (k̃)

2dt̃dk̃
[a(k̃) + ib(k̃)] =

√
2C1A(k̃)[a(k̃) + ib(k̃)] (B.70)

where C1 is a normalization constant to be determined.
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4. The spectrum is then normalized so that (B.3) is satisfied. If we introduce the

normalization constant B = ξ̃3
f , then

B = ξ̃3
f =

N/2−1∑

k=1

2k̃22C2
1A(k̃)2|[a(k̃) + ib(k̃)]|2dk̃2dt̃

=

N/2−1∑

k=1

4C2
1 k̃

2A(k̃)2[a(k̃)2 + b(k̃)2]dk̃2dt̃ (B.71)

Here the sum is over the integer k = k̃l̃/(2π) ∈ N. Thus:

C1 =

√
B

∑N/2−1

k=1
4k̃2A(k̃)2[a(k̃)2 + b(k̃)2]dk̃2dt̃

=

√√√√√
B

∑N/2−1

k=1
4k̃6e

−

„

k̃
k̃f

«2

[a(k̃)2 + b(k̃)2]dk̃2dt̃

(B.72)

5. Using the fact that dt̃ = dt
ξ̃f
, k = k̃

k̃f
, we finally have, for k = 1, 2, . . . , N/2− 1:

ˆ̃f =

√
2Bk̃2e

− 1
2

„

k̃
k̃f

«2

[a(k̃) + ib(k̃)]√
∑N/2−1

k=1
4k̃6e

−

„

k̃
k̃f

«2

[a(k̃)2 + b(k̃)2]dk̃2dt̃

=
ξ̃

3
2
f k̃

2
f√

dt̃k̃4
f

(
k̃
k̃f

)2

e
− 1

2

„

k̃
k̃f

«2

[a(k̃) + ib(k̃)]
√
∑N/2−1

k=1
2
(

k̃
k̃f

)6

e
−

„

k̃
k̃f

«2

[a(k̃)2 + b(k̃)2]d
(

k̃
k̃f

)2

=
ξ̃

3
2
f k̃

2
f√

1/ξ̃f k̃
4
f

k2e−
k2

2 [a(k) + ib(k)]
√
dt
√∑N/2−1

k=1
2k6e−k2[a(k)2 + b(k)2]dk2

=
ξ̃2
f

k̃2
f

k2e−
k2

2 [a(k) + ib(k)]
√
dt
√∑N/2−1

k=1
2k6e−k2[a(k)2 + b(k)2]dk2

=
ξ̃2
f

k̃2
f

f̂(k) (B.73)
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Therefore, for k = 1, 2, . . . , N/2− 1:

f̂Gotoh =

(
k
kf

)2

e
− 1

2

„

k
kf

«2

[a(k) + ib(k)]

√
dt

√
∑N/2−1

k=1
2

k
2
f

(
k
kf

)6

e
−

„

k
kf

«2

[a(k)2 + b(k)2]

(B.74)

where the expression for f̂ is non-dimensional. Here we have used the definition

kf = l̃/(2π)k̃f , so that k̃
k̃f

= k
kf

, dk = 1, and d
(

k
kf

)
= 1

kf
. In the simulations we

have set kf = 6. Notice that we have obtained ˆ̃f ∼ ξ̃2
f

k̃2
f

, which yields f̃0 ∼
ξ̃2
f

k̃2
f

k̃f =
ξ̃2
f

k̃f
.

In particular we readily see that G = f̃0L̃

Ũ2 =
f̃0k̃f

ξ̃2
f

= 1, as expected in (B.12).

B.5.2 Generation of the forcing according to S.B. Pope.

In the approach proposed by S.B. Pope in [56, 57], the normalization is slightly different:

ˆ̃
f is normalized by the sum of the squares of the Fourier coefficients, and involves an

extra factor 0.4. Also, the forcing is not Gaussian, but instead the coefficients a(k) and

b(k) are obtained from a random phase uniformly distributed in the interval [0, 2π).

Here are the explicit steps:

1. For each k, a Uniform Random Variable θ = 2πU([0, 1)) is generated.

2. The spectrum is defined as

A(k)2 =

(
k

kf

)4

e
−

„

k
kf

«2

(B.75)

F (k) = A(k)2 (B.76)

Notice that there is no factor 4 in front of the RHS in (B.76).

3. The single Fourier coefficient of the spectrum is expressed as:

ˆ̃
f = C2C1

√
F (k) eiθ = C2C1A(k)eiθ (B.77)

where C1 and C2 are normalization constant to be determined.
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4. The spectrum is then normalized imposing a unitary sum of the squares of the

Fourier coefficients:

C1 =
1√∑N/2−1

k=1
2A(k)2 1

k
2
f

=
1√

∑N/2−1

k=1
2
(

k
kf

)4

e
−

„

k
kf

«2

1

k
2
f

(B.78)

5. The final step involves multiplication by an appropriate dimensional constant C2

that makes the forcing dimensionally consistent. Setting

C2 =

√
0.4B

k̃2
fdt̃

=

√
0.4ξ̃

3
2
f

k̃2
f

√
dtξ̃

− 1
2

f

=

√
0.4√
dt

ξ̃2
f

k̃2
f

(B.79)

and finally

ˆ̃
f = C2C1A(k)eiθ =

ξ̃2
f

k̃2
f

f̂ (B.80)

with, for k = 1, 2, . . . , N/2− 1

f̂Pope =

√
0.4
(

k
kf

)2

e
− 1

2

„

k
kf

«2

eiθ

√
dt

√
∑N/2−1

k=1
2
(

k
kf

)4

e
−

„

k
kf

«2

1

k
2
f

, (B.81)

where the expression for f̂ is non-dimensional. Once more, we have obtained
ˆ̃
f ∼

ξ̃2
f

k̃2
f

, which yields f̃0 ∼
ξ̃2
f

k̃2
f

k̃f =
ξ̃2
f

k̃f
, and G = f̃0L̃

Ũ2 =
f̃0k̃f

ξ̃2
f

= 1.

The Pope forcing is closely related to the Gotoh’s forcing, in fact:

∫ ∞

0

x4e−x2

dx = 0.4

∫ ∞

0

x6e−x2

dx (B.82)

so that, for k = 1, 2, . . . , N/2− 1, (B.81) can also be written as:
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(
k
kf

)2

e
− 1

2

„
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eiθ
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2
f
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Figure B.2: Re = 1000, N = 1024, ∆t = 0.001. For the two pictures, red refers to Gotoh’s

implementation, blue refers to Pope’s implementation. Left: 1000 realizations of the spectrum

for Gotoh’s forcing are compared with Pope’s forcing. Right: The average of the Gotoh’s

spectrum over the previous 1000 realizations is compared to Pope’s spectrum. As we can see,

the average of the Gotoh’s forcing converges to Pope’s forcing, but instantaneous behaviors

may be very different.

B.5.3 Comparison of forcing techniques

The non dimensional Burgers’ equation reads then:

u,t +

(
u2

2

)

,x

=
1

Re
u,xx + f (B.84)

where, for k = 1, 2, . . . , N/2− 1,

f̂Gotoh =

(
k
kf

)2

e
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2

„
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(B.85)
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The role of dt is due to the stochastic nature of the forcing, which makes the Burgers’

ODE an SDE, i.e. a Stochastic Differential Equation, and the typical time scale of the

forcing is correctly 1/
√
dt. As we can see, the forcing terms have a very different nature,

the forcing by Gotoh follows a Gaussian distribution, and computes the value of the



B.5. GENERATION OF RANDOM FORCING. 199

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

Compensated spectrum, k2 E(k)

k/k
0

Figure B.3: Re = 1000, 1024 elements, ∆t = 0.001. Red refers to Gotoh’s implementation of

the forcing (duration Ts = 50), black refers to Pope’s implementation (duration Ts = 200).

Fourier coefficients of the forcing directly using the random generator, which implies

that, occasionally, the values of some coefficient may be very high or very low (while

mean and variance are unaffected). On the other hand, the forcing by Pope, prescribes

the amplitude of each coefficient, and randomness affects the phase content only. As we

can see in Figure B.2, the two forcing terms seem to have the same effect on average, but

the instant realizations are substantially different.

Comparing the effect on the statistics of the solution u in Figure B.3, very little

difference is found in the spectrum of u (and therefore the variance of the solution in

time). The Gotoh’s forcing produces a smoother energy spectrum, even though the

solution in the case of Pope’s forcing is sampled for a duration four times longer.
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