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Summary 
Physical, chemical and biological properties are the ultimate information of 

interest for chemical compounds. Molecular descriptors that map structural information 
to activities and properties are obvious candidates for information sharing. In this paper, 
we consider the feasibility of using molecular descriptors to safely exchange chemical 
information in such a way that the original chemical structures cannot be reverse 
engineered. To investigate the safety of sharing such descriptors, we compute the 
degeneracy (the number of structure matching a descriptor value) of several 2D 
descriptors, and use various methods to search for and reverse engineer structures.  We 
examine degeneracy in the entire chemical space taking descriptors values from the 
alkane isomer series and the PubChem database.  We further use a stochastic search to 
enumerate structures matching specific topological index values.  Finally, we investigate 
the safety of exchanging of fragmental descriptors using deterministic enumeration.   

1. Introduction 
 Drug companies and other organizations often want to exchange information 
about the physical, chemical, and biological properties of different compounds without 
actually providing the structure of the compounds under consideration. One obvious way 
to exchange such information is via molecular descriptors that map structural information 
to activities and other properties. Is the exchange of such descriptors safe? In other 
words, can we exchange these descriptors without inadvertently providing enough 
information to reverse engineer the structures? In this paper we investigate this question 
in the context of some popular 2D descriptors.  

For this investigation, we limit ourselves to topological indices and molecular 
fragments. These descriptors can be computed from the 2D molecular graph of a 
chemical structure. Topological indices are based largely on connectivity, distance, and 
information theory. In this paper we cover these three categories as we make use of shape 
[1] and connectivity [2] indices, the Wiener [3] and Balaban J and Jt distance indices [4], 
and the Bonchev-Trinajstic information theoretic index [5]. Molecular fragments are 
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simply lists of molecular subgraphs and have been used to predict properties and 
activities since the development of group contribution. Group contribution uses a 
precompiled list of fragments defined by an expert for the property or activity being 
investigated. Recently, techniques have been proposed to systematically compile such 
lists without expert knowledge. Some of these systematic techniques enumerate lists of 
subgraphs up to a predefined size. In this category are the hologram method of Tong et 
al. [6], used to predict chemical binding to estrogen receptors; and the fragments 
proposed by Zefirov and Palyulin [7], compiled to predict retention indices and normal 
boiling points. Other techniques are based on atomic neighborhoods. These methods 
include atom environments [8], used in similarity studies; multilevel neighborhood atoms 
[9], used to predict biological activities in large databases [10]; and atomic and molecular 
signatures [11], used in QSAR and QSPR analyses [12]. Figure 1 illustrates the 
differences between these three descriptors. Atom environments are composed of lists of 
neighbors for each heavy atom, with neighbors compiled up to a predefined distance. 
Multilevel neighborhood atoms are similar to the feature trees used in atom 
environments, but the connectivity between the neighbors is stored. Signatures are similar 
to multilevel neighborhood atoms, but ring closure and bond order are taken into account. 
Furthermore, signatures are canonized and are thus canonical representations of 
molecular fragments [13].  
 
Figure 1. 
 
 From a computational point of view, it is relatively easy to check if the above 
descriptors are safe to exchange in the context of a database.  In this case, one computes 
the descriptors for all compounds in the database, and then compiles the descriptor 
degeneracy, where the degeneracy of a descriptor is the number of structures having the 
same descriptor value. Clearly, descriptors having high degeneracy are safe to exchange, 
as many structures can be reverse engineered from the descriptor values. However, it is 
not necessarily true that a descriptor is unsafe to exchange if it has a low degeneracy, 
especially if the degeneracy was computed on a database. There are two reasons for this 
phenomenon. First, even if a descriptor has a low degeneracy, there is no general 
algorithm to reverse engineer structures from descriptor values, although such algorithms 
are available for few descriptors (cf. Section 2.1). Second, a degeneracy calculation 
performed on a database at best underestimates the degeneracy computed in the entire 
chemical space. We note that a degeneracy calculation should in fact be performed in the 
entire chemical space, as it is unlikely that anyone would share information about a 
structure that is already present in a database.  

All degeneracy calculations in the present paper are carried out in the entire 
chemical space. We start by computing the degeneracy of various topological indices for 
an alkane isomer series. We next address the problem of retrieving structures in the 
chemical space corresponding to topological indices that cannot be reverse engineered 
using a deterministic algorithm. For these indices, we use a stochastic process based on 
simulated annealing.  Finally, we deterministically reverse engineer structures matching 
signature fragments of various sizes. Our results are presented in Section 3 and the 
methods used to search and reverse engineer structures are given in Section 2. 



2. Methods 
 In order to investigate the security of chemical information exchange, we employ 
several tools developed previously for the purpose of designing molecules matching 
specified chemical properties [14-16]. These tools are discussed in Section 2.1 and 
include a stochastic structure generator as well as a method for deterministic enumeration 
of molecules. The second method uses the signature molecular descriptor, which has been 
presented in the introduction. Since signatures of different sizes can be exchanged, we 
also examine the effect of signature size on the usefulness of signature in quantitative 
structure-activity relationships (QSARs) and quantitative structure-property relationships 
(QSPRs). QSARs and QSPRs are discussed in Section 2.2. 
 

2.1 Reverse engineering methods 
 Reconstructing molecules that match chemical property values is a long-standing 
problem. Surprisingly, there are not many reports in the literature providing solutions to 
this problem. Most of the proposed techniques are stochastic in nature and use genetic 
algorithms, evolutionary computing, or Monte Carlo methods to search for and construct 
chemical structures matching predefined descriptor values. The first stochastic methods 
proposed were based on genetic algorithms [17, 18], while methods based on Monte 
Carlo were reported later [15, 19]. Although many papers using stochastic techniques 
have appeared since then, there are still very few attempts to solve the reconstruction 
problem using a deterministic approach, i.e. using techniques that generate exhaustive 
lists of molecular structures matching predefined descriptor values. In a series of three 
papers Kier, Hall, and co-workers reconstructed molecular structures from the count of 
paths, lP, up to length l = 3 [20-22].  Their technique essentially computes all the possible 
degree sequences matching the count of paths up to length l = 2.  Then, for each degree 
sequence, all the molecular structures are generated using an isomer generator and the 
graphs that do not match the 3P count are rejected.  A similar technique was used in [23], 
but from the count of paths an edge sequence was derived in addition to the degree 
sequence. The two sequences were then fed to an isomer generator that produces all the 
structures matching the sequences. More recently [16], a deterministic technique was 
proposed to enumerate structures matching a predefined list of signature molecular 
fragments.  

In the following two subsections, we describe the techniques that we used to 
explore the degeneracy of various molecular descriptors. We first describe a stochastic 
method that searches for chemical structures matching topological indices, and we then 
describe the deterministic technique mentioned above that enumerates compounds 
matching signatures. 

Stochastic Search 
 The stochastic structure generator used here for investigation of the security of 
chemical information exchange is designed around a bond-switch algorithm [15]. This 
algorithm is based on the conservation of bonds and bond order in a molecular graph. 
Connectivity can be changed by deleting bonds, creating bonds, or modifying bond order.  
If we follow the convention that a bond is deleted when its order is set to zero, and a bond 



is created when its order is switched from zero to a positive value, then all changes in 
connectivity can be performed by modifying bond orders. The fact that all structural 
isomers have the same number of bonds implies that when a bond order is increased (or 
decreased), another bond order must be decreased (or increased). Hence changing the 
connectivity implies the selection of at least two bonds (four atoms) in the molecular 
graph. Suppose x1, x2, x3, and x4 are the four selected atoms; a11, a12, a21, and a22 are the 
orders of the bonds [x1, y1], [x1, y2], [x2, y1], and [x2, y2] in the initial molecular graph; and 
b11, b12, b21, b22 are the orders of the same bonds after a random displacement.  Because 
the valences of the four selected atoms must remain constant, the following equations 
hold 
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where it is assumed that the maximum bond order is 3 (triple bond). Examples of bond 
switching are illustrated in Figure 2. In [15] it is shown that for any given molecular 
formula every possible structural isomers can be reach by a series of bond switches. To 
optimize activities or properties, the bond switch algorithm is embedded in a simulated 
annealing algorithm. At each stage of the algorithm a random displacement is obtained by 
choosing a (random) value for b11 different from a11 and solving from the remaining 
variable subject to the inequality constraint. 
 
Figure 2. 

Deterministic Enumeration 
 In contrast to stochastic search, deterministic enumeration proceeds in an orderly 
and exhaustive manner. We have investigated two types of enumeration in previous 
studies. In [14] we derive a linear system of Diophantine equations whose solutions 
correspond to all possible molecular signatures that correspond to molecules.  In [16] we 
describe an algorithm which enumerates all possible molecules that can generate a given 
molecular signature. In the present study we use only the second method, as we are 
interested in the possibility of reconstructing a molecule when a molecular signature is 
exchanged.  A brief overview of the enumeration routine is given here, but the reader is 
referred to the previous paper [16] for a more detailed description of the algorithm.   
 Starting with a molecular graph, G, composed of isolated vertices and no edges, 
the edges are added in every possible combination to produce all non-isomorphic 
saturated graphs matching the molecular signature. There are two primary steps: (1) 
determine the orbits or atoms with equivalent atomic signatures of G, and (2) saturate 
each atom of a chosen orbit.  Once the orbits have been defined, then one is selected that 
contains unsaturated vertices and is saturated in an orderly manner. This process is 
repeated until all the vertices have been saturated and the resulting bonds are compatible 
with the target signatures and it does not create a saturated subgraph of G. This algorithm 
was proven to be exhaustive and irredundant, meaning all solutions are produced and no 
two structures are identical (i.e., isomorphic). 



2.2 QSARs 
When reverse engineering molecules from QSAR and QSPR descriptors, it is 

important to decide which descriptors are generally useful for molecular property 
prediction and therefore warrant analysis. In the case of signature, we must choose the 
appropriate choice of signature height. While it is not straightforward to decide which 
signature heights will be optimum without consideration of a particular molecular 
property, there are two general qualities of molecular descriptors which are desirable in 
developing QSARs – descriptor variability and descriptor correlation. That is, for a 
property that varies with molecular structure, the descriptors for this structure should also 
vary in order to make prediction feasible. Additionally, the correlation between 
descriptors should be low such that there is little information overlap between descriptors 
which can be selected for a given QSAR. 
 Shannon entropy has been suggested as a metric for descriptor variability [24] and 
is particularly convenient in this case due to the discrete nature of signature. The Shannon 
entropy of a discrete random variable X with alphabet χ  and probability mass function 
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In the case of signature, X represents a given atomic signature, ( )p x  is the probability of 
the atomic signature occurring x times within each molecule in the dataset, and χ  is the 
set of non-negative integers. For any dataset, the Shannon entropy for a descriptor will be 
zero when there is no variability (the atomic signature occurs in each molecule with the 
same count). Maximum variability, when the count of an atomic signature is different 
within each molecule in the dataset, will yield a maximum Shannon entropy of 

( )1
2log n−−  for a dataset of size n. 

Our QSARs were trained using multiple linear regression (MLR) and support 
vector regression (SVR). For MLR, QSAR equations were obtained using forward 
stepping feature selection as implemented in the Matlab 7 [26] routine stepwisefit.m 
which was modified for efficiency and to prevent the addition of descriptors which would 
result in a QR factorization matrix that was close to singular. The predictive accuracy of 
QSAR equations was evaluated using cross-validation in order to prevent over fitting 
[27]. For the HIV and Tg datasets, leave-one out cross-validation was performed and for 
the log P dataset, 10-fold cross-validation was performed. For optimization of the 
signature height, the cross-validation squared correlation coefficient was used as the 
objective function. For MLR, all possible combinations of signature heights ranging from 
0 to 7 and QSAR equation sizes (in terms of number of descriptors selected through 
forward selection) were evaluated and the signature height resulting in the highest q2 was 
reported.  

For SVR, the source code for SVMlight [28] was modified to perform leave-one-out 
cross-validation. The SVR was parameterized by the regularization parameter C (the 
trade-off between the training error and margin) and ε (the tube width for regression).  In 
order to automate parameterization, evolutionary pattern search (as implemented in 
SGOPT [29]) was performed using a population size of 25 and a cross-over probability of 
0.8 using a domain [0,1000] for C and [0.01,2] for ε.  Five trials of evolutionary pattern 



search were performed using the cross-validation q2 as the objective function.  The best 
signature height from the five trials was taken as the optimum. 

3. Results and discussion 
 We investigated the security of descriptor exchange using a variety of topological 
indices and descriptors on a number of datasets. Descriptors examined included the 
connectivity indices 0-3χ; the shape indices 0-3κ; the Wiener number W; the Platt number 
Pf; the total topological index τ (also called TOTOP); the Shannon information SI; and 
the Bonchev-Trinajstic index ID

W; the Balaban J and Jt indices; and the signature 
molecular descriptor. All descriptors, except Balaban indices and signature, were 
computed using the Molconn-Z software package 
(http://www.eslc.vabiotech.com/molconn). Datasets examined included alkane isomer 
series; compounds taken from the PubChem database; HIV-1 protease inhibitors; 
organics with log P measurements available; and polymer glass transition temperatures. 
Each of these datasets will be described in greater detail when they are introduced. 

3.1 Degeneracy of Topological Indices for Isomer Series 
 We first investigated the degeneracy of the topological indices computed using 
Molconn-Z on the alkane isomer series. All alkanes up to 16 carbon atoms were 
generated using an isomer generator based on graph equivalence classes [30], resulting in 
18,030 compounds. For each compound in this isomer series, we computed the 
degeneracy of that compound with respect to each topological index computed using 
Molconn-Z. The degeneracy of a given compound was computed by counting the number 
of compounds with the same value of the topological index under consideration. From the 
point of view chemical information exchange, a descriptor or topological index with low 
degeneracy is unsafe to exchange, since a small number of compounds will correspond to 
a given value of the descriptor. We rather arbitrarily defined a descriptor to be unsafe if 
more than 25% of compounds had degeneracy up to 10, that is, at most 10 structures 
corresponded to the descriptor value. 

Our degeneracy calculations are given in Tables 1-3. These tables reveal that 
many popular descriptors are safe to exchange, including 0χ, 0-3κ, W, Pf, and SI, but that 
some descriptors such as Kier and Hall total topological index τ, and the Bonchev-
Trinajstic index ID

W are not degenerate and are therefore unsafe to exchange. These 
results are not new, although they have not been interpreted in terms of security of 
information exchange. The reader interested by degeneracy of other specific indices is 
reported to our earlier paper [12], where the degeneracy of about 50 topological indices 
are examined for various isomer series including alkanes, alcohols, and fullerenes. 
 
Tables 1-3. 



We next considered combinations of descriptors. While an individual descriptor 
may be degenerate, we find in Tables 1-3 that combinations of highly degenerate 
descriptors may again have low degeneracy. This implies that while certain descriptors 
may be safe to exchange by themselves, they are unsafe to exchange in combinations. 
This phenomenon is best exemplified by W and SI  in Table 3. In this case we see that 5% 
of alkanes have a degeneracy lower than 10 for each W and SI but that more than 35% of 
alkanes have a degeneracy lower than 10 for the combination W + SI. 

3.2 Stochastic Search for Chemical Structures Matching 
Molecular Descriptors 

Our initial study on isomer series reveals that there are descriptors or 
combinations of descriptors with low degeneracy, and that these descriptors or 
combinations may be unsafe to exchange. Even if a low degeneracy descriptor is 
exchanged, is it really possible to reverse engineer the corresponding structure? As 
mentioned in Section 2.1, there is no general algorithm that can enumerate all possible 
structures corresponding to any descriptor. However, in most cases stochastic algorithms 
may still be used to search the chemical space. In this section we investigate the use of 
such an algorithm in combination with the PubChem database. 

Precisely, we used PubChem (http://pubchem.ncbi.nlm.nih.gov/) [31] to 
investigate the ability of the bond-switch search algorithm introduced in Section 2.1 to 
uncover structures matching molecular formulas, Wiener indices,  and Balaban J and Jt 
indices [4]. These two last indices where selected because there have been successfully 
used for property activity predictions and are known to have low degeneracy.  We recall 
the expression of J and Jt: 
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where m is the number of bonds, µ the number of independent cycles, and d(x,y) is the 
shortest path (number of bonds) between atoms x and y in the molecular graph. 
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where deg(x) is the number of bonds of atom x. 
 As of January 2005, PubChem contained 741,361 substances, with 529,542 
unique two-dimensional structures in canonical SMILES format. From these structures 
we selected 1,000 at random, each having less than 200 atoms. Molecular formulas and 
indices were computed on carbon skeleton structures, excluding heteroatoms and 
multiple bonds. The bond switch algorithm was then executed with the goal of matching 
the provided molecular formula, Wiener W, and Balaban J and Jt indices. The algorithm 
was run for 20,000 and 50,000 steps. In the case of 20,000 steps, the algorithm used 4 
simulated annealing schedules with an initial temperature of 1000, a final temperature of 
0, and a decrease in temperature of 10 at each step.  In the case of 50,000 steps, the 
algorithm used 10 simulated annealing schedules. Our results are shown in Figure 3. In 



1000 trials of the algorithm running for 20,000 steps, a structure was found 99.3% of the 
time matching W, 40.9 % of the time matching J, and 9.9 % of the time matching Jt. The 
differences between our results using W, J and Jt is explained by looking at the number of 
times the initial PubChem structures were retrieved by the algorithm. In the case of W the 
initial structure was retrieved only 0.8% of the time, which indicates that while it is easy 
to find a structure matching a given W value, the chance of finding the correct structure is 
small, this confirm the results given in Table 3 where W is found to be an highly 
degenerated index.  In the case of J, the initial structures were retrieved 8.9 % of the rime 
and in the case of Jt, the structures were recovered 8.6 % of the time. Clearly, there are 
more structures matching J than Jt, so that Jt is less degenerate than J. Having a low 
degenerated index was in fact Balaban’s intention when developing Jt. Despite the 
differences between J and Jt, almost 9% of the time the initial PubChem structures were 
retrieved, and this number rose to 12.2% when the algorithm was run for 50,000 steps.  
 
Figure 3. 
 

The bond switch algorithm uses as input a molecular formula. In the absence of 
such information, the algorithm can be run on a series of possible formulas. In the case of 
shape indices, for example, it is possible to derive formulas from the index values [20-
22]. For others indices, series of potential formulas can be compiled from large databases, 
such as PubChem.  As discussed in the next section and depicted in Figure 4, about 24% 
of compounds in PubChem have a unique height-0 signature, and consequently a unique 
molecular formula. Once removed from PubChem, these compounds cannot be retrieved 
from their index values using the molecular formulas remaining in PubChem. 
Conversely, all other compounds (76% of PubChem) can potentially be reverse-
engineered. According to the results we obtained with the bond switch algorithm using 
50,000 steps, there is a 12.2% chance of finding the correct structure from Jt values for 
76% of PubChem compounds. This accuracy yields an overall rate of success just above 
9% for correctly retrieving any PubChem compound from its Jt value. However, to 
achieve the above rate of success, computing power is required. The bond switch 
algorithm takes about 4 min of CPU time to process 50,000 steps on a SGI O2 R10000 
workstation, and PubChem is currently composed of about 200,000 different molecular 
formulas. Therefore, retrieving a structure from its Jt value requires 639 days of CPU 
time on a single processor. Note, however, that each potential molecular formula can be 
sent to a different processor without communicating the results to other processors, so 
that a maximum parallel speedup can be achieved, and structures can be retrieved using 
(for instance) 100 processors in less than a week of computing time.  

 

3.3 Deterministic Enumeration of Chemical Structures Matching 
Molecular Descriptors 
 In addition to stochastic search, a deterministic algorithm can be used with the 
signature descriptor to reverse engineer structures (see Section 2.1). In this section, we 
investigate the security of exchanging the signature descriptor in terms of reverse 
engineering the original structures. We find that small fragments are safe to exchange and 



further investigate the utility of these fragments in terms of correlating the signature 
descriptor with chemical properties using QSARs. 

Degeneracy of Signature in PubChem 
The degeneracy of the signature molecular descriptor within known compounds 

was evaluated using the January 2005 release of the PubChem database [31]. As 
mentioned in Section 3.2, canonization of the database using signature resulted in 
529,544 unique molecules. Signatures were calculated for each molecule at heights 0-3. 
Height 0 calculations produced 291 atomic signatures with each signature occurring in an 
average of 16,755 molecules. Height 1 calculations produced 5,783 atomic signatures 
(average of 12,187 molecules per signature), height 2 produced 98,936 atomic signatures 
(average 5017 molecules per signature), and height 3 calculations produced 528,384 
atomic signatures. 

The number of atomic signatures calculated increases asymptotically to the limit 
reached when the signature height is equal to the largest molecule in the dataset. The 
increase in the number of signatures is consistent with a decrease in the degeneracy of the 
atomic signatures, and likewise, a decrease in the degeneracy of the molecular signatures 
generated within PubChem. Figure 4 illustrates the molecular signature degeneracy for 
the first four signature heights. At height 2, the percentage of molecules with unique 
signatures was found to be above 98% and at height 3 it was found to be 99.62%. A very 
small percentage of molecules were found to be highly degenerate in terms of signature. 
In fact, two molecules were degenerate up to a height of 18 (PubChem CIDs 174042 and 
174046). 
 
Figure 4. 
 

In general, however, for height 2 and 3 QSPRs, the reverse-engineering problem 
within the known molecules in the PubChem database reduces to a simple database 
search to find the only compound matching a given signature. Figure 4 clearly 
demonstrates that within the current PubChem space it is unsafe to exchange molecular 
signature of any heights, as even with height 0 more than  25% of PubChem compounds 
have a signature degeneracy lower than 10, and above height 0 most compounds have a 
unique signature.  

Degeneracy of Signature in Chemical Space 
 While within a given database the size of PubChem we observe that most 
compounds have a unique signature, does the observation hold for the entire chemical 
space? The question is relevant because one wishes to exchange information about new 
structures; not structures already present in a database. In other words, an individual 
trying to reverse engineer chemical structures from a safe information exchange system 
will have to search the structures in the entire chemical space, not just existing databases.  
 To answer this question, we used the same 1000 randomly selected PubChem 
structures used in Section 3.2. For each structure, molecular signatures up to height 5 
where computed. For height 0, the signature degeneracy was calculated using the isomer 
generator based on graph equivalence classes [30]. For all other heights we ran the 
algorithm outlined in the section 2.1 (see also [16]). The results shown in Figure 5 are 



clearly different than those obtained in Figure 4. According to our safety criteria, we find 
that signature of heights 0 and 1 are safe to exchange, since only 0.7 % of the compounds 
have a height 0 molecular signature degeneracy lower than 10.  However, this number 
increases to 15.9 % for height 1. Furthermore, according to Table 4, safety increases with 
compound size as we find that signatures of height 2 are safe to exchange for compounds 
with more than 70 atoms. 
 
Figure 5. 
Table 4. 

Signature Height 
 While signature of height 1 and possibly signature of height 2 for larger 
compounds may be safe to exchange is such information useful for QSAR analysis? To 
answer that question three datasets were used for QSAR development with signature. The 
first two, a dataset of 130 HIV protease inhibitors with IC50 values and a dataset of 
12,865 molecules with octanol/water partition coefficient (log P) data, have been 
previously reported in our work [12]. For this analysis, however, a random subset 
consisting of 1,000 molecules out of the 12,865 was used. The third dataset consisted of 
262 linear homopolymers with glass transition temperature (Tg) data compiled by 
Bicerano [32]. In the case of the polymer dataset, a single monomer residue from the 
polymer chain was used for QSAR analysis. For each molecule, signature descriptors 
were calculated at heights 0-7 using publicly available software 
(http://www.cs.sandia.gov/~jfaulon/QSAR/index.html). Any descriptors which occurred 
in less than 3 molecules or that were found to be perfectly correlated with another 
descriptor were deleted to give a set of descriptors available for feature selection as 
shown in Table 5. QSARs were trained using multiple linear regression (MLR) and 
support vector regression (SVR) as described in section 2.2. 
 
Table 5. 
 

To analyze descriptor correlation and variability in terms of signature height, we 
first plotted the mean Shannon entropy of the calculated signature descriptors as a 
function of signature height is shown in Figure 6a for each of the data sets. The results 
show a decrease in the mean entropy with increasing signature height – the lower the 
height, the better the variability. While the mean entropy can be misleading (only a few 
descriptors with high variability might be necessary for a QSAR), we also observed a 
consistent decrease in the maximum descriptor entropy above height 1. An opposite 
trend, in terms of appropriate signature height, is observed when the mean pairwise 
correlation coefficient is calculated for the dataset (Figure 6b). As the descriptor height 
increases, the occurrence of a given descriptor becomes rare within a dataset and is of 
little use in developing QSARs. The results show that the selection of general signature 
heights for developing QSARs will result from competing effects of a high variation at 
low signature heights and a low correlation at high signature heights. 
 
Figure 6. 
 



 When specific properties are concerned, we can analyze the signature heights that 
balance these effects through optimization of signature height in QSAR regressions. 
Analyzing the 3 datasets mentioned above, we can obtain the optimum signature height 
as the height which produces the highest predictive accuracy for a QSAR as measured 
using a cross-validation squared correlation coefficient (q2). For multiple linear 
regression (MLR), this is performed by simultaneous optimization of both the signature 
height and the number of descriptors selected by forward stepping – through a brute force 
evaluation of all possible pairs up to some limit (see section 2.2). A characteristic plot of 
this optimization is shown in Figure 7 for the HIV dataset. The results from all three 
datasets are shown in Table 5. In all cases, the optimum height is found to be within 1-3. 
We also tested this effect using support vector regression (SVR), which has received 
recent attention in the QSAR literature [33], on the polymer dataset. In this case, the 
optimum height is found through simultaneous optimization of the signature height, the 
support vector regularization parameter (C), and the support vector tube width (ε) for 
regression (for details on these parameters and support vector machines see [28]). Here, 
we used evolutionary pattern search [34, 35] for optimization, again using q2 as the 
objective function. In this case, the optimum signature height is found to be consistent 
with the results obtained from MLR (Table 5).  
 
Figure 7. 
 

In addition to the datasets presented here, our overall experience with the 
signature descriptor has resulted in optimum heights lying in the range 1-3. This is 
consistent with reports describing the use of other fragmental descriptors such as atom 
environments [8, 36], where optimal heights have been reported as 2-3, and multilevel 
neighborhoods of atoms [9, 10], with reported optimal heights in the range 1-2. While 
there is some tolerance for a trade-off between reverse engineering security and signature 
height, moving far outside the optimal height range will result in poor predictive accuracy 
for QSARs in most cases. 

4. Conclusion 
Sharing useful information about chemical compounds without revealing their 

structures is a challenging problem. On one hand, we would like to share enough 
information such that meaningful properties and activities can be predicted. On the other 
hand, as we have seen in this paper, too much information may reveal the structure.   

We have used degeneracy to examine the safety of information exchange. 
Degeneracy is the number of compounds matching the shared information. Highly 
degenerate information is safe to exchange, while slightly degenerate information is not. 
The degeneracy must be computed in the chemical space instead of an existing database, 
as it is unlikely that anyone would want to provide information about a compound 
already stored in a database. Furthermore, as demonstrated in Figures 4 and 5, 
degeneracy computed from databases can be greatly underestimated.  

According to our somewhat arbitrary safety criteria (less than 25% of compounds 
have a degeneracy ≤ 10), we found that many individual topological indices are safe to 
exchange. However, when several topological indices are shared for the same structure, 
we observed that the combination of these indices may be unsafe. Being able to share 



several topological indices is important because QSAR developers use their own favorite 
descriptors, and also because QSARs often make use of multiple descriptors to obtain 
good predictive ability. 

While individual indices and combination of indices may be unsafe to exchange, 
in most instances we do not have a systematic technique to reverse engineer structures. 
This good news is mitigated by the fact that stochastic techniques can always be utilized 
to search chemical structures matching descriptor values. While the convergence of these 
search techniques is not guaranteed, we nonetheless found random structures from 
PubChem were correctly reverse engineered 10% of the time from low degeneracy 
indices and molecular formulas using a simple simulated annealing algorithm. 
Consequently, if one wishes to build an information sharing system based on topological 
indices, one must find the appropriate combination of indices that are both highly 
degenerate and have predictive power in QSARs. 

An alternative to topological indices is molecular fragments. While topological 
indices are rather abstract and difficult to interpret, molecular fragments provide direct 
chemical information. Furthermore, several studies have demonstrated that molecular 
fragments perform as well as topological indices in QSAR analyses [6, 7, 12], and that all 
topological indices can be computed from molecular fragments. Thus every QSAR 
involving topological indices can in principle be replaced with a similar QSAR based on 
molecular fragments [12, 37, 38]. Our results obtained with the signature molecular 
fragment (cf. Figure 5 and Table 4), indicate that fragments of small sizes can be shared, 
and that reliable QSARs can be obtained with these fragment sizes (cf. Table 5). 
Furthermore, according to Table 4, when the compound size increases so does the 
fragment size one can share. Nonetheless, also shown in Table 4, sharing molecular 
fragments is not 100% safe, and before sharing fragments, we recommend tests with a 
reverse engineering algorithm such the one that we described in Section 2.1.  
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Tables 
 
 
 
Degeneracy 0χχχχ  1χχχχ  2χχχχ  3χχχχ  0χχχχ++++............++++3χχχχ 

1 0.1 2.1 26.6 42.8 77.0 
10 1.2 32.9 69.3 57.1 13.0 

100 9.9 61.2 4.1 0.1 0.0 
1000 64.4 3.7 0.0 0.0 0.0 

10000 24.4 0.0 0.0 0.0 0.0 
100000 0.0 0.0 0.0 0.0 0.0 

 
Table 1: Degeneracy of connectivity indices for alkanes up to C16 (18,030 compounds). 
In the last column the degeneracy is given for the combination of all previous 
connectivity indices. 
 
 
 
Degeneracy 0κκκκ  1κκκκ  2κκκκ  3κκκκ  0κκκκ++++............++++3κκκκ  

1 0.4 0.0 0.1 0.0 9.3 
10 2.4 0.1 0.8 1.1 31.9 

100 13.4 0.7 5.9 9.7 54.9 
1000 55.0 7.3 46.7 64.0 3.9 

10000 28.8 34.4 46.6 25.1 0.0 
100000 0.0 57.5 0.0 0.0 0.0 

 
Table 2: Degeneracy of Kappa shape indices for alkanes up to C16 (18,030 compounds). 
In the last column the degeneracy is given for the combination of all previous shape 
indices. 
 
  
 
Degeneracy W Pf ττττ ( ( ( (TOPOP)))) SI IdW W+SI 

1 0.4 0.0 98.5 0.3 81.1 5.9 
10 4.9 0.2 1.5 2.4 18.9 29.1 

100 59.4 0.9 0.0 13.1 0.0 63.0 
1000 35.3 13.8 0.0 55.5 0.0 1.9 

10000 0.0 85.1 0.0 28.8 0.0 0.0 
100000 0.0 0.0 0.0 0.0 0.0 0.0 

 
Table 3: Degeneracy of distance and information theory indices for alkanes up to C16 
(18,030 compounds). W is the Wiener index, Pf is the Platt number, τ is the Kier and Hall 
total topological index, SI is the Shannon entropy index and Id

W is the Bonchev-Trinajtic 
information index. In the last column the degeneracy is given for the combination of 
Wiener and Shannon indices.  
 
 



 
 
 
 height 1 height 2 
degeneracy size>0 size>30 size>50 size>70 size>0 size>30 size>50 size>70 

1 6.2 0.9 1.0 0.0 48.6 31.6 13.8 9.3 
10 9.7 2.8 0.5 0.0 28.0 33.9 28.2 13.3 

100 10.3 3.3 1.0 0.0 14.6 17.1 23.1 20.0 
1000 13.0 10.2 7.7 6.7 8.6 11.4 20.0 28.0 

10000 60.9 82.9 89.7 93.3 0.1 6.0 14.9 29.3 

 
Table 4: Signature degeneracy versus compound size. Degeneracy was calculated for 
height 1 and 2 signature computed on 1000 random structures extracted from PubChem. 
Among the set of 1000 selected structures, 579 compounds had more than 30 atoms, 195 
more than 50, and 75 more than 70.  
 
 
 

HIV-1 Protease Inhibitors IC50, 130 compounds in training set 
Height 0 1 2 3 4 5 6 7 
Total Descriptors 8 74 385 1009 1663 2184 2666 3143 
Descriptors Used for 
Forward Selection 6 48 142 186 158 142 119 108 

q2 (MLR) 0.75 0.80 0.77 0.81 0.77 0.69 0.65 0.66 
Log P, 1,000 compounds in training set 

Total Descriptors 9 278 3424 9652 15516 18832 20626 21629 
Descriptors Used for 
Forward Selection 9 192 935 1130 768 434 229 122 

q2 (MLR) 0.61 0.83 0.78 0.58 0.31 0.23 0.16 0.11 
Glass Transition (Tg), 262 polymers in training set 

Total Descriptors 8 83 496 1325 2228 2926 3447 3813 
Descriptors Used for 
Forward Selection 8 50 164 233 212 158 107 71 

q2 (MLR) 0.65 0.78 0.75 0.81 0.65 0.60 0.44 0.32 
q2 (Linear SVR) 0.64 0.80 0.81 0.81 0.73 0.22 0.29 0 
 
Table 5: Optimum QSAR predictive accuracy as a function of signature height using 
multiple linear regression for all 3 datasets and support vector regression for the polymer 
dataset. In all cases the optimum height is found to be within 1-3. 

 



Figures 
 
 
 
 

 
 
Figure 1: Differences between atom environment, multilevel neighborhood of atom, 
and atomic signature. In all cases the environment of the carbon atom marked in red is 
probed up to three bonds away (layers). For atom environment, atoms are replaced by 
Sybyl mol2 atom types. For multilevel neighborhoods, all the bonds between 
neighborhood atoms are taken into account including bonds returning to atoms already 
visited at a previous layer. For signature, atoms already encountered at previous layers 
are not repeated, bond order is taken into account, and ring closure is indicated by 
marking the atom where the closure occurs with a number (number 1 in this example). 
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Figure 2: Bond switch examples. The two examples illustrate the technique described in 
Section 2.1. In this figure, b11 = order[x1,y1], b12 = order[x1,y2] , b21 = order[x2,y1], and 
b22 = order[x2,y2] . 
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Figure 3: Searching structures matching 1000 molecular formulas Wiener W, and 
Balaban’s J and Jt indices. Structures were searched using simulated annealing for 
20,000 steps and 50,000 steps. The plots show the percentages of correct solutions found 
matching the given index values (left), and matching the PubChem structures for which 
the indices were computed (right).
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Figure 4: Molecular Signature Degeneracy within the PubChem Database. Degeneracy was 
calculated for 529,544 structurally unique compounds. 
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Figure 5: Molecular Signature Degeneracy within the Chemical Space. Degeneracy 
was calculated for 1000 compounds. 
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Figure 6: Top (a) – mean and maximum Shannon entropy calculated for all atomic 
signatures at a given signature height. The results show that decreasing signature height 
results in an average increase in the descriptor variability. Bottom (b) – mean pairwise 
correlation coefficients for every pair of atomic signatures at a given signature height. 



 
Figure 7: Optimization of the signature height for a set of 1000 molecules with log P 
data. The optimum signature height is selected as the one which produces the highest 
cross-validation squared correlation coefficient in order to preserve predictive accuracy.  
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Dear Editor: 
 
 

 We addressed all comments made by the Reviewer: 

 The author develops a procedure for testing the safety of exchanging 

various kinds of molecular descriptors without disclosing the chemical 

structure. The MS is publishable after taking into account one 

suggestion and a few minor comments. 

 Suggestion. In fairness, since the Balaban indices are judged 

together with an important extra information (molecular formula), the 

result is not directly comparable with other topological indices. I 

suggest seeing also what happens (i) with other indices plus molecular 

formula, and (ii) with Balaban indices without molecular formula. 

 To address (i) we added the Wiener index in addition to the Balaban indices. The results are given in 
Figure 3 and discuss in section 3.2. 

 To address (ii). We added the following paragraph in section 3.2 (page 8 of revised manuscript): 
The bond switch algorithm uses as input a molecular formula. In the absence of such information, 

the algorithm can be run on a series of possible formulas. In the case of shape indices, for example, it is 
possible to derive formulas from the index values [20-22]. For others indices, series of potential formulas 
can be compiled from large databases, such as PubChem.  As discussed in the next section and depicted 
in Figure 4, about 24% of compounds in PubChem have a unique height-0 signature, and consequently a 
unique molecular formula. Once removed from PubChem, these compounds cannot be retrieved from their 
index values using the molecular formulas remaining in PubChem. Conversely, all other compounds (76% 
of PubChem) can potentially be reverse-engineered. According to the results we obtained with the bond 
switch algorithm using 50,000 steps, there is a 12.2% chance of finding the correct structure from Jt values 
for 76% of PubChem compounds. This accuracy yields an overall rate of success just above 9% for 
correctly retrieving any PubChem compound from its Jt value. However, to achieve the above rate of 
success, computing power is required. The bond switch algorithm takes about 4 min of CPU time to 
process 50,000 steps on a SGI O2 R10000 workstation, and PubChem is currently composed of about 
200,000 different molecular formulas. Therefore, retrieving a structure from its Jt value requires 639 days 
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of CPU time on a single processor. Note, however, that each potential molecular formula can be sent to a 
different processor without communicating the results to other processors, so that a maximum parallel 
speedup can be achieved, and structures can be retrieved using (for instance) 100 processors in less than a 
week of computing time.  
 

 Minor comments. The author should hyphenate consistently the 

following expressions which now are and sometimes are not hyphenated: 

reverse-engineering; leave-one-out; cross-validation. The place of 

figures and tables should be indicated. 

 P. 1, last Line: Trinajstic was misspelt. 

 P. 3, Line 3 (bottom): replace order by orders. 

 P. 4, eq. (1) should have the same limits for aij as indicated for 

bij. 

 P. 5, L. 8-9 (bot.): … ranging from 0 to 7… 

 P. 5, L. 8 (bot.): insert "in" after resulting. 

 P. 6, L. 6, Wiener's name is misspelt. 

 P. 6, L. 7: add after Greek tau "(also called TOTOP)" 

 P. 6, L. 12, replace polymers by polymer. 

 P. 9, L. 14: replace eventually by possibly. 

 P. 11, last Line: insert "that" before "we describe". 

 In the bibliography, one should cite all authors of a given 

reference, and one should not include bracketed issue numbers for 

periodicals. 

 

 All above typos were corrected. 
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    Jean-Loup Faulon 


