
A Trilinos Tutorial

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Outline of Talk

Background/Motivation
Trilinos Package Concepts.
Overview of Current Release Packages.
Glimpse at Release 5.0 Packages.
Example codes.
Availability and support.
Concluding remarks.

Trilinos Development Team
Vicki Howle
Developer of Belos and TSF

Jonathan Hu
Developer of ML

Tammy Kolda
Lead Developer of NOX

Rich Lehoucq
Developer of Anasazi and Belos

Kevin Long
Lead Developer of TSF,
Developer of Belos

Roger Pawlowski
Lead Developer of NOX

Michael Phenow
Trilinos Webmaster

Eric Phipps
Developer of LOCA and NOX

Andrew Rothfuss
Developer of TSF

Andrew Salinger
Lead Developer of LOCA

Marzio Sala
Lead author of Trilinos Tutorial
Developer of ML and Amesos

Paul Sexton
Developer of Epetra and Tpetra

Ken Stanley
Lead Developer of Amesos

Heidi Thornquist
Lead Developer of Anasazi and Belos

Ray Tuminaro
Lead Developer of ML

Jim Willenbring
Developer of Epetra and Kokkos.
Trilinos library manager

Alan Williams
Developer of Epetra

Ross Bartlett
Lead Developer of TSFCore

Paul Boggs
Developer of TSF

Jason Cross
Developer of Jpetra

David Day
Developer of Komplex

Bob Heaphy
Lead developer of Trilinos SQA

Mike Heroux
Trilinos Project Leader
Lead Developer of Epetra, AztecOO,
Kokkos, Komplex and IFPACK, TSF
Developer of Amesos, Belos

Robert Hoekstra
Developer of Epetra

Russell Hooper
Developer of NOX

Motivation For Trilinos
Sandia does LOTS of solver work.
When I started at Sandia in May 1998:

Aztec was a mature package. Used in many codes.
FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.
New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

The challenges:
Little or no coordination was in place to:

• Efficiently reuse existing solver technology.
• Leverage new development across various projects.
• Support solver software processes.
• Provide consistent solver APIs for applications.

ASCI was forming software quality assurance/engineering
(SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

Evolving Trilinos Solution

Trilinos1 is an evolving framework to address these challenges:
Includes common core set of vector, graph and matrix classes (Epetra).
Provides a common abstract solver API (TSF).
Provides a ready-made package infrastructure:

• Source code management (cvs, bonsai).
• Build tools (autotools).
• Automated regression testing (queue directories within repository).
• Communication tools (mailman mail lists).

Specifies requirements and suggested practices for SQA.
In general allows us to categorize efforts:

Efforts best done at the Trilinos level (useful to most or all packages).
Efforts best done at a package level (peculiar or important to a package).
Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

Trilinos Strategic Goals
Scalable Solvers: As problem size and processor counts increase,
the cost of the solver will remain a nearly fixed percentage of the
total solution time.
Hardened Solvers: Never fail unless problem essentially
unsolvable, in which case we diagnose and inform the user why the
problem fails and provide a reliable measure of error.
Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.
Universal Solver RAS: Trilinos will be:

Integrated into every major application at Sandia (Availability).
The leading edge hardened, scalable solutions for each of these
applications (Reliability).
Easy to maintain and upgrade within the application environment
(Serviceability).

Algorithmic
Goals

Software
Goals

Trilinos: The Three “I”s
Infrastructure:

Repository (cvs)
Issue Tracking (Bugzilla)
Communication (Mailman)
Debugging (Bonsai)
Jumpstart (new_package)
SQA Tools and Policies.

Interfaces:
Interoperability: Between Trilinos Packages,
with external SW.
Extensible.
Without Interdependence.

Implementations:
Real, working code that implements all interfaces.
Solid default implementations, but not required to use.

Provided at Trilinos
level. Packages get
for “free”.

Trilinos Package Concepts

Trilinos Packages
Trilinos is a collection of Packages.
Each package is:

Focused on important, state-of-the-art algorithms in its problem
regime.
Developed by a small team of domain experts.
Self-contained: No explicit dependencies on any other software
packages (with some special exceptions).
Configurable/buildable/documented on its own.

Sample packages: NOX, AztecOO, ML, IFPACK, Meros.
Special package collections:

Petra (Epetra, Tpetra, Jpetra): Concrete Data Objects
TSF (TSFCore, TSFExtended): Abstract Conceptual Interfaces
Teuchos: Common Tools.
New_package: Jumpstart prototype.

(some of) What can be done with Trilinos
Objective Package(s)
Distributed linear algebra objects Epetra, Jpetra, Tpetra
Krylov solvers AztecOO, Belos
ILU-type preconditioners AztecOO, IFPACK
Smoothed aggregation, multilevel prec’s ML

Eigenvalue problems Anasazi
Block preconditioners Meros
Direct sparse linear solvers Amesos
Direct dense solvers Epetra, Teuchos, Pliris
Abstract interfaces TSF

Complex linear systems Komplex
Nonlinear system solvers NOX, LOCA

C++ utilities, (some) I/O Teuchos, EpetraExt

Package
Description

Release
3.1 (9/2003) 4 (5/2004)

3.1
General

3.1
Limited

4
General

4
Limited

Amesos 3rd Party Direct Solver Suite X X X

Anasazi Eigensolver package X

AztecOO Linear Iterative Methods X X X X

Belos Block Linear Solvers X

Epetra Basic Linear Algebra X X X X

EpetraExt Extensions to Epetra X X X

Ifpack Algebraic Preconditioners X X X X

Jpetra Java Petra Implementation X

Kokkos Sparse Kernels X X

Komplex Complex Linear Methods X X X X

LOCA Bifurcation Analysis Tools X X X X

Meros Segregated Preconditioners X X

ML Multi-level Preconditioners X X X X

NewPackage Working Package Prototype X X X X

NOX Nonlinear solvers X X X X

Pliris Dense direct Solvers X

Teuchos Common Utilities X X

TSFCore Abstract Solver API X X

TSFExt Extensions to TSFCore X X

Tpetra Templated Petra X

Totals 8 11 14 20

Dependence vs. Interoperability

Although most Trilinos packages have no explicit dependence,
each package must interact with some other packages:

NOX needs operator, vector and solver objects.
AztecOO needs preconditioner, matrix, operator and vector objects.
Interoperability is enabled at configure time. For example, NOX:

--enable-nox-lapack compile NOX lapack interface libraries
--enable-nox-epetra compile NOX epetra interface libraries
--enable-nox-petsc compile NOX petsc interface libraries

Trilinos is a vehicle for:
Establishing interoperability of Trilinos components…
Without compromising individual package autonomy.

Trilinos offers five basic interoperability mechanisms.

Trilinos Interoperability Mechanisms
Package accepts user data as
Epetra or TSF objects ⇒ Applications using Epetra/TSF can

use package

Package accepts parameters from
Teuchos ParameterLists ⇒ Applications using Teuchos

ParameterLists can drive package

⇒

⇒

⇒

⇒

Package can be used via TSF
abstract solver classes

Applications or other packages using
TSF can use package

Package can use Epetra for private
data.

Package can then use other packages
that understand Epetra

Package accesses solver services
via TSF interfaces

Package can then use other packages
that implement TSF interfaces

Package builds under Trilinos
configure scripts.

Package can be built as part of a
suite of packages; cross-package
dependencies can be handled
automatically

CompatibleCompatibleCompatible

Interoperability Example: ML

ML: Multi-level Preconditioner Package.
Primary Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala.
No explicit, essential dependence on other Trilinos packages.

Uses abstract interfaces to matrix/operator objects.
Has independent configure/build process (but can be invoked at Trilinos level).

Interoperable with other Trilinos packages and other libraries:
Accepts user data as Epetra matrices/vectors.
Can use Epetra for internal matrices/vectors.
Can be used via TSF abstract interfaces.
Can be built via Trilinos configure/build process.
Available as preconditioner to all other Trilinos packages.
Can use IFPACK, Amesos, AztecOO objects as smoothers, coarse solvers.
Can be driven via Teuchos ParameterLists.
Available to PETSc users without dependence on any other Trilinos packages.

What Trilinos is not
Trilinos is not a single monolithic piece of software. Each package:

Can be built independent of Trilinos.
Has its own self-contained CVS structure.
Has its own Bugzilla product and mail lists.
Development team is free to make its own decisions about algorithms, coding
style, release contents, testing process, etc.

Trilinos top layer is not a large amount of source code:
Trilinos repository contains 452,187 source lines of code (SLOC).
Sum of the packages SLOC counts : 445,937.
Trilinos top layer SLOC count: 6, 250 (1.4%).

Trilinos is not “indivisible”:
You don’t need all of Trilinos to get things done.
Any collection of packages can be combined and distributed.
Current public release contains only 14 of the 20+ Trilinos packages.

Overview of Trilinos Packages

Trilinos Common Language: Petra
Petra provides a “common language” for distributed
linear algebra objects (operator, matrix, vector)

Petra1 provides distributed matrix and vector services.
Exists in basic form as an object model:

Describes basic user and support classes in UML, independent of
language/implementation.
Describes objects and relationships to build and use matrices,
vectors and graphs.
Has 3 implementations under development.

1Petra is Greek for “foundation”.

Petra Implementations
Three version under development:
Epetra (Essential Petra):

Current production version.
Restricted to real, double precision arithmetic.
Uses stable core subset of C++ (circa 2000).
Interfaces accessible to C and Fortran users.

Tpetra (Templated Petra):
Next generation C++ version.
Templated scalar and ordinal fields.
Uses namespaces, and STL: Improved usability/efficiency.

Jpetra (Java Petra):
Pure Java. Portable to any JVM.
Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers:
Mike Heroux, Rob Hoekstra, Alan Williams, Paul Sexton

Epetra

Basic Stuff: What you would expect.
Variable block matrix data structures.
Multivectors.
Arbitrary index labeling.
Flexible, versatile parallel data redistribution.
Language support for inheritance, polymorphism and
extensions.
View vs. Copy.

Epetra User Class Categories
Sparse Matrices: RowMatrix, (CrsMatrix, VbrMatrix, FECrsMatrix, FEVbrMatrix)

Linear Operator: Operator: (AztecOO, ML, Ifpack)

Dense Matrices: DenseMatrix, DenseVector, BLAS, LAPACK,
SerialDenseSolver

Vectors: Vector, MultiVector

Graphs: CrsGraph

Data Layout: Map, BlockMap, LocalMap

Redistribution: Import, Export, LbGraph, LbMatrix

Aggregates: LinearProblem

Parallel Machine: Comm, (SerialComm, MpiComm, MpiSmpComm)

Utilities: Time, Flops

Most codes and packages
require row access to matrices.
Pure abstract class

Insulates users from MPI calls

RowMatrix isa Operator

AztecOO
Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…
Incomplete factorization preconditioners

Aztec is the workhorse solver at Sandia:
Extracted from the MPSalsa reacting flow code.
Installed in dozens of Sandia apps.
1900+ external licenses.

AztecOO improves on Aztec by:
Using Epetra objects for defining matrix and RHS.
Providing more preconditioners/scalings.
Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:
Continued use of Aztec for functionality.
Introduction of new solver capabilities outside of Aztec.

Developers:
Mike Heroux, Ray Tuminaro, John Shadid

IFPACK: Algebraic Preconditioners
Overlapping Schwarz preconditioners with incomplete
factorizations

Accept user matrix via abstract matrix interface (Epetra
versions).
Uses Epetra for basic matrix/vector calculations.
Supports simple perturbation stabilizations and condition
estimation.
Separates graph construction from factorization, improves
performance substantially.
Compatible with AztecOO and TSF. Can be used by NOX
and ML.

Developer:
Mike Heroux

Amesos
Interface to direct solver for distributed sparse linear systems

Challenges:
No single solver dominates
Different interfaces and data formats, serial and parallel
Interface often change between revisions

Amesos offers:
A single, clear, consistent interface, to various packages
Common look-and-feel for all classes
Separation from specific solver details
Use serial and distributed solvers; Amesos takes care of data
redistribution

Developers:
Ken Stanley, Marzio Sala

Amesos: Supported Libraries
Library Name Language communicator

procs
for solution1

KLU C Serial 1

Serial

Serial

MPI

MPI

MPI

UMFPACK C 1

SuperLU 3.0 C 1

SuperLU_DIST 2.0 C any

MUMPS 4.3.1 F90 any

ScaLAPACK F77 any

Also working on: DSCPACK, SPOOLES, Ksparse,…

1Matrices can be distributed over any
number of processes

ML: Multi-level Preconditioners
Smoothed aggregation, multigrid and domain decomposition
preconditioning package

Critical technology for scalable performance of some key
apps.
ML compatible with other Trilinos packages:

Accepts user data as Epetra_RowMatrix object (abstract interface).
Any implementation of Epetra_RowMatrix works.
Implements the Epetra_Operator interface. Allows ML
preconditioners to be used with AztecOO and TSF.

Can also be used completely independent of other Trilinos
packages.

Developers:
Ray Tuminaro, Jonathan Hu, Marzio Sala

NOX: Nonlinear Solvers
Suite of nonlinear solution methods

NOX uses abstract vector and “group” interfaces:
Allows flexible selection and tuning of various strategies:

• Directions.
• Line searches.

Epetra/AztecOO/ML, LAPACK, PETSc implementations of
abstract vector/group interfaces.

Designed to be easily integrated into existing applications.

Developers:
Tammy Kolda, Roger Pawlowski

LOCA

Library of continuation algorithms

Provides
Zero order continuation
First order continuation
Arc length continuation
Multi-parameter continuation (via Henderson's MF Library)
Turning point continuation
Pitchfork bifurcation continuation
Hopf bifurcation continuation
Phase transition continuation
Eigenvalue approximation (via ARPACK or Anasazi)

Developers:
Andy Salinger, Eric Phipps

EpetraExt: Extensions to Epetra
Library of useful classes not needed by everyone

Most classes are types of “transforms”.
Examples:

Graph/matrix view extraction.
Epetra/Zoltan interface.
Explicit sparse transpose.
Singleton removal filter, static condensation filter.
Overlapped graph constructor, graph colorings.
Permutations.
Sparse matrix-matrix multiply.
Matlab, MatrixMarket I/O functions.
…

Most classes are small, useful, but non-trivial to write.

Developer:
Robert Hoekstra, Alan Williams, Mike Heroux

Teuchos
Utility package of commonly useful tools:

ParameterList class: key/value pair database, recursive capabilities.
LAPACK, BLAS wrappers (templated on ordinal and scalar type).
Dense matrix and vector classes (compatible with BLAS/LAPACK).
FLOP counters, Timers.
Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.
Reference counted pointers, and more…

Takes advantage of advanced features of C++:
Templates
Standard Template Library (STL)

ParameterList:
Allows easy control of solver parameters.

Developers:
Roscoe Barlett, Kevin Long, Heidi Thorquist, Mike Heroux, Paul Sexton,
Kris Kampshoff

NewPackage Package
NewPackage provides jump start to develop/integrate a new
package

NewPackage is a “Hello World” program and website:
Simple but it does work with autotools.
Compiles and builds.

NewPackage directory contains:
Commonly used directory structure: src, test, doc, example, config.
Working autotools files.
Documentation templates (doxygen).
Working regression test setup.

Substantially cuts down on:
Time to integrate new package.
Variation in package integration details.
Development of website.

Investment in Templates
2nd Generation Trilinos packages are templated on:

OrdinalType (think int).
ScalarType (think double).

Examples:
Teuchos::SerialDenseMatrix<int, double> A;
Teuchos::SerialDenseMatrix<short, float> B;

The following packages support templates:

Teuchos (Basic Tools)
TSFCore (Abstract Interfaces)

Tpetra (including MPI support)
Belos (Krylov and Block Krylov Linear),
IFPACK (algebraic preconditioners, next version),
Anasazi (Eigensolvers),
TSFExt (Abstract interfaces)

In current release

In Release 5.0
March 2005

ARPREC

The ARPREC library uses arrays of 64-bit floating-point
numbers to represent high-precision floating-point numbers.
ARPREC values behave just like any other floating-point
datatype, except the maximum working precision (in decimal
digits) must be specified before any calculations are done

mp::mp_init(200);

Illustrate the use of ARPREC with an example using
Hilbert matrices.

Hilbert Matrices

A Hilbert matrix HN is a square N-by-N matrix such that:

For Example: 1
1

−+
=

ji
H

ijN

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

5
1

4
1

3
1

4
1

3
1

2
1

3
1

2
11

3H

Hilbert Matrices

Notoriously ill-conditioned
κ(H3) ≈ 524
κ(H5) ≈ 476610
κ(H10) ≈ 1.6025 x 1013

κ(H20) ≈ 7.8413 x 1017

κ(H100) ≈ 1.7232 x 1020

Hilbert matrices introduce large amounts of error

Hilbert Matrices and Cholesky
Factorization

With double-precision arithmetic, Cholesky factorization will
fail for HN for all N > 13.
Can we improve on this using arbitrary-precision floating-point
numbers?

Precision Largest N for which Cholesky Factorization is successful

Single Precision 8

Double Precision 13

Arbitrary Precision (20) 29

Arbitrary Precision (40) 40

Arbitrary Precision (200) 145

Arbitrary Precision (400) 233

Kokkos

Goal:
Isolate key non-BLAS kernels for the purposes of optimization.

Kernels:
Dense vector/multivector updates and collective ops (not in
BLAS/Teuchos).
Sparse MV, MM, SV, SM.

Serial-only for now.
Reference implementation provided (templated).
Mechanism for improving performance:

Default is aggressive compilation of reference source.
BeBOP: Jim Demmel, Kathy Yelick, Rich Vuduc, UC Berkeley.
Vector version: Cray.

Developer:
Mike Heroux

Kokkos Results: Sparse MV/MM
Pentium M 1.6GHz Cygwin/GCC 3.2 (WinXP Laptop)

Data Set Dimension Nonzeros # RHS MFLOPS

DIE3D 9873 1733371 1 247.62

2 418.94

3 577.79

4 691.62

5 787.90

dday01 21180 923006 1 230.75

2 407.96

3 553.80

4 668.24

5 738.40

FIDAP035 19716 218308 1 171.22

2 349.29

3 374.24

4 498.99

5 545.77

Examples

A Simple Epetra/AztecOO Program

// Header files omitted…
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// ***** Create x and b vectors *****
Epetra_Vector x(Map);
Epetra_Vector b(Map);
b.Random(); // Fill RHS with random #s

// ***** Map puts same number of equations on each pe *****

int NumMyElements = 1000 ;
Epetra_Map Map(-1, NumMyElements, 0, Comm);
int NumGlobalElements = Map.NumGlobalElements();

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

Epetra_CrsMatrix A(Copy, Map, 3);
double negOne = -1.0; double posTwo = 2.0;

for (int i=0; i<NumMyElements; i++) {
int GlobalRow = A.GRID(i);
int RowLess1 = GlobalRow - 1;
int RowPlus1 = GlobalRow + 1;
if (RowLess1!=-1)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
if (RowPlus1!=NumGlobalElements)

A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

}
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Report results, finish ***********************
cout << "Solver performed " << solver.NumIters()

<< " iterations." << endl
<< "Norm of true residual = "
<< solver.TrueResidual()
<< endl;

MPI_Finalize() ;
return 0;

}

// ***** Create Linear Problem *****
Epetra_LinearProblem problem(&A, &x, &b);

// ***** Create/define AztecOO instance, solve *****
AztecOO solver(problem);
solver.SetAztecOption(AZ_precond, AZ_Jacobi);
solver.Iterate(1000, 1.0E-8);

Typical Flow of Epetra Object
Construction

Construct Comm

Construct Map

Construct x Construct b Construct A

• Any number of Comm objects can exist.
• Comms can be nested (ee.g., serial within MPI).

• Maps describe parallel layout.
• Maps typically associated with more than one comp object.
• Two maps (source and target) define an export/import object.

• Computational objects.
• Compatibility assured via common map.

Parallel Data Redistribution

Epetra vectors, multivectors, graphs and matrices are distributed via
one of the map objects.
A map is basically a partitioning of a list of global IDs:

IDs are simply labels, no need to use contiguous values (Directory class
handles details for general ID lists).
No a priori restriction on replicated IDs.

If we are given:
A source map and
A set of vectors, multivectors, graphs and matrices (or other distributable
objects) based on source map.

Redistribution is performed by:
1. Specifying a target map with a new distribution of the global IDs.
2. Creating Import or Export object using the source and target maps.
3. Creating vectors, multivectors, graphs and matrices that are

redistributed (to target map layout) using the Import/Export object.

Example: epetra/ex9.cpp (p. 25)
int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
int NumGlobalElements = 4; // global dimension of

the problem
int NumMyElements; // local nodes
Epetra_IntSerialDenseVector MyGlobalElements;

if(Comm.MyPID() == 0) {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 0;
MyGlobalElements[1] = 1;
MyGlobalElements[2] = 2;

} else {
NumMyElements = 3;
MyGlobalElements.Size(NumMyElements);
MyGlobalElements[0] = 1;
MyGlobalElements[1] = 2;
MyGlobalElements[2] = 3;

}
// create a map
Epetra_Map Map(-1,MyGlobalElements.Length(),

MyGlobalElements.Values(),0, Comm);

// create a vector based on map
Epetra_Vector xxx(Map);
for(int i=0 ; i<NumMyElements ; ++i)
xxx[i] = 10*(Comm.MyPID()+1);

if(Comm.MyPID() == 0){
double val = 12;
int pos = 3;
xxx.SumIntoGlobalValues(1,0,&val,&pos);

}
cout << xxx;
// create a target map, in which all elements are on proc 0
int NumMyElements_target;
if(Comm.MyPID() == 0)

NumMyElements_target = NumGlobalElements;
else
NumMyElements_target = 0;

Epetra_Map TargetMap(-1,NumMyElements_target,0,Comm);
Epetra_Export Exporter(Map,TargetMap);
// work on vectors
Epetra_Vector yyy(TargetMap);
yyy.Export(xxx,Exporter,Add);
cout << yyy;

MPI_Finalize();
return(EXIT_SUCCESS);
}

Output: epetra/ex9.cpp
> mpirun -np 2 ./ex9.exe
Epetra::Vector

MyPID GID Value
0 0 10
0 1 10
0 2 10

Epetra::Vector
1 1 20
1 2 20
1 3 20

Epetra::Vector
MyPID GID Value

0 0 10
0 1 30
0 2 30
0 3 20

Epetra::Vector

PE 0
xxx(0)=10
xxx(1)=10
xxx(2)=10

PE 1
xxx(1)=20
xxx(2)=20
xxx(3)=20

PE 0
yyy(0)=10
yyy(1)=30
yyy(2)=30
yyy(3)=20

PE 1

Export/Add

Before Export After Export

Import vs. Export

Import (Export) means calling processor knows what it
wants to receive (send).

Distinction between Import/Export is important to user,
almost identical in implementation.

Import (Export) objects can be used to do an Export
(Import) as a reverse operation.

When mapping is bijective (1-to-1 and onto), either Import
or Export is appropriate.

Example: 1D Matrix Assembly

-uxx = f
u(a) = γ0
u(b) = γ1

PE 0 PE 1

a bx1 x2 x3

• 3 Equations: Find u at x1, x2 and x3

• Equation for u at x2 gets a contribution from PE 0 and PE 1.

• Would like to compute partial contributions independently.

• Then combine partial results.

Two Maps

We need two maps:
Assembly map:

• PE 0: { 1, 2 }.
• PE 1: { 2, 3 }.

Solver map:
• PE 0: { 1, 2 } (we arbitrate ownership of 2).
• PE 1: { 3 }.

End of Assembly Phase

At the end of assembly phase we have AssemblyMatrix:

On PE 0:

On PE 1:

Want to assign all of Equation 2 to PE 0 for use
with solver.
NOTE: For a class of Neumann-Neumann preconditioners, the above
layout is exactly what we want.

2 1 0
1 1 0

−⎡ ⎤
⎢ ⎥−⎣ ⎦

Equation 1:

Equation 2:

Row 2 is shared

0 1 1
0 1 2

−⎡ ⎤
⎢ ⎥−⎣ ⎦

Equation 2:

Equation 3:

Export Assembly Matrix to Solver
Matrix

Epetra_Export Exporter(AssemblyMap, SolverMap);

Epetra_CrsMatrix SolverMatrix (Copy, SolverMap, 0);

SolverMatrix.Export(AssemblyMatrix, Exporter, Add);

SolverMatrix.FillComplete();

Matrix Export

After ExportBefore Export

2 1 0
1 2 1

−⎡ ⎤
⎢ ⎥− −⎣ ⎦

Equation 1:

Equation 2:

Equation 3: []0 1 2−

2 1 0
1 1 0

−⎡ ⎤
⎢ ⎥−⎣ ⎦

0 1 1
0 1 2

−⎡ ⎤
⎢ ⎥−⎣ ⎦

Equation 1:

Equation 2:

Equation 2:

Equation 3:

PE 0 PE 0

PE 1 PE 1

Export/Add

Example: epetraext/ex2.cpp (p. 111)
int main(int argc, char *argv[]) {

MPI_Init(&argc,&argv);
Epetra_MpiComm Comm (MPI_COMM_WORLD);

int MyPID = Comm.MyPID();
int n=4;

// Generate Laplacian2d gallery matrix
Trilinos_Util::CrsMatrixGallery G("laplace_2d", Comm);
G.Set("problem_size", n*n);
G.Set("map_type", "linear"); // Linear map initially

// Get the LinearProblem.
Epetra_LinearProblem *Prob = G.GetLinearProblem();

// Get the exact solution.
Epetra_MultiVector *sol = G.GetExactSolution();

// Get the rhs (b) and lhs (x)
Epetra_MultiVector *b = Prob->GetRHS();
Epetra_MultiVector *x = Prob->GetLHS();

// Repartition graph using Zoltan
EpetraExt::Zoltan_CrsGraph * ZoltanTrans = new

EpetraExt::Zoltan_CrsGraph();
EpetraExt::LinearProblem_GraphTrans * ZoltanLPTrans =
new EpetraExt::LinearProblem_GraphTrans(

*(dynamic_cast<EpetraExt::StructuralSameTypeTransf
orm<Epetra_CrsGraph>*>(ZoltanTrans)));

cout << "Creating Load Balanced Linear Problem\n";
Epetra_LinearProblem &BalancedProb =

(*ZoltanLPTrans)(*Prob);

// Get the rhs (b) and lhs (x)
Epetra_MultiVector *Balancedb = Prob->GetRHS();
Epetra_MultiVector *Balancedx = Prob->GetLHS();
cout << "Balanced b: " << *Balancedb << endl;
cout << "Balanced x: " << *Balancedx << endl;

MPI_Finalize() ;
return 0 ;
}

Need for Import/Export

Solvers for complex engineering applications need
expressive, easy-to-use parallel data redistribution:

Allows better scaling for non-uniform overlapping Schwarz.
Necessary for robust solution of multiphysics problems.

We have found import and export facilities to be a very
natural and powerful technique to address these issues.

Other uses for Import/Export

In addition, import and export facilities provide a
variety of other capabilities:

Communication needs of sparse matrix multiplication.
Parallel assembly: Shared nodes receive contributions from multiple
processors, reverse operation replicates results back.
Higher order interpolations are easy to implement.
Ghost node distributions.
Changing work loads can be re-balanced.
Sparse matrix transpose become trivial to implement.
Allows gradual MPI-izing of an application.
Cached Overlapped distributed vectors (generalization of distributed sparse
MV).
Rendezvous algorithms easy to implement.

Example: ml/ex1.cpp (p. 87)
int main(int argc, char *argv[])
{
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// initialize the command line parser
Trilinos_Util_CommandLineParser CLP(argc,argv);
// initialize an Gallery object
Trilinos_Util_CrsMatrixGallery Gallery("", Comm);
// add default values
if(CLP.Has("-problem_type") == false) CLP.Add("-

problem_type", "laplace_2d");
if(CLP.Has("-problem_size") == false) CLP.Add("-

problem_size", "100");

// initialize the gallery as specified in the command line
Gallery.Set(CLP);

// retrive pointers to matrix and linear problem
Epetra_CrsMatrix * Matrix = Gallery.GetMatrix();
const Epetra_Map * Map = Gallery.GetMap();

Epetra_LinearProblem * Problem = Gallery.GetLinearProblem();

// Construct a solver object for this problem
AztecOO solver(*Problem);

// solve with CG (change is matrix is not symmetric)
solver.SetAztecOption(AZ_solver, AZ_cg);

// Create and set an ML multilevel preconditioner
ML *ml_handle;
// Maximum number of levels
int N_levels = 10;
// output level
ML_Set_PrintLevel(3);
ML_Create(&ml_handle,N_levels);
// wrap Epetra Matrix into ML matrix (data is NOT copied)
EpetraMatrix2MLMatrix(ml_handle, 0, Matrix);
// as we are interested in smoothed aggregation, create a

ML_Aggregate object to store the aggregates
ML_Aggregate *agg_object;
ML_Aggregate_Create(&agg_object);
// specify max coarse size (ML will not coarse further is the matrix at

a given level is
// smaller than specified here)
ML_Aggregate_Set_MaxCoarseSize(agg_object,1);

// generate the hierarchy
N_levels = ML_Gen_MGHierarchy_UsingAggregation(ml_handle, 0,

ML_INCREASING, agg_object);
// Set a symmetric Gauss-Seidel smoother for the MG method (change
// if the matrix is not symmetric)
ML_Gen_Smoother_SymGaussSeidel(ml_handle,

ML_ALL_LEVELS, ML_BOTH, 1, ML_DEFAULT);
// generate solver
ML_Gen_Solver (ml_handle, ML_MGV, 0, N_levels-1);

// wrap ML_Operator into Epetra_Operator
ML_Epetra::MultiLevelOperator

MLop(ml_handle,Comm,*Map,*Map);

Example: ml/ex1.cpp (p. 87)
// set this operator as preconditioner for AztecOO
solver.SetPrecOperator(&MLop);

// solve
solver.Iterate(1550, 1e-12);

// verify that residual is really small
double residual, diff;

Gallery.ComputeResidual(residual);
Gallery.ComputeDiffBetweenStartingAndExactSolutions(diff);

if(Comm.MyPID() == 0) {
cout << "||b-Ax||_2 = " << residual << endl;
cout << "||x_exact - x||_2 = " << diff << endl;

}

#ifdef EPETRA_MPI
MPI_Finalize() ;

#endif

return 0 ;
}

AztecOO can use Epetra_Operators
as preconditioners.
ML_Epetra::MultiLevelOperator
isa
Epetra_Operator
Use of IFPACK is very similar to
ML:

Also implements Epetra_Operator.
AztecOO also implements
Epetra_Operator.

Allows use as preconditioner.
See example aztecoo/ex2.cpp.

Example: amesos/ex1.cpp (p. 100)
// use KLU (other choices are valid as well)
int choice = 0;
switch(choice) {
case 0:
Solver = A_Factory.Create("Amesos_Klu", *Problem);
break;

case 1:
Solver = A_Factory.Create("Amesos_Umfpack", *Problem);
break;

}
// start solving
Solver->SymbolicFactorization();
Solver->NumericFactorization();
Solver->Solve();
// verify that residual is really small
double residual, diff;
Gallery.ComputeResidual(residual);
Gallery.ComputeDiffBetweenStartingAndExactSolutions(diff);
if(Comm.MyPID() == 0) {
cout << "||b-Ax||_2 = " << residual << endl;
cout << "||x_exact - x||_2 = " << diff << endl;

}
// delete Solver
delete Solver;

MPI_Finalize();
return(EXIT_SUCCESS);

}

int main(int argc, char *argv[]) {
MPI_Init(&argc, &argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);

// initialize the command line parser
Trilinos_Util_CommandLineParser CLP(argc,argv);
// initialize an Gallery object
Trilinos_Util_CrsMatrixGallery Gallery("", Comm);
// add default values
if(CLP.Has("-problem_type") == false) CLP.Add("-

problem_type", "laplace_2d");
if(CLP.Has("-problem_size") == false) CLP.Add("-

problem_size", "100");
// initialize the gallery as specified in the command line
Gallery.Set(CLP);

Epetra_CrsMatrix * Matrix = Gallery.GetMatrix();
Epetra_Vector * LHS = Gallery.GetStartingSolution();
Epetra_Vector * RHS = Gallery.GetRHS();

Epetra_LinearProblem * Problem = Gallery.GetLinearProblem();
// initialize Amesos solver
Amesos_BaseSolver * Solver;
Amesos Amesos_Factory;
// empty parameter list
Teuchos::ParameterList List;

Building Trilinos

Simple Sample Scripts
• Builds serial version of default packages.
• All 3rd party libraries (BLAS, LAPACK) must be in lib search path.../configure

../configure --prefix=/home/mheroux/Trilinos/EPETRA_OPT_SERIAL \
CXXFLAGS="-O3“ --disable-default-packages --enable-epetra

• Builds serial version of Epetra only with some optimization.
• All 3rd party libraries (BLAS, LAPACK) must be in lib search path.
• “make install” will put /include/*.h and /lib/*.a in specified directory.

• Builds MPI version of Epetra only with specified MPI environment.
• All 3rd party libraries (BLAS, LAPACK) must be in lib search path.
• “make install” will put /include/*.h and /lib/*.a in specified directory.

../configure --enable-mpi --with-mpi=/usr/MPICH/SDK.gcc \
--prefix=/home/mheroux/Trilinos/EPETRA_MPI \
--with-mpi-cxx=g++ --with-mpi-cc=gcc --with-mpi-f77=g77 \
--with-mpi-libs=-lmpich \

--disable-default-packages --enable-epetra

More Complex Sample Scripts
Most found in Trilinos/sampleScripts

../configure --host=powerpc-ibm-aix5.1.0.0 \
--enable-teuchos --enable-teuchos-extended --disable-new-package \
--enable-aztecoo-azlu \
--enable-anasazi \
--enable-epetraext --enable-epetraext-transform \
--enable-epetraext-transform-tests \
--enable-amesos \
--with-ml_teuchos --with-ml_anasazi \
--with-ml_external_mpi_functions \
--disable-examples \
--with-blas="-lessl -L/sierra/Release/lapack/3.0/lib/dbg_dp_ibm -lblas" \
--with-lapack="-lessl -L/sierra/Release/lapack/3.0/lib/dbg_dp_ibm -llapack" \
--enable-mpi \
--with-ldflags="-L/sierra/Release/y12m/1.00/lib/dbg_dp_ibm -ly12m" \
--prefix=/sierra/Release/Trilinos/3.1.1/install_ibm \
--with-mpi-incdir=. \
--with-mpi-libdir=. \
--with-mpi-libs="-binitfini:poe_remote_main -lmpi_r -lvtd_r" \
--with-ar="ar -X64 csrv" \
CXX="mpCC -q64" CC="mpcc -b64 -q64" F77="mpxlf -b64 -q64" \
CXXFLAGS="-O3 -w -qnofullpath -qlanglvl=ansi" \
CCFLAGS="-O3 -w" \
FFLAGS="-O3 -w" \
CPPFLAGS= LDFLAGS= LIBS=-lm \
FLIBS="-lxlf90 -lxlopt -lxlf -lxlomp_ser"

• Configure/make on some platforms is
complex.

• We maintain a directory of sample
scripts to guide installers.

Tools on software.sandia.gov

CVS: Source management.
Bugzilla: Bug/feature tracking.
Mailman: Mail list management.
Bonsai: Interface to CVS/Bugzilla.
Webserver: Webpages accessible from anywhere.
Autotools: Autoconf/automake facilities.

Trilinos Availability/Support

Trilinos and related packages are available via LGPL.
Current release (4.0) is “click release”. Unlimited
availability.
Mail lists:

Each Trilinos package, including Trilinos itself, has four mail lists:
• package-checkins@software.sandia.gov

– CVS commit emails.
• package-developers@software.sandia.gov

– Mailing list for developers.
• package-users@software.sandia.gov

– Issues for package users.
• package-announce@software.sandia.gov

– Releases and other announcements specific to the package.
Additional list: Trilinos-Leaders@software.sandia.gov
http://software.sandia.gov/mailman/listinfo/

Conclusions
Trilinos services to developers and users:

The 3 I’s: Infrastructure, Interfaces, Implementations.
Simplifies installation, support for users of total collection.
Epetra & TSF promote common APIs across all other Trilinos
packages.
Each package can be built, used independently, and exists as
independent project.

Primary goals:
Rapid development and installation of robust numerical solvers.
High-quality production software for the critical path.

More information:
http://software.sandia.gov
http://software.sandia.gov/trilinos
Additional documentation at my website:
http://www.cs.sandia.gov/~mheroux.

	A Trilinos TutorialMichael A. HerouxSandia National Laboratories
	Outline of Talk
	Trilinos Development Team
	Motivation For Trilinos
	Evolving Trilinos Solution
	Trilinos Strategic Goals
	Trilinos: The Three “I”s
	Trilinos Package Concepts
	Trilinos Packages
	(some of) What can be done with Trilinos
	Dependence vs. Interoperability
	Trilinos Interoperability Mechanisms
	Interoperability Example: ML
	What Trilinos is not
	Overview of Trilinos Packages
	Trilinos Common Language: Petra
	Petra Implementations
	Epetra
	Epetra User Class Categories
	AztecOO
	IFPACK: Algebraic Preconditioners
	Amesos
	Amesos: Supported Libraries
	ML: Multi-level Preconditioners
	NOX: Nonlinear Solvers
	LOCA
	EpetraExt: Extensions to Epetra
	Teuchos
	NewPackage Package
	Investment in Templates
	ARPREC
	Hilbert Matrices
	Hilbert Matrices
	Hilbert Matrices and Cholesky Factorization
	Kokkos
	Kokkos Results: Sparse MV/MMPentium M 1.6GHz Cygwin/GCC 3.2 (WinXP Laptop)
	Examples
	A Simple Epetra/AztecOO Program
	Typical Flow of Epetra Object Construction
	Parallel Data Redistribution
	Example: epetra/ex9.cpp (p. 25)
	Output: epetra/ex9.cpp
	Import vs. Export
	Example: 1D Matrix Assembly
	Two Maps
	End of Assembly Phase
	Export Assembly Matrix to Solver Matrix
	Matrix Export
	Example: epetraext/ex2.cpp (p. 111)
	Need for Import/Export
	Other uses for Import/Export
	Example: ml/ex1.cpp (p. 87)
	Example: ml/ex1.cpp (p. 87)
	Example: amesos/ex1.cpp (p. 100)
	Building Trilinos
	Simple Sample Scripts
	More Complex Sample ScriptsMost found in Trilinos/sampleScripts
	Tools on software.sandia.gov
	Trilinos Availability/Support
	Conclusions

