CSRI SUMMER PROCEEDINGS 2010

The Computer Science Research Institute
at Sandia National Laboratories

Editors:

Eric C. Cyr and S. Scott Collis
Sandia National Laboratories

December 17, 2010

Computer Science Research Institute

ﬁa?dial \
ational /’1
Laboratories AasC

SAND2010-8783P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

il

CSRI Summer Proceedings 2010

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders @ntis.fedworld.gov

Online ordering: http://www.ntis.gov/ordering.htm

E.C. Cyrand S.S. Collis iii

Preface

The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science, and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national- and global-scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program where students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to con-
tribute a technical article to the CSRI Summer Proceedings, of which this document is the
fifth installment. In many cases, the CSRI proceedings are the first opportunity that students
have to write a research article. Not only do these proceedings serve to document the re-
search conducted at CSRI but, as part of the research training goals of CSRI, it is the intent
that these articles serve as precursors to or first drafts of articles that could be submitted to
peer—reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer-reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2010 CSRI Proceedings, research articles have been organized into the follow-
ing broad technical focus areas — computational mathematics and algorithms, uncertainty
quantification and sensitivity analysis, meshing and optimization, computational applica-
tions, architectures and networking, and visualization and software engineering — which are
well aligned with Sandia’s strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical
accomplishments of CSRI in 2010 as documented by the high quality articles in this proceed-
ings. The success of CSRI hinged on the hard work of 36 enthusiastic student collaborators
and their dedicated Sandia technical staff mentors. It is truly impressive that the research
described herein occurred primarily over a three month period of intensive collaboration.

CSRI benefited from the administrative help of Dee Cadena, Deanna Ceballos, Denis
Laporte, Mel Loran, and Bernadette Watts. The success of CSRI is, in large part, due to their
dedication and care, which are much appreciated. We would also like to thank those who
reviewed articles for this proceedings — their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Eric C. Cyr
S. Scott Collis

December 17, 2010

v

CSRI Summer Proceedings 2010

E.C. Cyr and S.S. Collis A

Table of Contents

Preface

EC.Cyrand S.S. Collis i ii
Computational Mathematics and Algorithms

E.C.CyrandS.S. Collis 1
The Nonlocal Cattaneo-Vernotte Equation

N.J. Burchand R.B. Lehoucq 3
Discontinuous Velocity Least Squares Finite Element Methods for Improved Mass

Conservation

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 15
Application of a Discontinuous Petrov-Galerkin Method to the Stokes Equations

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and

C.M. Siefert e e e 32
An Investigation of Block preconditioners for Unsteady Navier-Stokes

E.G. Phillips, E.C. Cyr, and J.N. Shadid 47
Efficiently Computing Tensor Eigenvalues on a GPU

G. Ballard, T. Kolda, and T. Plantenga 59
Uncertainty Quantification and Sensitivity Analysis

EC.Cyrand S.S. Collis i 77
Stochastic Galerkin FEM

R. Tipireddy, E.T. Phipps and R.G. Ghanem 79
Uncertanity Quantification of a Radiation Damaged Bipolar Junction Transistor

C.W. Miller, R.S. Tuminaro, E.T. Phipps, and H.C. Elman 91
Krylov Recycling for Climate Modeling and Uncertainty Quantification.

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 103
Stability of ODEs with Colored Noise Forcing

TJ. Blass and L.A. Romero 112
Comparison of Sensitivity Analysis Methods for Nuclear Reactor Neutronics

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 124
Meshing and Optimization

EC. Cyrand S.S. Collis 139
Quadratic Element Mesh Untangling and Shape Optimization via the Target-Matrix

Paradigm

N. Voshell, P. Knupp, and J. Kraftcheck 141
A New Strategy for Untangling 2D Meshes

JW. Franks and P. Knupp 152
Mesh Vertex Reordering for Local Mesh Quality Improvement

JParkand PKnupp e e e e e 166
Multifractal Dimensions using Maximal Simplices and Python Extensions to TEVA-

SPOT

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 178
Benders Decomposition in Pyomo

P Steele and J. Watson 196
Stochastic Optimization of an Energy Model

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 206
An ACRO Implementation of the Hybrid Optimization Algorithm EAGLS

JW. Orsiniand G.A. Gray e 214

Computational Applications
E.C.Cyrand S.S. Collis i 219

vi

CSRI Summer Proceedings 2010

An Electron Force Field Study of Shocked Polyethylene

P.L. Theofanis, T.R. Mattsson and A.P. Thompson 221
Flux-Corrected Transport Algorithm for the Remapping step of a FEM-ALE method

A. Lopez Ortega and G. Scovazzi v v v i v i i i 233
Molecular Dynamics Study of Single Conjugated Polymer Nanoparticle

S. Maskey, F. Pierce, D. Perahia, S.J. Plimpton and G.S. Grest 250
Charge Traps and Local Atomic Relaxations in Amorphous Silicon Dioxide

N.L. Anderson, PA. Schultz, and A. Strachan 258

Development of algorithm for nanoparticle collision simulation using Molecular
Dynamics method

Y. Takato, J.B. Lechman, and S. Sen 272
Numerical Simulation of the Performance of a Resonant Tunneling Diode

A.S. Costolanski and A.G. Salinger 284
Architecture and Networking

E.C.Cyrand S.S. Collis i 295
A Lightweight, GPU-Based Software RAID System

M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 297
Super-Scale Real-Time Network Simulation on the Cray XT

Nathanael Van Vorst, Kevin Pedretti, Ron Oldfield 309
Application Support for Resilience in Exascale Systems

M.R. Varela and K.B. Ferreira and R. Riesen 320
Statistical Analysis of HPC Alerts and Developments in Root Cause Analysis

J.M. Vaughan, J.R. Stearley, S.A. Mitchell, and G. Michailidis 331
Techniques for Managing Data Distribution in NUMA Systems

AM. Merritt and K.T. Pedretti, 343
Integrating Router Power Models into the Structural Simulation Toolkit

K.D. Thompson, A.F. Rodrigues, and M. Hsieh 354
Process Layers for Discrete Event Simulation of Computer Systems

C.D. Kersey and A.F. Rodrigues 361
Reliability Simulation for Structural Simulation Toolkit

A.S. Williams and A.F. Rodrigues 371
Visualization and Software Engineering

EC. Cyrand S.S. Collis i 377
Information Visualization using VisTrails Technology

W.B. Silva and J.F. Shepherd 379
Comparison of Open Source Visual Analytics Toolkits

JR. Harger and P.J. Crossno i vii i iii e 389
Optika: A GUI Framework for Parameterized Applications

K. Nusbaum and M. A. Heroux 401
Epetra/AztecOO and related to Tpetra/Stratimikos and related: A Conversion Guide

K.F. Fermoyle and M.A. Heroux 410

Testing Engineering Software: Development and Testing of the Cubit Program
B.J. Hardy and BW. Clark, 422

E.C. Cyr and S.S. Collis 1

Computational Mathematics and Algorithms

Articles in this section focus on development of numerical algorithms and novel compu-
tational models. This includes discretization techniques, preconditioning methodologies, and
implementation of numerical algorithms on novel architectures.

Burch and Lehoucq discuss the nonlocal Cattaneo-Vernotte equation for anomalous dif-
fusion, introducing nonlocal boundary conditions. The effects of relaxation and nonlocality
are studied with a finite element formulation. Lai et al. present a new least squares finite el-
ement formulation for the Stokes equations that has improved mass conservation. To achieve
this, the formulation utilizes a novel discontinuous approximation of the velocity. Results
demonstrating the usefulness of this approach are given. Roberts et al. develop a discon-
tinuous Petrov-Galerkin method for the Stokes equations. There study and the numerical
experiments exposed several interesting avenues for future study. Phillips et al. investigate
block preconditioners for the unsteady Navier-Stokes equations. The authors perform numer-
ical experiments comparing several techniques for approximate the pressure Schur comple-
ment. Ballard et al. present an efficient implementation of the shifted symmetric higher order
power method for computing tensor eigenvalues. They show that a 70x speedup over a serial
implementation can be achieved when implemented on a GPU.

E.C. Cyr
S.S. Collis

December 17, 2010

CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 3

THE NONLOCAL CATTANEO-VERNOTTE EQUATION

NATHANIAL J. BURCH* AND RICHARD B. LEHOUCQ'

Abstract. We introduce the nonlocal Cattaneo-Vernotte equation by including a relaxation effect in the nonlocal
diffusion equation, both of which are models for anomalous diffusion. This equation has two different interpretations:
as a generalization of Fick’s first law in terms of a nonlocal flux and memory kernel and as an equation arising from
the generalized master equation for a continuous time random walk. Both interpretations are discussed and the latter
describes a scaling of relaxation time and nonlocality. A relationship to fractional diffusion equations in the limit
of vanishing relaxation time and nonlocality is also established. The main contribution of this paper is to introduce
nonlocal boundary conditions for the nonlocal Cattaneo-Vernotte equation, and the ensuing variational and finite
element formulations. Examples are given where the effects of relaxation time and nonlocality are studied.

1. Introduction. The classical Cattaneo-Vernotte equation
T
W + Ewtt = AWxx, (L.1)

where 7/2 > 0 is the relaxation time and a > 0 is the diffusion coefficient, is a model for
diffusion that admits finite speeds of propagation, specifically v2a/r. When w is a tempera-
ture field, (1.1) is a model of hyperbolic heat conduction [14]. Further, (1.1) arises from the
classical balance law, w,(x, t) = —¢g.(x, t), and a generalization of Fick’s first law in which the
flux is given by a convolution of the gradient of the field w and a relaxation kernel [12],

"2 =1
q(x,t) = —af —exp (—)wx(x, r)dr. (1.2)
0T T/2
The assumption (1.2) also takes the more familiar form of Cattaneo’s equation [7],
q+ %q, = —awy. (1.3)
The classical diffusion equation
Wp = QWi (1.4)

yields an infinite speed of propagation because its fundamental solution, i.e., the solution to
(1.4) with an initial condition given by the Dirac delta function, is

1 (x2)
exp|——|,
4nat dat

which is positive for all x, for any arbitrarily small ¢. This property has been referred to in the
literature as “unphysical” since disturbances are instantaneously propagated. Moreover, (1.4)
is incapable of capturing transient dynamics of the field in situations involving short times,
high frequencies, and short wave lengths [14]. One approach to remedy these issues is to
introduce a relaxation time [12] and a special case of this is the classical Cattaneo-Vernotte
equation (1.1), which overcomes the unphysical properties associated with infinite speeds of
propagation present in (1.4).

The diffusion equation (1.4) may be derived by combining the classical balance law
w; = —¢, and Fick’s first law

w(x, t) =

q = —awy. (1.5)

*Colorado State University, burch@math.colostate.edu
fSandia National Laboratories, rblehou @sandia. gov

4 The Nonlocal Cattaneo-Vernotte Equation

When the diffusion process is anomalous, e.g., does not obey Fick’s first law (1.5), other
models have been proposed. Examples include the fractional diffusion equation

v = —c(=A)"?v, 0<a<2, (1.6)

which includes (1.4) as the special case @ = 2 and ¢ = a, and the nonlocal diffusion equation

1
we) = 1 fR Uy, 1) — x, D)B(x = y) dy. (1.7)

The equation (1.7) has a probabilistic interpretation as a generalized master equation for a
continuous time random walk (CTRW). The rate of diffusion associated with u(x, f) depends
upon points y # x, e.g., the rate of diffusion is the difference in the rate at which u enters x
at time 7, 17! fR u(y, 1) ¢(y — x) dy, and the rate at which u departs x at time ¢, 1~ u(x,). The
mean wait-time between steps is A and, given the radial probability density ¢, the diffusion
coefficient is given by

1
). s*¢(s) ds.
Like (1.4), both (1.6) and (1.7) give rise to infinite speeds of propagation. We note (1.7) has
been used as a model for peridynamic heat conduction [4] and variations of it have appeared
in numerous applications [2, 6, 10].
This paper focuses on the nonlocal Cattaneo-Vernotte equation

(X, 1) + = (x,1) = ! f(”()’,) = u(x, 1)) ¢p(x — y)dy, (1.8)
2 B Jr

where ¢ is a radial probability density function, § is the mean wait-time between steps, and
7/2 > 0 is again the relaxation time. In (1.8), the diffusion coefficient is

%}Lsch(s)ds.

In the spirit of (1.7), (1.8) has replaced the second-order spatial derivative in (1.1) with the
nonlocal integral operator and, consequently, is a model for anomalous diffusion. With the
introduction of nonlocal boundary conditions, following [5], (1.8) becomes a model for non-
local hyperbolic heat conduction on bounded domains. The nonlocal Cattaneo-Vernotte equa-
tion (1.8), like (1.7) has a probabilistic interpretation. Thus, (1.8) is a model for anomalous
diffusion that can be derived from a CTRW framework.

The contribution of this paper is to investigate the effect of a nonzero relaxation time by
comparing solutions of nonlocal boundary value problems corresponding to (1.7) and (1.8).
The former was studied extensively in [5] and a conforming finite element method, which
depends on the variational framework presented in [11], to approximate solutions to these
nonlocal boundary value problems is used. We demonstrate a relationship between relaxation
time and nonlocality and the solutions of (1.8) converge to those of (1.6), as both relaxation
time and nonlocality vanish. Consequently, a relationship between (1.6)—(1.8) in the limit of
vanishing relaxation time and nonlocality is established.

The rest of this paper is organized as follows. Section 2 demonstrates how (1.8) arises
from a generalization of Fick’s first law in which the flux is given by a convolution of a mem-
ory kernel and a nonlocal spatial operator acting as the gradient of the field, in contrast to
(1.2). The relationships between (1.6)—(1.8) are also reviewed. Section 3 relates the nonlo-
cal Cattaneo-Vernotte equation to a continuous time random walk via the generalized master
equation. Nonlocal boundary conditions for (1.8) are reviewed in Section 4, as is the varia-
tional formulation and ensuing finite element method. Section 5 provides numerical examples
to illustrate the effects of nonzero relaxation time and nonlocality.

N.J. Burch and R.B. Lehoucq 5

2. Generalization of Fick’s first law and a nonlocal flux. In this section, we demon-

strate (1.8) arises via the classical balance law, u, = —o,, and a generalization of Fick’s first
law,
"2 r—1r\(1
1) = - - —p(x,t')|dr, 2.1
o(x, 1) foTeXp(7/2)(ﬁp(x)) (2.1)
where

1
plx,0) == —% f f (u(x + (1 = D)z,) — u(x — Az, 1))z¢(z) dA dz.
R JO

Differentiating (2.1) with respect to ¢ and rearranging reveals

T 1
o == 2.2
o+ S0 ﬁp, (2.2)
and so
1 T 1 T
U = _Bpx + Eer = _pr - Eutt (2.3)
Noll’s Lemma I [15, 18] implies that
1 1
——Pﬁxf)=—LfOKX+Lf%-M&fDM@dL (2.4)
B B Jr

and so (1.8) is established.

We now demonstrate a formal relationship between (1.8) and (1.1) in the presence of van-
ishing nonlocality. Fix 7 > 0, let 8 = &2, where & > 0, and define the symmetric probability
density

1
be(s) := g¢(s/e), (2.5)

where the given symmetric density ¢ satisfies'

fs2k¢(s)ds <oo, k=0,1,2....
R

As e — 0, ¢.(x — y) weights points nearby x more heavily, relative to points further away.
Necessarily, by specifying the second moment appropriately, the Fourier transform of ¢ has
an expansion of the form

36 =1 —algl? + o), a>0.

With ¢, in place of ¢ and assuming a formal Taylor expansion is valid for sufficiently small
&,

1 1 o o 1 Fulx, 0
Bp(x,t)——ELL ;[MX(X,I)Z +;Ez W ¢£(Z)d/ldz

1 o & u(x,n 1 o
=—aux(x,t)+gz ppeT (2k—1)!fRZ $:(2) dz
k=2

P u(x, f) 24D

= —au(x,1) + — fzzk(lﬁ(z) dz
kzz;‘ Ox*=1 2k -1)! Jr

I The assumption of symmetry of ¢ implies that the odd moments are zero.

6 The Nonlocal Cattaneo-Vernotte Equation
and, utilizing (2.2), we obtain an approximation of (1.3),
T 2
o+ EQ, = —au, + O(&”). (2.6)

Thus, in the absence of nonlocality, the nonlocal Cattaneo-Vernotte equation (1.8) reduces to
the classical Cattaneo-Vernotte equation (1.1). The effect of the density ¢, with 8 = &% as &
decreases is to “localize” the diffusion of (1.8). Indeed, taking ¢(x—y) = d(x—y)+ad”’ (x—y)
in (1.8) recovers (1.1). Moreover, if T = O(&?), (2.6) reduces to

0 = —au, + O(&?), Q2.7)

approximating (1.5). Thus, in the absence of both relaxation time and nonlocality, the nonlo-
cal Cattaneo-Vernotte equation (1.8) reduces to the classical diffusion equation (1.4).

Finally, we establish a relationship to the fractional diffusion equation (1.6). Suppose ¢
is a symmetric probability density function with the expansion

&) =1-clél” +o("). 0<a<2 (2.8)
for ¢ > 0, so that, defining ¢, via (2.5),

$o(&) = 1 = ce”|E]" + o(s71E]%).

Assuming 8 = &%, the Fourier transform of (1.8) gives

—~ — I~ —
&0 + S0 = — (3.6~)&
&

1 _
= ;(—ca‘llfl” + o(e” €|)ulé, »
= —clé|"uté, 1) + O("|€]"),

implying that u, in a formal sense, is approximately given by the fractional Cattaneo-Vernotte
equation

V(6 1) + %v,,(x, 1) = —c(=A)v(x, 1). (2.9

Further, if 7 = O(g%), u is approximately given by the fractional diffusion equation (1.6),
where equality can be shown in special cases of this limit via characteristic function tech-
niques. Evidently, the nonlocal boundary value problems corresponding to (1.8) are then
related to those of the fractional Cattaneo-Vernotte equation (2.9) and fractional diffusion
equation (1.6) in this limit.

3. The Nonlocal Cattaneo-Vernotte Equation and CTRWs. Another perspective of
the nonlocal Cattaneo-Vernotte equation (1.8) comes from CTRWs. We consider a separable?
continuous time random walk with a wait-time density w and a radial step-length density ¢.
One form of the generalized master equation, which is an equation for the time evolution of
the joint probability density function for the state of the CTRW, is

u(x, 1) = \fo Air-1) f (u(y,t') — u(x, t'))p(x — y)dydt’, (3.1)
R

>The assumption of separable simply states that wait-times and step-lengths are independent.

N.J. Burch and R.B. Lehoucq 7

where the Laplace transform of the memory kernel A is determined by that of w via

sw(s)
T—a(s)

We refer the reader to [3, 16] for a derivation and thorough discussion of (3.1). The memory
kernel A captures potential memory effects due to the wait-times. In fact, only when A(f) «
6(1) is the underlying CTRW Markovian, i.e., wait-times are exponentially distributed and are
therefore memoryless.

Literature demonstrating the use of (3.1) in the modeling of diffusion processes is plen-
tiful. For instance, taking A(?) = %60) gives rise to the nonlocal diffusion equation (1.7).
If ¢ is a weighted average of Dirac measures on an integer lattice, then (3.1) describes the
probability density of the CTRW on thqg lattice; see [13]. Moreover, see [16, 17], subdiffusive
processes have been studied by taking A(s) = s'™, u € (0, 1). The following lemma provides
conditions for (3.1) to yield (1.8).

Lemma 3.1. The nonlocal Cattaneo-Vernotte equation (1.8) is obtained from (3.1) by
taking

A(s) = (3.2)

, _lg _t—t’
A(t—t)—ﬁTexp(T/Z) 3.3)

and imposing the restriction B > 2t1. The assumption (3.3) is tantamount to

ﬁexp(—%t), p =11,
w(t) = 2 W
m eXp (T) sinh [ﬁT

Proof. First, (3.4) is implied from (3.2) and (3.3) via Laplace transform techniques and,
in the process, we find § > 27 if and only if w(f) > O for all ¢ > 0, which is necessary for w
to be a probability density. Insertion of (3.3) into (3.1) and differentiating with respect to ¢
yields

(3.4)
t], B> 2t.

2 12
uy(x,1) = —;uf(x, 1)+ Bt f (u(y,) — u(x,))p(x — y) dy
R

and thus, upon rearranging, (1.8). 0

The special case 8 = 27 implies W ~ Gamma(2, 7), where W is the wait-time random
variable. For the duration of the paper, we restrict’ ourselves to 8 > 27 so that we have
an interpretation from a CTRW perspective. This restriction has appealing consequences as
well, e.g., positivity of solutions and conservation of mass. We note

w(s) =

Z E(Wk — Bs +o(s),

prs? + 2ﬁs +2 L

which shows that the mean wait-time is indeed 8. Recalling also (2.8), we compute the so-
called pseudo mean square displacement [17] of a random walker,

th]/a
f Xulx,t)dx ~ 212,

_th]/a

3This restriction is necessary for a CTRW interpretation, but might be relaxed in other contexts.

8 The Nonlocal Cattaneo-Vernotte Equation

which is the mean square displacement on a bounded interval that grows in size with . When
a €(0,2),2/a > 1and (1.8) is thus a model for anomalous superdiffusion [17]. One considers
a pseudo mean square displacement in this situation, since the true mean square displacement
is infinite for any a € (0, 2). In the special case when « = 2, the diffusion is not anomalous.

4. The Nonlocal Cattaneo-Vernotte Equation on Bounded Domains. The results in
[11] provide a variational formulation for nonlocal boundary value problems for (1.8). This
follows closely to that presented for the nonlocal diffusion equation (1.7) in [5]. Before giving
these variational formulations and describing the ensuing finite element method, we establish
some notation.

We consider the bounded domain Q = (0, 1). Define the bilinear form

1
Bi(u,v) := 3 ff(u(y, 1) — u(x, 1))(v(y) — v(x)) p=(x — y) dy dx, 4.1)
1 J1

t{hfdx<a%,
1

and V; denote possible choices for the subspaces of test and trial functions, with

1 1
1% |]R\(0,1)= 0} and V((),l) = {V (S V((),l) ’ ‘fo vdx = L upy dx},

where u(x, 0) = up(x) is a given initial density.
The nonlocal homogeneous Dirichlet (I = R) and Neumann (I = (0, 1)) boundary value
problems for (1.8) are presented together: Find u € V; x (0, o0) such that

where I € {R, (0, 1)}. Let V; = L*(I), where

LZ(I) = {v

VRZZ {VGVR

u(x, 1) + %un(x, 1) = é fl (u@, 1) —u(x,0))p(x —y)dy, x€(0,1),

u(x,0) = up(x), x€(0,1),
u(x,0) =0, x € (0,1).

4.2)

We present a useful result from [9].
THEOREM 4.1 (Emmrich and Weckner (2006)). Suppose

1 pl
Ko = esssup,; |[Ko(x)] < 0o and «:= f f |K(x, y)I” dydx < co.
0 Jo
For a given uy € V;, there is a unique mild solution u € C*([0,T1; V) to

1
%uz(x,)+ uy(x, 1) = f K(x, y)u(y, 1) dy — Ko(x)u(x, 7).
0

We remark that existence and uniqueness of solutions to (4.2) follows from Theorem 4.1
with

2 2
K(x,y):= —¢(x—y) and Ko(x) = f —¢(x —y)dy.
8 1B
The variational formulations to (4.2) are: Find u € V; x (0, o0) such that

| |
1

f uvdx + If uvdx + =By(u,v) =0, YvevV,
0 2 Jo B

u(x,0) = up(x), x€(0,1),
u(x,0) =0, x€(0,1).

4.3)

N.J. Burch and R.B. Lehoucq 9

We refer the reader to [5, 11] for more details concerning the variational formulations.

The nonlocal Dirichlet boundary condition constrains the field # on R \ (0, 1), which
is analogous to the classical Dirichlet boundary condition that does so on {0, 1}. For the
nonlocal Neumann boundary condition, the integral in (4.2) is only over (0, 1) rather than
all of R. This constrains diffusion to occur only inside (0, 1), i.e., density neither enters nor
exits (0, 1), which is analogous to the classical Neumann boundary condition. Further, since
B,1)(u, 1) = 0, the compatibility condition necessary for the Neumann problem to possess a
solution is

1
f u(x,t)ydx :=ug, Vt>0, “4.4)
0

which is a statement that the integrated quantity u is conserved for all time.

THEOREM 4.2. Let u € C*([0,T1; V) be the unique solution to (4.2). Then, u,(x,t) —=0,
as t — oo, for almost every x € (0, 1).

Proof. Multiply (4.2) by u,(x, t), integrate over x € (0, 1), and then integrate in ¢ to obtain

T

I \f;u,z(x, tHydx = # (B (ug, ug) — By(u, u)) — \f(; ﬁu?(x, s)dxds

and thus
! !
Bi(uo, uo) = By(u,u) + 2B f f u?(x, s)dxds > 28 f f u?(x, s) dx ds.
0 JI 0 JI

Since B;(ug, ug) < oo, u,(x,t) € L*(I) for all ¢ and
e, Dy = f, 2(x, 1) dx —> 0.

The completeness of LX(]) implies that u,—g with [|g|l;2;) = 0, 1.e., g = 0 almost everywhere
and, thus, u, — 0 for almost every x € (0, 1). O
A stationary solution to (4.2), uy € V;, solves

fl‘(us(y) —us(x)p(x —y)dy =0, ¥x € (0,1).

The results in [8, 11] demonstrate that the unique stationary solution of the homogeneous
Dirichlet problem is u; = 0 and that of the homogeneous Neumann problem is u; = up.
Consequently, a simple corollary to Theorem 4.2 is u(x,t) — uy(x) as t — oo for almost
every x € (0, 1).

4.1. A Semi-discrete Finite Element Formulation. To formulate the finite element
method, we partition (0, 1) into n subintervals Q; and let y;(x) be the indicator function for
Q;. We denote the space of piecewise constant functions on the subintervals €; by V('f) b Note

any u, € V!

o1 X (0, 00) can be written

(6,0 = D ().

J=1

The discrete variational problem is then: Find u;, € V(% 1y X (0, o0) such that

My + %Mj’/ - —Ay,

10 The Nonlocal Cattaneo-Vernotte Equation

where M and A are the mass and stiffness matrices defined by

ffzﬁg(x ydydx, i#}

M;; = Q| and Alj
f ¢e(x —y)dydx, i=.
Q; JI\Q;

For the Neumann problem, in light of (4.4), u;, € V" = x (0, o) is extracted by enforcing that

0,1)

n
PRZGIE
j=1

5. Numerical Experiments and Examples. In this section, we present two examples
to demonstrate various properties of numerical solutions of the nonlocal Cattaneo-Vernotte
equation on bounded domains. In each example, ¢, is defined in (2.5) and we use the scaling

B =21 =ce”, (5.1

where @ and ¢ are given in (2.8), so that we have both the probabilistic interpretation in
Section 3 and a relationship to fractional diffusion established in Section 2.

The first example examines a nonlocal Cattaneo-Vernotte equation with homogeneous
Neumann boundary conditions that admits an analytic solution for any initial condition. We
demonstrate that solutions can be viewed as perturbations of solutions to the corresponding
nonlocal diffusion equation (1.7) and we investigate the effects of a nonzero relaxation time.
In Example 2, we consider the discontinuous initial condition

0. 0<x<05,
_ 52
to () {L 05<x<l. (5-2)

and investigate the effects of vanishing relaxation time and nonlocality, i.e., letting e—0, on
the solutions to a nonlocal Dirichlet boundary value problem. We use Lévy stable densities
of various stability indices to illustrate the relationship to classical and fractional diffusion in
this limit.

Example 1. Consider the nonlocal homogeneous Neumann Cattaneo-Vernotte equation

&2 6 1
U+ iy = — f (u(y, 1) — u(x, 1))pe(x — y)dy, x€(0,1),
24 82 0 5 3
u(x,0) = up(x), x€(0,1), (5-3)
u;(x,0) =0, x€(0,1),

where
Pe(s) = X (- ss)(s) e>1,

so that @ = 2, ¢ = 1/6, and, consequently, 5 = £2/6 and T = £2/12. The goal of this example
is to consider the case of increasing ¢, e.g., increasing nonlocality.

In this example, since € > 1 and supp(¢(x — y)) contains (0, 1) for all x € (0, 1), (5.3)
reduces to an ordinary differential equation whose solution can be given as a convex combi-
nation of the initial condition uy(x) and the constant 1,

ue(x, 1) = uo(l = £o(7)) + Le(Duo(x), (5.4

N.J. Burch and R.B. Lehoucq 11

() =¢e 12t ! sinh 12 1 ! t|+ cosh 12 1 ! t
(1) =exp|—-— Sa— _\, - — —4[1==—t]].
; P g2 1—% g2 2¢e &2 2¢e

The function £.(#) € (0, 1] is a strictly decreasing function that tends to zero as t — co. If
up(x) = up for some x € (0, 1), then x is a fixed point, i.e., u(x,t) = up(x), for all ¢+ > 0.
Also, the monotonicity of £, implies u(x,t) , up if up(x) < up and, likewise, u(x, 1) \, up
if up(x) > up as t —> 0. As & —> o0, {.(t) — 1 for any fixed # < co. Thus, u.(x,) can be
well-approximated by uy(x) for arbitrary large finite time by choosing & sufficiently large.

In [5], it was shown that the solution of (1.7) with homogeneous Neumann boundary
conditions,

where

6 1
U = ; f(; (u(y, 1) — u(x, l))(ﬁg(x —-y)dy, x€(0,1),

(5.5)
u(x, 0) = up(x), x€(0,1),
for the same ¢, as in (5.3), is also given by a convex combination of u,(x) and u,
ug(x, 1) = up(l = £4(@) + La(®uo(x), (5.6)

where
3
Lat) = exp (——3r) :
&
Thus, solutions of (5.3) can be given by

ue(x, 1) = ug(x, 1) + (L(t) = La())uo(x) — uo),

the sum of the solution to (5.5) and a perturbation (£.(¢) — £4(¢))(uo(x) — up) due to a nonzero
relaxation time. Since uo(x) and u are fixed for a given initial condition, we study the differ-
ence u.(x,t) — ug(x,) simply by investigating £.(t) — £4(?).

In Fig. 5.1, we plot £.(f) — {4(¢) for t € [0,3] and € € [1,3]. As t—=oc0, £ (1) — {4(t)—=0,
but more slowly for increasing &. This reflects agreement of stationary solutions for the two
problems. For small values of ¢, {.(f) > {,(#), which is an effect of the nonzero relaxation
time. After this short time frame, {.(r) — {4(t) = O, i.e., the solutions agree exactly at some
point in time ¢ > 0, and then {.(f) < {(¢) for the duration of time. These observations hold
for all &, but are less dramatic as & increases.

0.08 0.08]
0.06) 0.06]
0.04 0.04

0.02 0.02]

—0.02
0.07)

05 1 15 2 25 3 0.5 1 1.5 2 2.5 3

(a) e=1landt€[0,3] (b) e €[1,3]and t € [0, 3] (c) e=5/4andt € [0,3]

FiG. 5.1. The vertical axis is {(t) — £4(t) in all three panels. In panels (a) and (c) the horizontal axis is t € [0, 3].

12 The Nonlocal Cattaneo-Vernotte Equation

0.5 {—s 0.5]
— \'\\\\ T

’\ \

0 0 o

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(a) a=2,e=1/4 b) a=2,e=1/8) a=2,e=1/16

0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 0.8 1

(d) a=3/2,e=1/4 (e) a=3/2,e=1/8) a=3/2,e=1/16

0.5]
()
0 02 04 0.6 0.8 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
(g)a=1,e=1/4 (h)y a=1,6=1/8 (i) a=1l,e=1/16
1 —_— 1 e 1
N
0.5] 0.5] 0.5
0 0 U
0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
§)a=1/2,e=1/4 k) a=1/2,e=1/8 1) a=1/2,e=1/16

FiG. 5.2. Each panel shows solutions to the nonlocal homogeneous Dirichlet problem for different « and €. The
density ¢% is used, where ¢* is a Lévy stable density with index of stability a. Since ¢ = 1, we take 2t = &*. The
vertical axis in each panel is the value of up(x,t) and the horizontal axis is x. The ten different solution profiles in
each panel correspond to the solutions at ten different times, t € [0,0.25].

Example 2. The fractional diffusion behavior of boundary value problems for (1.8) is exam-
ined by choosing ¢ = ¢“ to be a symmetric and centered Lévy stable density with stability
index @ € {2,3/2,1,1/2}. As explained in Section 2, a represents the fraction of the Lapla-
cian in the equations (1.6) and (2.9). Such Lévy stable densities, normalized so that ¢ = 1,
are characterized, via the Lévy-Khintchine representation, through their Fourier transforms,

N.J. Burch and R.B. Lehoucq 13

ie.,

¢"(s) = F ' (exp (—I€1") (), (5.7)

see [1, §§ 1.2.5]. We use (2.5) to define ¢ and the cases @ = 2, 1 yield closed-form expres-
sions for ¢Z:

1\ 5
=
€ &

m(s? + &2)’

which are Gaussian and Cauchy densities, respectively. Although other values of o do not
admit a closed-forms for ¢Z(s), they can be estimated by approximating (5.7). Regardless of
a, ¢* is symmetric and unimodal. For @ < 2, the second moment is infinite and for a < 1, all
moments are infinite.

Fig. 5.2 plots the time-evolutions of the approximate solutions to the nonlocal homoge-
neous Dirichlet boundary value problem described in (4.2) given by the finite element method
with mesh spacing 7 = 5-10™* and ¢ € [0, 0.25]. We consider a € {2,3/2, 1, 1/2} and various
&. The solutions of with ¢2 behave asymptotically, with respect to &, as solutions to the clas-
sical diffusion equation (1.4). However, the asymptotic behavior of solutions of with ¢2*? is
given by a fractional Laplace parabolic equation (1.6). Consequently, the magnitude of the
jump discontinuity in the initial data decays more slowly in these latter cases.

REFERENCES

[1] D. Applebaum. Lévy Processes and Stochastic Calculus, volume 93 of Cambridge studies in advanced math-
ematics. Cambridge, 2004.
[2] G. L. Aranovich and M. D. Donohue. Eliminating the mean-free-path inconsistency in classical phenomeno-
logical model of diffusion for fluids. Physica A: Statistical Mechanics and its Applications, 373:119-141,
2007.
[3] K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Taasan. Towards a statistical theory of
texture evolution in polycrystals. SIAM Journal on Scientific Computing, 30(6):3150-3169, 2008.
[4] F. Bobaru and M. Duangpanya. The peridynamic formulation for transient heat conduction. International
Journal of Heat and Mass Transfer, 53(19-20):4047-4059, 2010.
[5] N. Burch and R. B. Lehoucq. Classical, Nonlocal, and Fractional Diffusion Equations. International Journal
for Multiscale Computational Engineering, 2010. To appear.
[6] C. Carrillo and P. Fife. Spatial effects in discrete generation population models. Journal of Mathematical
Biology, 50(2):161-188, 2005.
[7] C. Cattaneo. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3(3):21, 1948.
[8] E.Chasseigne, M. Chaves, and J. D. Rossi. Asymptotic behavior for nonlocal diffusion equations. Journal de
mathématiques pures et appliquées, 86(3):271-291, 2006.
[9] E. Emmrich and O. Weckner. The peridynamic equation of motion in non-local elasticity theory. In III
European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engi-
neering, Lisbon, Springer, volume 19, 2006.
[10] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. UCLA CAM Report, pages
07-23, 2007.
[11] M. Gunzburger and R. B. Lehoucq. A nonlocal vector calculus with application to nonlocal boundary value
problems. Multiscale Modeling and Simulation, 2010. To appear.
[12] D.D. Joseph and L. Preziosi. Heat waves. Reviews of Modern Physics, 61(1):41-73, 1989.
[13] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger. Generalized master equations for continuous-time
random walks. Journal of Statistical Physics, 9(1):45-50, 1973.
[14] G. Lebon, D. Jou, and J. Casas-Véazquez. Understanding Non-equilibrium Thermodynamics: Foundations,
Applications, Frontiers. Springer Verlag, 2007.
[15] R. B. Lehoucq and O. Anatole von Lilienfeld. Translation of Walter Noll’s “Derivation of the Fundamental
Equations of Continuum Thermodynamics from Statistical Mechanics”. Journal of Elasticity, 100:1-20,
2010.

14

The Nonlocal Cattaneo-Vernotte Equation

[16] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas. Fractional calculus and continuous-time finance II:

the waiting-time distribution. Physica A: Statistical Mechanics and its Applications, 287(3-4):468-481,
2000.

[17] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach.
Physics Reports, 339(1), 2001.

[18] W. Noll. Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen

Mechanik. Indiana Univ. Math. J., 4:627-646, 1955. Original publishing journal was the J. Rational

Mech. Anal. See the English translation [15].

CSRI Summer Proceedings 2010 15

A DISCONTINUOUS VELOCITY LEAST SQUARES FINITE ELEMENT METHOD
FOR THE STOKES EQUATIONS WITH IMPROVED MASS CONSERVATION

JAMES LAIY, PAVEL BOCHEV!, LUKE OLSON!, KARA PETERSON** DENIS RIDZAL'l AND CHRIS
SIEFERT*

Abstract. Conventional least squares finite element methods (LSFEM) for incompressible flows conserve mass
approximately. In some cases, this can lead to an unacceptable loss of mass and unphysical solutions. In this report
we formulate a new, locally conservative LSFEM for the Stokes equations which computes a discrete velocity field
that is point-wise divergence free on each element. To this end, we employ discontinuous velocity approximations
which are defined by using a local stream-function on each element. The effectiveness of the new LSFEM approach
on improved local and global mass conservation is compared with a conventional LSFEM employing standard C°
Lagrangian elements.

1. Introduction. Least-squares finite element methods (LSFEMs) have been applied
to incompressible flows with varying success. The key issue is that LSFEMs are residual
minimization schemes and hence conserve mass only approximately. For some problem con-
figurations, this can lead to an unacceptable loss of mass and unphysical solutions. A locally
conservative mimetic LSFEM has been defined for the Stokes equations in [4] and [3, Sec-
tion 7.7] using compatible finite element spaces. However, the mimetic LSFEM requires
non-standard boundary conditions specifying the normal velocity and the tangential vorticity
on the domain boundary. So far, it has not been extended to the more common and practically
important velocity boundary condition and it is not clear whether or not this can be done.

Mass conservation in least squares methods for the Stokes equations with the velocity
boundary condition has been studied extensively in literature [6, 9, 10, 13, 14, 15]. Loss
of mass in LSFEMs can be countered by mesh refinement [13], high order elements [16],
modifying the least-squares functional [15], weighting the continuity equation more strongly
[10], or by enforcing it on each element by Lagrange multipliers [9]. However, neither one
of these approaches can be deemed completely satisfactory.

Mass conservation does not improve proportionally with mesh refinement—leading to
an impractical alternative. High order elements require an increased amount of storage and
computation and the improvements to mass conservation are not commensurate with the ad-
ditional cost [13, 15]. Modifying the least squares functional with terms that promote mass
conservation has proven to be very successful [15], however, it is an ad hoc way of improving
mass conservation and may depend on the problem on hand. Another alternative is to enforce
element-wise mass conservation using Lagrange multipliers [9]. While this approach yields
exact mass conservation on each element, it also results in a saddle-point system, thereby
negating the main reason one may want to consider LSFEMs.

An idea that has not been explored much in the context of LSFEMs is the use of dis-
continuous elements. Discontinuous LSFEM can be viewed as generalizations of LSFEMs
for transmission and mesh-tying problems; see [1], [3, Section 12.10] and [8], from a fixed
number of subdomains to an arbitrary number of subdomains.

In this report we formulate, in two stages, a new locally conservative LSFEM for the
Stokes equations with the velocity boundary condition by using discontinuous velocity ap-
proximations. Our starting point is a weighted L? least-squares formulation [2] employing

$University of Illinois at Urbana-Champaign, Department of Computer Science, jhlai2 @illinois.edu
ISandia National Laboratories, ppboche @sandia.gov
IUniversity of Tllinois at Urbana-Champaign, Department of Computer Science, lukeo@illinois.edu
**Sandia National Laboratories, kjpeter @sandia.gov
fSandia National Laboratories, dridzal @sandia. gov
*¥Sandia National Laboratories, csiefer@sandia. gov

16 Discontinuous Least Squares Finite Element Methods

conventional C° elements and the velocity-vorticity-pressure (VVP) form of the Stokes equa-
tions. The first stage relaxes the continuity of the velocity field only and adds new terms
which penalize the normal and the tangential jumps of the velocity across the element inter-
faces. We show that by adjusting the relative importance of the normal and tangential jump
terms this intermediate discontinuous velocity LSFEM can lead to noticeable improvements
in the mass conservation. However, the weights required for improved mass conservation
differ from problem to problem, thereby making this formulation insufficiently robust for
practical problems.

At the second stage, we proceed to define the discontinuous velocity field on each el-
ement as the curl of a local stream-function. This guarantees that the velocity is pointwise
divergence free on each element. Thus, our approach can be interpreted as implementation
of the intermediate discontinuous velocity LSFEM using locally divergence free basis for the
velocity. This idea bears some similarity with the discrete LSFEM in [7] with two crucial dis-
tinctions. First and foremost, the method in [7] is not a discontinuous formulation; in order to
cope with the discontinuity in the approximating space this method replaces the differential
operators by weak discrete versions defined using integration by parts. The second distinc-
tion is that we eliminate completely the velocity and work directly with the stream function,
whereas [7] retains the original fields.

The resulting discontinuous stream-function-vorticity-pressure (SVP) LSFEM is locally
conservative and offers a much improved global and local mass conservation compared to its
parent LSFEM employing C” elements. We demonstrate the usefulness of the new formula-
tion through a series of numerical examples.

1.1. Notation. For simplicity we restrict attention to two space dimensions and bounded,
simply connected regions Q c R? with Lipschitz-continuous boundary. In what follows we
use the standard notation H*(€) for the Sobolev space of all square integrable functions which
have square integrable derivatives of orders up to k. The norm and inner product on H* are
| - |lx and (-, -)x, respectively.

As usual, when k = 0 we write L*(Q), (-,-) and | - [lp. The symbol H/(€2) denotes a
subspace of H'(Q) of functions whose trace vanishes on 9Q and Lg(Q) is the subspace of L?
fields with vanishing mean. The dual of Hé (Q) is the space H~'(Q) with norm

oy = sup 222 (1.1)
veH)(Q) Vil
Vector valued fields and their associated function spaces are denoted by bold face sym-
bols, e.g., w = (u;,u») is a vector field in two dimensions and H'(Q) is the Sobolev space of
vector fields with components are in H'(Q). In two dimensions, the curl is defined for scalar
and vector functions as

wa=[_‘2], VXu=uy —uy. (1.2)

We use K to denote a partition of Q into finite elements K. In two dimensions K can be a
quadrilateral or a triangle and the interface between two elements is an edge e. The sets of all
interior and boundary edges in the mesh are denoted by &(Q) and &(I'), respectively. Finally,
E=E(Q) U EN) is the set of all edges in the mesh.

The standard C° finite element spaces of degree r > 0 on quadrilateral and triangular
grids are denoted by Q, and P,, respectively. We will also need their discontinuous versions
[O,] and [P,]. When the type of the element is not important we write R, and [R,] with the
understanding that R, = Q, on quadrilaterals and R, = P, on triangles.

J. Lai, P. Bocheyv, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 17

Discontinuous finite element methods require various jump terms on element interfaces.
Let K, and K_ be two adjacent elements that share edge ¢ and denote the velocities on each
element by u* and u~ respectively. Define the jump in normal and tangential components
across e as

+ —

[u-nj=u"n"+u 'n", [uxnl=u"xn"+u xn. (1.3)

where n* and n~ are the outer normals on K" and 0K~ respectively. The jump of a scalar
function is defined as usual by the difference

Wl=y" -y~ (1.4)

2. The continuous prototype least-squares method. In this section we review the
weighted L? least-squares method for the Stokes equations which is the prototype for the
discontinuous, locally conservative LSFEM. In terms of the primitive variables the governing
equations assume the form

-Au+Vp =f onQ
2.1)
V-u =0 onQ

where u and p are the velocity and the pressure, respectively, and f is a given vector func-
tion specifying the body force. The system (2.1) is augmented with the velocity boundary
condition

u=0 onodQ 2.2)

and the zero mean pressure constraint

LdeZO. 2.3)

The first equation in (2.1) governs conservation of momentum while the second (continuity
equation) governs conservation of mass.

Least-squares methods for (2.1), (2.2) and (2.3) are usually defined using an equivalent
first-order form of the Stokes equations. This eliminates the need for globally H>-conforming
finite elements which require C! continuity and are difficult to construct. There are several
first order formulations of the Stokes equations to choose from, the most common being the
velocity-vorticity-pressure formulation in which the vorticity

w=Vxu (2.4)
is introduced as a new variable. Using the identity,
VxVxu=-au+V(V-u) (2.5)

and the continuity equation, we arrive at the velocity-vorticity-pressure (VVP) first order
formulation of the Stokes equations

VXxw+Vp =f onQ
w—-Vxu =0 onQ (2.6)
V-u =0 onQ

The VVP system is augmented with the velocity boundary condition (2.2) and the zero mean
constraint (2.3).

18 Discontinuous Least Squares Finite Element Methods

2.1. Weighed L? least-squares method. LSFEMs define unconstrained minimization
problems via residual minimization over an appropriate Hilbert space. Thus, the LSFEM
solution is given by the solution to the minimization of a norm-equivalent functional devised
using the squares of the residuals of each equation of the partial differential equation in the
appropriate norm. The resulting discretized system that minimizes the functional over the
finite element subspace is guaranteed to be symmetric and positive definite.

One can show that for the VVP system with velocity boundary conditions, the negative
norm functional

I, piH) = IVxw+Vp—fI2, + VX u-olf+IV-ull; 2.7

is norm equivalent on X_; = [Hé (] x LX(Q) x L(%(Q). A least squares principle for (2.6) is
to minimize (2.7) over X_.

The negative norm (1.1) admits the following characterization [3].

Tueorem 2.1. For any u € H'(Q)

el = fJ=2)""ulf; 2.8)

This theorem reveals that the negative norm is not easily computable because it requires
inversion of the Laplace operator. Therefore, to obtain a practical LSFEM it must be approx-
imated. The diagonal operator

(=2)""2 v hT (2.9)

gives a simple, yet sufficiently accurate for our purposes approximation of the negative norm
[3]. Using (2.9) the first term of (2.7) is approximated by

IVxw+Vp—fl}, ~ B IVxw+Vp -1l (2.10)
We arrive at the following discrete version of (2.7)
Jﬁl(uh,(uh, Ph,f) -

2.11
A P S L R
where (1", ", p") € X" = [R(Q) N Hé(Q)]2 XR_1(QNH Q) XR_ N L%(Q), r>1. We
refer to (2.11) as the weighted L, method' since it is composed of L, norms of the squares
of the residuals of each equation scaled by an approximate mesh weight. In what follows we
restrict attention to the lowest-order admissible space, i.e., r = 2.

One can show that (2.11) is well-posed and optimally convergent formulation [3]. In
particular, the following theorem holds [3].

THEOREM 2.2. Let (", ", p") € Xg be a solution to (2.11), and (u, p, h) € X be the exact
solution to (2.6), such that u € H}(Q), w € HX(Q) and p € H*(Q). There exists a constant
C > 0 such that

lu = w|f} + [l = ||, + [lp = P]l, < € (huls + llwlls + 1pll) - (2.12)

!For simplicity, in our implementation of the weighted method the one dimensional nullspace of the pressure
is eliminated by setting the pressure on the boundary to zero at one point instead of enforcing (2.3). These two
approaches to handling the one dimensional nullspace of the pressure are equivalent; however, the choice affects the
convergence of the iterative method used to solve the system. A comparison can be found in [3].

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 19

From Theorem 2.2, we see that using a quadratic/biquadratic approximation for the ve-
locity and linear/bilinear approximations for the vorticity and pressure result in optimal con-
vergence rates. Nonetheless, for simplicity we work the equal-order version of the finite
element space

X;’ = (Ry(Q) N HY(Q))* X Ro(Q) N H'(Q) X Ry N L(Q). (2.13)
We use (2.11) as a basis for our discontinuous velocity LSFEM.

2.2. Mass conservation in the weighted L’ least-squares method. Theorem 2.2 as-
serts that the weighted L? method is optimally accurate for all sufficiently smooth exact so-
lutions of the Stokes equations. This means that asymptotically ||V - u|| — 0, as h — 0.
However, on a given fixed mesh size this term cannot be guaranteed to be as small as may
be required, nor could its convergence to zero be assured for insufficiently smooth velocity
fields. In this section we show that these concerns are not unfounded and that in some cases
mass loss in the weighted least-squares method can be significant.

To this end we consider two standard test problems: the backward-facing step flow,
shown in Fig. 2.1, and a channel flow past a cylinder, shown in Fig. 2.2. For the backward-
facing step problem the domain is the rectangle [0, 10] x [0, 1] with a reentrant corner at
(2,0.5). The velocity boundary condition is specified as follows. On the inflow (x = 0) and
outflow (x = 10) walls

w, = [S(y - 0-3)(1 —y)} and u,, = [y(lo— y)] ’ (2.14)

respectively. Along all other portions of the boundary u,,,; = 0 is enforced.

The geometry of the second test problem is given by the rectangle [—1, 3] x[—1, —1] with
a disk of radius r = 0.6 centered at (0, 0), removed from the domain. The velocity boundary
condition for this problem is set as follows. On the inflow (x = —1), outflow (x = 3), top
(y = 1) and bottom (y = —1) sides

(I =y +y)

Wi = Woyr = Wyt = [0 . (2.15)

and on the surface of the “cylinder” u.,; = 0. Therefore, velocity is set to zero on all parts of
the boundary except for the inflow and the outflow portions of JQ.

Note that in both test problems specification of the velocity boundary condition is com-
patible with V - u = 0 because fluid enters and leaves the domain only through the inflow and
the outflow boundaries, respectively and

f ui,,-ndé’:f U, - hdl (2.16)
Lin Lou

To assess the mass conservation properties of the least-squares methods considered in this
report we measure the total mass flow across several vertical surfaces connecting the top and
the bottom sides of the computational domains. The lines marked by “S” in Figures 2.1-2.2
show two typical examples of such surfaces for the two test problems. Because the greatest
mass loss for the backward-facing step is expected near the reentrant corner we always place
one of the surfaces at x = 2. For the second test problem we always measure the flow across
the surface at x = O where the domain narrows due to the cylindrical cutout.

Because for both test problems velocity is zero on all parts of the boundary except I';,
and I',,,, from the divergence theorem it follows that

fu-nind€=fu'n5d€. (2.17)
T s

20 Discontinuous Least Squares Finite Element Methods

10 Uwall

Uin
0.5 S Uout

2.0 Uwall 10.0
FiG. 2.1. Geometry of the first test problem: backward-facing step.
1.0 Uwall
Ucyl
. Y
Ugn Uout

-1.0 Uywall 3.0

FiG. 2.2. Geometry of the second test problem: flow past a cylinder.

Therefore, mass conservation can be quantified by the precent mass loss across the surface S,

defined as follows:
f u~n,-,1d€—fu-nsd€
Ly N

fu'n,-nd{’
r

in

(2.18)

Mipss =

To assess mass conservation properties of the weighted L? formulation we solve the two
test problems using the following modified version of the weighted L? least-squares func-
tional

J®, o, pli gt = 019,
RV x o+ Vp" £+ |V x =] + |V} '

implemented using the equal order space (2.13). This modification has been proposed in
[10] as a way to improve mass conservation in least-squares methods. By increasing u we
increase the relative importance of the residual of the continuity equation, thereby promoting
mass conservation. In our study we use u = 1, u = 10 and u = 20.

Our results are summarized in Figure 2.3. We see that for u = 1 the least-squares solution
of the backward-facing step problem experiences severe mass loss in excess of 50% of the
total mass near the reentrant corner. Increasing u does improve conservation, however, mass

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 21

mu=1

—20

% mass loss
% mass loss

FiG. 2.3. Percent mass loss of (2.19) for the backward-facing step (left panel) and the flow past a cylinder (right
panel) test problems.

loss remains unacceptably high even for u = 20. We note that significant increase of yu is
not recommended as this will reduce the accuracy of the other terms in the functional and
compromise, e.g., conservation of momentum. Indeed, by increasing the weight of a single
term in the least squares functional, it is in effect decreasing the weight of the other terms.
Thus, by choosing a large weight for ¢ to promote mass conservation, we are effectively
demoting conservation of momentum. The mass loss in the second test problem is not as
severe but still significant at 7%. In this case, setting u = 20 helps to bring down the loss of
mass across the narrowings to about 2%.

RemARK 1. Exact element-wise mass conservation with C° elements has been achieved
in the so-called restricted least-squares method [9]. In the restricted LSFEM mass conserva-
tion on each element is added as an explicit constraint leading to the following constrained
minimization problem:

. hoh ho .
min JI, (", W, pi)
X

' (2.20)
subject to f (V . uh) dK =0, VKe¥K
K

Although (2.20) returns a solution with exact element-wise mass conservation, the system
is typically solved using Lagrange multipliers and results in a saddle-point system which
negates the advantages of using least-squares in the first place. The constrained optimization
problem can also be solved by a penalty approach, in which case one is led back to a for-
mulation similar to (2.19) with a very large u. Because the penalty must be strong enough
to enforce the constraint accurately, the penalty formulation of (2.20) suffers from the same
disadvantages as (2.19).

In the next section we explore an alternative approach to improve mass conservation in
least-squares methods based on allowing discontinuous velocity spaces in the formulation.

3. Discontinuous velocity least-squares finite element method. Numerical results in
the last section show that least-squares methods with C° elements can suffer from severe
mass loss which in some cases may exceed 50% of the total mass. Furthermore, the remedies
available to counter this loss are not satisfactory: weighting strongly the continuity equation
residual as in (2.19) reduces conservation of momentum, while using the restricted formula-
tion (2.20) leads to a saddle-point problem and negates the advantages of least-squares.

The option of using div-conforming elements to achieve exact mass conservation in least-
squares methods has been explored in [4]. However, the resulting mimetic LSFEM requires

22 Discontinuous Least Squares Finite Element Methods

non-standard boundary conditions for the Stokes equations, and its extension to the practically
important velocity boundary condition is not clear.

Consequently, in order to improve mass conservation in LSFEMs for the Stokes equation
with the velocity boundary condition we propose to employ a discontinuous finite element ap-
proximation of the velocity, while retaining C° elements for the rest of the variables. In so
doing we achieve two objectives. First, we keep the growth of the degrees of freedom to a
minimum, compared to a fully discontinuous formulation. Second, relaxation of the interele-
ment continuity of the velocity space allows a greater flexibility in the choice of the local
finite element approximation of that variable. In particular, it becomes possible to consider
locally divergence-free spaces which would have been impractical if the global velocity space
had to be H'-conforming.

Following these ideas we develop a discontinuous velocity least-squares finite element
method based on the well-posed formulation (2.11) in two stages. At the first stage we allow
discontinuous finite elements for the velocity in (2.11), i.e., we set

X! = ([R1,)* X Ryoy X R,y . 3.1)

This necessitates some changes in the least-squares functional, namely, the last two terms
have to be broken into element sums to deal with the loss of conformity in the velocity space:
Jh b, " ph) =
2 h h_ ehl|2 h_ |2 h||2 (3.2)
h ”VX‘” +Vp'-f ”0+ Z (”qu -w “0,K+HV'u ”0,1()
KeK
Furthermore, to obtain a well-posed formulation with a unique solution, we need to recover
some of the H'-conformity qualities of the velocity. Therefore, constraints on the jumps in
normal and tangential components of the velocity are introduced.
Recall that &(Q) is the set of all interior edges in the mesh. It is easy to see that the
weighted L? least-squares method (2.11) is equivalent to the following constrained minimiza-
tion problem

- Thoh ho o h.h
rryth_l(u,a),p,f)

’ (3.3)
subject to f [u"-n;]dt =0 and f [u" xn]dt =0 Ve; € EQ)

The constrained system can be solved by Lagrange multipliers in which case the resulting
minimization problem becomes

min max J*, (o, ", ' 1) = " A f [u; - nilde -)" 2 f [u; x n;]d¢ (3.4)
X RO ccE@) Ve cee Ve
Of course, similar to (2.20), this formulation is a saddle-point system that gives rise to an
indefinite algebraic system.
Instead of using Lagrange multipliers we will encourage H' conformity by a penalty
approach-by adding residuals of the interelement jumps to the least-squares functional. This
gives rise to the following discontinuous velocity functional:

E](ull7 wh’ Ph; fh) =

RV xof + =2+ Y (V< u =+ [V wl)
KeK

+h! Z (CY]f[ll‘ni]zd€+azf[uxni]2d£)

;€8(Q)

(3.5)

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 23

where @, @, > 0 are penalty parameters. The values of these constants can be used to adjust
the relative importance of normal vs. tangential continuity.

Based on analogies with div-conforming elements, one could argue that strengthening
the normal continuity of the velocity field should lead to improved mass conservation in
the finite element solution of (3.5). If this were the case, then the discontinuous velocity
formulation (3.5) with a; > a; should be able to take care of the mass losses in our two test
problems. To test this hypothesis we implement (3.5) using the equal-order discontinuous
velocity, continuous vorticity and pressure finite element space

[X3] = ([Ra])? X Ry X R, (3.6)

and solve the two test problems with two different choices for @ and a,. The first choice is
to set a; = @, = 100, in which case we expect® to see mass losses comparable to that in the
C° formulation. The second set of weights is a; = 100, a; = 0.01 emphasizes normal over
tangential continuity. If our hypotheses were correct, this set of weights would lead to a much
improved mass conservation.

Unfortunately, the results shown in Fig. 3.1 refute our seemingly logical hypothesis. The

60r %0
——~co

—— 100, 100 [
——— 100,001 80

70F

T

—Co
100, 100
100,0.01

a
g

% mass loss
% mass loss

—

1/

201

Fic. 3.1. Percent mass loss in the discontinuous velocity least-squares method (3.5) for the backward-facing
step (left panel) and the flow past a cylinder (right panel) test problems. Green line corresponds to @) = a3 = 100,
red line corresponds to ay = 100, s = 0.01 and the blue line gives the reference mass loss by the C° least-squares
method (2.11). The legend values are read as «y, az with (2.11) as reference labeled (Cy).

left panel in the figure shows that for the backward-facing step problem the second weight
combination does lead to a significant improvement in the mass conservation by reducing the
mass loss from over 50% to just a bit over 3%. However, for the flow past a cylinder the
situation is completely reversed. Now the choice 1 = 100, a, = 0.01 leads to a significant
deterioration of the mass conservation and increases mass loss from 7% in the C° formulation
to nearly 90%! These results clearly indicate that the discontinuous velocity formulation (3.5)
cannot be reliably counted on to always reduce the mass loss with the same choice of weights,
i.e., its mass conservation properties are problem dependent. This is an undesirable feature
that we shall deal with at the second stage of the formulation of our new method.

To motivate this stage we note that while discontinuous velocity does allow for improve-
ments in mass conservation, the least-squares formulation (3.5) does not enforce exact mass
conservation on each element. At the same time, considering that the velocity space is not

2This is because in the limit as @; — oo and @y — 0, (3.5) recovers the C” solution of the weighted L> LSFEM
method.

24 Discontinuous Least Squares Finite Element Methods

subject to any interelement continuity, it is obvious that we have a greater flexibility in choos-
ing the velocity representation on each element than in the C setting. In particular, we can
take advantage of this flexibility by choosing the velocity to be pointwise divergence free on
each element by setting

wx =V xylx VKeK, (3.7)

where ¥ € [R], is a discontinuous stream function. Therefore, at the second stage we replace
the velocity field in (3.5) with the field defined in (3.7). Note that when defining u” in this
way, V-u” = 0 is automatically satisfied and hence the residual of the continuity equation can
be dropped from the least-squares functional. However, a term that penalizes the jump of the
stream function must be added to the functional. Furthermore, because velocity is eliminated,
the velocity boundary condition must be implemented through the stream function. It is easy
to see that n- V X ¢ involves only tangential derivatives of y. Therefore, a Dirichlet boundary
condition on the stream-function specifies the normal component of the velocity. We specify
the tangential component of the velocity weakly by adding another least-squares term to our
functional. As a result, we arrive at the following discontinuous stream function-vorticity-
pressure (SVP) least-squares functional:

7 W o, ph ey =
n* ||V x o + Vp" - f"||g + Z [V xVxy"- a)h“g’K

KeK
Y (aq f [(Vx ¢ - ndE + f [(V x ¢) x mde (3.8)
2,€8(Q) ¢i Ci
+h! Z I(V x ") x ni2de + 1™ Z f [W"2de
e8I e e8(Q) Ve

The weight for the last term of (3.8) is determined by a scaling argument assuming that
W € H? and hence its trace is in H>>. The jump of the stream-function is necessary for
elements not adjacent to the boundary since constraining only [n - V X ¢] and [n X V X ¢/]
specifies ¢ only up to a constant. Once (3.8) is solved, the velocity is recovered through
formula (3.7), i.e., on each element

u'x = Vxy. 3.9)

We can view the discontinuous SVP formulation (3.8) as a special case of the discontin-
uous velocity formulation (3.5) with a specific choice of a divergence-free basis. We choose
to define this basis through a stream function as in (3.7) primarily because of the simplicity of
this choice; however, it should be clear that our approach can easily accommodate any choice
of a divergence-free velocity basis.

It is worth pointing out that the discrete least-squares method for the Darcy flow in two-
dimensions [7] uses a discontinuous finite element space for the flux defined in a similar
manner by

Vi =v(EShHevxE$h, (3.10)

where S ’b and S f‘v are standard C? finite element spaces constrained by zero on the Dirichlet
and Neumann portions of the boundary. The key difference is that our approach deals with the
discontinuity of the approximating space by including appropriate jump terms and retaining
the original differential operators, whereas [7] retains the global inner products but switches
to weak discrete differential operators defined using integration by parts.

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 25

The use of stream functions is not a novel idea, and has been applied to the Stokes equa-
tions [11], however, most research on the SVP formulation is done using finite differences
because of the presence of the second derivative. However, in the discontinuous framework,
it is not necessary to construct a global H*(Q)-conforming finite element space as V x V X i
is only needed locally.

4. Implementation. All of the above methods are implemented using Intrepid [5] and
solved using the KLU solver of Amesos [17], both packages of Trilinos [12]. Intrepid is
a local framework that implements basis functions for H', H(curl), and H(div). Since our
formulations are discontinuous, it suffices to choose basis functions to be H' on each element
and implement the jump terms.

It is easy to convert least squares functionals to an implementable weak form by setting
the first directional derivative to zero. For example, the weak form that minimizes (3.5) is to
find (u”, ", p") € X", such that

(VX o+ VphVx s+ Vg + Z(quh — " VXV = Mok
KeK

+ Z (f[uh~n][vh-n]d£’+f[uhxn][vhxn]d€ = (f,V x s"+ Vg,

e;€8(Q)

“.1)

for all (v,s5,9) € [Hy(Q)]* x H'(Q) x L3(Q). The weak form for all other least squares
functionals can be obtained in a similar way.

Since u = (u’l’, u’;) is a vector valued function, each component has separate degrees of
freedom and in the cases where u” is discontinuous, each element has its own set of degrees
of freedom for u” and u’.

4.1. Transformations. All basis functions are defined on the reference element, thus,
it is necessary to use the correct transformation. Intrepid provides implementations for the
most common transformations; however, non standard transformations such as V X w (curl of
a scalar field in two-dimensions) and (for the SVP formulation) V X V X i are not straightfor-
ward. V X w is the curl of a scalar function and hence is an element of H(div). Thus we use
HDIVtransformVALUE for curls of scalar functions. In two dimensions, using the identity,

VXV XY=~ — Yy 4.2)

it follows that on a reference element, we can compute V X V X ¢ by using OPERATOR D2
which computes all second derivatives of . Once V X V X ¢ is computed for the reference
element, it is necessary to transform to the physical element. This is done by noting that
V x ¢ € H(div), and V X v, for a vector valued function v, is a rotated divergence and hence
HDIVtransformDIV transformation is used.

4.2. Boundary conditions. In all of our tests, we use the velocity boundary condition
where u|sn = up is specified on the entire boundary. We set the pressure to O at a single point
on the boundary. Since the basis in Intrepid is interpolatory, the boundary conditions are set
strongly by specifying

u(x)up(x;)) VYx; € 0Q
P(x0)0

This is done by defining a vector i that is zero for all degrees of freedom corresponding to
interior points and equal to up at the boundary degrees of freedom. We then set

b < b - Auy 4.4)

(4.3)

Each row and column of A corresponding to a boundary degree of freedom is set to zero and
the diagonal is set to 1.

26 Discontinuous Least Squares Finite Element Methods

60

—Co
——svp

a0 /

30r /

% mass loss
% mass loss

20/

_ L L L L L L L L L , L L L L L L L ,
0 1 2 3 4 5 6 7 8 9 10 -1 -05 0 0.5 1 15 2 25 3

Fic. 5.1. Comparison of mass loss of for the backward-facing step (left panel) and the flow past a cylinder
(right panel) test problems. Blue line represents weighted L? formulation (2.19), green line is SVP formulation (3.8).

5. Numerical examples. Because the discontinuous SVP formulation (3.8) does not
include the velocity some care must be exercised in setting the velocity boundary condition
for our two test problems. In the case of the backward step, recall that the boundary condition
is given by (2.14). Because on I';, and I',,, velocity is only a function of y, the u; component
is integrated to obtain an equivalent boundary condition on the stream function:

_ 85 2 vy
Yin ==y +6y" —4y+Ci, You=%5-7T+C (5.1
3 2 3
The constants C; and C, are chosen so that u;,(0.5) = u,,;(0) and u;,(1) = u,,;(1). The
top and bottom walls are then chosen to be constants equal to u;,(1) and u;,(0.5) respectively.
Likewise, the equivalent stream function boundary conditions for the second domain, Figure

2.2, with velocity boundary conditions (2.15) are

3
Yy
Yin = Your = Ywail =y — ? (5.2)
However, setting the boundary conditions in this way enforces only the normal component of
the velocity. In our test cases, the tangential velocity vanishes on all boundaries. We set the
tangential velocity weakly by including

Inx VXYl pr ~h " Inx VX ylge=h" Z f Inx V x y|2dt (5.3)
e eEI) Ve

in the least squares functional (3.8).

The resulting mass loss for (3.8) is summarized in Figure 5.1 and it is seen that mass
conservation is significantly improved. Indeed, for the backward facing step, the maximum
mass loss is less than 1.09% with most of the mass loss centralized at the reentrant corner. On
the rest of the domain, the solution is basically conserved over any closed subdomain. This
is a dramatic improvement compared to (2.19). For the channel flow with cylinder cutout,
the mass conservation is also improved with a slight mass gain of 0.34% at the opening of
the cylinder. Compared with (3.5), the stream function formulation is able to achieve better
mass conservation than (2.19)-recall that no matter how «@; and @, were chosen, the mass
conservation could not improve past the weighted L? formulation.

The velocity fields of each formulation are visualized in Figures 5.2 and 5.5 and in the
case of the backward facing step, the mass loss for (3.5) is clearly visible. For the SVP

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 27

formulation, the propagation of the parabolic profile of the inflow is clearly seen throughout
the domain. In the case of the weighted L?> formulation, the parabolic profile diminishes—
symbolic of the 50% mass loss. From the additional figures (5.3-5.8), it can also be seen that
the pressure and vorticity are more accurately captured with the stream function formulation.

FiG. 5.2. Velocity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

Fig. 5.3. Pressure plot OfC0 (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

0.5

0 1

0.5

0 |
0 0.5

We considered using divergence free bases on each element, because of the necessity to
choose the correct weights a; and @, in (3.5). However, it was not possible to choose a single
set of weights that is optimal for all test cases. In the case of (3.8), only one set of weights is
used and proved to be effective.

6. Conclusion. In this report we have formulated new discontinuous velocity LSFEMs
for the Stokes equations as a means to improve mass conservation. These new methods were
compared with a provably optimal norm equivalent weighted L? least squares formulation.
The immediate discontinuous velocity formulation was found to not be robust as depending
on the problem, different weights were required. As a result, a local divergence free basis for
the velocity was introduced with the use of a stream function. The stream function approach

28 Discontinuous Least Squares Finite Element Methods

4
2
0
-2
ks W
-6
1 4
2
0.5 0
-2
-4
0 -6

Fic. 5.4. Vorticity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

\

o

(=]

DN
\

T T T T T
YAV L TR LN

I

o

=)
LI

Fic. 5.5. Velocity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

proved to be robust as only one set of weights, derived from Sobolev theory, allowed the
resulting solution to be almost entirely mass conservative.

The proposed approach is very flexible and can be easily applied to other LSFEMs based
on the VVP or other first-order Stokes systems. For example, it is trivial to extend (3.8) to
a discrete negative-norm method, or to a method which uses velocity gradient, velocity and
pressure as dependent variables.

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert

1
05
0
-05
X -05 0 05 1 15 2 25 3
1
05
0
05
4 05 0 05 1 1.5 2 25 3

FiG. 5.6. Pressure plot of C° (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

1 T
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1 1.5 2 25 3
! T——
|
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1 1.5 2 25 3

Fic. 5.7. Vorticity plot ofC0 (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

29

30 Discontinuous Least Squares Finite Element Methods

;

0.5

1

0 0.5

1 1.5 2 2.5 3 3.5 4 4.5 5
;
' 15
05 1
05
0
-05
- -1
-15
X -05 0 05 1 15 2 25 3

FiG. 5.8. Stream function for backward step (top) and cylinder channel (bottom).

1 1

0

Future work in the area includes theoretical studies of the well-posedness of discontinu-
ous formulations and an implementation of (3.8) using cubic elements for the stream function.
This allows the velocity, the curl of the stream function, to be quadratic—satisfying the mini-
mal degree requirement of the parent C° least-squares formulation.

REFERENCES

[1] P. BocHev anp D. Day, Analysis and computation of a least-squares method for consistent mesh tying., J.
Comp. Appl. Math, 218 (2008), pp. 21-33.
[2] P. BocHEV AND M. GUNZBURGER, Analysis of least-squares finite element methods for the Stokes equations,
Math. Comp., 63 (1994), pp. 479-506.
, Least-squares finite element methods, Springer, 2009.
, A locally conservative mimetic least-squares finite element method for the Stokes equations, in Pro-
ceedings of LSSC 2009, I. Lirkov, S. Margenov, and J. Wasniewski, eds., vol. 5910 of Springer Lecture
Notes in Computer Science, 2009, pp. 637-644.
[5] P. Bochev, D. RipzaL, anp K. PETERSON, Intrepid: Interoperable Tools For Compatible Discretizations.
http://trilinos.sandia.gov/packages/intrepid/, 2010.
[6] P. Borron AND R. THATCHER, On mass conservation in least-squares methods, J. Comput. Phys., 203 (2005),
pp. 287-304.
[7] Z. Car anp B. SHIN, The discrete first-order system least squares: the second-order elliptic boundary value
problem, SIAM J. Numer. Anal., (2002), pp. 307-318.
[8] Y. Cao aNnD M. GUNZBURGER, Least-squares finite element approximations to solutions of interface problems,
SIAM J. Numer. Anal., 35 (1998), pp. 393—405.
[9]1 C. Cuang aND J. NELSON, Least-squares finite element method for the Stokes problem with zero residual of
mass conservation, SIAM J. Numer. Anal., 34 (1997), pp. 480—489.
[10] J. DEaANG AND M. GUNZBURGER, Issues related to least-squares finite element methods for the Stokes problem,
SIAM J. Numer. Anal., 35 (1998), pp. 878-906.
[11] U. Guia, K. GHia, anp C. SHIN, High-re solutions to incompressible flow using the Navier-Stokes equations
and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387—411.
[12] M. Heroux, R. Bartrert, V. HowLg, R. HoeksTrA, J. Hu, T. KoLpa, R. Lenoucq, K. Long, R. PawLowski,
E. Purpps, A. SALINGER, H. THORNQUIST, R. TUuMINARO, J. WILLENBRING, AND A. WILLIAMS, An Overview of
Trilinos, Tech. Rep. SAND2003-2927, Sandia National Laboratories, 2003.
[13] J.Heys, E. Leg, T. MANTEUFFEL, AND S. McCormick, On mass-conserving least-squares methods, SIAM J. Sci.
Comput, 28 (2006), pp. 1675-1693.

[3]
[4]

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 31

[14]

, An alternative least-squares formulation of the Navier-Stokes equations with improved mass conser-
vation, J. Comput. Phys, 226 (2008), pp. 994-1006.

[15] J. Heys, E. Leg, T. MANTEUFFEL, S. McCormick, AND J. RuGe, Enhanced mass conservation in least-squares
methods for Navier-Stokes equations, SIAM J. Sci. Comput., 31 (2009), pp. 2303-2321.

[16] J. Pontaza anND J. REDDY, Space-time coupled spectral/hp least-squares finite element formulations for the
incompressible Navier-Stokes equations, J. Comput. Phys., 197 (2004), pp. 418-459.

[17] M. Sara, K. StanLEY, AND M. HEROUX, Amesos: A set of general interfaces to sparse direct solver libraries, in
Proceedings of PARA’06 Conference, Umea, Sweden, 2006.

CSRI Summer Proceedings 2010 32

APPLICATION OF A DISCONTINUOUS PETROV-GALERKIN METHOD TO THE
STOKES EQUATIONS

NATHAN V. ROBERTS#, DENIS RIDZALSY, PAVEL B. BOCHEV!, LESZEK D. DEMKOWICZ!, KARA J.
PETERSON** AND CHRISTOPHER M. SIEFERT'"

Abstract. The discontinuous Petrov-Galerkin finite element method proposed by L. Demkowicz and J. Gopalakr-
ishnan [5, 6] guarantees the optimality of the solution in what they call the energy norm. An important choice that
must be made in the application of the method is the definition of the inner product on the test space. In this paper,
we apply the DPG method to the Stokes problem in two dimensions, analyzing it to determine appropriate inner
products, and perform a series of numerical experiments.

1. Introduction. Recently, L. Demkowicz and J. Gopalakrishnan have proposed a new
class of discontinuous Petrov-Galerkin (DPG) methods [5, 6, 7, 10, 3], which compute test
functions that are adapted to the problem of interest to produce stable discretization schemes.
An important choice that must be made in the application of the method is the definition of the
inner product on the test space. In this paper, we apply the method to the Stokes problem in
two dimensions, analyzing it to determine appropriate inner products, and perform numerical
experiments to test these inner products.

Whereas traditional Galerkin methods use the same space for test and trial spaces, Petrov-
Galerkin methods allow the test and trial spaces to differ. The DPG approach computes test
functions that are optimal, in a sense that we make precise in Section 2. One consequence
of this choice of test functions is that the stiffness matrix for a continuous, weakly coercive
variational formulation is symmetric (hermitian, for complex-valued problems) and positive
definite. Of course, the determination of test functions is an extra step compared with tradi-
tional methods; it is important that these can be determined cheaply. By using discontinuous
Galerkin (DG) formulations, DPG achieves this, reducing the computation of the test func-
tions to a local problem. Our method bears some resemblance to the MDG method [9] in that
a local problem is solved on each element. The key difference with that paper is that in MDG
the local problem is restriction of the original equations whereas in DPG the local problem
is implied by the selected test space inner product. Furthermore, in MDG the local problem
is used to express DG degrees of freedom in terms of continuous degrees of freedom, i.e., to
effect static condensation on the element.

Our primary goal is the application of the method to the Stokes problem in two dimen-
sions. The strong form of the problem is

—2uV-e+Vp=f in Q, (1.1)
V-u=0 in Q, (1.2)
u=gp on 0Q, (1.3)

where Q ¢ R?, yu is viscosity, € = V¥™u is strain, p is pressure, u velocity, and f a vector
forcing function.

The paper is structured as follows. In Section 2, we give an introduction to the basic
features of the DPG method. In Section 3, we derive the weak formulation of the problem.

The University of Texas at Austin, nroberts @ices.utexas.edu
§Sandia National Laboratories, dridzal @sandia. gov
ISandia National Laboratories, pbboche @sandia.gov
IThe University of Texas at Austin, leszek @ices.utexas.edu
**Sandia National Laboratories, kjpeter @sandia.gov
fSandia National Laboratories, csiefer@sandia. gov

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 33

In Section 4, we motivate the choice of inner product on the test space with reference to
an argument for the continuity of the bilinear form. In Section 5, we present the numerical
results. We conclude in Section 6.

2. DPG Method. Here, we sketch some of the main features of the DPG method. For
details, we refer the reader to a series of papers by Demkowicz et al., in particular the second
ICES Report [6], from which most of this section is derived. We begin with theoretical
definitions and results, and then describe the approach to practical realization. Consider the
abstract variational boundary-value problem:

Findu e U : b(u,v) =1(v) VYvelV. 2.1)
We take U and V to be real Hilbert spaces. We assume b(-, -) is continuous, i.e.
b, v)I < M lully [IVIly (22)
for some real M. We assume also that b(-, -) is weakly coercive, that is

inf sup b(u,v) >y, (2.3)

lllly =1 1, =1
for some y > 0. If we additionally assume that
{veV:bu,v)y=0 VYueU}={0}, 24

then it is well known that the problem (2.1) has a unique solution provided that / € V’, the
dual of V.

2.1. Energy Norm. We define an alternate norm, called the energy norm, on the trial
space U by

lully £ sup blu,v). (2.5)

[vlly=1

This norm is the one in which the optimality is guaranteed by the selection of optimal test
functions. It is an equivalent norm to the standard norm on U, i.e.

Ylully < llullg < Mlully Yu e U. (2.6)

2.2. Optimal Test Functions. We are now prepared to give a definition of the optimal
test functions. Define amap 7 : U — V from the trial space to the test space by: Foru € U,
define Tu, the optimal test function corresponding to u, as the unique solution to

(Tu,v)y = b(u,v) YveV.

By the Riesz representation theorem, 7 is well-defined. Note that

1
llullg = sup b(u,v) = sup (Tu,v)y = ———(Tu,Tu)y = ||Tully .
Ivlly=1 ly=1 1 Tully

Thus the energy norm is generated by the inner product on V, i.e.
(u,w)gp = (Tu, Tu)y. @.7)

In practice, we approximate 7 by a discrete operator 7, described in Section 2.4.

34 Stokes with DPG

2.3. Optimal Test Space for U,. Take a finite-dimensional trial space U, C U. Define

the optimal test space for U, as V,, = span{Te; : j=1,--- ,n}, where the ¢; form a basis for
U,.
Solve the discrete problem
Find u,, € U, : b(u,,v) = I(v) Yv € V,. (2.8)

Then the error is the best approximation error in the energy norm,

”M - un”E = inf ||M - Wn“E s (29)
wpeU,

n

and this is the sense in which the test space is optimal.

2.4. Practical Realization. The method involves two steps: first, find the optimal test
functions; second, use the optimal test functions to solve the discrete problem 2.8. The op-
timal test functions are not in general polynomials. In practice, we approximate them with
an “enriched” polynomial space — a space of polynomials of slightly higher degree than the
trial space. This is done to provide a higher-fidelity approximation to the continuous space
of optimal test functions. The best choice for the amount of “enrichment” is determined
experimentally for each problem.

In general, we apply the following procedure:

1. Given a boundary value problem, develop mesh-dependent b(-,-) with test space
V that allows inter-element discontinuities (hence Discontinuous Petrov-Galerkin).
We develop this in Section 3.

2. Choose trial space U, (in particular the norm of interest in U,), and the inner product
on V, which will be motivated by the choice of trial space. We detail this process for
the Stokes problem in Section 4.

3. Compute optimal test functions. Approximate 7" by T, : U, — V, C V. We use an
enriched space of piecewise polynomials for V. Defining t; = T,,e;, we solve

(tj,&)v = b(e;, &)
for t;, where the &; form the basis for \7,,.

4. Use the optimal test functions to solve the problem on U, x V,. We note that the
stiffness matrix here is symmetric positive definite (hermitian, for a complex-valued
problem),

b(ej, ;) = (Thej, ti)v = (Tnej, Tre))y = (Tyei, Thej),
= (Tyei,), = b(e;, t)).
Also, note that this means that we may compute the stiffness matrix in terms of the
inner product on the test space V, without explicit recourse to the bilinear form.

3. Stokes Formulation. Our general approach to variational formulation in DPG is as
follows. First, rewrite the strong form of the problem as a system of first-order partial differen-
tial equations. Then, multiply by test functions and integrate by parts, moving all derivatives
to the test functions. We thus arrive at the ultra-weak form of the problem, a formulation in
which all solution variables are in L.

Starting with the strong formulation defined in equations (1.1)-(1.3), introduce stress o
and vorticity w by

o =2ue—-pl

1
W= z(Vu —vul)

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 35

so that equation (1.1) becomes simply =V - o = f. We also have

1
€= —(o+ pl).

Since € = V¥™u = Vu — w, the entire system is

1
—(0+ph-Vu+w=0
2u— "7 - -

-V.a=f
V-u=0
u=4gp

in Q,
in Q,
in Q,
on 0Q.

Note that the antisymmetric part of the first equation recovers the definition of w, so that it
need not enter the system separately. Define scalar w = wy; = %(ul,z — uy1). Our strong

formulation is

i(0'11+p) Vu|+(0) 0
2u\ o5 w
i g2 w -0
2u 0'22+p 0)
_V.(O—ll):fl
021
_v.(o_lz):fz
on
V-u=0
u=2gp

in Q,

in Q,

in Q,

in Q,

in Q,
on 0Q.

Multiplying the first two equations by vector test functions ¢; and the following three by
scalar test functions v;, and integrating by parts over an element K, we obtain

LG Q) [
LG) () o Lo
L)
L) e

)

2

—fﬁlql'v =0

oK

—f’u\zqzﬂ/ =0
oK

—f TV Y =ff1V1
oK K

—f TV Y =ff2V2
oK K

+f uvs v =0,
oK

where the “hatted” variables (i}, e.g.) are the fluxes introduced by relaxing the continuity
requirement at element boundaries. These differ from the numerical fluxes that appear in other
DG methods, in that they are not constructed a priori, but simply enter the variational problem
as additional unknowns. We solve for them at the same time as we solve the rest of the
unknowns. As in other DG methods, the fluxes will approach the corresponding “unhatted”
solution variables as the latter approach the exact solution.

36 Stokes with DPG

4. Inner Product Determination. As discussed in Section 2, the optimality proof de-
pends on the continuity and weak coercivity of the bilinear form. In this section, we use
continuity to motivate a particular choice of inner product on V.

We seek to show that [b(U, v)| < M ||U||y |[vlly, for some constant M, for spaces U and V
to be specified. The norm on U should be specified in such a way that minimizing the error
in this norm will produce the results we want. We define

2

) D (uill,o)? < ||Fi|'H‘/2(OQ) 3 '|Fi||yfl/2(as))
R] B e D e
i=1 @i i=1 i i=3 i

2

where u; and u, are as above, us = o1, Uy = 013 = 021, Us = O, U = w, and uy = p, i*:, is
the flux corresponding to the ith equation (that is, Fi=u.Fr=1,F3=01 - v,F, =02V,
and Fs = u - v), and the «; and @; are positive weights that allow us to emphasize specific
components. The reason we use the H'/? norm on the fluxes corresponding to H(div) test
functions is that ¢ € H(div) = tr(q) € H~"2. Thus for fag Eqi - v to make sense mathe-

matically, we require F; € H'2. A similar argument establishes that the fluxes corresponding
to H' test functions should lie in H~'/2. Let us consider the first equation of our bilinear form,

autp
bl(U’V):f(U7]2H).ql—{-fulv-ql—f 'i[lql.v
Q 7+u) Q oQ

2
_(0'11+P

021
= ,q11 +(—+w,Q12) + W, V-q)o— U1, q-v)
o)Q 2 , Q P

Now, by the Cauchy-Schwarz inequality, we have

1 1
b(U,v)| <— + +|— +
b1 (U, v)l 2#(”0'11”0 l1pllo) llgi1ll (2ﬂIIUzlllo Ilwllo)llqullo
+learllo 1V - gilly + [[#1]| 12 50 191 V12000 @.1)
Applying the finite-dimensional Cauchy-Schwarz inequality, we have

1
ol (lpllo)* . (lloaillo\? 2
|b1<U,v>|s((2,,,0) +(2#0) + 2ﬂ° + el + e llg + iz ||

/2

1/2
2 2 2 2
(g1 + ligrally + 1V - i1l + ligs - 712 50

Note that for a particular choice of weights, namely a3 = @4 = a7 = l, g =a) =a; = 1,

2u
we then immediately have

1/2
b1 (U < N0y (llgnllg + ligially + 1V - qilly + gy - V-1 50,)

motivating a norm

1/2
2 2 2 2
llgilly, = (llguilly + lgially + 1V - qullg + ligs - Vi3 -1ngg)) -

However, one of our purposes in defining a weighted norm ||U|| was to gain some control over
scale equivalence in computation of the test space inner product, and the argument above in
providing a tight bound has separated the weights from the test space terms. Instead, let us

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 37

return to the inequality (4.1), and note that by the definition of |||/, lluill) < @i llUlly;

<@ Uy fori = 1,2 and HF“H < @ Ul for i = 3,4,5. Thus

similarly, ||F’l”
H —I/Z(Q)

(@)
we have

a3 + a7y

b1 (U] g(-

@y
+|—+a
llgilly (2# 6)||qn||o
+ a1 IV - gilly + @1 g1 - Vllgzaey) 101l

motivating the norm

3+ ag

a:
llgilly, =——%—

a4 —
0 llgilly + 2 + ag|llgi2lly + a1 IV - qilly + @1 ligy - Vilgzpg) -

For convenience, we implement a similar norm given by

2 2
ot [3 + Q7 ay
lgilly, =(T) ||qu||é+(5+a6) lgiallg + o7 IV - qull

-~ 2
+) llq1 - V||L2(Q) .

Similarly, for g, we implement

2 2
2 der[Q4 > as 2 2 2
llg2lly, = (ﬂ + a6) llg21lly + (Z + 017) llg22llg + @3 IV - qallg

—~2 2
+a, llg> - V”LZ(Q) .

b3(U,v)=f0'1-Vv1—f oY
Q a0
=f(u3)-Vv1—f Fsvl.
o \la aQ

Ib3(U, V)| < [[U]| (H(Zj) LV

For b3(U, v), we have

Thus

+ a3llvy ||H1/2(ag)) ,
0

and the norm we implement for v; is

o || v ||
2 def 92 1 2 1 —2 2
vy, = a3 ||— —|| +az|vill -
[villy, = a3 ax o T By |, 31villy
Similarly,
: |7 o ||
2 def 2 2 2 -2 2
Vo =y ||| tas||—]| +ayllv
vally, = o4 ax o T oy I, 1 lvallg
and
s |2 avs |I?
2 def 9 3 2 3 —2 2
willy. = a7 ||=—|| +a5||—=—| +aslvallg-
lvslly, = a; ax o T 2oy I, 51vally

38 Stokes with DPG

Now, we can define a general norm on the test space by

I(qis- - qrivis. ..oyl =
L
[(av : qi)z + Z((bilqil)z + (bizqiz)z)
i=1 i=i
S avl (9v,- 2 M
’ ; [(C’l ox a_y)]+ Z;(divi)z] “2)
L
+ f (Z(Ezqz V) + Z(fv,]
o\ P

Based on the analysis above, we require

a) =ay, ay = @)
b11=m, b12:%+a6
2u 2u
by = 22 + ag, by = B0
2u 2u

¢ = as, Clo = @y 4.3)
1 =y €0 = s

a1 = ay =

di=0

e =aj, e = fi=as, b=, fs =0s.

4.1. Choice of o values. How do we determine appropriate weights «; and @; for the
norm of U? Our choice is motivated by considerations of norm equivalence arising, for
instance, in the least-squares finite element literature, see [1, Sec. 4.5]. For simplicity, we
apply a similar guideline, which we call scale equivalence. Let us consider a mesh with
elements of size h. In a least-squares method, one would motivate the choice of weights by
examining the factors of & entering the stiffness matrix through derivatives in the bilinear
form. One would then select weights so that each term of the bilinear form had the same /-
factor, thereby ensuring that no single term dominates the least-squares functional as 7 — 0.

Recall that in DPG the optimality is expressed in terms of the energy norm in equation
(2.9), which in turn is defined by the inner product on V in equation (2.7). As in least-squares
methods, there is an underlying optimization principle (equations (2.9) and (2.5)), and thus it
makes sense to have all terms in the test space inner product equally weighted in the discrete
setting. In this section, therefore, we aim to determine weights «; and @; that will allow this.

Computing the optimal test functions involves the solution of a problem of the form

(t;, ey = b(ej, &),

where the &; form the basis for the enriched polynomial space V,, used to represent the test
functions, and ¢; is the optimal test function corresponding to e; € U. Thus the matrix for
determining the optimal test functions is generated by computing inner products (&, &;)y. The
goal is to keep the summands entering this matrix of the same order of magnitude in A.

We assume a partition of Q into quadrilateral elements. Since the various components
(e.g. q; and q») of the test function do not interact, we can examine each separately. Suppose

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 39

that the element has dimensions (h, h) and ¢q; = (;;) Then

2
X
(q1,9))v = f (a%(yz +2xy + 2% + (b3, + b%z)xzyZ) + f & ((y) v)
K ok \\XY
= O35 + 1213 + hy) + (B2, + By + U hS + 1h2))

Clearly, no choice of weights will make all summands of the same order in both %, and h;;
the best we can do is to make the 4; and h, orders of each summand differ by no more than
2, and make the sum of the &; and /h, orders the same across all summands. This can be
accomplished by setting a% =hh,, b%l = bfz =1, and e% = Vhih,.

The computation with ¢, is identical. Now, consider v; = xy. We have

2 2.2 2. 2 2,22
(Vlsvl)V:L(clly + o’ + dia’y? ff

= O(ctyuh3 + chyhhy + (b3, + dDih3 + L (hih3 + h3))

Again, we cannot choose the coefficients to get each summand to have the same order in both
hy and h,, but here at least the ¢, and ¢ coeﬂicients can be chosen so that their respective
terms match precisely. We Would like to have ¢, = h3, 2, = hi,d? = 1, and f? = Vhiho,
and similarly for v,, we’d like c21 = h2 etc. This cannot be fully achleved because of the way
the a; enter the inner product; speciﬁcally, a4 = c1p = ¢21. Instead, we arrive at the following
weights:

) =Qap = \/hlhz (44)

a3 =h 4.5)
4 = h1h2 (46)
as = /’12 (47)
Qe = Q7 = 1 (48)
@; = hihy . (4.9)

We detail numerical results for this inner product in Section 5.3. In Section 5.4, we present a
version where a3 = a4 = @5 = 1, with very similar results.

5. Numerical Results. We solve the Stokes problem on the domain (-1, 1) X (-1, 1),
with 4 = 1. We follow the choice of manufactured solution employed in a paper by Cockburn
et al. [4], in which they apply the LDG method to Stokes. We compare our convergence
rates to theirs; the L? error measurements are not strictly comparable because they employ a
triangular mesh, whereas we use a quadrilateral mesh. As stated in Section 2.4, the space for
V is an “enriched” polynomial space. The numerical results presented below were produced
with test functions of degree one higher than that of the trial space.

Although the differences between our meshes and those in Cockburn et al. mean that
our error measurements are not strictly comparable, we still would expect to attain similar
rates of convergence, and for the [? error values in each component to be within an order
of magnitude or so. The rates of convergence we would expect in a velocity-stress-pressure
(VSP) least-squares context would be k + 1 for the velocity components u; and u,, and k for
the pressure p, where k denotes the polynomial degree of the trial space [1, p. 269]. We have
yet to carry out the convergence analysis for DPG.

40 Stokes with DPG

Following Cockburn et al., we use

uy = —e*(ycosy +siny)
up = e*ysiny

p = 2ue*siny

as our manufactured solution. We impose the constraint p(0,0) = po in order to establish the
uniqueness of the solution.

We try four inner products, the first two as baselines, and the latter two as suggested by
our analysis. As expected, the choice of the inner product makes a great deal of difference to
the rate of convergence.

5.1. Generic Inner Product. As a baseline to show the importance of a good inner
product on the test function space, the results in this section are produced using a test space
inner product unrelated to our analysis. In the general form of the norm specified in equation
(42),leta;=b;jj=cj=di=e = fi=1.

As can be seen in Table A.1, although our convergence rates generally start out near the
asymptotic rates predicted, they fall off quickly. The rate for pressure with quadratic elements
is particularly poor. The L? error values in u are perhaps not too bad, within an order of
magnitude or so of the LDG results. However, the pressure error values are extremely poor,
off by up to three orders of magnitude.

As an experiment, we tried enriching the fluxes, using polynomials of degree k + 1 to rep-
resent the solution fluxes; at the same time, we enriched the test function space further, using
polynomials of degree k£ +2. As shown in Table A.2, this uniformly reduces the error, particu-
larly in the pressure, and improves the convergence rate observed in the pressure for quadratic
elements. Although cubic elements also saw uniformly reduced error, the convergence rates
observed were somewhat worse.

5.2. “All Ones” Inner Product. In Section 4.1, we derived weights for the inner prod-
uct so as to weight all terms in the determination of the optimal test functions equally. To
see the impact of our choice of those weights in relief, we try an inner product in which
@; = @; = 1. Compared with the generic inner product employed in the previous section, this
inner product takes account of the continuity argument.

As can be seen in Table B.1, with this choice of inner product, DPG performs slightly
better than with the generic inner product, but the rates of convergence in p are quite poor,
especially for quadratic elements. For the 64 X 64 mesh, we even see regression in the p error
compared with the 32 X 32 mesh, suggesting that some terms in the inner product dominate
as h — 0, preventing convergence.

Asin Section 5.1, we tried enriching the fluxes, using polynomials of degree k+ 1 to rep-
resent the solution fluxes; at the same time, we enriched the test function space further, using
polynomials of degree k +2. As shown in Table B.2, this uniformly reduces the error, particu-
larly in the pressure, and improves the convergence rate observed in the pressure for quadratic
elements. Although cubic elements also saw uniformly reduced error, the convergence rates
observed for pressure were somewhat worse.

5.3. Mesh-Dependent Inner Product. In this inner product, we choose the @; values
as derived in Section 4.1 and specified in equations (4.4)-(4.9). There, we aimed to achieve
scale equivalence in the determination of the optimal test functions while selecting an inner
product that allowed our argument for the continuity of b(-, -) to remain intact.

As can be seen in Table C.1, with this inner product, we have far superior convergence
compared with either of the previous two inner products we have considered. Here, the

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 41

convergence rates for both velocity and pressure are very close to those predicted by theory,
and the L? error for u is within a factor of 3 of the LDG results. However, our L? error in
pressure remains more than an order of magnitude worse than that LDG was able to achieve.

We again tried enriching the flux space; the results are in Table C.2. Here, however,
the results are merely comparable to those in the enriched flux space experiments using the
previous two inner products. With cubic elements, enriching the fluxes made for slightly
worse results, perhaps due to round-off errors. All told, it appears that whatever is lost to
scale inequivalence in the previous two inner products is regained through higher-fidelity flux
approximation.

5.4. Mesh-Dependent Inner Product, Least-Squares Compromise a3 = a4 = a5 = 1.
Finally, we tried an inner product with weights just as in Section 5.3, except @3 = @4 = @5 =
1. The rationale was that, in the norm of U, these weights are applied to the tensor o, which
is a derivative, so the natural norm for U in a least-squares approach (arising from concern
for scale equivalence of terms within the form b(:,-)) would have an extra factor of & on u;
and u, compared to the components of o

As can be seen in Table D.1, the results are almost identical to those reported in the
previous section. The only exception is the error in the pressure on a cubic, 64 X 64 mesh, for
which the present inner product produced an error about half that produced by the previous
inner product.

We again tried enriching the flux space; the results are in Table D.2. The enriched fluxes
again give us lower error, but as we refine, the advantage this gives us appears to become less
significant; for cubic elements, the error values for the 32 x 32 mesh are nearly identical to
those we attained for this inner product without enriching the fluxes.

6. Conclusions and Future Work. A robust application of the DPG method requires
a test space inner product that simultaneously allows a proof of coercivity and continuity of
the variational form and achieves scale equivalence in both the inner product matrix used to
compute the optimal test functions, and in the stiffness matrix used to compute the solution.
In this paper, we have applied the DPG method to the Stokes problem, comparing several
inner product choices. The two inner products that did not account for scale equivalence
within the inner product matrix both demonstrated substantially poorer performance; while
those that did account for it achieved optimal convergence rates.

The fact that our L? errors in pressure were substantially worse than those for the LDG
method suggests that there may be a better choice of inner product; it may be that an ex-
amination of coercivity (here absent) would suggest a better choice. The strategy we intend
to employ in the future is to use test norms motivated by examining the optimal test norm
studied in previous DPG efforts (see [10, Sec. 2]); this is a norm on the global test space for
which |||z = [Ily-

Enriching the flux space erased most of the distinctions between our various inner prod-
ucts, and greatly reduced the errors observed in the pressure. It appears that the benefit of
using a better inner product is that we can save the computational cost associated with the
enriched flux space!

In the future, we plan to investigate the hp-adaptive solution of Stokes equations using
DPG, which offers stability independent of discretization parameters. We also plan to use
DPG to solve Stokes on polygons and polyhedra.

The work presented here was completed using L. Demkowicz’s hp-adaptive code; we
are presently implementing a DPG framework using Intrepid [2] and Trilinos [8].

42

(1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]

[10]

Stokes with DPG

REFERENCES

P. B. BocHEV AND M. D. GUNZBERGER, Least-Squares Finite Element Methods, vol. 166 of Applied Mathemat-
ical Sciences, Springer, 2009, pp. 114-128.

P. B. Bocuey, R. C. Kmwry, K. J. PerersoN, anp D. RipzaL, Intrepid project,
http://trilinos.sandia.gov/packages/intrepid/.

J. Cuan, L. DEmxowicz, R. MoSEgRr, AND N. RoBERTS, A new discontinuous Petrov-Galerkin method with optimal
test functions. Part V: Solution of 1D Burgers’ and Navier-Stokes equations, ICES Technical Report,
(2010).

B. CockBurN, G. KanscHat, D. Scuotzau, aND C. ScuwaB, Local discontinuous Galerkin methods for the
Stokes system, SIAM Journal on Numerical Analysis, 40 (2003), pp. 319-343.

L. DEmkowicz AND J. GOPALAKRISHNAN, A class of discontinuous Petrov-Galerkin methods. Part I: The transport
equation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), pp. 1558 — 1572.

L. D. DEmkowicz AND J. GOPALAKRISHNAN, A class of discontinuous Petrov-Galerkin methods. Part II: Optimal
test functions., ICES Technical Report, (2009).

L. D. Demkowicz, J. GOPALAKRISHNAN, AND A. Niewmr, A class of discontinuous Petrov-Galerkin methods. Part
1II: Adaptivity, (2010).

M. A. Heroux, R. A. BartLETT, V. E. HowLE, R. J. HoEKSTRA, J. J. HU, T. G. KoLpa, R. B. LEnoucq, K. R. Long,
R. P. Pawrowski, E. T. Puaipps, A. G. SaLiNnGer, H. K. THorNqQuisT, R. S. TumiNarO, J. M. WILLENBRING,
A. WiLLiams, AND K. S. STaNLEY, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397-423.

T. J. HucHes, G. Scovazzi, P. B. BocHEV, AND A. BUFrA, A multiscale discontinuous Galerkin method with the
computational structure of a continuous Galerkin method, Computer Methods in Applied Mechanics and
Engineering, 195 (2006), pp. 2761 —2787.

J. Zrreruy, 1. Muca, L. Demkowicz, J. GOPALAKRISHNAN, D. Parpo, aND V. Caro, A class of discontinuous
Petrov-Galerkin methods. Part IV: Wave propagation, (2010).

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert

Appendix

A. Numerical Results: Generic Inner Product.
TaBLE A.1

L? error and h-convergence rates for generic inner product selected without reference to continuity

argument, as defined in Section 5.1: comparison with LDG [4].

L? error and h-convergence rates for generic inner product selected without reference to continuity
argument with enriched fluxes (kg = k + 1,k = k + 2), as defined in Section 5.1: comparison with

Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 3.6e-2 - - - 5.9e-1 - - -
4x4 5.1e-3 | 2.82 - - 2.0e-1 | 1.58 - -
8% 8 8.1e-4 | 2.73 | 2.0e-4 - 1.7e-1 | 0.92 | 5.1e-4 -
16 x 16 1.6e-4 | 2.59 | 2.4e-5 | 3.06 | 9.6e-2 | 0.81 | 1.2e-4 | 2.09
32 %32 3.9e-5 | 246 | 2.9e-6 | 3.05 | 5.1e-2 | 0.81 | 3.0e-5 | 2.04
64 x 64 9.8¢-6 | 2.36 - - 2.6e-2 | 0.83 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 2.7e-3 - - - 2.7e-1 - - -
4x4 1.7e-4 | 3.97 | 5.8e-5 - 2.8¢-2 | 3.27 | 2.4e-4 -
8% 8 1.2e-5 | 3.88 | 3.6e-6 | 401 | 3.8¢-3 | 3.08 | 3.9¢e-5 | 2.62
16 x 16 1.0e-6 | 3.79 | 2.2e-7 | 4.02 | 5.1e-4 | 3.01 | 5.3e-6 | 2.75
32 %32 1.0e-7 | 3.68 - - 7.1e-5 | 2.96 - -
64 x 64 1.3e-8 | 3.55 - - 3.6e-5 | 2.67 - -
TaBLE A.2

LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 3.5e-2 - - - 7.6e-1 - - -
4x4 4.4e-3 | 3.01 - - 1.4e-1 | 248 - -
8% 8 S5.4e-4 | 3.02 | 2.0e-4 - 1.9e-2 | 2.67 | 5.1e-4 -
16 X 16 6.6e-5 | 3.03 | 2.4e-5 | 3.06 | 3.5¢-3 | 2.61 | 1.2¢e-4 | 2.09
32 x32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.0e-4 | 2.54 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 2.6e-3 - - - 3.2e-2 - - -
4x4 1.6e-4 | 3.96 | 5.8e-5 - 9.4e-3 | 1.78 | 2.4e-4 -
8x8 1.0e-5 | 4.00 | 3.6e-6 | 401 | 1.2e-3 | 2.35 | 3.9¢e-5 | 2.62
16 x 16 6.0e-7 | 4.02 | 2.2¢-7 | 4.02 | 1.6e-4 | 2.58 | 5.3e-6 | 2.75
32 x32 3.7e-8 | 4.02 - - 3.3e-5 | 2.57 - -

44 Stokes with DPG

B. Numerical Results: “All Ones” Inner Product.
TasLE B.1
L? error and h-convergence rates for an inner product for which «; = @; = 1 (i.e. with weights
selected without concern for scale equivalence) as defined in Section 5.2: comparison with LDG [4].
Quadratic Elements
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.6e-2 - - - 5.6e-1 - - -
4x4 5.0e-3 | 2.84 - - 1.7e-1 | 1.70 - -

8% 8 7.7e-4 | 2.77 | 2.0e-4 - l.4e-1 | 1.00 | 5.1e-4 -
16 X 16 1.5e-4 | 2.64 | 2.4e-5 | 3.06 | 8.2e-2 | 0.87 | 1.2e-4 | 2.09
32 x32 34e-5 | 2.51 | 2.9e-6 | 3.05 | 4.3e-2 | 0.85 | 3.0e-5 | 2.04
64 x 64 8.5e-6 | 2.40 - - 2.2e-2 | 0.86 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.7e-3 - - - 2.7e-1 -
4x4 1.7e-4 | 3.99 | 5.8e-5 - 2.7e-2 | 3.30 | 2.4e-4 -
8% 8 1.2e-5 | 3.92 | 3.6e-6 | 4.01 | 3.7e-3 | 3.09 | 3.9e-5 | 2.62

16 X 16 9.2e-7 | 3.84 | 2.2e-7 | 4.02 | 4.8e-4 | 3.03 | 53e-6 | 2.75

32 x32 9.0e-8 | 3.73 - - 6.3e-5 | 2.99 - -

64 x 64 1.4e-8 | 3.55 - - 2.8e-4 | 2.25 - -

TasLe B.2
L? error and h-convergence rates for an inner product for which a; = @; = 1 (i.e. with weights
selected without concern for scale equivalence) with enriched fluxes (kg = k + 1,kiey = k +2), as
defined in Section 5.2: comparison with LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.5¢e-2 - - - 7.6e-1 - - -
4x4 4.4e-3 | 3.00 - - 1.3e-1 | 2.50 - -

8 x 8 5.4e-4 | 3.02 | 2.0e-4 - 1.9e-2 | 2.66 | 5.1e-4 -
16 X 16 6.6e-5 | 3.02 | 2.4e-5 | 3.06 | 3.6e-3 | 2.60 | 1.2¢-4 | 2.09
32 x 32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.1e-4 | 2.53 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.5e-3 - - - 3.5e-2 -

4 x4 1.6e-4 | 3.95 | 5.8e-5 - 8.6e-3 | 2.02 | 2.4e-4 -

8 x 8 1.0e-5 | 3.98 | 3.6e-6 | 401 | 1.2e-3 | 2.46 | 3.9e-5 | 2.62
16 X 16 6.1e-7 | 401 | 2.2e-7 | 4.02 | 1.5e-4 | 2.65 | 5.3e-6 | 2.75
32 x 32 3.7e-8 | 4.02 - - 3.3e-5 | 2.59 - -

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert

C. Numerical Results: Mesh-Dependent Inner Product.

L? error and h-convergence rates for a mesh-dependent inner product with weights as specified in
equations (4.4)-(4.9) and discussed in Section 5.3, an inner product that represents our best compromise
between the continuity argument and concerns for scale equivalence in the determination of the optimal

TasLe C.1

test functions.: comparison with LDG [4].

L? error and h-convergence rates for a mesh-dependent inner product with weights as specified
in equations (4.4)-(4.9) and discussed in Section 5.3, with enriched fluxes (kg = k + 1, ke = k + 2):

comparison with LDG [4].

Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 3.6e-2 - - - 5.6e-1 - - -
4x4 4.7e-3 | 291 - - 1.1e-1 | 2.39 - -
8% 8 6.0e-4 | 2.94 | 2.0e-4 - 2.8¢-2 | 2.15 | 5.1e-4 -
16 x 16 7.6e-5 | 2.96 | 2.4e-5 | 3.06 | 7.3e-3 | 2.07 | 1.2e-4 | 2.09
32 x32 9.5¢-6 | 297 | 2.9¢e-6 | 3.05 | 1.8e-3 | 2.05 | 3.0e-5 | 2.04
64 x 64 1.2e-6 | 2.98 - - 4.3e-4 | 2.04 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 2.7¢-3 - - - 2.7e-1 - - -
4 x4 1.6e-4 | 4.06 | 5.8e-5 - 24e-2 | 347 | 2.4e-4 -
88 9.9e-6 | 4.04 | 3.6e-6 | 4.01 | 3.1e-3 | 3.22 | 3.9e-5 | 2.62
16 x 16 6.1e-7 | 403 | 2.2e-7 | 4.02 | 3.9e-4 | 3.13 | 5.3e-6 | 2.75
32 x32 3.8¢-8 | 4.02 - - 4.9e-5 | 3.08 - -
64 x 64 2.4e-9 | 4.02 - - 4.3e-6 | 3.13 - -
TasLe C.2

Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate)4 rate
2X2 3.5e-2 - - - 7.6e-1 - - -
4 x4 4.4e-3 | 3.00 - - 1.2e-1 | 2.62 - -
8§ %8 5.4e-4 | 3.01 | 2.0e-4 - 1.9e-2 | 2.64 | 5.1e-4 -
16 X 16 6.7¢-5 | 3.01 | 2.4e-5 | 3.06 | 4.7e-3 | 2.46 | 1.2e-4 | 2.09
32 x32 8.4e-6 | 3.01 | 2.9e-6 | 3.05 | 1.1e-3 | 2.35 | 3.0e-5 | 2.04
64 x 64 1.0e-6 | 3.01 - - 2.8e-4 | 2.27 - -
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate 4 rate P rate
2X2 2.5e-3 - - - 3.5e-2 - - -
4 x4 1.6e-4 | 3.99 | 5.8¢e-5 - 5.4e-3 | 2.70 | 2.4e-4 -
8§ x8 1.0e-5 | 3.99 | 3.6e-6 | 4.01 | 6.1e-4 | 2.92 | 3.9e-5 | 2.62
16 x 16 6.2¢-7 | 4.00 | 2.2e-7 | 4.02 | 1.3e-4 | 2.74 | 5.3e-6 | 2.75
32 x32 3.8¢-8 | 4.00 - - 2.5e-5 | 2.63 - -

46 Stokes with DPG

D. Numerical Results: Mesh-Dependent Inner Product, Least-Squares Compro-
mise.
TasLe D.1
L? error and h-convergence rates for an inner product with weights as described in Section 5.4,
an inner product that brings concern for scale equivalence in the stiffness matrix into our compromise
between the continuity argument and concerns for scale equivalence in the determination of optimal
test functions: comparison with LDG [4].
Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 3.6e-2 - - - 5.6e-1 -
4 x4 4.6e-3 | 2.97 - - 1.2e-1 | 2.23 - -
8§ x 8 5.8e-4 | 297 | 2.0e-4 - 2.7e-2 | 2.19 | S.1e4 -
16 x 16 T.4e-5 | 2.97 | 2.4e-5 | 3.06 | 6.6e-3 | 2.14 | 1.2e-4 | 2.09
32 x 32 9.4e-6 | 297 | 2.9e-6 | 3.05 | 1.7e-3 | 2.10 | 3.0e-5 | 2.04
64 x 64 1.2e-6 | 2.98 - - 4.1e-4 | 2.07 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate)4 rate
2x2 2.7e-3 - - - 2.7e-1 -
4 x4 1.6e-4 | 4.10 | 5.8e-5 - 24e-2 | 347 | 24e-4 -
8% 8 9.7e-6 | 4.05 | 3.6e-6 | 4.01 | 3.1e-3 | 3.22 | 3.9e-5 | 2.62
16 x 16 6.1e-7 | 4.03 | 2.2e-7 | 4.02 | 3.9e-4 | 3.12 | 5.3e-6 | 2.75
32 x 32 3.8e-8 | 4.02 - - 4.9e-5 | 3.08 - -
64 x 64 2.4e-9 | 4.02 - - 2.3e-6 | 3.26 - -

TasLE D.2
L? error and h-convergence rates for an inner product with weights as described in Section 5.4,
an inner product that brings concern for scale equivalence in the stiffness matrix into our compromise
between the continuity argument and concerns for scale equivalence in the determination of optimal
test functions, with enriched fluxes (kg = k + 1, kiesy = k + 2): comparison with LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.5e-2 - - - 7.6e-1 - - -
4x4 4.2e-3 | 3.08 - - 4.2e-2 | 4.18 - -

8 x 8 5.2e-4 | 3.04 | 2.0e-4 - 1.0e-2 | 3.11 | 5.1e-4 -
16 X 16 6.5e-5 | 3.02 | 2.4e-5 | 3.06 | 2.7e-3 | 2.64 | 1.2¢-4 | 2.09
32 x 32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.3e-4 | 2.40 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.5e-3 - - - 3.5e-2 -

4 x4 1.5e-4 | 4.06 | 5.8e-5 - 4.5¢-3 | 2.96 | 2.4e-4 -

8§ x 8 9.5e-6 | 4.04 | 3.6e-6 | 4.01 | 2.0e-3 | 2.07 | 3.9e-5 | 2.62
16 x 16 59e-7 | 4.02 | 2.2e-7 | 4.02 | 3.6e-4 | 2.10 | 5.3e-6 | 2.75
32 x32 3.7e-8 | 4.02 - - 4.9e-5 | 2.26 - -

CSRI Summer Proceedings 2010 47

AN INVESTIGATION OF BLOCK PRECONDITIONERS FOR UNSTEADY
NAVIER-STOKES

EDWARD G. PHILLIPS*, ERIC C. CYRY, AND JOHN N. SHADID#

Abstract. In this paper we investigate block upper triangular preconditioners for the saddle point system gen-
erated by discretizing the unsteady Navier-Stokes equations. We focus on Schur complement approximations used
within the block structure of these preconditioners. We consider Schur complements generated by Neumann series
approximations based on various approximations of the convection-diffusion operator. We also consider improve-
ments upon these approximations using a sparse approximate inverse (SPAI) algorithm and a structured probing
algorithm. The preconditioners are compared based on numerical results.

1. Introduction. In this paper, we consider the numerical solution of the unsteady
Navier-Stokes problem for the flow of viscous Newtonian fluids: Given an open bounded
domain Q c RY with boundary 0Q, time interval [0, 7], and data f, find a velocity field
u = u(x, 7) and a pressure field p = p(x,) satisfying

Z—l;—vAu+(u-V)u+Vp=f on Q x [0, T1, (I.D

V-u=0 onQx[0,T], (1.2)
subject to inital and boundary counditions, where v is the kinematic viscosity, A is the Lapla-
cian, and V is the gradient.

Time discretization is applied to this system along with a Newton or Picard linearization.

Then spatial discretization using finite differences or finite elements results in large, sparse
saddle-point systems of the form

(5 %3)-(5) 05

Ax = b, (1.4)

or

where u and p are the discrete velocity and pressure, F is the discrete transient convection-
diffusion operator for velocity, BT is the discrete gradient, B is discrete divergence, C is a
stabilization matrix, and f and g account for forcing and boundary conditions. If the dis-
cretization is LBB stable (see [5] Chapter 5), then no stabilization is required, and C = 0. For
a detailed description of the linearization and discretization of (1.1) and (1.2) see [5] Chapter
7.

In order to efficiently solve equation (1.3), a preconditioned Krylov method is often used.
Many preconditioners employ the block LU factorization

I 0 F BT
ﬂ:(BF“ 1)(0 —S) (1.5)

where
S=C+BF'B’ (1.6)

“Department of Applied Mathematics and Scientific Computation, University of Maryland, eg-
phillips@math.umd.edu

Sandia National Laboratories, eccyr@sandia.gov

Sandia National Laboratories, jnshadi @sandia.gov

48 Block Preconditioners for Unsteady Navier-Stokes

is the pressure Schur complement. For fast convergence of a Krylov method right-preconditioned
by P, the operator AP~ should have few distinct eigenvalues. As noted in [9], if we let P
be the upper block triangular factor, then AP~ is the lower block triangular factor and has

a single eigenvalue of 1. Building on this idea, we let # be an approximation to this block
factor

r T
p:(g]—9_@) (1.7)

where F and S are approximations for F and S respectively (see [4] for a more general dis-
cussion of approximate block factorization preconditioners). To apply !, only the action of
the inverses of # and § is required. F~! is often well approximated by a multi-grid precondi-
tioner as argued in [5] Chapter 8 and [14], so we set F = F and focus on approximations for
the Schur complement.

The aim of this paper is to investigate the quality of various Schur complement approx-
imations. The immediate goal is not an efficient block preconditioner but an increased un-
derstanding of how Schur complement approximations impact preconditioning. We consider
how each Schur complement approximation affects the convergence of a Krylov method ap-
plied to the exact Schur complement and how this compares to the effect when the approxima-
tion is used in the block preconditioner (1.7) for the saddle point system (1.3). For Schur com-
plement approximations which are based on approximations of F~!' we also want to compare
the effect of the F~! approximation as a preconditioner for F. We are particularly interested
in how the performance of these preconditioners scales with CFL and Reynolds number as
finding good, inexpensive approximations to S is difficult for large CFL or Reynolds number
[1].

The remainder of this paper is structured as follows. In Section 2 we introduce sev-
eral Schur complement approximations based on Neumann series approximations of F~!.
In Sections 3-4 we consider two ways to improve upon these approximations: the sparse ap-
proximate inverse algorithm and structured probing. Section 5 describes another approximate
block factorization preconditioner, the least-squares commutator, for comparison. Section 6
contains some computational results for assessing the various preconditioners. Finally, con-
clusions are drawn in Section 7.

2. Neumann series approximations. In considering approximations for the Schur com-
plement, we first investigate those produced by approximating F~! by some F~!. The Schur
complement is then approximated through the explicit product

S=Cc+BF'B. 2.1

The Neumann series is a simple polynomial approximation for the inverse of a matrix (see
[10] Section 12.3.1 for a brief discussion). Given a nonsingular matrix F' and a preconditioner
M, if p(I = FM™") < 1, the following expansion holds

F'l=Mm" Z([—~FM™Y. (2.2)
i=0
Truncating this series gives the approximation

K-1

Fl=m! Z([—-FM™Y, 2.3)
i=0

E.G. Phillips, E.C. Cyr, and J.N. Shadid 49

the K term Neumann series preconditioned by M. Since we require p(I — FM~') < 1, a good
choice for M is an easily invertible approximation for . Note that the 1 term Neumann series
is equal to the preconditioner M~ itself.

The choice of M is then very important. A good choice of M will lead the Neumann
series to converge and will produce a good approximation for the Schur complement. An
important issue for efficient computing is the sparsity of . Since we do not alter S beyond
the approximation of F~!, it is important that ! is constructed to be sparse. Consequently
M should be chosen to be sparse, and since the density of F~! increases as the number of
Neumann terms increases, K should be kept small. For M we consider the following sparse
approximations to F or F~!.

SIMPLE
SIMPLE approximates F' by its diagonal.

SIMPLEC
SIMPLEC approximates F by a diagonal matrix, where the ith diagonal entry M;; is
the sum of the absolute values of the row F.. This expands on the idea of SIMPLE
by attempting to incorporate more data from F into the diagonal.

Block(k)
Given a whole number £, the block Jacobi approximation preserves the block diag-
onal of F composed of k X k blocks. This expands on SIMPLE by preserving data
off of the diagonal. Naturally, k should be taken modestly so M is sparse. We have
considered k = 2,3, and 4, and k = 1 gives SIMPLE. We consider systems where
the x and y velocities are split so u” = (ul, uyT). In this case, the blocking accounts
for the influence of closely indexed spatial nodes on each other. The effect of this
blocking approximation will then be largely contingent on index ordering and flow
direction.

ILU(0)
ILU(0) is the incomplete LU factorization with no fill-in. It computes the LU de-
composition of F only filling in according to the sparsity pattern of F. M~ is then
given by U~'L~!. See [10] Section 10.3.2 for an algorithmic description of ILU(0).
This approximation is used mostly as a benchmark since it produces denser approx-
imations than desired.

ILUT(7)
ILUT is the incomplete LU factorization with threshold. Given a threshold 7, ILUT
computes the LU decomposition, but does not fill in for any element of F' whose
magnitude is less than 7 times the norm of its row. See [10] Section 10.4.1 for an
algorithmic description.

SPAI
SPAI is a sparse approximate inverse. M~' is computed to minimize the norm
|IF(M™"),; — eill, within a tolerance for each column of M~', subject to a constraint
on the number of nonzeros allowed per column. SPAI begins minimization for each
column in the direction of the corresponding identity column. Nonzeros are itera-
tively added to the search direction based on the residual until either the tolerance or
the maximum number of nonzeros is reached. For precise algorithmic details, SPAI
is described as the Approximate Inverse Algorithm in [2]. We used the MATLAB
SPAI implementation SPAI2 [7].

We will refer to a K term Neumann series preconditioned by any of these choices of
M as (preconditioner_name)_K (i.e. a 3 term Neumann series with a 2 X 2 block Jacobi
preconditioner will be referred to as Block(2)_3).

50 Block Preconditioners for Unsteady Navier-Stokes

3. Other uses for SPAIL In addition to approximating F~!, SPAI can be used in other
ways to construct an approximate Schur complement. First, it can be used to approximate
the product F -1gT by a matrix X. This can be accomplished by minimizing ||FX.,; — B,-T*Hz for
each column of B with the SPAI algorithm. Once X is computed, S can be approximated by
S = BX. Because X has fewer columns than M this requires less work than the application of
SPAI defined above. This second use of SPAI will be referred to as SPAIb. Note that SPAIb
cannot act as a preconditioner for a Neumann series approximating F~'.

Another use of SPAI is to apply it to the entire Schur complement approximation. Note
that in practice we do not explicitly require the matrix $ for preconditioning. We merely need
the action of $~'. If we approximate S and end up with a matrix which is denser than we
would like, we can obtain a sparse approximation of §~! by applying SPAL.

4. Structured probing. Another method which can be used to produce a sparse ap-
proximation of the Schur complement is structured probing, as defined in [13]. Structured
probing approximates a matrix A € R™" according to a chosen sparsity pattern represented
in a matrix H € {0, 1}”". A matrix of p probing vectors X € {0, 1} is then constructed
via graph coloring techniques such that if A were already of the desired sparsity pattern, the
entries of A would be preserved in the matrix AX. The entries of AX are then mapped into an
approximation of A according to the sparsity pattern of H. We use the MATLAB version of
the Structured Probing Toolkit [12] to implement probing.

We regard the sparsity of a 1 term Neumann series with a diagonal preconditioner as a
benchmark. In this case, if C = 0, then S has the same sparsity pattern as BB”. To measure
the sparsity of a Schur complement approximation, we appeal to the ratio of nonzeros in §
to nonzeros in BBT. If this ratio is much greater than 1 for a good S, then we can attempt to
preserve the convergence properties of § and reduce its density by probing it to the sparsity
structure of BBT. When probing is applied to the Schur complement approximation in this
way, we refer to the resulting method as (original_method_name)_P (i.e. a 3 term Neumann
series with a 2 X 2 block Jacobi preconditioner which has been probed will be referred to as
Block(2)_3_P).

5. Theleast-squares commutator. The least-squares commutator (LSC) preconditioner,
closely related to the BFBt preconditioner [6], is a popular preconditioner developed for
Navier-Stokes systems. It is fast and does not require any data beyond what is needed to
construct the problem. Consequently, it makes a good benchmark with which to compare the
preconditioners studied here. The idea of LSC, as described in [5] and [3], is to commute
the discrete velocity convection-diffusion operator F with the discrete gradient operator BT
so that

BF™'B" ~ BM,'B"F,'M, (5.1)

where M, is the velocity mass matrix, M, is the pressure mass matrix, and F, is the discrete
pressure convection-diffusion operator. So that /', need not be constructed explicitly, it is
obtained by solving the least squares problem

min (|[M; ' FM;'B"]; - M;'B" M, ' [F Il (5.2)
for each column j of F),. This defines
F, = M,(BM,'B"y""(BM,' FM;'B") (5.3)
so we let

S =BM;'B"(BM;'FM;'B")"'(BM; ' BT). (5.4)

E.G. Phillips, E.C. Cyr, and J.N. Shadid 51

This approximation requires only the velocity mass matrix which is required to build F. M;!
is commonly replaced by its diagonal. Then the BM ' BT terms are scaled discrete Laplacian
operators for which there exist efficient solvers. The action of § ! is then easy to compute.

6. Computational results. The test problem considered is a regularized lid driven cav-
ity on a 32 x 32 grid, using Q2 — P1 stable elements and a Picard linearization. The problem
is generated with IFISS [15] using its standard time-stepping procedure (TR-AB2, described
in [8]) with v = 1/100 to a time of 0.4. The time-step is then adjusted to produce a given
CFL. The domain is [-1, 1] X [-1, 1] so Re = 2/v. The next matrix system is used to test the
preconditioners. The Krylov method used is GMRES [11] with a stopping tolerance of 10~°
and zero initial guess. This very tight criteria may favor the more robust preconditioners. We
assess the effect of the preconditioners on the entire saddle point system, ‘A, by solving (1.3)
and the effect on S and F by solving the explicitly generated equations

-Sp=g-BF'f, (6.1)
and
Fu=f-B'p (6.2)

respectively, as these equations produce the same solution as (1.3). For (6.1) we use S as
preconditioner and for (6.2) we use F. We will use GMRES iteration counts and total com-
putation time as measures of performance. We note that the MATLAB codes used may not be
highly optimized, but computation time can give an indication of the relative performance of
the preconditioners studied. The computation times for probing and SPAI may be particularly
inflated by their MATLAB implementations.

We begin by considering the performance of Schur complement approximations based on
single term Neumann series approximations for F~!: SIMPLE_1, SIMPLEC_1, Block(2)_1,
ILU(0)-1, ILUT(0.25)-1, and SPAI_1. We use Block(2) because Block(3) and Block(4) give
very similar results with slightly higher density. We found that the choice of 7 = 0.25 for
ILUT gives a good balance between density and efficiency. We also compare SPAIb and LSC
for which Neumann series on F do not apply. For both SPAI and SPAIb we use the default
stopping tolerance of 0.4 and a maximum of 50 non-zeros per column. Initially our results
will be based on setting Re = 200. Iteration counts and computation time are compared
as functions of CFL for A in Figure 6.1, for S in Figure 6.2, and for F in Figure 6.3. The
first thing to notice is that iteration count for every preconditioner has the same relationship to
CFL.: it is moderate and approximately constant for CFL up to about 5, then begins to increase
for CFL greater than 5. Because of this dependence on CFL, performance of preconditioners
will be judged largely on the right-hand tail in these figures.

In general, the growth rate of iteration count is very similar between A, S, and F, but we
see an interesting effect with Block(2)_1. Notice that for F', Block(2)-1 performs worse than
SIMPLEC_1 at the largest CFL, with iteration count as large as that of SIMPLE_1. But for
S and A, Block(2)_1 has a lower iteration count than SIMPLEC_1 at this CFL. We can also
see that the difference in iteration count between SIMPLE_1 and SIMPLEC_1 is dramatically
greater for S and A than for . These observations show that the performance of a Schur
complement approximation using F~! is not entirely contingent on the performance of F~!
on F. On the other hand, it seems that the performance of a block preconditioner using
Schur complement approximation $ relies heavily on the performance of § preconditioning
S. Similar trends are seen in computation time. Note that computation time is large for
SPAI_I because of the extra work involved during minimization. An investigation of the
large computation time for SPAIb at low CFL is deferred until density information in Table
6.2 is presented.

52 Block Preconditioners for Unsteady Navier-Stokes

Neration Counts: for 4 Computation Timas lor A
T, - - - B0 - -
w— SIMPLE 1 — SPLE_1
aoap| = SIMPLEC 1 by —SEAPLEC 1
— Black(2)_1 = Block(2)_1
500 @)1 B0 L)1
§ — [LUT{0.25)_1 E — ILUT(0.28)_1
s SPAL1 = 50 SPAL1
E — 5PAR ==t
= - —
§>* 0
1=
o i)
= 20
1o 0
e plE =
o 10 1o 0 16l 10 10’ 10
CFL

FiG. 6.1. Iteration count and computation time for various single Neumann term preconditioners applied to A.

Haration Counts for & Computation Time for 5
BOD - - T 120 - -
— SIMPLE 1 e SHAPLE 1
TOOf | = SIMPLEC_1 e SEAPLEC_1
— Black(Z]_1 1o o BinckZ)_1
BOO ILLE)_1 U1
— [LUT{0.25)_1 E B0 —— ILUT[0.28]_1
500 SPAL T = SPALY
5 — SPAR = 5PA
i | i - = =LSC
g
300
o G 49
200
bl _,._.—-—'—A =
a ~ereeaae | o e
W 107 1o’ o' 1 1o W 107 1o’ ' 10" 1o’
CFL CFL

FiG. 6.2. Iteration count and computation time for various single Neumann term preconditioners applied to S .

We now turn to higher order Neumann series approximations for F~'. To avoid exces-
sive density in the Schur complement approximation, we add more Neumann terms only to
the sparsest preconditioners: SIMPLE, SIMPLEC, and Block(2). We observed that itera-
tion count improved for each preconditioner when a second Neumann term was added, but
SIMPLEC was the only preconditioner for which three or more Neumann terms improved
iteration count for all CFL. This effect is well explained by considering the spectral radius
p(I = FM™"), as shown in Table 6.1. For SIMPLE and Block(2), the spectral radius is much
greater than 1 for large CFL. As a result, iteration count degrades for large CFL when Neu-
mann terms are added. The spectral radius for SIMPLEC is close to 1 for all CFL considered.
Although it slightly exceeds 1 for larger CFL, this is good enough to see iteration count im-
provement with up to 6 Neumann terms for F and up to 5 for S and A, as shown in Figures
6.4 — 6.6. The slope of iteration count decreases for each Neumann term added in each of the
3 systems. The same sort of decrease is apparent in computation time, with the exception of
the third Neumann term, until SIMPLEC_5 is comparable to ILU(0)_1.

CFL | 0.01 005 0.1 05 1 5 10 50 100 500 1000
SIMPLE 0.7 08 07 06 05 07 10 30 55 253 50.2
SIMPLEC 0.9 09 09 08 07 07 09 1.0 1.1 1.3 1.3
Block(2) 0.7 07 07 05 04 05 07 12 21 34 6.6
TaBLE 6.1
Values of p(I — FM™") for 3 choices of M.

E.G. Phillips, E.C. Cyr, and J.N. Shadid 53

leeasion Counss for F Computation Time lor F
60O — - - - ™ - ~ —
——SBIMPLE 1 —SIMPLE 1
—BIMPLEC_ 1 o | = SIMPLEC_1
00T | — Biockiz) 1 — Bock(2)_1
—— ILLH) 1 50 ILLKO)_t
A0 —— LAUTiD25) 1 E = LUT{025)_1
SPAL 1 = SPAI
ai
: g
w
g
L &

Fic. 6.3. Iteration count and computation time for various single Neumann term preconditioners applied to F.

Neration Counts: for A Computation Timae for A
250 — — — 5 - ~ —
— STMPLEC_1 e BIMPLEC_1
— SIMPLEC_2 ~— SIMPLEC_2
200} | = SMPLEC 3 20} | = SIMPLEC 3
- SHAPLEC_4 SIMPLEC 4
—— SMPLEC_8 E —— SIMPLEC_§
150 SIMPLEC_& - SIMPLEC_ &
5 —— RIRHL1 — L1
i
£ 100
o &
50

FiG. 6.4. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to A.

Neration Counts for §

300 — - ~
——SIMPLEC_1
— BIMPLEC. 2
20F | — smarLeC 3
— SIMPLES 4
soop| —smarLEc 5
SIMPLEC 6
3 — ILLI{3)_1
e '¥
w
. 3
54

Fic. 6.5. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to S .

Although adding Neumann terms improves iteration count and computation time, it also
increases the density of §. This increase in density can be seen in Table 6.2. The ratio of non-
zeros in § to non-zeros in BB” is constant over CFL for the Neumann series preconditioned by
SIMPLEC, increasing with each term. The ratio is also constant over CFL for ILU(0)_1, but
is much greater. Having comparable computation time and lower density makes SIMPLEC_5
more favorable than ILU(0)_1 for larger problems. ILUT(0.25)_1 and SPAI_1 grow in density

54 Block Preconditioners for Unsteady Navier-Stokes

Herason Counss for F Computation Time lor F

506 T - - Vi T -
—— SMPLEC 1 ——SIMPLEC 1
——SIMPLEC 2 14} | — SIMPLEC 2

apof [—swrLec 3 —— SIMPLEC 3
—— GMPLEC 4 12b ——SIMPLEC 4
— SIMPLEC S g ——SIMPLEC 5

W SIMPLEC & = SIMPLEC &

5 — LI 3 — LKD) 1
]
g 200
o d
100

FiG. 6.6. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to F.

as CFL increases, while SPAIDb, in contrast, decreases in density for larger CFL. This explains
the large computation times seen with SPAIb for low CFL in Figures 6.1 and 6.2. In this case,
the SPAI algorithm ran longer for low CFL, adding more non-zeros, without reaching its
tolerance.

CFL | 0.01 0.05 0.1 0.5 1 5 10 50 100 500 1000
SIMPLEC_1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SIMPLEC_2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
SIMPLEC_3 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
SIMPLEC_4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
SIMPLEC5 | 103 103 103 103 103 103 103 103 103 103 10.3
SIMPLEC6 | 133 133 133 133 133 133 133 133 133 133 133

ILU@)-1 | 31.6 316 316 316 316 316 316 316 316 31.6 316
ILUT(0.25)-1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 35 72 211 24.9

SPAI_I 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.6 2.0 2.6
SPAIb 2.5 2.5 2.5 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
TaBLE 6.2

Ratio of non-zeros in 8 to non-zeros in BB .

To assess the performance of probing, we apply it to the Schur complement approxi-
mations defined by ILU(0)_1 and the SIMPLEC Neumann series with up to 5 terms. For
this problem, using the sparsity pattern of BBT, 27 probing vectors are required. Iteration
counts and computation time are compared with the original non-probed preconditioners in
Figures 6.7 and 6.8. For the SIMPLEC preconditioners, probing only slightly increases iter-
ation count. Computation time is much greater for probing in this size problem due to the
expensive graph coloring process, but grows slower with CFL. ILU(0)_1 sees a much greater
deterioration in iteration count when probing is applied. This can be attributed to the higher
density of ILU(0)_1 as compared to the SIMPLEC preconditioners. More information is lost
from ILU(0)_1 when probed to the sparsity pattern of BB .

Given what we have seen, the preconditioners of most interest are ILU(0)_1, ILUT(0.25)_1,
SPAIb, SIMPLEC_S, and SIMPLEC_5_P. Although dense, ILU(0)_1 is consistently the best
in terms of both iteration count and computation time. ILUT(0.25)_1 grows in density as
CFL increases but is competitive in iteration count and computation time. SPAIb may have
larger iteration counts than SPAI, but the decrease in its density with growing CFL and the
need for fewer minimization procedures make it a much faster preconditioner for large CFL.
SIMPLEC.S is the best of the higher order Neumann series preconditioners considered, and
SIMPLEC_5_P performs almost as well in iteration count while being 10.3 times sparser.

E.G. Phillips, E.C. Cyr, and J.N. Shadid

Noration Counts for A

Computation Timae for A

55

250 -~ 25 ~ - -
= = = SWPLEC 2 = = = SBPLEC 2
—SIPLEC 2 P —SMPLEC 2 P
200 SWMPLEC_3 0 SMPLEC 3
BIMPLEC 3_P - SIMPLEC_3_P
- = = SIMPLEC_4 I | B
150} | —SMPLEC 4_P = i5j — SMPLEC_4_P
B SIMPLEC 5 - - - sMPLEC 5
o BMPLEC _5_P SMPLEC 5 P
tEl: joak | == =mikti_t o | == = LU
2 — KB 1P & — LU0} _1_P 2
v
0 st o
F s
...... L__. e s g S
. FoEEcEmoennenpenifa-"
o o — A —- e)
] 1 1o’ o' 1o’ w o w' 1’ 10’ 10" 10’
CFL CFL
FiG. 6.7. Iteration count and computation time for probed preconditioners applied to A.
Noration Counts for 5 Computation Tima lor 5
250 -~ 25 - - -
== =BIMPLEC 2 == =SIMPLEC 2
=— BIMPLEC 2 P ——SIWMPLEC 2 _P
200 SIMPLEC 3 ¢ 20k |- - ~SMPLEC 3
SIMPLEC 3_P b f ——SIMPLEC 3 P
== = BIMPLEC_4 24 E = = ~SIMPLEC 4
150 ——SIMPLEC_4_P A = gk | —SIMPLEG 4 P
5 -BIMPLEC_5 ¥ - SIMPLEC S
o -BIMPLEC_§_P b SIMPLEC & P
tEl: woakl= = =iLum_1 /_{ {1+1 3 Sl MY 10} ;
z — L 1_P 3 —RKD)_1_F .

FiG. 6.8. Iteration count and computation time for probed preconditioners applied to S .

We assess these preconditioners further by showing how their performance scales with
Reynolds number and mesh size. The Reynolds number is modified by changing the value
of v. The scaling of iteration count with Reynolds number is plotted in Figure 6.9. Observe
that ILU(0)_1 and ILUT(0.25)_1 degrade with an increase in Reynolds number, as they do
not converge for very high Reynolds number when coupled with large CFL. The other 3
preconditioners scale similarly with Reynolds number and are comparable to LSC for Re =
20000.

We compared the performance of the 5 best preconditioners with 2 finer meshes: 64 x 64
and 128 x 128. Iteration counts and computation time for these preconditioners on the three
meshes with Re = 200 are plotted in Figures 6.10 — 6.12. The detriment of ILU(0)_1’s
density is clear on the 128 x 128 grid as MATLAB, running on 1 gb of RAM, ran out of
memory. ILUT(0.25)_1 was also too dense to run at CFL = 1000. Keep in mind that the
Schur complement approximation is explicitly computed. In practice, matrix free multi-grid
methods could be used to avoid constructing it on the finest grid. Otherwise, we do not see
much change in iteration count . But as far as computation time, it appears that the probing
graph coloring algorithm as implemented gets more expensive with mesh refinement, making
SIMPLEC_5_P very slow on the 128 x 128 mesh. Ultimately, SPAIDb fairs the best with mesh
refinement obtaining the lowest computation times for large CFL on the finest mesh, owing
to its sparsity and accurate approximation of S.

56 Block Preconditioners for Unsteady Navier-Stokes

Woration Counts foar ILLYD)_1 Memtion Counts for ILUTID.25)_1

i - - r] - - ™

=——fg = =—fg =2

— Py = 20 — Ay = 20

e Pl = 200
P = 2000

= Py = 20000

GMAES Nevaticns
GMAES Nevaticens
g,

77
"

o i e i i gy oS i i)
1w+ 10 10’ 10 10’ w o’ 10’ 10" 10 10’ '
CFL CFL
\ Heration Courts for SPAR . Reraiion Coinis for SIMPLEC S
10 1o
— — =2
e iy = 2 —— R = 2
— Pl = 200 —— Ao = 200
- Pl = 2000 —— g = 2000
§Iu’r‘_“’='m §|u’-—m.m
5 5
it -1 B
% n'p % '
&)

10 10 10 10’ 10 10
CFL
o heraticn Counts for SIMPLEC 5 P o Ieratcn Courss dor LSC
—FA#=2 —
——R# =20
—— Ry = 200

~—— Ao = 2000
—— e = 20000

GMAES Nevaticns
GMAES Nevaticens

10 w0

Fig. 6.9. [teration count for the best preconditioners as it scales with Reynolds number on A. Note
that ILU(0)-1 did not converge for Re = 20000,CFL = 1000. ILUT(0.25)_1 did not converge for Re =
2000,20000, CFL = 500, 1000.

7. Conclusion. This paper presented a number of preconditioners for saddle point prob-
lems arising from discretizations of the unsteady Navier-Stokes equations. The approach is
based on an approximate block triangular factorization, focusing on approximating the Schur
complement. We considered Schur complement approximations based on Neumann series
approximations of F~!. These rely heavily upon the spectral radius p(I — FM~"). But the
efficiency of an approximation F~! as a preconditioner for F is not directly analogous to the
efficiency of a block preconditioner using F~! to approximate S. Structured probing can be
employed to reduce the density of a Schur complement approximation without increasing
iteration count much, but the graph coloring procedure involved proves very expensive. A
competitive Schur complement approximation for larger problems is developed by adapting
a sparse approximate inverse algorithm to approximate F~'B”. It will be valuable to study

E.G. Phillips, E.C. Cyr, and J.N. Shadid

lsranor Counts on 32052 G

Compeitafion Tims on 3352 Grd

57

250 — e — —) — — —
——iLuT(R25)_1 —LLiT{0 25
|l —GFAR
21401
—— SBMFLEC_S oo —— SIMPLEC_5
B —— SRAPLEC % P i ——ZIPLEC_ 4|
3 o .
CRET | e () o — Lt !
a
- § a0 1
§ £
=0 1
—
—
v 4 o " ¥ ¥
1] 10 {81] 14 {11] [r]
CFL
FiG. 6.10. Iteration count and computation time for the best preconditioners on a 32 X 32 grid for A.
iimianon Counts on B4x8d. Gd Comguitation Tims on (Lafd Grid
&0 — e —_ — B — o —— —
— g UTI0251 — T2
B00F | ——rcpar —PAl
—CPLEC _§ —EaaPLEC 4
P |]
g Nl—swmiec s F | 2wonf—secsre
2 aqgpl—muE y: -—; =) 1
i F g ————
w1 g
E 5 500
1004 -
b
a 1 ¥ i ¥ 1 o i i 1]
i 10 1 10 1 10 18 10
oFL

Fic. 6.11. Iteration count and computation time for the best preconditioners on a 64 X 64 grid for A. Note that
ILUT(0.25)-1 did not converge for CFL = 1000 and SPAIb did not converge for CFL = 500, 1000.

Haraon Cownts on 120158 G

Computaton Tims on F28cT28 Grid

&0, — — — — 3000, — — — —_
={LLIT[2%]_1 =—=jLUm[025)_1
H m— L sl ——= i
300 SFAIL ; 4500 TFAl -/4
— CIPLEC /! H—siumEC s
#4501 G 1 —_— EC
£ SIMPLEC 4 P £ 2000 SIMFLEC 5 F P
8 200 =
B &
w1 g
g .
sak
L

FiG. 6.12. Iteration count and computation time for the best preconditioners on a 128x128 grid for A. ILU(0)_1
consumed too much memory to be run. ILUT(0.25)_1 also ran out of memory for CFL = 1000.

the robustness of the preconditioners presented here by applying them to other domains and
using stabilized finite elements. It is also important to note that in practice a direct solver will
not be used to invert the Schur complement approximation. Keeping this in mind, it would
be of interest to study how these Schur complement approximations interact with multi-grid
methods.

58

(1]
[2]
[3]
[4]

[3]
[6]

[7]
[8]

[9]

[10]
(1]

[12]
[13]

[14]

[15]

Block Preconditioners for Unsteady Navier-Stokes

REFERENCES

M. Benzi AND M. A. OrsHaNsKI, An augmented lagrangian-based approach to the oseen problem, SIAM
Journal on Scientific Computing, 28 (2006), pp. 2095-2113.

E. CHow aND Y. SaAD, Approximate inverse techniques for block-partitioned matrices, SIAM Journal on Sci-
entific Computing, 18 (1995), pp. 1657-1675.

H. Erman, V. E. Howtg, J. SHapp, R. SHUTTLEWORTH, AND R. TuMINARO, Block preconditioners based on
approximate commutators, SIAM Journal on Scientific Computing, 27 (2006), pp. 1651-1668.

H. Erman, V. E. HowLE, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO, A faxonomy and comparison of par-
allel block multi-level preconditioners for the incompressible navier-stokes equations, Journal of Com-
putational Physics, 227 (2008), pp. 1790-1808.

H. Erman, D. SivesTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers: With Applications in
Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2005.

H. C. ELmaN, Preconditioning for the steady-state navier-stokes equations with low viscosity, SIAM Journal
on Scientific Computing, 20 (1996), pp. 1299-1316.

M. D. HucHhes anp K. CHEN, SPAI2.

D. A. Kay, P. M. GresHo, D. F. GrirritHs, AND D. J. SILVESTER, Adaptive time-stepping for incompressible flow
part ii: Navier-stokes equations, STAM Journal on Scientific Computing, 32 (2010), pp. 111-128.

M. E. Murpny, G. H. GoLu, AND A. J. WATHEN, A note on preconditioning for indefinite linear systems, SIAM
Journal on Scientific Computing, 21 (2000), pp. 1969-1972.

Y. Saap, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2 ed., 2003.

Y. Saap anp M. H. Scuurrz, Gmres: A generalized minimum residual algorithm for solving nonsymmetric
linear systems, STAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856-869.

C. SiererT, Structured Probing Toolkit.

C. Sterert AND E. DE STURLER, Probing methods for saddle-point problems, Electronic Transactions on Nu-
merical Analysis, 22 (2006), pp. 163—-183.

D. Swvester, H. Etman, D. Kay, ano A. WatHeN, Efficient preconditioning of the linearized navier-stokes
equations, Journal of Computational and Applied Mathematics, 128 (1999), pp. 261-279.

D. SivesTer, H. ELMAN, AND A. RaMAGE, IFISS: Incompressible Flow Iterative Solution Software.

CSRI Summer Proceedings 2010 59

EFFICIENTLY COMPUTING TENSOR EIGENVALUES ON A GPU

GREY BALLARD*, TAMARA KOLDA', AND TODD PLANTENGA

Abstract. The tensor eigenproblem has many important applications, and both mathematical and application-
specific communities have taken recent interest in the properties of tensor eigenpairs as well as methods for com-
puting them. In particular, Kolda and Mayo [3] present a generalization of the matrix power method for symmetric
tensors. We focus in this work on efficient implementation of their algorithm, known as the shifted symmetric
higher-order power method, and on how a GPU can be used to accelerate the computation up to 70X over a sequen-
tial implementation for an application involving many small tensor eigenproblems.

1. Introduction. The tensor eigenproblem has many important applications, and both
mathematical and application-specific communities have taken recent interest in the proper-
ties of tensor eigenpairs as well as methods for computing them. In particular, Kolda and
Mayo [3] present a generalization of the matrix power method for symmetric tensors. We
focus in this work on efficient implementation of their algorithm, known as the shifted sym-
metric higher-order power method (SS-HOPM).

The main motivating application for this work involves detection of nerve fibers in the
brain from diffusion-weighted magnetic resonance imaging data. In this application, data
is gathered for millions of cubic millimeter sized voxels. Determining the number and di-
rections of nerve fiber bundles within each voxel requires solving a small tensor eigenvalue
problem. Because each voxel can be resolved independently, the computations are amenable
to parallelism, and we focused our implementation on a graphics processing unit (GPU) using
the Compute Unified Device Architecture (CUDA) programming framework.

We review the definition of the tensor eigenproblem as well as the SS-HOPM algorithm
from [3] in Section 2. All of the tensors discussed here are symmetric, and exploiting symme-
try is the foremost sequential optimization we use to gain performance. Symmetric matrices
can be stored in half the space and symmetric matrix computations often require only half
the flops of their nonsymmetric counterparts; exploiting symmetry in tensors can save stor-
age and computation by much larger factors. In Section 3 we discuss a symmetric tensor
storage format and how this compressed format is used in the main computational kernels of
SS-HOPM.

Instead of attempting to write an algorithm that offers high parallel performance for com-
puting eigenpairs of tensors of general order and dimension, we focus the GPU implementa-
tion on small tensors, as in our motivating application. Because of the inherent parallelism
in the problem, we can run many independent threads concurrently on the hardware, and we
facilitate efficiency of each thread with careful memory management. We offer an overview
of GPU computing in Section 4, describe the motivating application in Section 5, and give
the details and results of our implementation in Section 6.

The main contributions of this work are (1) the introduction of a symmetric storage for-
mat and means of exploiting symmetry to avoid redundant computation, and (2) a parallel
implementation of SS-HOPM. While the implementation is tailored to a specific application,
we believe it will be widely applicable to high performance computations with symmetric
tensors.

2. Symmetric Tensors and Tensor Eigenpairs. We formally introduce the notion of a
symmetric tensor which is invariant under any permutation of its indices. Let R be the set

“UC Berkeley, ballard @cs.berkeley.edu
Sandia National Laboratories, tgkolda@sandia.gov
Sandia National Laboratories, tplante @sandia.gov

60 Efficiently Computing Tensor Eigenvalues on a GPU

of real-valued order-m tensors where each mode has dimension 7.
DerNtTION 2.1 (Symmetric tensor [1]). A tensor A € R is symmetric if

Qiryigy = Qiyiy, Jorall iy, . iy €{1,...,n}and w € 11,

where 11, is the set of permutations of the set {1,...,m}.

The main computational kernels in the shifted symmetric higher-order power method
will be instances of the following definition of symmetric tensor-vector multiply.

DerFiNtTION 2.2 (Symmetric tensor-vector multiply [3]). Let A € RU™" be symmetric and
x € R". Then for 0 < p < m — 1, the (m — p)-times product of the tensor A with the vector X
is denoted by AX"P € RIP" and defined by

(AX")iy, = Z i,y Xy 00 Xi, forall 1 <iy,....0, <n. 2.1

Note that there is ambiguity in defining a tensor times the same vector in some subset of
modes, but due to symmetry the choice of indexing below yields the same result as any
other valid definition. Also note that the result of a symmetric tensor-vector multiply is also
a symmetric tensor, because any permutation of the indices of the result tensor (iy---ip)
on the left hand side of Equation 2.1 corresponds to a permutation of the first p indices of
the symmetric input tensor entries in the summation on the right hand side which remains
invariant.

We recall the definition of a tensor eigenpair used in [3]. There are other definitions of
eigenvalues and eigenvectors in the literature, but the relationships between the definitions
and the many interesting properties of tensor eigenvalues are beyond the scope of this work.

DEerINITION 2.3 (Symmetric tensor eigenpair [3]). Assume that A is a symmetric m"-order
n-dimensional real-valued tensor. Then A € C is an eigenvalue of A if there exists x € C"
such that

AxX" ' = ax and ||, = 1. (2.2)

The vector X is the corresponding eigenvector, and (A, X) is called an eigenpair.

Finally, we present the shifted symmetric higher-order power method (SS-HOPM) from
[3] as Algorithm 1. This algorithm is a generalization of the matrix power method where the
operation Ax""! generalizes the matrix-vector product and Ax™ generalizes the Rayleigh
quotient for a unit vector. Algorithm 1 includes the shift parameter @ which is chosen to force
the underlying function to be convex (@ > 0) or concave (@ < 0).

The symmetric higher-order power method (with no shift) was introduced in [2, 4], and
convergence of the method was proved for certain types of tensors. While the symmetric
higher-order power method does not converge in general, choosing a sufficiently large (in
absolute value) shift @ guarantees convergence of SS-HOPM. The convergence properties of
a given eigenpair are characterized in [3], but there are still many open problems regarding
choice of starting vector, choice of shift, and finding eigenpairs with certain properties.

3. Exploiting Symmetry.

3.1. Symmetric Tensor Storage. Let A € R""! be a symmetric tensor. In general, A
has n™ entries, but since it is symmetric, many of the entry values are repeated and need not
be stored redundantly. We define an index as anumber i € {1,...,n}, we define a tensor index
as an array of m indices corresponding to one entry of the tensor, and we define an index class
as a set of tensor indices such that the corresponding tensor entries all share a value due to
symmetry. For example, for m = 3 and n = 2, the possible indices are 1 and 2, and the tensor
indices [1, 1,2] and [1, 2, 1] are in the same index class since a;2 = ay2;.

G. Ballard, T. Kolda, and T. Plantenga 61

Algorithm 1 Shifted Symmetric Higher-Order Power Method (SS-HOPM) [3]
Given a tensor A € R,
Require: @ € R, xo € R" with [[xo|| = 1. Let 4o = AXxJ'.

1: fork=0,1,... do

: if @ > 0 then

2

3 Xis] & .AXZH + ax;

4 else

5: Xis] & —(.AX;(n_l + axXy)
6: end if

7 Xir1 < Xeet /|1l

8: As1 < AXY

9: end for

We can find a unique representative of an index class by choosing the tensor index whose
indices are in nondecreasing order. We define this nondecreasing tensor index as the index
representation of the index class.

The index classes of A can also be characterized by the number of occurrences of each
index i € {1,...,n} in the tensor indices of the index class. Thus, we can define the monomial
representation of an index class as an array of n integers where the i’ entry in the array corre-
sponds to the number of occurences of the index i in the index class. Following the example
given above, the index class that includes [1, 1,2] and [1, 2, 1] has monomial representation
[2, 1] since there are two 1’s and one 2 in every tensor index in the class.

In order to avoid redundant storage, we store only the unique values of the tensor (i.e.
one value per index class). The following property gives the number of unique values of a
dense symmetric tensor.

ProPERTY 3.1. The number of unique values of a symmetric tensor A € R is given by
the binomial coefficient

m
(m e 1) =2 s omm.

m m!

Proof. Each index class corresponds to a unique value. Counting the number of possible
monomial representations of length m with n possible values is equivalent to counting the
number of ways to distribute m indistinguishable balls into n distinguishable buckets, where
the balls correspond to the indices of the tensor index and the buckets correspond to the
possible index values. By a “stars and bars” argument,' this number is

(m+n—1): (n+m—1)-~(n+1)n:;_":Jro(nm—l)

m m!

as claimed. O

Assuming A is dense, we can impose an ordering on the unique entries and avoid storing
any index information. We choose to use a lexicographic order of the index classes, increas-
ing with respect to the index representation and decreasing with respect to the monomial

representation. That is, the index class with index representation [iy, i3, ..., i,] is listed be-
fore [1, jo,-.-» Jml if iy < jyorifi; = j; and iy < j», and so on. Equivalently, the index
class with monomial representation [k, k, . . ., k,] is listed before [I}, >, ...,1,] if k; > [} or

ISee Theorem 2 in Section 4.6 of [9], for example.

62 Efficiently Computing Tensor Eigenvalues on a GPU

index monomial
1 1 1 13 0 0 O
2 1 1 212 1 0 0
3 1 1 312 0 1 0
4 1 1 412 0 0 1
5 1 2 21 2 0 0
6 1 2 3}1 1 1 0
7 1 2 411 1 0 1
8 1 3 3|1 0 2 0
9 1 3 411 0 1 1
i1 4 411 0 0 2
1m|12 2 210 3 0 0
1212 2 3]0 2 1 0
312 2 4,10 2 0 1
412 3 3]0 1 2 0
5712 3 410 1 1 1
6|12 4 4,0 1 0 2
713 3 3|10 0 3 0
813 3 410 0 2 1
1913 4 410 0 1 2
2004 4 410 0 0 3
TasLE 3.1

gi341

Set of index classes in lexicographic order.

if k; = [; and k, > 5, and so on. This corresponds to an ordering on monomials in a given
polynomial ring (the origin of the terminology). In this case, the index classes correspond
to monomials which all have total degree m. See Table 3.1 for an example of lexicographic
ordering for both representations in the case m = 3 and n = 4.

While the lexicographic ordering makes storing index information for every unique value
unnecessary, it will be important to compute index information during computations. Since
the index representation requires m integers and the monomial representation requires n inte-
gers and we expect n > m for most problems, we store the index representation and compute
monomial representation values implicitly. Note that while the monomial representation will
be sparse when n > m, even a compressed format would require at least m integers.

3.2. Computational Kernels. The two most computationally intensive kernels in Algo-
rithm 1 are computing the scalar Ax" and the vector Ax"~!, where A € RI"" is symmetric
and x € R". Both of these are instances of the symmetric tensor-vector multiply given in
Definition 2.2, with p = 0 and p = 1, respectively.

3.2.1. Tensor times same vector in all modes. Consider the case p = 0:

n n

Ax" = Qi i Xiy ** o X (3.1
Dl i,

i=1 in=1

For a nonsymmetric tensor, this summation requires at least one multiplication for each term
(corresponding to each entry of A), yielding at least n™ flops. However, we can exploit
symmetry to reduce the computational complexity. Note that the tensor index matches the
indices of the x vector entries for each term in the summation. Since the product of a set of
numbers is also invariant under permutation, all of the terms in the summation corresponding
to the same index class will have the same value.

For example, for m = 3 and n = 2, the term in the summation corresponding to the
tensor index [1, 1,2] is given by a1 - x1 - X1 - xp = amx%xz, and the term in the summation

G. Ballard, T. Kolda, and T. Plantenga 63

corresponding to the tensor index [1,2, 1] is given by ajz1 - X1 - X2 - X} = amx%xz. Any tensor
index with monomial representation [2, 1] will yield this value.
We can avoid recomputing the redundant value by instead computing the number of times
each unique term appears in the summation, which is given by the following property.
PRrOPERTY 3.2. The number of tensor indices of a symmetric tensor A € R in the index
class with monomial representation [k, ks, ..., k,] is given by the multinomial coefficient

m B m!
kivkay .o kel kil k! - k!

Proof. Consider the monomial representation [k, ks, ..., k,]. Counting the number of
tensor indices in this class is equivalent to counting the number of ways one can distribute m
distinct balls into n distinct bins such that the i bin has k; balls. Here the balls correspond to
the (ordered) indices of the tensor index and the bins correspond to the possible index values.
One way to solve this problem is to count the number of ways of filling the first bin (given by
the binomial coefficient (,’:}‘)), followed by the number of ways of filling the second bin (given

by (’"];k‘)), and so on. Using the product rule and after much cancellation, we have

m m— ky m— (ki +ky+ -+ k,_q) _ m!
ki ky ky T klk! e k!
as claimed. 0

We can thus rewrite Equation 3.1 as

m
AX" =) (k koo k)“ SRR (3.2)
IEJ[m'n] 15 K255 Ky
where I is the set of index classes for a symmetric tensor in R, and [k, ..., k,] and
[i1,...,in] are the monomial and index representations of the index class I, respectively.

Equation 3.2 yields Algorithm 2, which assumes the unique values of A are stored in lex-
icographic order. For each unique value, the algorithm computes the monomial coefficient
and index array associated with the tensor entry and adds the contribution of that term to the
accumulating result.

3.2.2. Tensor times same vector in all modes but one. Now consider computing the
vector Ax""!, the case p = 1 in Definition 2.2:

('Axm_l)il _ i . i Ajy iy Xiy * X, (3-3)

=1 in=1

Note that the j component of Ax"~! does not depend on every tensor entry, only those tensor
entries whose index representation starts with index j. Because of symmetry, Equation 3.3
can be rewritten with 7} appearing as any index in the tensor index of the tensor value.

As in the case of computing Ax™, we can exploit symmetry to avoid performing the more
than »” multiplications required to compute all entries of the output vector if we followed
Equation 3.3. As before, if a tensor value contributes to the summation for index k of the
output vector, its symmetric counterparts will contribute the same value to the sum. Following
the example given before, where m = 3 and n = 2, both a;;» and aj;; will contribute to the
computation of (.Ax'"‘l)], and each will contribute the value a;;, - x1 - xo. Note that a,;; will

not contribute to the summation for (.Ax'"‘l)], because its first index is not 1.

64 Efficiently Computing Tensor Eigenvalues on a GPU

Algorithm 2 Compute y = Ax" via Equation 3.2, where A € R g symmetric, X € R”,
andyeR
Require: A stores the unique entries of A in lexicographic order

1: function y = SyMMETRICTENSORVECTORMULTIPLYO(A, X)

2: y=0

3: I=1[1,...,1] > use index representation (length 1)
4: for j=1to ('"J'r:’,_l) do > iterate over unique entries
5: X=xp Xy, xp, > compute monomial value
6: C = NumOcc0(1) > compute number of occurrences
7: y=y+C-A;-% > accumulate sum
8: I = UppateInpex(]) > See Algorithm 4
9: end for

10: end function

Require: 7 has length m with entries in nondecreasing order
11: function C = NumOccO(I)

12: div=1 > divisor of (, ",)
13: curr = —1 > current index value
14: mult = -1 > multiplicity of current index value
15: for j=1tomdo

16: if /; # curr then

17: mult = 1

18: curr = I;

19: else > repeated index
20: mult = mult + 1

21: div = div - mult > only update divisor if mult > 1
22: end if

23: end for

4. C=m!/div setC=(, ",)

25: end function

Computing the number of tensor indices in an index class that will contribute to a given
entry of the output vector is a variation on Property 3.2. Consider an index class that con-
tributes to the j” entry of the output vector (i.e., an index class whose index representation
includes an index j). Let [ky, ko, ..., k,] be the monomial representation, so that k; > 0. In
the context of assigning m balls to n bins with appriopriate multiplicities, we can assign the
first ball to the j™ bin (enforcing that the tensor index starts with j). Then we have m — 1
more balls to assign to the 7 bins, but only k; — 1 more will be assigned to the j" bin. Using
the approach given in the proof of Property 3.2, we see that the number of tensor indices that

will contribute the same value to the j” element is given by the multinomial coefficient

m-—1
kiyooooki—1,.. k)

Now we can rewrite Equation 3.3 as

_ m—1 k-1

.AXml = iyeei koo R kn 34

(ax"), I;M(kl, .,kj—l,...,kn)a' C I G4
Ekj>0

G. Ballard, T. Kolda, and T. Plantenga 65

where 9" is the set of index classes for a symmetric tensor in R, and [k, ..., k,] and
[i1,...,i,] are the monomial and index representations of the index class I, respectively.
Equation 3.4 yields Algorithm 3.

Algorithm 3 Compute y = Ax""! via Equation 3.4, where A € R™" is symmetric, and
X,y € R”
Require: A stores the unique entries of symmetric tensor A in lexicographic order

1: function y = SYMMETRICTENSORVECTORMULTIPLY 1 (A, X)

2: y=0

3: I=[1,...,1] > use index representation (length m)
4: for j=1to (’"J:Z_l) do > iterate over unique tensor entries
5: for unique i € 7 do > skip repeated indices in /
6: X=xp -xp,xp, | X > compute monomial value (excluding x;)
7: C = NumOccl(l, i) > compute number of occurrences
8: yi=yi+C-A;-% > accumulate sum
9: end for

10: I = UppateInpex(]) > See Algorithm 4
11: end for

12: end function

Require: 7 has length m with entries in nondecreasing order
13: function C = NumOccl(Z, i)

4 div=1 > divisor of (, 77})
15: curr = —1 > current index value
16: mult = -1 > multiplicity of current index value
17: for j=1tomdo

18: if j # first index of i in / then > ignore one occurence of i
19: if I; # curr then

20: mult = 1

21: curr = I;

22: else > repeated index
23: mult = mult + 1

24: div = div - mult > only update divisor if mult > 1
25: end if

26: end if

27: end for

28 C=(m—1)!/div ssetC=(, 171 L)

29: end function

3.2.3. Index array calculations. We can compute the index representation of an index
class quickly by exploiting the lexicographic ordering and computing each index represen-
tation from the previous one. That is, given any index representation we want to compute
the next larger index representation in the lexicographic order, under the conditions that the
indices within the index representation are nondecreasing and range between 1 and n.

To find the next representation, we seek to increment the least significant possible index
(i.e., the rightmost index not equal to 7). In the example given in Table 3.1, the successor of
[1,1,1] is [1,1,2] (the last index is incremented). More generally, suppose the k™ index is

66 Efficiently Computing Tensor Eigenvalues on a GPU

the least significant index not equal to n, so that the index class is [iy, ..., i, 7, ..., n]?. Thus,
this is the largest representation with prefix [iy, ..., i,...], so the successor must have prefix
[i1,....ix+1,...]. The smallest such representation that satisfies the nondecreasing condition

18
[il,...,ik+1,ik+1,...,ik+1].

For example, again from Table 3.1, the successor of [2,4,4] is [3, 3, 3]. See Algorithm 4 for
the implementation. In this way, we can store index information in an array of m integers,
and under the lexicographic ordering, and updating the index information for each term in the
summation requires O(m) operations.

Algorithm 4 Update index representation of unique entry in symmetric tensor A € R

Require: 7 has length m with entries in nondecreasing order
1: function Uppatelnpex ()

2: Jj=m

3: while /; == n do > find least significant index # n
4: j=j-1

5: end while

6: Ii=1;+1 > increment least significant index # n
7: fork=j+ 1tomdo > update less significant indices
8: I, = Ij

9: end for

10: end function
Ensure: [is the successor in lexicographic ordering (restricted to nondecreasing)

3.2.4. Computing number of occurrences. The number of occurrences of each index
class is given by a multinomial coefficient in terms of the monomial representation of the
index class. Since we store the index representation and not the monomial representation, we
compute the multinomial coefficient implicitly. We can do this by computing the denominator
with one pass over the array storing the index representation. The numerator is constant over
all index classes and can be precomputed (either m! or (m — 1)! for the two computational
kernels).

In the case of computing AXx™, the task is to compute for each index class the product
ki!---k,!, where [ki,...,k,] is the monomial representation which is not stored explicitly.
Note that k; is the number of occurrences of index i in the index representation which is
stored in memory. Since the index representation is nondecreasing, repeated occurrences of
an index will be contiguous. Thus, as we pass over the index array, we can multiply the
accumulated product by 1 for the first occurrence of an index, by 2 for the second occurrence,
and so on. For example, given the index representation [1,2,2,5,5,5, 5], the accumulated
product willbe 1-1-2-1-2-3-4 =1!-2!-4! This approach yields the function NumOccO
in Algorithm 2.

In the case of computing Ax" ™", we take the same approach to compute the denominator,
but we ignore one occurrence of the index corresponding to the entry of the output vector
being computed. Following the preceding example, in the case of computing the 5" element
of Ax" !, the index representation [1,2,2,5,5,5,5] would yield to the accumulated product
1-1-2-1-2-3=1!-2!-3! This approach yields the function NumOccl in Algorithm 3.

m—1

2Note that there may be no instances of index n in the index class, in which case k = m, the index class is
[i1,...,i], and the successor is [if, ..., i + 1].

G. Ballard, T. Kolda, and T. Plantenga 67

In order to avoid redundant computation (at the expense of extra storage), we can pre-
compute the multinomial coefficient (k1 kzm ¢) for each index class. This is the coefficient
used in the computation of Ax™, and the coeflicients needed in the computation of Ax"-!

can be obtained by dividing the stored value by m and multiplying by k; for appropriate ;.

3.2.5. Computational costs. All the computations in the main loop of Algorithm 2 are
done in O(m) operations (floating point and otherwise). Thus, the computational complexity
of computing Ax™ is O (m : %) =0 ((m"fnl),)

There are nested loops in Algorithm 3, and the inner loop requires m iterations in the
worst case. All the computations in the inner loop are done in O(m) operations (floating

point and otherwise), so the computational complexity of computing Ax"~! is O (m2 . %) =

0 (@)

4. GPU Computing Overview. Graphics processing units (GPUs) were originally de-
veloped and optimized to offload and accelerate graphics rendering computations from the
more general purpose microprocessor or “central processing unit” (CPU) on a host computer.
Graphics processing consists largely of data parallel computations, and GPU hardware is
designed to exploit this data parallelism via single instruction/multiple data (SIMD) instruc-
tions. GPUs also exploit instruction level parallelism: instruction streams for several threads
of execution are pipelined in order to hide the latency of memory operations for each thread
(this requires that the threads be mutually independent).

GPU architecture is rapidly developing to meet the demands of new applications and
users. Many of these applications require high graphics rendering performance, but a grow-
ing number of users are interested in exploiting the computing power of GPUs for many other
purposes including scientific computing. To this end, nVidia has invested in the development
of Compute Unified Device Architecture (CUDA) which is used for general purpose pro-
gramming of GPUs. Most programmers use CUDA as an extension of the C language which
gives access to a set of virtual instructions for accessing the memory spaces and functional
units on a GPU.

Along with making CUDA freely available, nVidia also offers a software development
kit including programming guides, example programs, and other documentation for program-
mers. Much of the information in the following sections is available in more detail in the
CUDA documentation, particularly [5, 6].

4.1. Physical Hardware Model. Both the computational units and the memory hier-
archy on GPUs are fundamentally different from CPU architectures. See Figure 4.1 for a
graphical representation of the physical hardware model.

Computational Units. The functional units on a GPU are organized into groups which
concurrently execute SIMD instructions. In nVidia terminology, each functional unit is
known as a “processor” or “core”, and each group of processors resides on a “streaming
multiprocessor.” On the GeForce 9800 GT used in our experiments, there are 14 multipro-
cessors (see Figure 4.1(a)), each with 8 processors (see Figure 4.1(b)). Thus eight operations
can simultaneously execute the same instruction on different data on a multiprocessor. The
GPU we used is capable of only single precision floating point operations, but newer models
can execute double precision operations.

Memory Hierarchy. GPUs have a complicated memory hierarchy with several differ-
ent physical and logical memory spaces. Note that the memory hierarchy discussed here is
only representative of nVidia GPUs of Compute Capability 1.x; newer architectures of Com-
pute Capability 2.x have fundamental differences. The largest memory is known as “device
memory” and is accessible to all multiprocessors on the GPU (see Figure 4.1(a)). It is also

68 Efficiently Computing Tensor Eigenvalues on a GPU

GPU

Dewice Memory

T |
| anal an] w a a sl a a s

(a) GPU card with device memory and set of stream-
ing multiprocessors (SM). Memory on each SM shown
in (b).

Streaming Multiprodesior

Teubars Cachs Comtan Cac b

Sharvd blermiory

Meghten

(b) Streaming multiprocessor with on-chip mem-
ories and SIMD functional units (P). Each SM has
access to device memory as shown in (a).

Fic. 4.1. GPU Hardware Model

accessible from the host device (CPU) and is the means through which the CPU and GPU
communicate data. Except for “integrated” cards, this memory resides on the graphics card
itself. The memory access latency for device memory to one of the GPU’s computational
units is two orders of magnitude greater than the latency of the on-chip memory.

There are four types of on-chip memory: registers, shared memory, constant cache, and
texture cache (see Figure 4.1(b)). The set of registers, or “register file,” is relatively large
but must be divided up among all threads resident on the multiprocessor; it has the smallest
memory access latency (one or two cycles). The shared memory is the next fastest mem-
ory. It is smaller than the register file but can be shared among threads in a thread block.
Shared memory can be dynamically allocated and can be used as a local store (i.e. there is no
hardware-managed caching system).

Some of device memory can be statically allocated as “constant” memory, and accesses
to constant memory will be cached by the hardware. Constant memory is read-only for a
given GPU kernel function but can be written by the host CPU between kernel calls. A
“texture”” can be bound to an array in device memory such that the result of a texture “fetch”
will be cached. The texture caches on a GPU are shared by two or three multiprocessors. The
texture caching system is designed to exploit 2D spatial locality, and texture fetches include
other features designed to improve the performance of certain relevant graphics operations.
See Table 4.1 for the sizes of the on-chip memory for the GeForce 9800 GT card.

4.2. CUDA Programming Model. The simplest CUDA programming model treats the
GPU as a coprocessor to the host CPU. That is, a single thread of execution works on the CPU
sequentially until it calls a “kernel” function on the GPU which is run by many CUDA threads
in parallel, and after the kernel returns, the single CPU thread resumes execution until it calls
another kernel or terminates. Multiple CPU threads can be used in order to overlap CPU

G. Ballard, T. Kolda, and T. Plantenga 69

Register file 8192 registers
Shared memory 16 KB
Texture cache 6-8 KB
Constant cache 8 KB
TaBLE 4.1

On-chip memory sizes per multiprocessor for GeForce 9800 GT (Compute Capability 1.1)

and GPU computation, but we only consider one CPU thread in this work. Kernel functions
may call other functions to be run on the GPU (which will also run in parallel); these other
functions cannot be called from host code. When a kernel function is launched from the host
code, the host specifies the number of thread blocks, the number of threads per block, and
optionally the amount of shared memory to allocate to each thread block (all of which can be
determined at run time).

Thread blocks are groups of threads which are all run on the same multiprocessor. They
have a common memory space residing in the physical shared memory through which the
threads can communicate and synchronize. Thread blocks are logical entities and the number
of threads per block is unrestricted up to a certain maximum; however, threads are physically
grouped into warps (the physical unit of SIMD instructions) during execution, so the number
of threads per block should be a multiple of the warp size (typically 32).

The logical memory hierarchy is tightly coupled to the physical memory. Registers are
local to threads, shared memory is restricted to threads within a thread block, and global
memory (which resides in “device” memory) is accessible by all threads and by the host
code. Communication between thread blocks using global memory is possible but rare be-
cause thread blocks may be scheduled on any multiprocessor in any order. Textures and
constant memory are also globally accessible and are read-only; textures are accessed via
special texture fetches. Another memory space known as “local” memory is logically local
to each thread, but the name is misleading because local memory physically resides in device
memory. In general, local memory is used to handle register spilling.

5. Detecting Nerve Fiber Direction in the Brain. We next discuss an application well-
suited for computation on a GPU. It involves many independent problems that can be solved
in parallel, and each problem involves an amount of data that is small enough to reside in the
on-chip memories of the multiprocessors.

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a tool used to detect nerve
fibers in the brain. It is a non-invasive procedure that uses magnetic resonance to measure
how quickly water diffuses in a certain direction. Water diffuses more quickly along the
longitudinal axis of nerve fiber bundles than in any transverse or axial direction. DW-MRI
measurements are taken from many different orientations for a discrete set of voxels in the
brain. For each voxel, a diffusion function D : ¥ — R which maps an orientation to its rate of
diffusion (here X denotes the unit sphere in R?) is approximated using the measurement data.
For a unit vector g, D(g) is known as the “apparent diffusion coefficient” (ADC) [10].

When a voxel includes only one fiber orientation, the longitudinal direction should (glob-
ally) maximize D (it will exhibit the largest ADC). When a voxel includes more than one fiber
orientation (in the case of crossing fibers), each fiber orientation should correspond to a local
maximum of D.

According to [7, 8, 10], acommon way to approximate the diffusion function is as a finite
sum of spherical harmonic functions (which form a basis for complex functions on the unit
sphere). The 2" order series (with 6 terms) corresponds to a quadratic form

D(g) ~ g' Mg

70 Efficiently Computing Tensor Eigenvalues on a GPU

where M is a symmetric positive definite 3 X 3 matrix. In this case, at least six measurements
are required to determine the unique entries in the matrix M (or the six coefficients of the
first spherical harmonic functions). In the case of a voxel with one principal fiber orienta-
tion, this approach is usually sufficient for resolving the correct orientation. However, in the
case of fiber crossings or other complications such as bending or fanning fiber bundles, the
approximation is often unable to resolve the fiber directions.

In order to handle such cases, more accurate measurements and approximations are nec-
essary. The approach is to use higher order spherical harmonic series approximations which
can be represented not as quadratic forms, but more generally as homogeneous forms. The
homogeneous forms correspond to higher order tensors:

D(g) ~ Ag"

for some symmetric tensor A € RI™3. Note that m must be even since D(g) is a positive
physical quantity for all g (if m is odd then A(-g)" = —Ag"). More DW-MRI measure-
ments are required to determine the greater degrees of freedom in tensors of order m > 2, and
the higher order polynomial can better approximate the true diffusion function. Orders m = 4
and m = 6 are most commonly used (m = 8 requires 120 measurements). The correspon-
dence between coefficients of spherical harmonic functions with the entries in the associated
symmetric tensor are given in [10].

As described in [3], the critical points of the function f(x) = Ax™ and their function
values are exactly the eigenpairs of the tensor A (satisfying Equation 2.2). Thus, in order
to determine the principal fiber orientations in a given voxel, we can compute the principal
eigenvectors of the associated tensor.

Note that specific instances of Properties 3.1 and 3.2 for n = 3 appear in the DW-MRI
literature. See Equations 17 and 19 in [7], for example.

6. Implementation Details. The computation problem for the nerve fiber data is to take
as input a three dimensional array of symmetric tensors and output one or more eigenpairs
for each tensor. The three dimensional array corresponds to the set of voxels which discretize
the volume of a brain. The entries of each tensor correspond to the coefficients of the ho-
mogeneous polynomial which approximates the diffusion function for a given voxel. The
eigenpairs which define local maxima of the approximate diffusion function correspond to
principal nerve fiber directions within the voxel.

In order to find multiple eigenpairs, Algorithm 1 must be executed with different start-
ing vectors. Because there is not much theory to direct the choice of starting vectors to find
all eigenpairs corresponding to local maxima, we use many randomly chosen starting vec-
tors in order to get reasonable coverage of the unit sphere. We choose random vectors by
independently selecting each vector entry uniformly from [—1, 1] and then normalizing. Al-
ternatively, one could use a deterministic approach and pick starting vectors evenly spaced
about the sphere.

The computational problem consists of executing Algorithm 1 with many different ten-
sors and many different starting vectors each. Since the voxel size for DW-MRI is on the
order of one cubic millimeter, the number of voxels in a data set for a human brain can be
in the millions. In order to cover the sphere, we use somewhere between 32 and 128 starting
vectors for each tensor. With this much inherent parallelism in the problem, we can easily
saturate the computational units on a GPU. The main data structures involved in the com-
putation include the unique entries of each tensor, an array of randomly generated starting
vectors, an array of output eigenvectors, and an array of output eigenvalues.

6.1. Synthetic Test Set. We experimented with a synthetic test set provided by the Sci-
entific Computing and Imaging Institute at the University of Utah. It consists of 1024 tensors

G. Ballard, T. Kolda, and T. Plantenga 71

corresponding to a 2D array of voxels which includes some with one and some with two
principal fiber directions Each tensor is 4" order, so each has 81 total entries with 15 unique
values. We chose to use 128 starting vectors for each tensor in the hope of reasonably cov-
ering the sphere in R? and also because it is a multiple of 32, the physical warp size on the
GPU. We used a shift of @ = 0 as it yielded correct results for the tensors in this synthetic
set. Note that @ = 0 implies that SS-HOPM is the same algorithm as the one given in [2, 4].
Although the performance of the implementation will not vary much with «, choosing an
appropriate shift for real data will balance a tradeoff between guarantees of convergence and
time-to-completion. To find local maxima, a nonnegative shift must be used.

6.2. Thread Organization. Because of the number of independent problems, we are
able to map the computation to the GPU in a straightforward way with minimal synchroniza-
tion. We organize the CUDA threads in the following way: assign a thread block to each
tensor and assign each thread in a thread block to a different starting vector. Since the number
of starting vectors is greater than the warp size, each thread block will utilize all the proces-
sors on its multiprocessor. Similarly, as long as the number of tensors is at least 50 or so, all
of the multiprocessors will be utilized with three or four thread blocks each (multiple thread
blocks are necessary to fill the instruction pipelines).

6.3. Data Structures. Because of the small size of the tensors and vectors in this prob-
lem, we can fit all the data for each thread block in the on-chip memory and minimize the
accesses to device memory. Let 7 be the number of tensors, U be the number of unique
entries in each tensor, and V be the number of starting vectors. Recall that for this problem,
m=4,n=3,T =1024, U = 15, and V = 128. For real data, we expect T to grow into
the millions but the rest of the parameters will remain constant, though V could be varied
experimentally. The tensor data is of size T - U, the array of starting vectors is n X V, the array
of output eigenvectors is n X (T - V), and the array of output eigenvalues is of size T - V. Note
that every thread block can use the same set of starting vectors, but each has its own set of
output vectors.

In addition to the main data structures, we pre-compute and store the index and multino-
mial coeflicient information required in Algorithms 2 and 3. The index information is stored
as an array of size mx U and can be shared by all threads. We store the multinomial coefficient
(k ’’’’’ .) for each unique tensor value, where [k, ..., k,] is the monomial representation of the
index class of the unique entry. In this way, ﬁndlng the number of occurrences of an entry
in Algorithm 2 is just a look-up, and computing the related multinomial coefficients used in

ml B) for some 7, can be done by reading the stored

ssssss

value, multiplying by k; and dividing by m.> Thus the array of multinomial coefficients is of
size U. All threads can share this information.

6.4. Memory Management. We use both the shared memory and constant cache to
minimize the memory accesses to device memory. Because the index array and multinomial
coeflicients are read only and can be shared by all the threads in the computation, we designate
them as constant memory which resides in global (device) memory. However, because that
information can fit into the constant cache of each multiprocessor, they will be read from
device memory to the cache only once per multiprocessor for the entire computation. Because
the tensor entries can be shared by the threads within one thread block, we store them in the
shared memory. In this way, the tensor entries are read from device memory to the on-chip
shared memory only once per thread block.

30ne might consider storing the “coefficient” (]’"'k) so that only one multiply is needed to update the stored

value for each kernel, but note that this value is not an integer in general.

72 Efficiently Computing Tensor Eigenvalues on a GPU

yl = Avals[0] * x1 * x1 * x1 + \
Avals[1] * 3 * x1 * x1 * x2 + \
Avals[2] * 3 * x1 * x1 * x3 + \
Avals[3] * 3 * x1 * x2 * x2 + \
Avals[4] * 6 * x1 * x2 * x3 + \
Avals[5] * 3 * x1 * x3 * x3 + \
Avals[6] * x2 % x2 % x2 + \
Avals[7] * 3 * x2 * x2 * x3 + \
Avals[8] * 3 * x2 * x3 * x3 + \
Avals[9] * x3 * x3 * x3;

Fi6. 6.1. Unrolled computation of the first entry of the vector Ax"~', for A € RI*3). The variables x1, x2, x3
are register variables which store the input vector and the Avals array is in shared memory.

Finally, we store the input and output vectors, which are private to each thread, in shared
memory. Although this data will not be shared with other threads in the thread block, we use
the shared memory because it is the only on-chip memory that can be dynamically allocated
and overwritten. There are two main drawbacks from using shared memory this way. First,
allocating 2n words of shared memory per thread requires a lot of memory per thread block,
and since the physical shared memory is shared by all thread blocks on a multiprocessor,
fewer thread blocks can be scheduled simultaneously on each multiprocessor. The amount
of oversubscription (known as “occupancy” in nVidia’s terminology) allows for pipelining
instruction streams and hiding memory latency. Second, the register file is faster to access
than shared memory. Since the number of thread blocks per multiprocessor is limited by the
shared memory requirements, the size of the register file is not being exploited.

6.5. Loop Unrolling. For a given order and dimension, we can unroll the loops within
the two main computational kernels. This enables us to exploit the register file for storing the
input and output vectors by statically allocating register variables corresponding to input and
output vector entries. Not only does this expose instruction-level parallelism to the compiler,
it also removes the indirection in accessing input and output vector entries. This is possible
for small problems, but to scale to larger problems we would need a blocked approach. See
Figure 6.1 for an example of an unrolled loop in the case m = 4 and n = 3. The Avals array
stores the unique tensor entries in lexicographic order, the input vector entries are stored in
static variables, and the multinomial coefficients are stored as constants in the instruction
stream. In this case, the number of terms in the summation for Ax™ is 15, and each of the
three summations for the entries of the output vector Ax”~! have 10 terms.

Without unrolling the loops, each access to an input or output vector requires two mem-
ory operations. For example, if the index information is stored in an array called index, then
accessing entries to the input vector x take the form x[index [k]]. This indirection prevents
the compiler from pipelining instructions within one thread and degrades performance even
if index and x are both on-chip (see Section 6.6).

Note that the arithmetic intensity (ratio of flops to bytes involved in the computations) is
high for both kernels. In the case m = 4 and n = 3, there are 15 unique tensor entries and
two vectors each with three entries, so the number of bytes in single precision is 84 while
the number of flops in computing Ax"~! is 140. Another possible optimization would be to
use common subexpression elimination on the unrolled summations. For example, the code
shown in Figure 6.1 computes x% three times.

6.6. Results. The processor used for these results is a quad-core Intel Bloomfield (Core
i7). The GPU used is an nVidia GeForce 9800 GT which nVidia classifies as Compute Capa-

G. Ballard, T. Kolda, and T. Plantenga

(a) Flop rates in Gflops/s and speedup of loop unrolling

General Unrolled | Unrolled speedup
CPU seq 0.24 1.86 7.86
CPU par 0.92 6.85 7.41
GPU 5.95 131.73 22.15

(b) Relative performance, normalized to se-
quential implementations

73

General Unrolled
CPU seq 1.00 1.00
CPU par 3.90 3.67
GPU 25.08 70.66
TaBLE 6.1

Performance results for six different implementations on all 1024 tensors

bility 1.1. The parallel CPU code was run with four threads using OpenMP. All computations
were done in single precision (the only precision available on GPUs of Compute Capability
1.1), and we use 128 starting vectors in all cases.

We report on six different implementations. We benchmarked a completely sequential
implementation, using one core on the quad-core CPU; a parallel CPU implementation, using
all four cores of the processor; and our GPU implementation. In each case, we benchmarked
both the general version of the code and the loop-unrolled version which is specialized to
tensors of order 4 and dimension 3. Note that no memory hierarchy optimizations were used
in the CPU implementations.

Table 6.1 shows the performance results for all six implementations computing the eigen-
pairs for all 1024 tensors. Table 6.1(a) shows the absolute performance and gives the speedup
observed for each implementation by unrolling the loops. Comparing the unrolled code to
the general implementations, we see that unrolling yields over 7x speedup for both CPU im-
plementations and a 22X speedup for the GPU implementation. In Table 6.1(b) the relative
performance values are normalized to the sequential CPU implementations to show parallel
speedups. We observe that the GPU implementation achieves a speedup of 20x over the par-
allelized CPU implementation. Although the CPU implementation was not optimized for the
memory hierarchy, we believe that because of the large number of independent problems in
this application, the GPU implementation will outperform the best multi-core implementation
for this test set. Future research will explore which architecture is better suited for computing
eigenpairs of larger tensors or tensor applications with less inherent parallelism. In either
case, developing high performing code for general orders and dimensions will require an
efficient blocking strategy to allow for loop unrolling and the use of register variables.

Figure 6.2 shows performance results for four different implementations for subsets of
the 1024 tensors in our test set. Note that the loop unrolling makes a significant difference
in the GPU performance for all problem sizes. Because of the independence of the tensor
eigenproblems, the parallel CPU implementation requires only a slight modification of the
sequential code using OpenMP pragmas and we observe close to perfect parallel scaling for
sufficiently large problems.

7. Conclusions. In this paper we present an implementation of SS-HOPM targeted for a
GPU. We describe how to save both storage and computation in the two main computational
kernels of the algorithm, and for the case of solving many small tensor eigenproblems we
show how to map the computation onto a GPU. For our experimental data set, we achieved

74 Efficiently Computing Tensor Eigenvalues on a GPU

10° /-F" -
y
/
/!
GPU-unrolled
== GPU-general
CPU-par-unrolled
| CPU-unroll
]
5 10!
e L R A T NP T SR
/.—" : ¢] = '
10" . . ; . "
200 400 BOO B0 1000

Number of Tensors

Fic. 6.2. Performance results for running SS-HOPM on sets of 4" order 3-dimensional tensors with 128
starting vectors each. Note the y-axis is a log scale.

parallel speedups of up to 70x over a sequential code using the same low-level optimizations
(but no memory hierarchy optimizations).

We believe that the techniques for exploiting symmetry may be extended to other com-
putations involving symmetric tensors, but many open questions remain about how to write
sequential or parallel implementations of the computational kernels that scale to higher or-
der and higher dimension tensors. We are also interested in how to map these computations
onto different computing platforms, including more recent GPUs which offer fundamentally
different hardware features.

Acknowledgments. We would like to thank Fangxiang Jiao, Yaniv Gur, and Chris John-
son of the Scientific Computing and Imaging Institute at the University of Utah for the moti-
vating application and for providing the sample data.

REFERENCES

[1] P. Comon, G. Gorus, L.-H. Lim, axp B. MOURRAIN, Symmetric tensors and symmetric tensor rank, SCCM
Technical Report 06-02, Stanford University, 2006.

[2] E. Korpis aNDp P. A. REGALIA, On the best rank-1 approximation of higher-order supersymmetric tensors,
SIAM Journal on Matrix Analysis and Applications, 23 (2002), pp. 863-884.

[3] T. G. Korpa anp J. R. Mavo, Shifted power method for computing tensor eigenpairs. arXiv:1007.1267v1
[math.NAJ, July 2010.

[4] L. D. LATHAUWER, B. D. MoOR, AND J. VANDEWALLE, On the best rank-1 and rank-(r[sub 1],r[sub 2],. . .,r[sub
nj]) approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, 21
(2000), pp. 1324-1342.

[5] NVbia, NVIDIA CUDA programming guide version 3.0.

[6] , PTX: Parallel thread execution ISA version 2.0.

[7] E.Ozarsian anp T. H. Marect, Generalized diffusion tensor imaging and analytical relationships between dif-
fusion tensor imaging and high angular resolution diffusion imaging, Magnetic Resonance in Medicine,
50 (2003), pp. 955-965.

, Generalized scalar measures for diffusion mri using trace, variance, and entropy, Magnetic Reso-

nance in Medicine, 53 (2005), pp. 866—876.

[8]

G. Ballard, T. Kolda, and T. Plantenga 75

[91 K. H. Rosen, Discrete mathematics and its applications (2nd ed.), McGraw-Hill, Inc., New York, NY, USA,
1991.
[10] T. Scuurrz anp H.-P. SEipEL, Estimating crossing fibers: A tensor decomposition approach, IEEE Transactions
on Visualization and Computer Graphics, 14 (2008), pp. 1635-1642.

76

CSRI Summer Proceedings 2010

E.C. Cyr and S.S. Collis 77

Uncertainty Quantification and Sensitivity Analysis

Uncertainty quantification and sensitivity analysis attempt to quantify the effect of varia-
tion in model parameters has on a physical model. The algorithms for computing these effects
can be computationally intensive and require the development of novel numerical methods for
efficient solution. Even given an efficient algorithm, the development and application appro-
priate methodologies for sensitivity analysis is still an area of active research. The articles
in this section touch on both efficient solution methods and methodological application and
development.

Tipireddy et al compare a number of preconditioners for stochastic Galerkin methods.
The performance of these methods are compared against results for nonintrusive stochastic
Galerkin methods. Miller et al. apply the stochastic collocation method to the drift-diffusion
equations for semiconductor modeling. Using the results of the collocation method, a sensi-
tivity analysis is performed gaining insight into the global sensitivity of the response function
to the parameters. Ahuja et al. develop Krylov recycling methods that appropriate for rapidly
converging linear systems. The performance of these methods is demonstrated on both ice
modeling problems and embedded uncertainty quantification methods. Blass and Romero
develop a method to analyze the stability of a stochastically forced ordinary differential equa-
tion. The approach utilizes analytic expressions for the eigenvalues and functions of a second
order differential operator to determine the stability. Proctor et al. consider a sensitivity anal-
ysis for a linear neutronics model for nuclear reactors. This work compares the performance
of adjoint-based local and global sensitivity analysis.

E.C. Cyr
S.S. Collis

December 17, 2010

78

CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 79

A COMPARISON OF SOLUTION METHODS FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

RAMAKRISHNA TIPIREDDY §, ERIC T. PHIPPS!, AND ROGER G. GHANEM !

Abstract. Several solution methods for stochastic Galerkin discretization of partial differential equations (PDEs)
with random input data are compared. Less intrusive approaches based on Jacobi and Gauss-Seidel mean itera-
tions are compared with more intrusive Krylov-based approaches. A set of preconditioners for the Krylov-based
iterative methods to accelerate convergence are also examined, including mean-based, Gauss-Seidel, approximate
Gauss-Seidel and approximate Jacobi mean preconditioners. All of these methods are compared to a non-intrusive
stochastic collocation approach applied to a canonical stochastic diffusion problem. For this problem, the Krylov-
based approach using approximate Gauss-Seidel and Jacobi preconditioners is found to be most effective. Sandia’s
Trilinos software is used to implement all the above algorithms.

1. Introduction. Real life physical problems are often modeled as partial differential
equations (PDEs) where input data are treated as random to represent uncertainty in this data.
Monte Carlo techniques are popular methods to solve these problems as they only require
solutions to the PDE for a given set of realizations of the input data. More recently however,
the stochastic finite element method [6, 3] has become a popular choice for solving these
problems because of its advantages over Monte Carlo methods. These methods compute
statistical properties of the solution more efficiently than Monte Carlo methods.

Stochastic finite element methods are either intrusive stochastic Galerkin methods ([13,
11, 4, 8]) or non-intrusive stochastic collocation methods ([15, 18, 10, 2]). Both exploit so-
lution regularity to achieve higher convergence rates than Monte Carlo methods. The first
approach translates the stochastic PDE into a coupled set of deterministic PDEs while the
second samples the stochastic PDE at a predetermined set of collocation points, resulting in
a set of uncoupled deterministic PDEs. The solution at these collocation points is then used
to interpolate the solution in the entire random input domain. Extending legacy software to
support stochastic collocation methods is simpler than supporting SGMs. Moreover, intrusive
SGMs require specialized linear solvers. However, the resulting set of PDEs in the stochastic
Galerkin system is much smaller in number than that in the collocation method. For a canon-
ical random diffusion problem, it is shown [9] that SGM using iterative Krylov-based linear
solvers and mean-based preconditioning [12] is more efficient than the non-intrusive sparse
grid collocation method.

While the stochastic Galerkin method is often considered to be a fully intrusive method,
there are in fact a variety of solver approaches for the stochastic Galerkin method that are
less intrusive. In this work, less intrusive Gauss-Seidel and Jacobi mean solver methods are
compared to more intrusive Krylov-based techniques. We consider these methods to be less
intrusive than the Krylov-based methods as they allow reuse of existing deterministic solvers.
Moreover preconditioning techniques for Krylov-based methods based on Gauss-Seidel and
Jacobi ideas are also explored and compared to traditional mean-based preconditioning. All
of these techniques are then compared to the non-intrusive stochastic collocation method ap-
plied to a canonical random diffusion problem. These comparisons demonstrate a trade-off in
computational cost versus intrusiveness with the Krylov-based methods using an approximate
Gauss-Seidel or Jacobi mean preconditioner being the most efficient.

This paper is organized as follows. In section 2, the model random diffusion problem is
formulated. Two models of the input random field are developed in section 3 which dictate

$Department of civil engineering at University of Southern California, tipiredd @usc.edu
ISandia National Laboratories, etphipp@sandia.gov
IDepartment of civil engineering at University of Southern California, ghanem @usc.edu

80 A comparison of solution methods for stochastic partial differential equations

very different behavior for the stochastic solution methods considered next. Section 4 de-
scribes the stochastic Galerkin method, and various solver and preconditioning methods are
introduced. The sparse grid collocation method is then reviewed in section 5. In section 6,
numerical experiments are carried out to compare the efficiency of the various solver and pre-
conditioning methods that have been introduced. Finally section 7 provides the concluding
remarks.

2. Problem Statement. In this work a stochastic steady state elliptic diffusion equation
with zero Dirichlet boundary conditions [9] is used as a test problem for various stochastic
PDE solution methods. Let D be an open subset of R” (for this work we assume n = 2) and
(€, %, P) be a complete probability space with sample space €, o-algebra X and probability
measure P. Assume a(x,w) : D X Q — R is a random field that is bounded and strictly
positive, that is,

O<ag <alx,w)<a,<oo ae. in DxQ. 2.1)

We wish to compute a random field u(x,w) : DX Q — R, u € H'(D) ® L,(Q) such that the
following holds P-almost surely (P-a.s.):

=V - (a(x, w)Vu(x,w)) = f(x,w) inD X Q, 2.2)
u(x,w) =0 ondD x Q. (2.3)

Let Hé(D) be the subspace of the Sobolev space H'(D) that vanishes on the boundary 0D and
is equipped with the norm ||u|| HI(D) = [fD |Vu|2dx]%. Problem 2.2 can then be written in the
following equivalent variational form [7]: find u € H(‘)(D) ® L,(Q) such that

b(u,v) = I(v), Vve H)(D)® Ly(Q), (2.4)

where, b(u, v) is the continuous and coercive (from assumption 2.1) bilinear form given by
b(u,v) = E [f aVu - Vvdx] , Yu,ve Hé(D) ® L,(Q), 2.5
D
and [(v) is the continuous bounded linear functional given by

Iv)=E [f fvdx} , Yve HyD)® Ly(Q). (2.6)
D

Here E[-] denotes mathematical expectation. From the Lax-Milgram lemma, Eq. 2.4 has
unique a solution in Hj(D) ® L(Q).

3. Input random field model. For computational purposes, the diffusion coefficient
a(x, w) must be discretized in both the spatial and stochastic domains. To this end, it is often
approximated with a truncated series expansion that separates the spatial variable x from the
stochastic variable w resulting in a representation by a finite number of random variables. For
this representation, second order information such as the covariance function of the random
field is required. In the present problem, two cases of random field models are considered.
In the first case, the random field is assumed to be uniformly distributed and is approximated
through a truncated Karhunen-Loeve expansion. In the second case, the random field is
assumed to have a log-normal distribution, that is a(x, w) = exp (g(x, w)) where g(x, w) is a
Gaussian random field, and is approximated by a truncated polynomial chaos expansion.

R. Tipireddy, E.T. Phipps and R.G. Ghanem 81

3.1. Karhunen-Loeéve expansion. Let C(xy,x;) = E[a(x;,w)a(x,,w)] be the covari-
ance function of the random field a(x, w). Then a can be approximated through its truncated
Karhunen-Loeve (K-L) expansion [6] given by

M
a(x, w) = a(x,&w)) = ap(x) + Z Vaiai(xéw), 3.D
i=1

where ag(x) is the mean of the random field a(x, w) and {(4;, a;(x))};>; are solutions of the
integral eigenvalue problem

f C(x1, x2)ai(x2)dxy = Aja;(x1). (3.2)
D

The eigenvalues A; are positive and non-increasing, and the eigenfunctions @;(x) are orthonor-
mal, that is,

fai(x)aj(x) = 0y}, (3.3)
D

where ¢;; is the Kronecker delta. In Eq. 3.1, {§,~}f.‘;’ , are uncorrelated random variables with
zero mean. As a first test-case, the diffusion coefficient a(x, w) is modeled with an exponential
covariance function

C(x1,x2) = o exp(=|lx; = x2ll1 /L) (3.4)

and uniformly distributed random variables &;(w). We further assume the random variables
are independent.

3.2. Polynomial chaos expansion. The K-L expansion above approximates a random
field by a linear combination of a finite set of random variables. To maintain positivity
of the random field, such a representation is only appropriate if the random variables are
bounded [16]. For unbounded random variables (e.g., log-normal) a nonlinear polynomial
chaos representation is more appropriate. The polynomial chaos expansion [6, 17] is used
to approximate a random field in terms of multi-variate orthogonal polynomials. Let & =
(&1, ,&u)T be the random variables from a truncated K-L expansion of a given random
field g(x, w), that is

M
20,) ~ Z0x, £)) = go(x) + Y VAigi(0éi(w). (3.5)
i=1

Assume a(x, w) is then given by a nonlinear transformation of g(x, w). Then a(x, w) can be
represented through nonlinear functionals of the random variables &;(w). It has been shown
in [17, 6] that this functional dependence can be expanded in terms of multi-dimensional
orthogonal polynomials, called polynomial chaos, as

a(x,) = ay(x) + Y 4, ONE @)+ Y Y 4T @), Ex@) +o- (3.6)

i1=1 i1=1ir=1

where I',(&;,,- -+ ,&;,) is the multi-dimensional polynomial chaos of order n in random vari-
ables (&;,,--- ,&;,). A one-to-one mapping of polynomials {I';} to a set of polynomials with

82 A comparison of solution methods for stochastic partial differential equations

ordered indices {;(§)} can be introduced [6]. After substituting {i;} in Eq. 3.6 and truncating
the series to finite number of terms N, the random field a(x, w) can thus be approximated as

Ne
a(x,) ~ alx, €)= ag(x) +) a((8). (3.7)

i=1

The polynomials {¢;(£)} are orthogonal with respect to the inner product defined by expecta-
tion in the stochastic space,

W),y j(6) = fg YiG()Y j(§(w)dP(w) = 6ij. (3.8)

As a second test-case, the diffusion coefficient a(x, w), is modeled as a log-normal ran-
dom field [5] where a(x, w) = exp(g(x, w) and g(x, w) is a Gaussian random field with expo-
nential covariance (3.4) and approximated with a truncated K-L expansion (3.5). In this case
the random variables ¢&; are standard normal random variables and thus are independent. It
also can be shown that the polynomials {i;} are tensor products of one-dimensional Hermite
polynomials. For a given total polynomial order p, the total number of polynomials {i;(£)} is

_ (Mip)!
Ne+ 1= S50,

4. Stochastic Galerkin method. In the stochastic Galerkin method, we seek the solu-
tion of the variational problem 2.4 in a tensor product space X, ® Y, where, X}, C H(‘) (D) is
finite dimensional space of continuous polynomials corresponding to the spatial discretiza-
tion of D and Y, C L,(Q) is the space of random variables spanned by polynomial chaos [6]
of order up to p. Then the finite dimensional approximation uy,y, (x,) of the exact solution
u(x, w) on the tensor product space X;, ® Y, is given as the solution to

blux,y,,v) = (V) ¥ve X, ®Y,. “.1)

In Eq. 4.1 the random field a(x, w) in the bilinear form b(ux,,yp, v) can be approximated
using either a K-L expansion or a polynomial chaos expansion depending on the either linear
or nonlinear dependence of the random field on the input random variables. The resulting set
of coupled PDE:s are then discretized using standard techniques such as the finite element or
finite difference methods. In the former case, a trial function, uy,y, can be written as

ux,y,(x, &) = Z u;iN; (W (), 4.2)

ij

where {N;(x)} and {;(£)} are the finite element shape functions and polynomial chaos poly-
nomials respectively. Substituting the trial function uy,y, (x, £) and the test function v(x, §) =
Ni(x)(€) in Eq. 4.1, the discretized equations can be written as

Ne P
Z Z ciiKij = fi, k=0, Ng, 4.3)
=0 i=0

where fi = E{f(x,EW}, and c;jx = E{&y) and P = M when a is approximated by a
truncated K-L expansion, or ¢;x = E{y iy} and P =]\7§ when a is approximated by a

polynomial chaos expansion. Here {K; € RN*XN*};'; o are the polynomial chaos coefficients of
the stiffness matrix (section (3.4) of [12])

(K)im = fa,-(x)VN,(x)~VNm(x)dx, i=0,....,P, Lm=1,...,N,, “4.4)
D

R. Tipireddy, E.T. Phipps and R.G. Ghanem 83

N,
and {u; € RN }j:EO are the polynomial chaos coefficients of the discrete finite-element solution
vector

uj = [ugjs...,un 1", j=0,..., N 4.5)
{Ki}}zo and {Ki}{’: , are symmetric positive definite and symmetric indefinite matrices respec-

tively. Equation 4.3 can be written in the form of a global stochastic stiffness matrix of size
((Ng + 1) X Ny) by (N: + 1) X N,) as

KOO ROl ... KON u fi

Kl,O Kl,l KI’NE up f2 (4 6)
. . . X - = N '

KNeO gNel ... gNeNe Uy, e

where Ki* = ¥° ¢, K;. We will denote this system as Kit = f. In practice it is prohibitive
to assemble and store the global stochastic stiffness matrix in this form, rather each block of
the stochastic stiffness matrix can be computed from the {K;} when needed.

4.1. Solution methods for stochastic Galerkin systems. In this section, various solver
techniques and preconditioning methods for solving the linear algebraic equations arising
from stochastic Galerkin discretizations (4.3) are described. The solver methods discussed
are: a Jacobi mean method, a Gauss-Seidel mean method, and Krylov-based iterative meth-
ods [14]. Also various stochastic preconditioners used to accelerate convergence of the
Krylov methods are discussed, including mean-based [12], Gauss-Seidel mean, approximate
Gauss-Seidel mean and approximate Jacobi mean preconditioners. In Jacobi and Gauss-
Seidel methods, mean splitting is used rather than traditional diagonal block splitting as it
allows use of the same mean matrix K for all inner deterministic solves (and thus reuse of
the preconditioner Py = Kj).

Jacobi mean algorithm. In this method, systems of equations of size equal to that of
the deterministic system are solved iteratively by updating the right-hand-side to obtain the
solution to the stochastic Galerkin system of equations (4.3):

Ne P
Ckk()K()MZeW = ﬁ(- Z Z CiijiI/lild, k= O, e, Né:. (47)
j=0 i=1
The above system of equations are solved for k = 0,---, N¢ using any solution technique

appropriate for the mean matrix K,. Thus existing legacy software can be used with min-
imal modification to solve the stochastic Galerkin system. In this work, Krylov-based it-
erative methods with appropriate preconditioners will be used. One cycle of solves from
k=0,---,Ng is considered one Jacobi outer iteration, and after each outer iteration, the right
hand side in Eq. 4.7 is updated replacing {u‘]fld } with the new solution {u;few }. These outer itera-
tions are continued until the required convergence tolerance is achieved. Note that for a given
outer iteration, all of the right-hand-sides for k = 0, - - - , N are available simultaneously, and
thus their solution can be efficiently parallelized. Moreover block algorithms optimized for
multiple right-hand-sides may be used to further increase performance. Finally this approach
does not require a large amount of memory to compute the solution. The disadvantage of the
method is it may not converge or converge very slowly.

84 A comparison of solution methods for stochastic partial differential equations

Gauss-Seidel mean iterative method. The Gauss-Seidel method considered is similar
to the the Jacobi method above, except the right-hand-side in Eq. 4.7 is updated after each
deterministic solve with the newly computed u;". Symbolically this is written

k-1 P Ne P
new new old
Ckk()Kouk = fk — Z Z c,-ij,-uj - Z Z ciij,-uj s k= 0, ey, Ng. (48)
Jj=0 i=1 Jj=k i=1

As before, one cycle of solves from k = 0,---, N is considered one outer iteration of the
Gauss-Seidel method, and these outer iterations are repeated until the required convergence
tolerance is achieved. Often this method converges in fewer iterations than the Jacobi method,
at the expense of no longer having all of the right-hand-sides available simultaneously. This
requires recomputing needed matrix-vector products K1 for each k, which adds additional
computational cost, or storing them as they are computed, which adds additional memory
requirements. In both the Jacobi and Gauss-Seidel methods, the left hand side matrix is the
mean matrix for all inner deterministic problems and only the right hand side changes. In
such cases recycled Krylov basis methods can be explored to increase performance.

Krylov based iterative methods with matrix-free operations. Krylov based iterative
methods [14] such as the conjugate gradient (CG) method and the generalized minimal resid-
ual (GMRES) method can be used to solve the stochastic Galerkin system (4.3) in which
matrix vector products ¥ = Kii are computed using “matrix free” operations:

Ne P
Vi = Z Z Ciij[uj, k= 0, te ,Nf. (49)
j=0 i=0

If the matrix vector products are computed from Eq. 4.9, it is not required to assemble the full
stochastic Galerkin stiffness matrix, drastically decreasing memory requirements. However
if a large number of iterations of a Krylov method such as GMRES are required, allocation of
the Krylov basis may still require a very large amount of memory. Thus good preconditioning
strategies for the stochastic Galerkin system are required, several of which will be discussed
below.

Mean-based preconditioner. The mean-based preconditioner [12] is given by P =
diag{Py, - -- ,Po} where Py ~ Kj is a preconditioner for the mean. The mean-based pre-
conditioner is very efficient to compute and apply, since it only must be generated once from
a matrix that is of the size of the deterministic system. However it doesn’t incorporate any
higher-order stochastic information, thus its performance degrades as the stochastic dimen-
sion, polynomial order, or random field variance increases [16].

Gauss-Seidel preconditioner. One or more outer iterations of the Gauss-Seidel mean
algorithm can be used as a preconditioner to the Krylov based iterative methods. An ad-
vantage of this method is that the cost of applying the preconditioner can be controlled by
adjusting the tolerance of the inner deterministic solves and number of outer iterations. De-
creasing this tolerance and increasing the number of outer iterations will reduce the number
of iterations in the Krylov method, but make the preconditioner more expensive to apply,
and thus these must be balanced to minimize overall computational cost. Generally we have
found the cost of the preconditioner to be dominated by solving the mean systems, and thus
the best choice was a very loose inner solver tolerance (i.e., 0.1) and only one Gauss-Seidel
iteration. However to prevent stagnation of the outer Krylov solver, a flexible variant of the
Krylov method (e.g., FGMRES) was necessary.

R. Tipireddy, E.T. Phipps and R.G. Ghanem 85

Approximate Gauss-Seidel preconditioner. The process of increasing the inner solver
tolerance can be taken to its extreme of replacing the inner mean solves by application of
the mean preconditioner. As with the Gauss-Seidel preconditioner above, we found exper-
imentally that this approach worked best with only one Gauss-Seidel iteration, and adding
additional iterations did not improve the quality of the preconditioner. We also found the cost
of the preconditioner was reduced dramatically if only the first-order terms in the expansion
for the stiffness matrix are used in the preconditioner and using higher-order terms did not
improve performance. We refer to this as the approximate Gauss-Seidel preconditioner.

Approximate Jacobi preconditioner. Similar to the approximate Gauss-Seidel precon-
ditioner, Jacobi iterations can be used using a preconditioner in place of the mean stiffness
matrix. In this case we used two outer Jacobi iterations, since the first iteration is equivalent
to mean-based preconditioning (i.e., the additional terms on the right-hand-side of Eq. 4.7 are
zero). Increasing the number of outer iterations did not improve the efficiency of the overall
solver. We refer to this as the approximate Jacobi preconditioner.

5. Sparse grid collocation method. In the collocation method, the solution to the PDE
is sampled at a pre-selected set of points called collocation points, @ = (£, --- M), The
stochastic solution is constructed by interpolating at these collocation points,

N

u(x,€) ~) (DL€ 5.

k=0

where {L;(§)} are Lagrange interpolatory polynomials defined by & (Ly(&)) = Ox) and uy is
the solution of following deterministic PDE,

—V.(a(x, EOVu(x) = f(x,£P) inD, (5.2)
u(x) =0 on dD. 5.3)

The collocation points can be chosen as tensor products of 1-D Gaussian quadrature points
and the interpolating polynomials as tensor products of 1-D Lagrange interpolating functions.
However the number of collocation points then grows exponentially with the number of ran-
dom variables. An alternative method is to use Smolyak sparse grid quadrature ([15, 10])
where collocation points that do not increase asymptotic accuracy are removed from the ten-
sor product grid. This results in many fewer collocation points but still more than the number
of stochastic degrees of freedom in the stochastic Galerkin method. This method is fully
non-intrusive and is easy to implement with existing legacy software (once the sparse grid is
generated) [1].

6. Numerical illustration. To compare the performance of the different solvers and
preconditioners discussed above, the 2-D stochastic diffusion problem presented in section 2
is solved using both the stochastic Galerkin and stochastic collocation methods from sec-
tions 4 and 5. For both solution approaches, the random field is treated as both a uniform
random field discretized using a truncated K-L expansion (section 3.1) and a log-normal ran-
dom field discretized using a truncated polynomial chaos expansion (section 3.2). In the first
case, the orthogonal polynomials used in the stochastic Galerkin method are tensor products
of 1-D Legendre polynomials whereas the collocation points used in the sparse grid stochas-
tic collocation method are built from Gauss-Legendre points, and in the second case tensor
products of Hermite polynomials and Gauss-Hermite quadrature points are used. The Dakota
package [1] is used to generate the resulting sparse stochastic collocation grids. The spa-
tial dimensions are discretized using a five-point finite-difference stencil on a 32 x 32 grid

86 A comparison of solution methods for stochastic partial differential equations

in the domain D = [0, 1] X [0, 1], resulting in a total number of spatial degrees of freedom
N, = 1024. For simplicity a constant unit force f(x,w) = 1 is used as the right-hand-side in
Eq. 2.2. The corresponding stochastic Galerkin linear system is constructed using the Stokhos
and Epetra packages in Trilinos. For the Jacobi solver, Gauss-Seidel solver, Gauss-Seidel pre-
conditioner, and stochastic collocation method, the linear systems are solved via multi-grid
preconditioned GMRES provided by the AztecOO and ML Trilinos packages. For a con-
sistent comparison of all of the preconditioning methods, FGMRES provided by the Belos
Trilinos package is used as the outer Krylov solver, with ML providing the preconditioner in
the mean-based and approximate Gauss-Seidel and Jacobi preconditioners. GMRES Krylov
methods are employed instead of CG for generality and the numerical implementation of the
boundary conditions resulted in unsymmetric matrices K;.

The solution time for these solvers and preconditioning techniques as a function of the
standard deviation of the input random field, stochastic dimension, and polynomial order are
tabulated in Tables 6.1-6.6. In the tables, MB, AGS, AJ and GS are the mean-based, approx-
imate Gauss-Seidel, approximate Jacobi, and Gauss-Seidel preconditioners respectively for
the FGMRES Krylov method. GS; and GS, are Gauss-Seidel solvers where GS | refers to
the Gauss-Seidel algorithm in which the matrix vector products K;u; are saved in an array for
reuse in later iterations of the “k” loop, whereas GS, refers to the variant where these prod-
ucts are recomputed when needed. GS; is generally more efficient, but for higher stochastic
dimension or polynomial order, it requires a large amount of memory. “Jacobi” refers to the
Jacobi mean solver, and “collocation” is the solution time using the Smolyak sparse grid col-
location method. The solution tolerance for all of the stochastic Galerkin solvers, as well as
the solver tolerance for the collocation method is le — 12. For the Gauss-Seidel and Jacobi
solvers, the inner solver tolerance is 3e — 13, and for the Gauss-Seidel preconditioner, the
inner solver tolerance is 0.1.

In the tables, DNC means “did not converge”, “Div.” means diverged, and “memory”
means system memory was exceeded. For the uniform random field with small variance
(o = 0.1), it can be observed from Tables 6.1 and 6.2 that the more intrusive Krylov-based
stochastic Galerkin solvers are more efficient than the less intrusive Gauss-Seidel and Jacobi
solvers, which are in turn generally more efficient than the non-intrusive stochastic collo-
cation method. Moreover the approximate Gauss-Seidel and Jacobi preconditioners are a
significant improvement over the traditional mean-based approach. However as the variance
of the random field is increased, we see from Table 6.3 the Gauss-Seidel and Jacobi solvers
suffer considerably, whereas the the Krylov-based approaches (excluding the Gauss-Seidel
preconditioner) still perform quite well. This is not unexpected, as the operator becomes
more indefinite as the variance increases. However for the log-normal random field, we see
from Tables 6.4 and 6.5 that the Krylov-based stochastic Galerkin approach is only more
efficient than the collocation approach for larger stochastic dimension or polynomial order
when using the approximate Gauss-Seidel or approximate Jacobi preconditioners. It is also
interesting to see that Gauss-Seidel solver, GS is faster than GMRES with mean-based pre-
conditioning in this case. For higher variance of the random field, we see from Table 6.6 the
Krylov iterative method with the approximate Jacobi preconditioner failed to converge and
the Jacobi solver diverged. This problem can be rectified by using the true diagonal matrix
Kkk = Z?ZO ciuK; from global stochastic stiffness matrix as the left-hand-side in the Jacobi
solver and preconditioner instead of the mean matrix Kj.

Figures 6.1(a) and 6.1(b) show a plot of relative residual error vs iteration count for
the stochastic Galerkin system with stochastic dimension 5 and polynomial order 5. It can
be observed that the Gauss-Seidel solver takes the least number of iterations where as the
Jacobi solver takes highest number of iterations for a given tolerance. However in terms of

R. Tipireddy, E.T. Phipps and R.G. Ghanem 87

TaBLE 6.1
Solution time (sec) vs stochastic dimension for uniform random field, PC order = 5 and 0=0.1

Stoch. Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
dim MB AGS Al GS GS, GS, | Jacobi | collocation
020 | 0.12 | 0.18 | 0.25 1.23 1.21 222 0.52
070 | 039 | 0.54 | 077 | 3.84 | 3.87 7.46 3.18
1.78 1.01 1.38 | 2.02 | 9.56 | 9.73 18.60 10.24
434 | 2.31 3.05 | 459 | 2040 | 2090 | 41.10 26.96
10.24 | 541 | 7.10 | 9.81 | 46.10 | 46.30 | 87.50 64.09
19.50 | 10.24 | 12.96 | 19.64 | 81.20 | 80.40 | 160.00 134.45

| O\ | B WD

solution time, the matrix free Krylov solver with the approximate Gauss-Seidel or Jacobi
preconditioner is the most efficient.

TABLE 6.2
Solution time (sec) vs order of polynomial chaos when diffusion coefficient is uniform random field, Stoch.
dim=3, o = 0.1

PC | Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid
order | MB | AGS | Al GS GS, GS, | Jacobi | collocation
2 0.10 | 0.05 | 0.07 | 0.11 | 047 | 045 0.83 0.11
3 0.19 | 0.12 | 0.16 | 0.24 1.10 1.08 2.09 0.42
4 039 | 023 | 032 | 047 | 220 | 2.18 4.15 1.27
5 0.69 | 0.39 | 0.54 | 0.77 | 3.80 | 3.88 7.47 3.21
6 1.08 | 0.90 | 091 | 1.54 | 6.22 | 6.61 12.3 7.06
7 1.63 | 1.05 | 1.27 | 1.87 | 9.16 | 9.33 | 17.90 14.20
8 251 | 2.65 | 2.14 | 3.53 | 13.10 | 14.20 | 26.10 26.08
9 381 | 343 | 294 | 5.16 | 18.20 | 20.40 | 36.40 46.72
10 | 522 | 444 | 392 | 6.73 | 2440 | 27.30 | 47.30 78.87

TaBLE 6.3
Solution time (sec) vs standard deviation (o) when diffusion coefficient is uniform random field, Stoch dim = 3
and PC order = 5

Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid

o MB | AGS | Al GS GS, GS, | Jacobi | collocation
0.10 | 0.66 | 0.40 | 0.59 | 0.77 3.80 3.88 7.37 3.18
0.11 | 075 | 0.46 | 0.64 | 0.87 4.73 4.79 9.15 3.32
0.12 | 0.88 | 0.50 | 0.72 | 0.98 5.83 5.94 11.50 3.46
0.13 | 1.09 | 0.58 | 0.80 | 1.17 7.67 7.83 14.90 3.63
0.14 | 1.38 | 0.69 | 1.00 | 1.48 | 10.80 | 11.00 | 21.20 3.85
0.15 191 | 097 | 1.29 | 1.89 | 15.60 | 18.00 | 34.70 4.16

7. Conclusions. In this work, various preconditioners for Krylov-based methods and
solver methods based on Gauss-Seidel and Jacobi method are introduced. Results are com-
pared with GMRES with mean-based preconditioning and collocation. In the case of lin-
ear dependence on the random variables, we generally find the more intrusive Krylov-based
approaches to be more efficient than the non-intrusive collocation approach, with the less

88 A comparison of solution methods for stochastic partial differential equations

TaBLE 6.4
Solution time (sec) vs stochastic dimension when diffusion coefficient is log-normal random field, PC order =
5 and 0=0.1

Stoch. Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
dim MB AGS Al GS GS, GS, Jacobi | collocation
2 0.26 | 0.23 | 0.23 0.41 0.59 0.78 1.61 0.57
3 1.40 | 1.15 1.06 2.13 2.16 3.57 5.26 3.25
4 7.10 | 545 | 479 10.17 7.14 1430 | 16.80 10.91
5 28.08 | 20.60 | 19.46 | 38.68 22.30 4790 | 49.70 27.60
6 93.20 | 66.05 | 59.84 | 132.30 | memory | 139.00 | 137.00 63.98

TABLE 6.5
Solution time (sec) vs order of polynomial chaos when diffusion coefficient is lognormal random field, Stoch.
dim=3, 0 = 0.1

PC Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
order MB AGS Al GS GS, GS, Jacobi | collocation
2 0.06 0.05 | 0.07 0.11 0.21 0.21 0.45 0.11
3 0.16 0.13 | 0.15 0.25 0.51 0.50 1.11 0.42
4 0.47 0.40 | 0.37 0.77 1.04 1.23 247 1.29
5 1.39 1.15 1.06 2.12 2.15 3.53 5.23 3.28
6 4.01 3.05 2.74 5.50 4.39 10.60 11.50 7.39
7 8.69 6.23 5.50 11.18 8.03 | 2230 | 23.50 15.02
8 23.79 | 1540 | 13.88 | 30.47 | 17.30 | 63.50 | 54.10 28.40
9 54.36 | 3540 | 34.80 | 71.38 | 36.40 | 161.00 | 126.00 50.57
10 106.40 | 66.95 | 66.80 | 125.96 | 64.70 | 295.00 | 253.00 87.27

TABLE 6.6
Solution time (sec) vs standard deviation (o) when diffusion coefficient is log-normal random field, Stoch dim
=3 and PC order =5

Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid

o MB | AGS Al GS GS, GS, | Jacobi | collocation
0.10 | 1.51 | 1.23 | 1.14 | 2.08 | 2.11 3.56 5.21 3.25
0.15] 1.86 | 1.42 | 1.25 | 249 | 2.86 | 4.87 9.15 3.64
020 | 220 | 1.72 | 2.06 | 3.06 | 3.63 | 6.17 | 46.80 4.11
0.25 | 2.66 | 2.03 | DNC | 3.58 | 4.87 | 8.40 Div. 4.59
0.30 | 3.11 | 235 | DNC | 435 | 690 | 11.90 | Div. 5.13
0.35 | 3.65 | 2.87 | DNC | 5.17 | 11.20 | 19.30 | Div. 5.72
0.40 | 444 | 339 | DNC | 6.16 | 24.30 | 41.90 | Div. 6.53

intrusive Gauss-Seidel/Jacobi approaches in between. This demonstrates a trade-off in per-
formance versus intrusiveness when existing legacy simulation codes must be used. In the
case of nonlinear dependence on the random variables however, extrapolating beyond these
tables suggests the non-intrusive collocation approach is in fact the most efficient. This gen-
erally suggests that for linear problems (in the random variables and the solution), intrusive
stochastic Galerkin approaches would be preferred, but for nonlinear problems (in either the
random variables or the solution), non-intrusive approaches would be preferred. Regardless,
the use of approximate Gauss-Seidel or Jacobi preconditioners is a significant improvement
over traditional mean-based preconditioning. In the future, we want to compare the Kro-

R. Tipireddy, E.T. Phipps and R.G. Ghanem 89

=brivs misiia om
=brivs misiia om

(a) Uniform random field, o = 0.12 (b) Log-normal random field, o= = 0.2

Fig. 6.1. Relative error norm vs iteration count for various solvers and preconditioners, where M =5 and p = 5

necker product preconditioner proposed in [16] with the above methods. We would also like
to investigate block and recycled Krylov methods to improve the efficiency of the Jacobi and
Gauss-Seidel solvers.

[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
[12]
[13]

[14]
[15]

[16]

[17]

REFERENCES

B. M. Apawms, K. R. DaiLBey, M. S. ELbrep, D. M. Gay, L. P. SwiLer, W. J. BounHorr, J. P. Epbpy, K. HASKELL,
AND P. D. HougH, DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis, Sandia National Laborato-
ries, tech. rep.sand2010-2183 ed., May 2010.

1. BaBUSKaA, F. NoBILE, AND R. TEMPONE, A stochastic collocation method for elliptic partial differential equa-
tions with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005-1034.

I. BaBuska, R. TempoNE, AND G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic
partial differential equations, STAM J. Numer. Math., 42 (2004), pp. 800-825.

M. EierMANN, O. G. ErnsT, aND E. ULLmann, Computationa aspects of the stochastic finite element method,
Computing and Visualization in Science, 10 (2007), pp. 3—-15.

R. GHANEM, Ingredients for a general purpose stochastic finite elements implementation, Computer Methods
in Applied Mechanics and Engineering, 168 (1999), pp. 19-34.

R. GHANEM AND P. SpaNos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.

R. G. GHANEM AND A. D0o0sTaN, On the construction and analysis of stochastic models: characterization and
propagation of the errors associated with limited data, Journal of Computational Physics, 213 (2006),
pp. 63-81.

R. G. GHANEM AND R. M. KRUGER, Numerical solution of spectral stochastic finite element systems, Comput.
Methods Appl. Mech. Engrg., 129 (1996), pp. 289-303.

C. W. MILLER, R. S. TumiNaro, E. T. Pripps, anp H. C. Eman, Assessment of collocation and galerkin ap-
proaches to stochastic partial differential equations, in CSRI Summer Proceedings 2009.

F. NoBiLE, R. TEMPONE, AND C. G. WEBSTER, A sparse grid stochastic collocation method for partial differential
equations with random input data, STAM Journal of Numerical Analysis, 46 (2008), pp. 2309-2345.

M. F. PELLISSETTI AND R. G. GHANEM, [ferative solution of systems of linear equations arising in the context of
stochastic finite elements, Advances in Engineering Software, 31 (2000), pp. 607-616.

C. PoweLL aND H. ELmaN, Block-diagonal preconditioning for spectral stochastic finite element systems, IMA
Journal of Numerical Analysis, 29 (2009), pp. 350-375.

E. ROSSEEL AND S. VANDEWALLE, [terative solvers for the stochastic finite element method, SIAM J. Sci. Comput,
32 (2010), pp. 372-397.

Y. Saab, Iterative Methods for Sparse Linear Systems, SIAM, 1996.

S. SmoLvak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl.
Akad. Nauk SSSR, 148 (1963), pp. 1042-1043.

E. ULLMANN, A kronecker product preconditioner for stochastic galerkin finite element discretizations, SIAM
J. Sci. Comput., 32 (2010), pp. 923-946.

N. WEINER, The homogeneous chaos, American Journal of Mathematics, 60 (1963), pp. 897-936.

90 A comparison of solution methods for stochastic partial differential equations

[18] D.Xu anp J. HestHAVEN, High-order collocation methods for differential equations with random inputs, SIAM
Journal of Scientific Computing, 60 (2005), pp. 1118-1139.

CSRI Summer Proceedings 2010 91

UNCERTAINTY QUANTIFICATION OF THE SEMICONDUCTOR
DRIFT-DIFFUSION EQUATIONS

CHRISTOPHER W. MILLER*, RAYMOND S. TUMINARO', ERIC T. PHIPPS#, AND HOWARD C. ELMAN?®

Abstract. The movement of charge carriers in a semiconductor device is modeled by a set of coupled non-linear
partial differential equations known as the drift-diffusion equations. The physical parameters involved in defining
these equations are subject to large amounts of uncertainty. The aim of this paper is to examine the applicability
of uncertainty quantification techniques to this problem. We express the uncertainty regarding these parameters by
modeling them as random variables and apply anisotropic sparse grid collocation to the resulting set of stochastic
partial differential equations. We identify the most sensitive parameters using local sensitivity analysis, and use this
information to formulate a reduced problem. We apply Sobol’ sensitivity analysis to the solution of the reduced
model and analyze the probability distribution of the model outputs at various time steps. This preliminary work
reveals new approaches for quantifying uncertainty in semiconductor devices.

1. Introduction. Radiation interacts with semiconductor devices by knocking atoms
from the device’s silicon lattice. These defect species, which can consist of silicon or the
P-type or N-type dopants, can carry charge and propagate through the device. Examining the
behavior of semiconductor devices in radioactive environments is complicated by the cost and
lack of availability of experimental facilities. To alleviate this, Sandia National Laboratories
has invested in the use of computational modeling to examine the performance of semicon-
ductor devices in radioactive environments. In particular, the finite element code Charon was
developed to discretize and solve the semiconductor drift-diffusion equations that model the
movement of charge carriers inside semiconductor devices [5] [15].

A difficulty with this model is that the parameters that describe the interactions of the
defect species are often only known to a limited accuracy. Confidence in the model solutions
is then limited by lack of confidence in the accuracy of the parameter values. The lack of
knowledge represents an epistemic uncertainty which can be quantified by modeling the pa-
rameters as random variables. As a consequence of the Doob-Dynkin lemma, the solution of
the drift-diffusion equations can be represented as a random process of the uncertain param-
eters [4]. Several methods have been developed to approximate the statistics associated with
such a random solution process, including the Monte-Carlo method [9], and more recently,
the stochastic collocation methods [2],[10],[11],[16]. In this paper we apply the anisotropic
sparse grid collocation method because of its favorable convergence properties and minimal
dependence on the size of the parameter space [11]. The solution process arising from the
collocation method can be post processed to compute statistical quantities associated with the
solution process.

This work is viewed as a continuation of [12], which performed a transient sensitivity
analysis of the solution of the deterministic drift-diffusion equations with respect to the de-
fect reaction parameters. Here we seek to identify additional methods for quantifying the
uncertainty inherent in this problem. The structure of this paper is as follows. Section 2
describes the deterministic formulation of the semiconductor drift diffusion equations and
describes our extension of this problem from a deterministic setting to a non-deterministic
one. Section 3 describes the sparse grid stochastic collocation method used to perform the
uncertainty quantification calculations. Section 4 describes how the solution derived using

“The University of Maryland at College Park: Department of Applied Mathematics and Scientific Computation,
cmiller@math.umd.edu

Sandia National Laboratories, rstumin @sandia.gov

Sandia National Laboratories, etphipp@sandia.gov

$The University of Maryland at College Park: Department of Computer Science and Institute for Advance Com-
puter Studies, elman@cs.umd.edu

92 Semiconductor Uncertainty Quantification

(b)

Fic. 2.1. Scanning electron microscope of an NPN BJT (a) and diagram of the emitter, base, and collector
regions (b)[12].

the collocation method can be examined to explore interactions among parameters. Section
5 describes the application of these methods to a semiconductor device under the influence
of a radiation pulse. Finally, in Section 6 we draw some conclusions and propose additional
applications.

2. Non-deterministic Problem Formulation. The device considered in this paper is an
NPN bipolar junction transistor (BJT) subjected to a radiation pulse. The device is pictured
in Figure 2.1. In a BJT the silicon lattice has been modified by the introduction of dopants
to produce an excess of free electrons in the N-regions (N-doping), and to produce an excess
of holes (positive charge carriers) in the P-region (P-doping). The P-dopant in the device
considered here is boron, while the N-dopant is phosphorus. Radiation interacts with the
device by knocking an atom free from the lattice. This creates a free interstitial atom and
a vacancy referred to as a Frenkel pair. Both the free atom and vacancy can carry charge,
move through the device, and interact with other defect species. The diffusion, transport, and
generation of charge carriers are governed by the following set of coupled partial differential
equations

N
-V (2Vy) = (p—n+CZZ,Y,-] 2.1)

i=1
V. (=u,nVy + D, Vn) = % +R,

P
V- (uppVi + D,Vp) = a—’; +R,

V- (/inYiVlﬂ + DY‘VY,) = % + Ryl., = 1, N,

where i is the scalar electric potential, n, p, and Y; are the electron, hole, and i defect species
densities respectively. For x € {n, p,Y;}, D, and u, are mobility and diffusivity coefficients
for species x, Z; is the integer charge of the i defect species, A is the Debye length of the
device and C is the doping profile. The generation and recombination of species x is given
by the right hand side term R, [15]. The reactions we are concerned with are the so-called
carrier-defect reactions: reactions between a defect and a hole or electron. These reactions
have the form

th

X" — X" 4 em X" — X" ' + h* (Generation) (2.2)
X" 4 em - X" X" '+ h* - X™ (Recombination).

The forcing term associated with these reactions is modeled by

AE
Rymn1 = O'AX'"exp(k—T). (2.3)

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 93

Here X denotes the concentration of a certain defect species with superscripts denoting the in-
teger charge of the defect. A is a constant, o is the reaction cross section, AE is the activation
energy, k is Boltzmann’s constant and T is the lattice temperature. The parameters that we
investigate are the reaction cross-sections and the activation energies. A subscript on o and
AE is omitted to improve readability; however each reaction has a different value for each of
these parameters. The activation energy for a recombination reaction is known to be equal to
zero [12]. For our problem there are 84 carrier-defect reactions involving 35 defect species
and a total of 127 reaction parameters. Table 2.1 shows a small sample of the carrier-defect
reactions along with an estimate of one of the associated parameters.

Reaction Parameter Approximate Value

13 e +V >V o 3.0x10°T°

14 V- 5e +V" AE 0.09

40 e +BV*— BV’ o 3.0x 1071
TaBLE 2.1

A sample of the 127 carrier-defect reactions [12]

Discretization and numerical solution to the partial differential equations in (2.1) is ac-
complished using Sandia’s Charon software. Chemical kinetics computations are accom-
plished using CHEMKIN [6]. Charon uses a Galerkin finite element discretization consisting
of two-dimensional piecewise bilinear finite element functions defined on a mesh of quadrilat-
erals with streamline upwind Petrov-Galerkin stabilization. Further details of the discretiza-
tion procedure used can be found in [5]. In this study we perform the calculations on the
pseudo one-dimensional domain shown as the vertical white strip under the emitter in Figure
2.1. Two-dimensional effects do not arise for the device operating under the conditions con-
sidered in this paper.

As stated previously, the reaction parameters o and AE appearing in (2.2) are subject to
a large degree of uncertainty. Our aim here is to develop quantitative insight into the effects
of these reaction parameters, denoted generically here as {£;}. To accomplish this, we model
each of the 127 reaction parameters &; as a uniform random variable centered at y;; the es-
timated value from previous deterministic studies [12]. The probability distribution of each
random variable is then given by

1
pi€) = ml[m—.sy,-,y,-Jr.my 2.4

Although these intervals are large, they still may underestimate the uncertainty associated
with the parameters. We assume that the uncertainties with respect to each parameter are
independent and so we can define a joint probability distribution on the parameter space by

127 127

1
o) = 1—[pi&i) = 1_[mﬂwf—ﬁm,ymﬁm (2.5)
i=1 i=1

The problem is now to find random processes

Y(x,1,8), n(x,1,8), X, 1,&), Yi(x,1,8) (2.6)

that satisfy (2.1) almost surely. It should be noted that additional uncertainties are associated
with the doping profile and the diffusivity and mobility coefficients. These are not considered
in this paper

94 Semiconductor Uncertainty Quantification

The assumption of independence deserves some scrutiny since the parameters associ-
ated with all of the reactions involving a given defect species are almost certainly correlated.
However it is shown in [2] that the replacement of the true joint density function with the
product of the marginal density functions only affects the convergence of collocation meth-
ods up to a constant. This constant may be large however and further work is required to
better approximate the joint PDF appearing in (2.5).

3. The Stochastic Collocation Method. A methodology for computing the random
processes in (2.6) is the stochastic collocation method. The sparse grid collocation method
was first described in [16] and error analysis was performed in [2] and [10]. These meth-
ods are all suited to problems whose dependence on the random parameters is isotropic. We
choose to apply an anisotropic version of the sparse grid collocation method developed by
[11]. Other approaches for addressing anisotropic problems can be found in [7] and [8]. Here
we only present the derivation of the isotropic method described in [16].

In order to derive the stochastic collocation method, one begins by considering interpo-
lation operators defined for one-dimensional functions defined on a finite interval. Without
loss of generality, we can assume that the interval is [-1, 1]. Let f : [-1, 1] — R and define
the interpolation operator

U f€) =) FED@), (3.1)
k=1

where {£W} = 6, is a set of m distinct points and where [, is the Lagrange interpolating
polynomial of degree m — 1 defined by

L(ED) = 6y (3.2)

Evaluation of the interpolant requires the evaluation of the function f at the points contained
in 6,,. By construction we have that f(£®) = U™ f(£P) for all X in 6,,.

Now we consider interpolation in multiple dimensions. Let f : [-1,1]¥ — R. In order
to generalize the one-dimensional interpolation operators to multiple dimensions, an obvious
approach would be to take tensor products of one-dimensional interpolation operators U™
along each coordinate axis. Define the tensor product interpolant by

ﬂirm‘wf(«f) =UYU" QU™ @ -+ Q Ui f(&). 3.3)

The multi-index i € N** describes how many interpolation points are used along each axis.
The evaluation of ?liT ensor requires the evaluation of the function f on the grid

O =L 6, , (3.4)

with the cardinality of this grid given by

M
& = [[(3.5)
k=1

The relation (3.5) is referred to as the curse of dimensionality [16] since the cardinality of
the grid grows exponentially in the dimension M. Thus for problems involving a moderate
or large number of parameters, use of the tensor product formula (3.3) is computationally
infeasible.

Smolyak sparse grids provide a method of approximating multi-dimensional functions

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 95

that avoids the curse of dimensionality. Sparse grid interpolation was introduced in [13]. The
sparse grid interpolant is formed by taking a selective sum of tensor product rules appearing
in (3.3). Define the index set

M
Yq,Mz{ieNM,im:q—M+1sZ(ik—1)5q}. (3.6)
k=1
Then the sparse grid interpolation operator is given by
g M-—1
= —1)r+M-H (UM @ @U™N). 3.7
TGRSR RUEEIR AT (3.7)

€Y, n

Evaluation of this interpolation operator requires the evaluation of the function f on the sparse
grid

Hor =) On, X% 00,). (3.8)

i€y, m

In order to fully define the sparse grid interpolation operator it is necessary to specify the
points used in constructing the one-dimensional interpolation operators. It is advantageous if
the grids have the property that H, » C H,+1,m. One way to accomplish this is to construct
the one-dimensional operators using the Clenshaw-Curtis abscissas [16]. Let

. i— 1

f;:-cos(";f_l)), J=1m 3.9)
1 ifi=1,

’""‘{ 2741 i1 (3.10)

With this choice of points we obtain §; C 61 and hence H, y € Hys1m. In this case (3.7)
and (3.8) simplify to

M1
Aumf = (—1)q+M""(.)-('u"'fl ®- - @ U"n) (3.11)
amf i;q;M g+ Ml
and
Hopr =) Oy, XX O, (3.12)
i€Xym
M
where X,y = {i e N Z(ik -1 = q}.
k=1

It is known that if f is a M-variate polynomial of total degree ¢ — M + 1 then A,y f = f [3].
Thus one can expect that if f is sufficiently regular than the approximation A, f converges
quickly in the sparse grid level ¢. This statement is made precise in [10].

The solution obtained through collocation can be post-processed to compute various
other quantities of interest [16]. Moments of f can be approximated by

E(f™) = E(A mS™) (3.13)

where the quantity on the right of (3.13) can be computed exactly and efficiently using
Clenshaw-Curtis quadrature. One may also want to compute probability distributions as-
sociated with the solution. These can be approximated by sampling the collocation solution

96 Semiconductor Uncertainty Quantification

& i s i-:bo
P % &
2. . B &
. 55, ® ol
1 ¢ a R o2 Te - -0 Bg0R.0 .0
jo ¢ L 2 o k! : : i o “ dj‘ b :‘&3
J % Las o . e - .
Lo 3"% o ob m,% 3 ua Sf' "f-...p{g"- - X
R T oENagi e, ° .
ods © _ - @ ndge s L oo Q
L) 0 40 n:,d-"' - ‘ﬁ:,“ oy g Y -] ‘?;o
& 3 &] G
. ad Lo 0 " L e e a © ,‘%cgh
s o 2 & [« -‘JM B e, o
-08- dﬁ-r & o "o, 0.5+ LT o
6:“. oo - g a 4 a = = o’ £
1 @ i =] = %] & 1 B e u '\-& 28 :
2. 8 . & 6w X
e = - 2 |%‘\:\ pa L T LB
a] o -
"?\n‘: S LTy i - L s o T
0 & - o TR
- i % ol
05 e _a -ng ™

FiG. 3.1. Clenshaw-Curtis based sparse grids H(2,3) and H(3,3)

at a random set of points and then measuring the relative frequency of the desired event. As-
sume that we sample A,y (f) N times. Let A = {£®}Y | be the set of sample points and let
Aa,, f<c be the subset of points in A such that A,y f (€W) < ¢, then

|Aﬂq-M f<c |

Plf<cl= A

. (3.14)
The advantage of this approach to computing the CDF instead of direct sampling of the func-
tion f is that evaluation of A, »(f) can often require much less computational effort than
directly evaluating f. Our routines for performing the sparse grid collocation method and
post processing the collocation solution are provided by Sandia’s Dakota software [1].

4. Sobol’ Sensitivity Analysis. Given a function f : [-1,1]Y — R of M parameters
one may be interested in how perturbations of each parameter contribute to changes in the
function value. In many cases however the function value is not sensitive with respect to per-
turbations of a single parameter but rather is sensitive with respect to simultaneous changes
in multiple parameters. Sobol’ sensitivity analysis is one method for describing the sensitivity
of the function with respect to coupled subsets of parameters. The method proceeds by per-
forming a standard ANOVA decomposition of the function f and then computing the Sobol’
indices as a ratio of the partial variance to the total variance [14].

The ANOVA decomposition of f is as follows. Assuming that f is square integrable,
decompose f into the sum

M
F&O=Ffo+ Y D, fus G nrnél) @.1)

s=1 [1<..<l;

Jo= f f(&)dg
=11

fen= [o[la-n

k#l,

futrng= [5@ [e~ fo- fite - futee)

k#ly .1

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 97

Then define the partial and total variances as

Dis= [R dedsandD= [P, 42)
[-1,1¢ [~1,17%
Finally define the Sobol’ index and total Sobol’ index as
Dy, =
St = =52 ad TSi= 3 D Shd. (4.3)

s=1 [1<..<li<..<l;

The Sobol” index measures the dependence of the function on each subset of the M
parameters while the total Sobol’ index 7'S; measures the dependence of the function f on
the i"* parameter. There is a total of 2" terms appearing in (4.1), 2¥ — 1 Sobol’ indices, and
M total Sobol’ indices. The Sobol’ indices can be used to measure the strength of coupling
effects between specific subsets of parameters on the function f. The Sobol’ indices §; for
1 < i < M are referred to as the main effect of parameter i. The total Sobol’ index can be used
as a global sensitivity measure of f with respect to a given parameter. We define the ratio

TS -5,

s (4.4)

Ti
as the relative error between the i total Sobol” index and the main effect of parameter i for
1 <i < M. Obviously r; satisfies 0 < r; < 1. If r; is close to 1 then most of the sensitivity with
respect to parameter i is tied up in coupling effects. If r; is close to 0 then the i” parameter is
only weakly coupled to the rest of the parameters. This information can be used to examine
the strength of parameter coupling effects on the model solution.

5. Application to the semiconductor drift diffusion equations. In this section we ap-
ply the above techniques to the analysis of a radiation damaged BJT. A radiation pulse is
simulated by adding a transient source of electrons and holes [12]. The shape of this pulse
is shown in Figure 5.1. The radiation pulse begins at time # = 1 x 107> and ends at time
t=2x107"

E':.: ”:Iw T T T .-:.IE”:I :
||—Pulsea| ---Base Current

4f N =
&
- 2
PP mrm = LR em——— 40 5
0 - 3 r =1
o™ 10" w0 10 10

Tirme (s}

Fic. 5.1. Radiation pulse [12]

Our goal is to investigate the current /(¢, €) at the base contact as a function of time and

98 Semiconductor Uncertainty Quantification

the uncertain reaction parameters. In principle one could use the model for the reaction pa-
rameters described in (2.5) to perform a collocation study that would generate an approximate
response surface over the entire parameter space. However it is computationally intractable
to do this on the 127 parameter space that includes all of the reaction parameters. So first a
form of model reduction is necessary.

In order to reduce the number of parameters to be included in the collocation study we
first execute a “one-at-a-time” (OAT) study to estimate the sensitivity of the solution with
respect to each individual parameter. For this, we fix 126 of the 127 uncertain parameters
at their mean value and perform a one-dimensional collocation to approximate the function
I(uy, ..., &y -, 1) as a function of time and a single reaction parameter &. This approach
scales very well since it only requires the solution of a series of one dimensional problems.
From the collocation approximation of this function we can compute estimates of the sensi-
tivity of I with respect to a single parameter. We use two metrics to measure the sensitivity,
o, the standard deviation of the current with respect to the i parameter and ‘#j—;lgi:m, the
scaled sensitivity of parameter i evaluated at the mean parameter value. The evaluation of the
scaled sensitivity is also investigated in [12]. These two measures are plotted for each of the
127 parameters at a variety of times in Figure 5.2. The plots in Figure 5.2 are normalized
so that EZ o; = 1and) EZ % j—élgi:#, = 1. Thus each bar can be interpreted as the relative
importance of parameter i with respect to each sensitivity metric.

We make two observations. First the standard deviation and the scaled sensitivity gen-
erally show broad agreement in which parameters are considered important. However there
are a few instances where the two are noticeably different. The differences are attributable to
the fact that the standard deviation is an inherently global measure of sensitivity whereas the
point derivative is an inherently local measure. We believe that the standard deviation may
be a more reliable sensitivity metric because it takes into account the behavior of the current
over a range of parameter values rather than simply at a single point. Second, the current
only exhibits sensitivity with respect to a relatively small number of parameters. A response
surface constructed using only the 15 most sensitive parameters should be of similar accuracy
to the response surface constructed using the full 127 parameter space.

We use the 15 most sensitive reaction parameters to perform a multi-dimensional colloca-
tion study. We perform a level 6 collocation method on the 15 dimensional parameter space.
In order to simplify the problem further we use the scaled standard deviations of the current
in each of these parameters as weights for an anisotropic sparse grid collocation method, as in
[11]. This method requires the discretization and solution of (2.1) at 371 points in the reduced
parameter space. This computation was performed on Sandia’s Red Sky supercomputer and
took approximately 41 hours using 64 cores. The results of this multi-dimensional colloca-
tion study were post processed to examine the Sobol’ sensitivity indices and the probability
distributions of the current at various time steps.

Figure 5.3 shows the cumulative distribution function of the current at a series of time
steps. At time # = 1 x 107 the solution is nearly in a steady state defined by the initial bound-
ary value because the radiation pulse hasn’t yet generated many defects and as expected, the
CDF of the current is nearly a Heaviside function. Immediately after the pulse has ended at
t = 1 x 1073 the current exhibits a large degree of variability owing to the large number of
Frenkel pairs generated by the radiation pulse. The solution then quickly settles down into a
new steady state at time r = 1 x 1072, The current at this steady state displays a relatively
small amount of variation over the parameter space. The overall uncertainty in the device
current varies as a function of time. This indicates that the total number of collocation points
as well as the anisotropic weights should be allowed to vary as a function of time to optimally
capture the behavior of the solution. Such a technique would require more intrusive modifi-

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman

t=1e—d

E Normalized o
HE Normalized Scaled Sensitivity

i .

I O | |]

f=1e-3

E Normalized o
HE Normalized Scaled Sensitivity

ol

I=1p-2

- B Normalized o
H Normalized Scaled Sensitivity

T . ll_llj _J,.‘l | ESSTR N | 1% Y)

Fic. 5.2. Sensitivity Metrics at t = 1 x 107 (top), t = 1 x 1073 (middle), and t = 1 x 1072 (bottom)

99

100 Semiconductor Uncertainty Quantification

cation of the existing code as the collocation method would need to be executed as part of the
time series integrator.

Approaimate COF of Curment

]

od

FiG. 5.3. CDF of Current at various time steps

Figure 5.4 shows the ratios r; = %S_S/ computed from the 15 parameter study. In per-
forming such a sensitivity analysis, it ma)/ be the case that parameter interactions account for
only a small portion of the sensitivity in the current. In this case we would expect r; to be
close to zero for all of the parameters. This would indicate that most of the information con-
tained in the response surface could be derived from the behavior of the current along each
parameter axis. Figure 5.4 indicates that this is not the case. The figure reports that many
of the parameters are coupled to produce changes in the current. Therefore we see that the
OAT study does not contain enough information to reconstruct the response surface since it
doesn’t contain information regarding what is occurring in the corner of the parameter space.
The fact that OAT studies do not explore the behavior of a function in the corners of the pa-
rameter domain is considered a major weakness. The data contained in the Sobol” indices
can be used to isolate correlated parameters that should not be considered separately in OAT

studies.

6. Conclusions. The goal of this paper was to determine what types of information
could be obtained from applying modern uncertainty quantification techniques to large scale
engineering problems. A great deal of information can be obtained from uncertainty quan-
tification techniques that approximate the response functions on the entire parameter space as
opposed to a single point. In particular, the standard deviation and Sobol’ sensitivity indices
provide insight to the global sensitivity of the response function with respect to the parame-
ters. Also, collocation methods can be used to obtain approximations of the density function
associated with the solution process which can be valuable as part of a reliability analysis. In
the future we believe that it may be possible to use the results of a Sobol’ sensitivity analysis
to uncover hidden parameters which may lead to further reduced models and additional in-
sights into the physics of the problem.

There are a number of additional areas which are natural extensions of this work. One
possibility is the implementation of a time adaptive sparse grid collocation method to effi-
ciently compute the response function at intermediate time steps. Another interesting possi-
bility is to use the reduced model within an inverse formulation to assess a tolerable range of
uncertainty within individual parameters. Understanding which of the problem’s uncertain-
ties are most important may help guide future experimentation. The possible dependence of
the uncertain quantities also warrants further study.

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 101

Scsind Diflerencs catwesn Sotal and tobal Soeal indas for pacsmaeties |

[T — —e e = — . 11 — e e = —

[
nan
| o4
an
S oo 5 am
Ten ; LT
= nin = II
aot l
oo |
b I S T] w U T4 boiosr- T T ¥ [T]]
Fale=3 Pl =1
Lo - . - ! 18
an | an
E s | E os
oa | o
oz I | [
M] TR | " i] i []] I]
Pl
omy :
a0 |
an |
= nao |
(31 |
oo
I
. 1|
beag i W] n 12 Tl
TS8-S e . .
Fie. 5.4. r; = =<~ computed for the 15 most sensitive parameters at various time steps.
v
REFERENCES

[1] B. A. amp W.J. Bounnorr, K. DaLBEY, J. EppY, M. ELDRED, D. GaY, K. HaskEeLL, P. HouGH, AND L. SWILER,
Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 5.0 users manual, Tech. Rep. SAND2010-
2183, Sandia National Laboratories, December 2009.

[2] 1. BaBuska, F. NoBiLE, AND R. TEMPONE, A stochastic collocation method for elliptic partial differential equa-
tions with random input data, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1005-1034.

[3] J. Bick, F. NoBiLE, L. TAMELLINI, AND R. TEMPONE, Stochastic Galerkin and collocation methods for PDEs with
random coefficients: a numerical comparison, Tech. Rep. 09-33, Institute for Computational Engineering
and Sciences, University of Texas at Austin, 2009. To appear in Proceedings of ICOSAHOM’09, Lecture
Notes in Computational Science and Engineering, Springer-Verlag, New York.

[4] A. BoBrowskl, Functinal Analysis for Probability and Stochastic Processes: An Introduction, Cambridge
University Press, 2005.

[5] G. Hennigan, R. HoeksTra, J. CastrO, D. FIXEL, AND J. SHADID, Simulation of neutron radiation damage in
silicon semiconductor devices, Tech. Rep. SAND2007-7151, Sandia National Laboratories, 2007.

[6] R.J. Keg, F. M. RupLEy, E. MEEks, anD J. A. MiLLer, CHEMKIN-III: A fortran chemical kinetics package
for the analysis of gas-phase chemical and plasma kinetics, Tech. Rep. SAND96-8216, Sandia National
Laboratories, 1996.

[7] X.Ma anp N. ZaBARAS, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochas-
tic differential equations, Journal of Computational Physics, 228 (2009), pp. 3084-3113.

, High-dimensional stochastic model representation technique for the solution of stochastic partial
differential equations, Journal of Computational Physics, 229 (2010), pp. 3884-3915.

[9] N. MetropoLis AND S. Uram, The monte carlo method, Journal of the American Statistical Association, 44
(1949), pp. 335-341.

[8]

102 Semiconductor Uncertainty Quantification

[10] F. NosiLE aND R. TEMPONE, A sparse grid stochastic collocation method for partial differential equations with
random input data, STAM Journal on Numerical Analysis, 45 (2008), pp. 2309-2345.

[11] F. NosiLg, R. TEmPoNE, AND C. WEBSTER, An anisotropic sparse grid collocation algorithm for the solution of
stochastic differential equations, SIAM Journal on Numerical Analysis, 46 (2008), pp. 2411-2442.

[12] E. Puipps, R. BartLETT, D. GAY, AND R. HOEKSTRA, Large-scale transient sensitivity analysis of a radiation-
damaged bipolar junction transistor via automatic differentiation, Lecture Notes in Computational Sci-
ence and Engineering, 64 (2008), pp. 351-362.

[13] S. Smorvak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dok-
lady Akademii Nauk, 148 (1963), pp. 1042-1043.

[14] L. SosoL, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computa-
tional Experiments, 1 (1993), pp. 407-414.

[15] S.M. Szg, Physics of Semiconductor Devices, Wiley and Sons, 2nd edition ed., 1981.

[16] D. Xt anp J. HEstHAVEN, High-order collocation methods for differential equations with random inputs, SIAM
Journal on Scientific Computing, 27 (2005), pp. 1118-1139.

CSRI Summer Proceedings 2010 103

KRYLOV RECYCLING FOR CLIMATE MODELING AND UNCERTAINTY
QUANTIFICATION

KAPIL AHUJA*, MICHAEL L. PARKS', ERIC T. PHIPPS!, ANDREW G. SALINGER®, AND
ERIC DE STURLER!

Abstract. Krylov subspace recycling is a technique to accelerate the convergence of sequences of slowly chang-
ing linear systems. Ice sheet modeling and embedded uncertainty quantification are two application areas where such
systems arise. Typically, recycling algorithms assume that the number of vectors selected for recycling is less that
the total number of iterations required to solve a system. Hence, these algorithms are useful when each system in the
sequence requires a relatively large number of iterations to converge. For the application areas under study, the num-
ber of iterations required for convergence of a system is small. Hence, our existing family of recycling algorithms
are not suitable in their current forms. However, this is not a problem inherent to recycling. We modify GCRO-DR
such that the recycle space can be built even for rapidly converging linear systems. Hence, the number of vectors
selected for recycling is no longer constrained by the total number of iterations required to solve a system.

GCRO-DR uses approximate invariant subspace as the recycle space. This choice is not always the best. We
show in this paper that another choice works better for the application areas under consideration. We use Arnoldi
vectors that have large components in the right hand side as the recycle space. In addition, since our systems
converge rapidly, we modify GCRO-DR to avoid an extra orthogonalization step, leading to reduced cost. Numerical
experiments show the benefit of using modified GCRO-DR for embedded uncertainty quantification. We show
savings in iteration count as well as time. We also modify the recycling conjugate gradients (RCG) algorithm in a
similar way. The details for RCG are not described here.

We also do performance studies on standard GCRO-DR and standard RCG for the above mentioned application
areas. The results show that recycling does not impose substantial overhead. The experiments are done using a
combination of recycling solvers implemented in the Belos package of the Trilinos project and Matlab.

1. Introduction. Recycling algorithms are appropriate for solving sequences of linear
systems

AD D = b(i), (1.1

where A® € €™ and b € C" vary with i, and the matrices A? are large and sparse. For
any particular system in the sequence, recycling algorithms store a recycle space associated
with that system, and use this subspace to accelerate convergence for the next system in
the sequence. This idea originates from ‘thick restarting’ used for solving a single linear
system in the GCROT [2] and the GMRES-DR [12] algorithms. For solving a sequence of
linear systems, ‘recycling’ was first proposed in [13] where it is applied to the GCROT and
the GCRO-DR algorithms. The idea is further adapted in the recycling minimal residual
algorithm (RMINRES [19]), the recycling conjugate gradients algorithm (RCG [14]), and the
recycling bi-conjugate gradients (RBiCG [1]) algorithm.

Such sequences of linear systems arise in many application areas. We focus on two such
areas; climate modeling [16] and embedded uncertainty quantification [11, 10, 9]. The linear
systems arising in these application areas have ill-conditioned matrices. Thus, expensive
preconditioners are required for the Krylov methods to converge in a reasonable number of
iterations. Hence, it is worthwhile to look for methods that can help reduce the iteration
count.

The matrices arising in climate modeling are nonsymmetric and not positive real, hence
we use GCRO-DR, a recycling variant of GMRES [18]. The embedded uncertainty quantifi-
cation application consists of a stochastic, elliptic, partial differential equation (PDE) [11],

“Department of Mathematics, Virginia Tech, kahuja@vt.edu

 Applied Mathematics and Applications, Sandia National Laboratories, mlparks @sandia.gov
#Optimization & Uncertainty Quantification, Sandia National Laboratories, etphipp @sandia.gov
§ Applied Mathematics and Applications, Sandia National Laboratories, agsalin@sandia.gov
%Departmem of Mathematics, Virginia Tech, sturler@vt.edu

104 Application of Krylov Recycling

and ideally should lead to matrices that are symmetric positive definite (SPD). However,
the current implementation of boundary conditions in the code based on [11] destroys the
symmetry in the matrices. The system still remains B-normal(1) and hence the CG method
works [6, 3]. Therefore, we use both RCG (which is a recycling variant of CG) and GCRO-
DR for this application. A GMRES based recycling solver for stochastic elliptic PDEs is used
in [10] as well, where the authors use a recycling FGMRES [17].

Recycling algorithms typically have two input parameters that control how the recycle
space is built. The first parameter controls the frequency of updates of the recycle space. Ide-
ally, the recycle space should be updated at the end of the solve, but that would be expensive
if the system does not converge quickly (see [13] for details). The iteration process between
two updates of the recycle space is referred to as a ‘cycle’. The length of the cycle, m, refers
to the number of iterations between updates of the recycle space. The second parameter,
usually denoted by &, controls the size of the recycle space. Typically, recycling algorithms
are designed such that & is less than the expected number of iterations required for conver-
gence of the average system (denoted by niter). This is a reasonable assumption because
recycling algorithms target applications where niter is large. For the two application areas
under consideration, the linear systems converge quickly, due to the application of effective
but also expensive preconditioners. Hence, k must be very small. Because of this, the recycle
space does not contain sufficient information to accelerate convergence, and recycling does
not show much benefit. We modify the GCRO-DR algorithm such that £ can be set greater
than niter. We show in Section 4 that this modification leads to faster convergence.

In many cases, deflation of eigenvalues close to the origin improves the convergence
rate [12]. Hence, current recycling algorithms use approximate invariant subspaces corre-
sponding to small eigenvalues (in magnitude) as the recycle space (eigenvalues can be de-
flated by including the corresponding eigenvectors in the Krylov subspace). However, this
approach does not work well for the applications we consider. Therefore, we propose an
alternative mechanism for the recycle subspace selection. We build our recycle space from
Arnoldi vectors that have a large component in the right hand side. We modify the GCRO-
DR algorithm with this new recycle subspace selection approach. The results show that this
strategy improves convergence. We also optimize the GCRO-DR code exploiting the fact that
each system in our sequence of systems converges quickly. The main optimization involves
avoiding an extra orthogonalization step. This reduces the runtimes for our algorithm. We do
the above three modifications (k > niter, different recycle subspace selection criteria, and
code optimizations) to the RCG algorithm also. As the modifications are similar we do not
discuss them here.

To show that recycling does not impose substantial overhead, we do performance studies
on the standard GCRO-DR algorithm and the standard RCG algorithm.

The rest of the paper is divided as follows. In Section 2, we give a brief description of
the two application areas. We describe the standard GCRO-DR algorithm and the three modi-
fications (k > niter, different recycle subspace selection criteria, and code optimizations) in
Section 3. In Section 4, we give results from solving the embedded uncertainty quantification
application by modified GCRO-DR. We also show performance results for standard GCRO-
DR for climate modeling and standard RCG for embedded uncertainty quantification. For
the experiments, we use a combination of recycling solvers implemented in the Belos pack-
age of the Trilinos project [5] and Matlab. The conclusions and future work are discussed in
Section 5.

2. Application Areas. Climate modeling consists of the following four components: an
atmospheric model, an ice model, a land model, and an ocean model. We focus on ice sheet
modeling using Glimmer, a community ice sheet model [16]. The ice sheet thickness (H) is

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 105

described by the following continuity equation [4, 15]:

o0H _

T B-V-(uH), 2.1
where B is the surface mass balance, u is the average velocity of the ice sheet in the vertical
direction, and V is the gradient operator (horizontal). To model large ice sheets, shallow ice
approximation is commonly used. This approximation assumes that the bedrock and the ice
surface have small slopes. Hence, the normal stress components are neglected [4, 7]. Finite
difference discretization of the resulting equation, on a staggered grid with periodic boundary
conditions, leads to a sequence of linear systems.

Embedded uncertainty quantification involves the following stochastic linear elliptic
PDE [11]:

V- (a(x,HVu(X,§) = f 2.2)

in the domain [—0.5,0.5]> with zero Dirichlet boundary conditions. In (2.2), £ is the input
random variable. The diffusivity is randomized and is given by

aB) =1+ U%gcos [g (2 + y2>] , 2.3)

where o is the standard deviation of the random field a. The forcing function f is chosen by
applying the following exact solution to (2.2):

w(® &) = exp(— 1 £ P)16(x? = 0.25)(»* - 0.25). (2.4)

Solving this stochastic PDE (2.2) by a sparse grid collocation method leads to a set of un-
coupled, deterministic PDEs. We use a finite difference discretization on a 5-point stencil to
obtain a sequence of linear systems (for details see [11]).

3. Standard and Modified GCRO-DR. In Sections 3.1 and 3.2, we briefly describe
the theory behind the standard GCRO-DR algorithm and its modified version, respectively.
The pseudo-code for our modified GCRO-DR is given in the appendix. The changes from
standard GCRO-DR are marked in blue. For the pseudo-code of the standard GCRO-DR
algorithm, see the appendix in [13].

3.1. Standard GCRO-DR. After solving the i system in (1.1), GCRO-DR retains k
approximate eigenvectors of A?”), which are used to compute the matrices U, C € C™¥,
such that range(U) is an approximate invariant subspace of A (and hopefully also of A“*D),
ADY =C,and CHC = I.

GCRO-DR uses a modified Arnoldi process to compute the orthogonal basis for the
Krylov subspace such that each new Krylov vector is also orthogonal to range(C). This
produces the Arnoldi relation

(I-CcCHAMVY,, =V, H

—m’

3.1)

where H,, is an (m + 1) X m upper Hessenberg matrix. GCRO-DR finds the optimal solution
over the (direct) sum of the recycle space, range(U), and the new search space, range(V,,).

3.2. Modifications to Standard GCRO-DR. We discuss the three modifications to the
standard GCRO-DR algorithm that make it attractive for sequences with rapidly converging
linear systems. The first modification adapts the algorithm for the case where the number of
vectors selected for recycling can be set greater than (or equal to) the number of iterations

106 Application of Krylov Recycling

Eigenvalues of preconditioned operator for i = 40 and n = 256
1 T T T T T

0.8

0.6

0.4

0.2

4

Imag(})

0.4 05 0.6 0.7 0.8 0.9 1
Real(})

Fic. 3.1. Eigenvalue Distribution.

required for convergence (k > niter). One assumption that we maintained from the standard
GCRO-DR is that the recycled subspace size be less than the length of a cycle, or

k < m. (3.2)
Previously the following combinations were possible:
k<m<niter and k<niter <m. 3.3)
Now, the following is also possible:
niter <k <m. (3.4)

The second modification involves a different recycle subspace selection criterion. As for
any deflation based recycling algorithm, GCRO-DR uses an approximate invariant subspace
(corresponding to the eigenvalues close to the origin) to build the recycle space. It turns out
that for our applications, the spectrum of the preconditioned operator has clustered eigenval-
ues that are well-separated from the origin (see Figure 3.1). Thus, this criterion does not work
well. Hence, we focus on the dominant components of the right-hand side to build the recycle
space. A similar approach has been used in [8] (also see [2]). Let range(U) be the recycle
space available from the previous linear system, and range(V,,) be the new search space from
(3.1). We first build the matrix'

v,=[Uv,]. (3.5)

and, then pick those k vectors of \7,, that have a large component in the right hand side. The
GCRO-DR implementation is modified such that the user can specify the recycle subspace
selection criterion via the input parameter crit. Currently, the two options for it are eigen,
for approximate eigenvectors based criterion, and arnoldi, for this new component based
criterion.

The third modification avoids the last orthogonalization in the algorithm?. When k >
niter, the algorithm performs just one cycle. This implies that the recycle space generated

I'This excludes the first system in the sequence, which requires special handling.
2 Again, we have not done this for the first system in the sequence.

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 107

in the current system, A”x = b, is not used as a search space for this same system, rather,
it is used as the search space for the next system in the sequence, A“*Vx = D Therefore,
the computation for enforcing

clc = I with € = AU (3.6)

can be avoided. This does not affect the execution of the subsequent solves, because, at the
start of solving the (i + 1)" linear system, the following is always enforced:

CHC = I'with C = AT DU (3.7

For details, see the pseudo-code in the appendix (lines 45-51 and 54-58).

4. Numerical Results. We give results from solving the embedded uncertainty quan-
tification application by modified GCRO-DR in Section 4.1. The performance studies of
standard GCRO-DR for climate modeling and standard RCG for embedded uncertainty quan-
tification are described in Section 4.2. For experiments in both the subsections, relative con-
vergence tolerance was set to 1076,

4.1. Modified GCRO-DR for Embedded Uncertainty Quantification. We used the
Trilinos software package (version 10.2) to generate a sequence of preconditioned linear
systems from the embedded uncertainty quantification application (example twoD _diffusion-
_collocation_example.cpp in the Stokhos package). The application generated a sequence of
matrices, right hand sides, and multilevel preconditioners. The rest of the experimentation
was done in Matlab. We did experiments on two system sizes, n = 256 and n = 65536. We
compared the iteration count and the runtime of our modified GCRO-DR with the iteration
count and runtime of Matlab’s implementation of GMRES. The results are given in Figure
4.1. Weused m = 11 and k = 10. The timing data are given in Table 4.1. As evident from
the figure and the table, the saving in the iteration count is around 50%, and the saving in the
runtime is close to 13%.

TaBLE 4.1
Timing Comparison

n GMRES Time | Modified GCRODR(11,10) Time | Saving in Time
256 2.51 2.19 12.92%
65536 238.46 208.34 12.63%

4.2. Performance Study. The experiments in this subsection were done using the Trili-
nos and the Glimmer software packages. We studied performance of standard GCRO-DR
with climate modeling as the target application. An ILU type preconditioner was used. The
code was profiled to measure the time for recycling, the time for the recycling orthogonaliza-
tion step (i.e., application of (I — CC) in (3.1)), and the time for application of the operator
and the preconditioner. The recycling time includes all computations involving use of the
recycle space (using U and C), and all computations done to generate the recycle space (gen-
erating U and C). Hence, the time for the recycling orthogonalization step is included in the
time for recycling. The total time to solve a linear system consists of the time for recycling,
the time for application of the operator and the preconditioner, the time for initializations (not
reported here), and the time for the other steps of the standard GMRES algorithm e.g. normal
orthogonalization time for the Arnoldi basis (not reported here). This was done for several
values of m and k. The results for n = 7904, m = 8, and k = 4 are given in Figure 4.2 (a). It

108 Application of Krylov Recycling

Iterations for GCRO-DR w/ and w/o Recycling for n = 256. Time for GCRO-DR w/ and w/o Recycling for n = 256.
(o 0]
O Matlab GMRES (i.e. no recycling) Matlab GMRES (i.e. no recycling)
% GCRO-DR (m=11k=10) 0.02 —— GCRO-DR (m=11,k=10)
6 %00 COTMIDANID
0.018
5 @ OO0 O®O
ooter || | ‘ h
@ |
g 4@OOGBOS x»Ox xxu@x DG GCDCD § oote M“h‘l M\ ‘ | M
2 L™ | || i
g o M M UH‘ ‘ \i '
Es e =Be0S= E ooz || \H ‘\‘ \ \wu,‘ﬁ)“‘“"w‘\“""\
- IR AT AN, g
2rX X X ”® X WM XK W X 0.01 ‘ ‘ * ‘(W/‘ »‘[|
1 0 omo 0.008 v H .H V V |
. - ‘ " - ‘ 000 LT !
0 50 100 150 200 250 0 100 150 200
of linear system # of linear system
(a) (b)
Iterations for GCRO-DR w/ and w/o Recycling for n = 65536. Time for GCRO-DR w/ and w/o Recycling for n = 65536.
7r O OO0 00000 Q00 O QO 9r
Matlab GMRES (i.e. no recycling)
——— GCRO-DR (m=11,k=10)
6 x 0O s |
5 00 O 7
% 41® Ox O xxx O xxxO Oxxxx [e] P33 § 61
=)
£ @
2 3t X X X XX xx x xx xx E 5—
= £°[
2 x xx XX X 4
1 3l
% 5 10 15 20 25 30 35 40 % 5 10 15 20 25 30 35 40
of linear system # of linear system
© (d)

Fic. 4.1. Iteration and Timing Plots.

is clear from the figure that the recycling time is modest compared with the time required to
apply the operator and the preconditioner.

For the performance study of RCG, we used the embedded uncertainty quantification
application®. As in Section 4.1, a multilevel preconditioner was used. The code was profiled
to measure the time for recycling, the time for application of the operator, and the time for
multiplying by the preconditioner. As for GCRO-DR, the recycling time includes all com-
putations involving use of the recycle space and generation of the recycle space. The total
time to solve a linear system is the sum of the time for recycling, the time for application of
the operator, the time for multiplying of the preconditioner, the time for initializations (not
reported here), and time for other steps of the standard CG algorithm e.g. computing standard
iteration vectors x, r, and p (not reported here). Again, the experiments were done for several
values of m and k. The results for n = 65536, m = 8, and k = 4 are given in Figure 4.2 (b).
As for GCRO-DR, the recycling time in RCG is modest compared with the time to apply the
operator and the preconditioner.

5. Conclusions and Future Work. In this paper, we discuss the modifications to the ex-
isting GCRO-DR algorithm for rapidly converging sequence(s) of linear systems. The num-
ber of vectors selected for recycling can now be set greater than the total iterations required
for convergence of a linear system. We present a new criterion for selecting the recycle sub-

3The original application used AztecOO for linear solvers. We switched it to use Belos. This also demonstrated
the use of ML preconditioner with Belos. We also fixed a memory leak encountered in the original application.

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 109

Times for GCRODR (8,4)

01 Times for RCG (8,4)
-+ + Recycling Time 0.4
0.09+ O Orthogonalization Time + Recycling Time
Operator + Precond Time 035 O Operator Time
0.08F : Precond Time
007} 03
o
0.06 0.25
3
L o
E 0.05 £ o
=
0.04
0.15
0.031 gt
R A R b 0.1 A
002l - -
001 = 0.05 fH HiF + He A Y W Yy
th
0 4 . . . ,
0 10 20 30 40 50 60 0 50 100 150 200 250
of linear system # of linear system
(a) (b)

Fic. 4.2. Performance Study Results.

space, and also incorporate few code optimizations. We show that this modified GCRO-DR
solves the embedded uncertainty quantification application faster compared with the standard
GMRES algorithm. Similar modifications are done to the existing RCG algorithm but are not
described here. We also do performance studies on standard GCRO-DR and standard RCG
to show that recycling does not impose a substantial overhead.

Currently, we are fixing the boundary condition implementation for the embedded un-
certainty quantification application. This will lead to SPD systems. Since CG is the optimal
method for SPD systems, we can then use modified RCG. We plan to modify the implemen-
tation of GCRO-DR and RCG in Trilinos, and use them to generate new numerical results.

Future work involves two tasks. Firstly, we plan to profile the GCRO-DR and RCG
codes for memory usage using Tau. Secondly, we plan to implement a grouping strategy for
the sequence of linear systems arising in the embedded uncertainty quantification application.
This strategy has been shown to accelerate the recycling algorithms in [10].

REFERENCES

[1] K. Anuia, Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB, MS Thesis, De-
partment of Mathematics, Virginia Tech, http://scholar.lib.vt.edu/theses/available/
etd-08252009-161256/, 2009.

[2] E. pE STurLER, Truncation strategies for optimal Krylov subspace methods, SIAM Journal on Numerical
Analysis, 36 (1999), pp. 864-889.

[3] A. GREENBAUM, [terative Methods for Solving Linear Systems, SIAM, Philadelphia, PA, USA, 1997.

[4] M. Hacporn, L. Rutt, T. PaynE, anD F. HEBELER, GLIMMER 1.5.1 Documentation, http://www.cesm.ucar.
edu/models/cesml.0/cism/docs/glimmer.pdf, 2010.

[5] M. A.Heroux, R. A. BartLeTT, V. E. HowLE, R. J. HoEKSTRA, J. J. HU, T. G. KoLpA, R. B. LEHoucq, K. R. Long,
R. P. PawrLowski, E. T. Paipps, A. G. SaLinGer, H. K. THorNqQuisT, R. S. TumiNaro, J. M. WILLENBRING,
A. WiLLiams, AND K. S. STaNLEY, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397-423.

[6] M. R. HesteNEs AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, Journal of Research
of the National Bureau of Standards, 49 (1952), pp. 409-436.

[7]1 K.HuttER, Theoretical Glaciology, Mathematical Approaches to Geophysics, D. Reidel Publishing Company,
Dordrecht, Boston, Lancaster, 1983.

[8] C.P.JacksoN AND P. ROBINSON, A numerical study of various algorithms related to the preconditioned conjugate
gradient method, Internat. J. Numer. Methods Engrg., 21 (1985), pp. 1315-1338.

[9] C.Jiv anp X.-C. Car, A preconditioned recycling GMRES solver for stochastic Helmholtz problems, Commu-
nications in Computational Physics, 6 (2009), pp. 342-353.

[10] C.J, X.-C. Car, anp C. L, Parallel domain decomposition methods for stochastic elliptic equations, SIAM
Journal on Scientific Computing, 29 (2007), pp. 2096-2114.

110

(11]
[12]
[13]
[14]
[15]
[16]
(17]
(18]

[19]

1:

2:

R A A

10:
11:
12:
13:

Application of Krylov Recycling

C. W. MILLER, R. S. TumiNaro, E. T. Puipps, anDp H. C. ELMaAN, Assessment of collocation and Galerkin ap-
proaches to stochastic partial differential equations, in CSRI Summer Proceedings 2009.

R. B. MorGaN, GMRES with deflated restarting, SIAM Journal on Scientific Computing, 24 (2002), pp. 20—
37.

M. L. Parks, E. bE STURLER, G. MAckEY, D. D. JounsoN, anp S. Marti, Recycling Krylov subspaces for se-
quences of linear systems, SIAM Journal on Scientific Computing, 28 (2006), pp. 1651-1674.

M. L. Parks, P. K. V. V. NUKALA, AND S. Smunovié, Efficient simulation of large-scale 3D fracture networks
via Krylov subspace recycling. Paper Draft, 2010.

A. J. PaYNE AND P. W. DONGELMANS, Self-organization in the thermomechanical flow of ice sheets, J. Geophys.
Res., 102 (1997), pp. 12219-12233.

I. C. Rurt, N. R. J. HuLroN, AND A. J. PAYNE, The Glimmer community ice sheet model, J. Geophys. Res., 114
(2009).

Y. Saab, A flexible inner-outer preconditioned GMRES algorithm, SIAM Journal on Scientific Computing, 14
(1993), pp. 461-469.

Y. Saap anp M. H. Scuutrz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856—869.

S. WanG, E. pE STURLER, AND G. H. PauLNo, Large-scale topology optimization using preconditioned Krylov
subspace methods with recycling, International Journal for Numerical Methods in Engineering, 69
(2006), pp. 2422-2468.

Appendix

A. Pseudo-Code for the Modified GCRO-DR Algorithm.

Choose m, the length of the cycle, k, the desired number of recycle vectors, and crit,
the recycle space selection criteria (eigen or arnoldi). Let tol be the convergence
tolerance. Choose an initial guess xy. Compute ryp = b — Axy, and set i = 1.
if YS is defined (from a previous system; s is number of columns of Ys) then
Call builducC.
X1 = Xo + UsCfro
ry =rp— CSCfro
else
vy = ro/llroll2
¢ = |lroll2e
Perform m steps of GMRES, solving min|lc — H, y||> for y. Let GMRES converges in
p steps generating V. and H .
X1 =x0+V,y
ri=Vy(c—H)y)
if k > p then
s=p
Y,s‘ = Vp
Call builduc.
else
s=k

Compute the k eigenvectors z; of (H, + h "

127 ., Hy epetNz; = 0,Z; associated with
the smallest magnitude eigenvalues Ej and store in Py.
Y, = V,P;
Let [Q, R] be the reduced QR-factorization of QpPk.
C, = Vp+1 0
Uy, =Y,R"'
end if
end if
while ||r;]l, > tol do
i=i+1
Perform m Arnoldi steps with the linear operator (I — C;C)A, letting v; =

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 111

ri-1/llriz1ll2. Again, let the algorithm converges in p steps generating V.1, H , and

B,,. !
28: Let D be a diagonal scaling matrix such that 175 = U,;D, where the columns of
U s have unit norm.
29: r=s+p
30: V, = U, V,]
31: Wi = [Cy Vp+1]
D, B,
32: G, = [0 ﬂp }
33: Solve min|W# -y — G yll, for y.
34: Xi = Xj—1 +;‘7,y
35: ri =ri-1 — WGy
36: if k > ¢ then
37: s=t
38: Y, =V,
39: Call builducC.
40: else
41: s=k
42: if crit == eigen then
43: Compute the k eigenvectors z; of Qf Gzi= EQ,H vT/g]V,z associated with
smallest magnitude eigenvalues 6; and store in Py.
44: Y, = V,P,
45: if p == m then
46: Let [Q, R] be the reduced QR-factorization of G, Py.
47 Cs = E/l+1 o
48: Ug=Y,R™!
49: else
50: U, =Y,
51: end if
52: else
53: Pick those k columns of V, that have large components in right hand side
and store in YS.
54: if p == m then
55: Call builducC.
56: else
57: U, = Z
58: end if
59: end if
60: end if
61: end while
62: Let Y, = U (for the next system)
builducC
1: Let [Q, R] be the reduced QR-factorization of Az.
22C=0
3 Uy = YR

CSRI Summer Proceedings 2010 112

STABILITY OF ORDINARY DIFFERENTIAL EQUATIONS WITH COLORED
NOISE FORCING

TIMOTHY J. BLASSY AND LOUIS A. ROMERO 1

Abstract. We present a method for determining the stability of a class of stochastically forced ordinary differ-
ential equations, where the forcing term can be of quite general form. We use the Fokker-Planck equation to write
a low-order partial differential equation for the second moments, which we turn into an eigenvalue problem for a
second-order differential operator. The eigenvalues of this operator determine the stability of the system. Inspired by
Dirac’s creation and annihilation operator method, we develop “ladder” operators to determine analytic expressions
for the eigenvalues and eigenfunctions of the operator.

1. Introduction. The original goal of this work was to develop a framework in which
to analyze the stability of the stochastically forced Mathieu equation:

¥+ yi+ (W§+ef(H)x =0, (1.1
where the stochastic process f(¢) is determined by

$§ = —ks +on(t),
i =—au+pSs, (1.2)
S(@) = as@) — Bur).

n(t) is “white noise”, meaning that dW, = n(t)dt, where W, is a Brownian motion. We
refer to f as a second-order filter because it is generated by a second order ODE system.
Equation (1.1) is a model for the dispersion relation of a capillary wave in a time-varying
gravitational field, with f(¢) producing the random fluctuations in acceleration, [5]. If @,k >
0, the stochastic process (1.2), is stationary as t — oo, with power spectral density

0'(1(2(4)2

S = W)

This is of interest for applications where the forcing term represents an acceleration, because
acceleration is the second derivative position, so its Fourier transform should have the form
S (w) = w?g(w) where g is continuous at zero. An example profile for S (w) is shown in Figure
1.1.

As explained below, the stability is determined by solving an eigenvalue problem for a
differential operator derived from the stochastic differential equations. The stability of (1.1)
was determined using numerical and perturbation techniques. The analysis begins with the
simplified case of a first-order filter forcing a first-order equation was very useful. The first-
order filter is obtained by eliminating the equation for « in (1.2). This simpler system has the
form

§ = —ks +on(t),
X =(-y+ef()x (1.3)

This form of f no longer represents and acceleration, but the eigenvalues and eigenfunctions
that determine the stability have analytic expressions. The eigenfunctions are given in terms
of Hermite polynomials, and the eigenvalues are of the form {—na — 2y + zi—z}nzo- Using

$The University of Texas at Austin, Department of Mathematics, tblass@math.utexas.edu
ISandia National Laboratories, lromero@sandia. gov

T.J. Blass and L.A. Romero 113

0.04

0.035

0.031

0.025 -

@ 0.02F

0.015

0.011

0.005

Fic. 1.1. S(w)vswfora =03,k=05,=1,0=1

the Hermite polynomials as a basis was key to generalizing the analysis to more complicated
systems, and was an important part of developing our numerical approach. This is explained
in detail in Section 3.

The next step towards understanding the stability of solutions to (1.3) and the stability
of solutions to (1.1) is understanding the stability of solutions to a first-order equation that is
forced with a second-order filter. This has the form

$ = —ks + on(t),

U =—au+ps (1.4)
X =-yx+ef(tH)x,

f(®) = as(t) + bu(t).

All parameters in (1.7) are real, and «, @, y > 0 so, in the absence of noise, the solutions
would be bounded. This is not the most general form of a second-order filter, but is a physi-
cally relevant form. Surprisingly, we observed numerically and confirmed with perturbation
theory that the eigenvalues that determine the stability of (1.4) appeared in constant incre-
ments, and had an & dependence, just as in the case of system (1.2). This led us to search
for analytic expressions for the eigenvalues and eigenfunctions, which we have obtained. In
doing so, we found that the framework extends to an n-th order filter, similar to the form (1.7)
but with n equations generating f. That is, of the form

$ = —Bs +n(z),
X =—yx+ec's(t)x, (1.5)

¢ and s(7) are n-vectors, and B is an n X n matrix, and n(z) is an n-vector of white noises.

1.1. Stability. We determine the stability of (1.4) by the long-time behavior of the sec-
ond moments of the solutions. The case of forcing by white noise has been studied exten-
sively, but white noise is not realistic as a forcing term. In addition, if the system is linear
and the forcing is by white noise, then the associated equations for the moments of the so-
lutions are a simple system of ordinary differential equations (see [1]). The nonlinear term
f(®x in our system precludes this type of approach to our study of stability. Van Kampen
has presented a heuristic approach to the case of colored noise, [6]. We improve on this by

114 Stability with Colored Noise Forcing

developing a rigorous theory for colored noise forcing. We consider the second moment in x
as a function of s and u, as well as 7:

M (s,u, 1) = f X2P(x, s,u, 1) dx. (1.6)
R

In the most general case of a second-order filter. That is,

§ = —ks +vu+on (1),
it =—au+ s+ pny(t) (1.7)
X =—yx+ef(t)x,

f(@) = as() + bu(t),

M, will satisfy a PDE in s,u,t, and in the case of a first-order filter, the equation will be
only in s, . The function P(x, s, u, t) in (1.6) is the joint probability density function for (1.7),
which is the solution to the associated Fokker-Planck equation, with f(r) = as(f) + bu(t),

2 2
O,P = %aﬁp + %aﬁp +8,[(ks — vi)P]+
+ 0,[(au — Bs)P] + 0,[(y — &(as + bu))xP]. (1.8)

If we multiply this equation by x* and integrate with respect to dx, we arrive at the equation
for M .:

o2 pz
M., = Tanxx + fangx + 0,[(ks — vi)M]+
+ 0yl(au — Bs)M] + (=2y + 2&(as + bu))M,,. (1.9)

For notational convenience, we define the operator D by the operator giving the right-hand-
side of (1.9). That is, we can rewrite (1.9) as 9;M,, = DM,,. If D has a complete set of
eigenfunctions, then we can write a solution to (1.9) as a linear combination of the eigenvec-
tors multiplied by an exponential in ¢. Thus, we are led to look for M, (s, u,t) = eV M(s, u).
Such a function M would solve the eigenvalue problem

AM = DM. (1.10)

If there is a solution to (1.10) with 4 > 0, then the system (1.7) will be unstable. We find an
analytic expression for the eigenvalues, A and are thus able to predict the stability.

As explained above, two useful and illuminating examples are for the cases (1.3) and
(1.4). Another motivation for studying (1.3) is that the form of f, while no longer representing
an acceleration, is a commonly used process (Ornstein-Uhlenbeck) in modeling, so it should
be of interest to those interested in many applications. The result in this case, which is proved
in Section 2.1, is

THEOREM 1.1. The solutions to (1.3) are stable for 0 < ¢ < % For the second-order
filter, we have the following theorem, as proved in Section 2.2.

Ka Ay

TueOREM 1.2. The solutions to (1.4) are stable for 0 < € < T2

The operator D shares similar structure to the quantum harmonic oscillator, which Dirac
solved using creation and annihilation operators (also called ladder operators), see [3]. In-
spired by this work, we determine the eigenvalues and eigenfunctions of O via ladder opera-
tors. A ladder operator is any operator X, such that

(D, X] = pX, (1.11)

T.J. Blass and L.A. Romero 115

for u # 0. Here [+, -] denotes the commutator. If D¢ = A¢ then D(X¢P) = (1+u)X ¢, so that X¢
is also and eigenfunction of D with eigenvalue A+, provided that X¢ is not identically zero..
In the second-order filter case, we find pairs of these operators, X7, X2i where Xli increments
by +u;. Thus, the eigenvalues of (1.10) form a bi-infinite family, given by {Ao +iu; + juz}i jez,
for some Ay € R. In the case of the first-order filter, one of the y; is zero, so that the family
is indexed only by one copy of Z. The details of constructing these operators is the subject
matter of Section 2. In general, an n-th order system will have n pairs of such operators,
where if one increments by u the other in the pair increments by —u.

The entire stability analysis for (1.7) can be done in terms of solutions to (1.11). If we
define the operators L; = d,, forO < i <nand L; = s;forn+ 1 <i < 2nand Ly,+; = 1,
we an write each solution Xj of (1.11) as X, = Z,-zfl“ xf.‘Li, and (1.11) becomes an eigenvalue
problem of the form SAx* = p;x*, where S is symmetric and A is antisymmetric. From this,
we can show that X;” commutes with all the other solutions to (1.11), except for its paired
operators, X, , where the commutator is a constant. This, in turn allows us to write

D= kax,gx,j + Ao (1.12)
k

and to determine the base eigenvalue. That is we can find Ay, which will be the largest
eigenvalue of D, thereby determining the stability of solutions to (1.7).

2. Ladder Operators. We are interested in constructing ladder operators for 9. That
is, we seek operators X satisfying the commutation relation

[D, X] = uX. 2.1

To find such an X, we observe that the differential operators ds, d,, as well as multiplication
by s or u, all have nice commutation relations with D:

[D,d,] = —kd; + B0, — 2ae
(D, s] = 0'2(95 +KS —vu
[D,d,] = —ad, + wo; — 2be
[D,u] = p26u + au — f3s.

2.2)

Except for the constants that appear in the relations for [D, d,] and [D, d,], the commutator
of D with each operator can be written in terms of the other operators. Hence, if we include
constants, (with [D, 1] = 0) we can build X as a linear combination of the operators. We
write

X =105 + ¢85 + 30, + c4u + C5 2.3)

and require the c; to satisfy (2.1). This becomes a simple matrix eigenvalue problem Te¢ = puc,
in detail

-k o % 0 c1 c1
0 K 0 -5 0) (65}
B 0 - p 0 ez |=ul ¢ 2.4
0 -y 0 a 0 cy cq
—2aeg 0 -2be 0 O Cs Cs

The eigenvalues of T are

—

€ {0, iz (a + K+ A/(@—K)?+ 4,81/)} (2.5)

116 Stability with Colored Noise Forcing

2.1. First Order Filter. In the particular cases discussed in the introduction, these sim-
plify greatly. In the first order case, we have @ = v = 8 =p = b = 0 and a = 1. This is the
case of a first-order filter, and P has the form: D¢ = %Zagqﬁ + k0s(s@) + (—2y + 2&s)¢p. The
stability of the solutions to (1.7) are completely characterized by the following theorem.

THEOREM 2.1. In the first-order filter case, the eigenvalues of D are given by

gro?

ﬂnz—na—2y+2—2, n>0.
K

The eigenfunctions of D and are given by ¢, = (X™)" ¢o(s) where
do(s) = eI eslk g X = KO, + 2e¢.

Hence, the eigenfunctions are products of exponentials with the Hermite polynomials, which
are complete in L*>. Note that the result of Theorem 1.1 follows immediately from the result
of Theorem 2.1. If the eigenvalues are indeed given by A, = —na — 2y + 281—‘2’2, where n > 0,

then the largest eigenvalue is 49 = =2y + 222 and the stability of the solutions to (1.7) is

2
decided precisely by the sign of this eigenvaliue. Hence, the stability barrier is 19 = 0, for
which ¢ = %, which is the condition in Theorem 1.1.
Theorem 2.1 depends on the following three lemmas.
Lemma 2.2. If ¢ is an eigenfunction of D with eigenvalue A, then ¢* = X*¢ is either the
zero function or is an eigenfunction of D with eigenvalue A + k, where the operators X* are

defined by

2
KOs + 2K—2s —2¢&, X =«kd;+2e.
o

X+

Proof. Fora = v =8 =p = b = 0 and a = 1, the nontrivial eigenvalues and their
eigenvectors of (2.4) become

K
25 0

Hr=« vi=(0 |, p=-« vi=| 0
0 0

—2e 2¢e

This means that the differential operators X= satisfy [D, X*] = +«kX*. Hence, DX*¢ =
XED¢p £ kX*p = (A £ k)X*¢. Hence, if X*¢ is not identically zero, then it is a new eigenfunc-
tion for O. 0

Lemma 2.3. The eigenvalues of D are bounded above by 1y = =2y + Z‘i—‘{z

Proof. This follows from two simple relationships between X* and X~. Let L?(w) be the
weighted Hilbert space of equivalence classes of measurable functions such that fR PP (xXIW(x)dx <

oo. Then, it is a simple calculus exercise to verify thatif ¢, ¢ € L*(w), for w(s) = &’/ ‘72, then

f (X*) et 17 ds = — f (X~ y) pe*s 17 ds. 2.6)
R R

It is also easy to see that

2 2 2
T XX ¢ =Dp+ 2y -2, 2.7)
2K K

T.J. Blass and L.A. Romero 117

Combining these facts, we see that if ¢ is an eigenfunction of D with eigenvalue 4, the

820'2 820'2 2,2
@t 2y =25, = [+ 2y =250 s
R

2 2
- [@or0+ @y =256 7 as
R K
2
[Zaerou
R 2K
2
0- - — KS™ O
-~ [Zxoaae7as
2
_ O a2
- _2_K||X ¢||L2(W) < O

Hence, we must have 1 < =2y + 28%’2. 0
Lemma 2.4. The function ¢o(s) = e 1742es/K o e X*¢py = 0, and is an eigenfunction
of D with eigenvalue
2.2
Q= -2y +25 -, (2.8)
K

which is the largest eigenvalue of D.

Proof. The previous two lemmas imply that we cannot generate new eigenfunctions of O
indefinitely by applying X* to an eigenfunction. That is at some point, we must have X*¢ = 0,
otherwise we could endlessly generate new eigenfunctions with eigenvalues increasing to
infinity, contradicting Lemma 2.3. It is easy to see that ¢ is the solution to X*¢ = 0, and that
Do = Appo. The other eigenfunctions of D can be written as X~ ¢y because not only are these
eigenfunctions of O as shown in Lemma 2.2, but they generate the Hermite polynomials,
which are complete. This completes the proof of Lemma 2.4 as well as the proof of Theorem
2.1.0

2.2. Second Order Filter. For the second-order filter, with v = p = 0,a = a,b = -,
the operator D is

2
D = %aﬁqa + k0,(56) + Du((tt — BS)B) + (=2y + 2&(ars — Bu)).

This case is similar to the first order filter, though some details are more complicated. We
will sketch the main ideas, many of which generalize filters of arbitrary degree.

The result is the theorem:

THEOREM 2.5. Withv = p = 0,a = a, b = —f3 the eigenvalues of D are

(a,Z —ﬁ2)20'282

Apj = —na — jk =2y +2 22

n, j=0.

The eigenfunctions of D are given by ¢, ;(s,u) = (X;)”(X;)j(/)o,o(s, u), where X, = 0, — %

@
- B 2(B* +ak—a?)
XK =0, + ﬂau - W& and

&,

a+k , a(a + k)? 5 2a(a+k)
o,0(s,u) = exp|— pa i 5o 5o su

2(a? —,82)8 2e2a? - 2&,82 +2a%k —,BZK)
- s — ul.
ak afk

(2.9)

118 Stability with Colored Noise Forcing

The form of ¢y and ¢, ; indicate that the Hermite polynomials will again be the building
blocks of the eigenfunctions. However, in this case it is not as simple as exponentials times
Hermite polynomials, because there is a mixing of the variables s and u.

As mentioned above, this setting is considerably more complicated than the first-order
filter. In particular, the analogue of Lemma 2.3 is not available directly. However, the practical
techniques for finding the eigenvalues and eigenfunctions are the same. In fact, many of the
interesting features of the previous section can be seen simply by studying the eigenvalue
problem (2.4) in more detail. It is in this framework that we investigate the second-order
case.

To begin, by solving equation (2.4), we find the four operators:

a+ K B B> —2a?

+
X, =0,+ = s+£6u+ e
2,
X;:(')M—ﬁs,
a
K B 2(8% — ak — a?)
Xt =0, + —s+ 0, + ,
« T 22 T ark k(a + k) &
2 2+ _ A2
X, =0,+ P 0, — (B +ax—a’)
@ —K k(a — k)

where each X satisfies the relation [D, X] = cX, where ¢ = +a, +«. Hence, each X generates

a new eigenfunction from an old one, and increments the eigenvalue by +a, +«, provided the

function is not identically zero. The reasoning is exactly the same as for Lemma 2.2.
Furthermore, the largest eigenvalue is

(a,2 _ ﬂ2)20'282

Ao =—-2y+2
0,0 Y CVZK2

> (2.10)

so we must have that at some point X ¢ = 0 and X*«¢ = 0, for the same function ¢. Other-
wise, by applying the raising operators repeatedly to an eigenfunction, we could generate an
eigenfunction with eigenvalue exceeding Apo. The expression (2.10) for Ay gives the range
of ¢ stated in Theorem 1.2, for which the equation is stable.

Once we have this, the analogous result for Lemma 2.4 is obtained by simultaneously
solving the first order PDEs

Xip=0, X'¢=0. @2.11)

The result is the formula for ¢go given in Theorem 2.5. These results have been tested nu-
merically, as described in Section 3.

2.3. General Techniques. The main tool in all of this analysis is the ladder operators.
These are written as a linear combination of the basic operators s, u, d, d,, | in the case of
the second-order filters. We introduce the notation Ly = 0, L, = 5, L3 = 0, Ly = u, Ls = 1.
In a general setting where the variables s,u are replaced by yi,ys,...,y,, we would have
2n + 1 operators Ly = 0y, Lo = y1,..., Loy = Yu, Lope1 = 1. A ladder operator would be
X = X x;L; satisfying [D, X] = uX.

This equation for X and g is the same as (2.4) from Section 2. There are several nice
properties of this equation. First, it is easy to see that the matrix A, with components a; ; =
[L;, L;] is antisymmetric. In particular, A is a 2n + 1 X 2n + 1 matrix whose last row and last

T.J. Blass and L.A. Romero 119

column are all zeros, and first 2n X 2n block has a block-diagonal form

J OO0 .0
0 J 0 .0

Ao 00]...0’_]:(_01(1))_ (2.12)
000 0 0

It is also not too difficult to see that £ must be a linear combination of L;L;. Thatis O =
2.i,j ¢i,jLiL;. This representation of D is not unique, and in fact we can arrange it so that the
matrix C, with components c; j, is symmetric.

LemMma 2.6. The equation [D, X] = uX can be written as a matrix eigenvalue problem
Tx = ux where T is an 2n + 1 X 2n + 1 matrix, which can be written as T = S A where S is
symmetric and A is antisymmetric.

Proof. We compute and expression for [D, X] in terms of C and A.

[D.X] =) cijin(LiliLy = LyLiL))
i,jm
= > cijin(LilLj, L) + [Li, Ly]L))
i,jm
= Z CijxXm(Li@tjm + aimL;)
i,jm

= > (€ + CHAY L

im

For the equation [D, X] = uX, this implies that we have

D C+COAY wxnLi = 1 Y xil.

In matrix notation, this is just (C + CT)Ax = ux.Note that this is the same as equation (2.4)
in the case of a second-order filter, but also applies to higher degree filters. We define S =
C + C", which is obviously symmetric, even if C is not. Hence, T = SA. O

Lemma 2.7. If X is a ladder operator of D, with [D,X] = uX, then there is another
ladder operator Y such that [D, Y] = —uY.

Proof. Because T is the product of a symmetric matrix and an antisymmetric matrix, its
eigenvalues must come in pairs that are negatives of each other. Thus, if Tx = wx, then the
coefficients of x define a ladder operator for O with increment u. But Since T = S A, there
is another eigenvector of T such that Ty = —uy, and elements of y define a ladder operator
for P with increment —u. Because T has an odd number of dimensions, it will always have
a zero eigenvalue. In this case x = y, and the ladder operator increments by 0. In fact, the
ladder operator is just the identity. O

We can also show that, just as in the proof of Lemma 2.3, the operator O can be written
as a linear combination of the ladder operators.

Lemma 2.8. There exist computable coefficients v; such that

n
D= viX]X].

j==n

120 Stability with Colored Noise Forcing

Proof. Without loss of generality, we suppose C is symmetric, so that S = 2C. Let
x** be an eigenvectors of T with eigenvalues p.;, where p; = —u—_;. We can always do this
by the Lemma 2.7 And let y** be the eigenvectors of T with eigenvalues u.;. So we have
SAx* = p;xF The transpose of this is —ASY* = ¥, or ASy* = —uyk. If we left-multiply
by S, we get T(Sy*) = SA(SY") = —ux(Sy*) = u_(Sy*). Hence, we have see that Sy is an
eigenvector of T with eigenvalue u_g, so it is a multiple of x™*. Thus, we have the relationship
between the eigenvectors of T and those of TT. We define v, as the real number such that
Sy* = 2v,x7%, where y; is normalized so that y; - x; = 1. Therefore, Cy* = v;x*. With this
normalization, we have 6;; = Y, xfy’j‘., so that

= : = koo ko~ ks, .~k
Cij = Z Cipp,j = Z XiCipYp = Z Xi Vi j
)4 k

k.p

But we have D = }; ; ¢; ;L;L, 0 now

D= Zxkvkx LL; —kaZxLZ L _kax,jx,;

i,j.k

[0 We can also show that [X+ X;] = 0, unless i = j, in which case the commutator is just a
multiple of the identity. Wlth th1s we can rewrite O to be a sum of X, X;" for k > 0, plus
the extra constants we pick up by switching X" and X, . Since there is an elgenfunctlon ¢ for
which each X;"¢ = 0, we then have that D¢ = 3, kak‘ X{¢ + A¢ = A¢. Thus, we have an
effective way to compute the largest eigenvalue of D.

3. Numerics. To test the stability of (1.7) numerically, one could integrate x(f) for some
long time interval [0, T'] using a stochastic integrator, and see if the solution grows. However,
this is clearly inefficient and slow if one takes large 7 with small time-steps. We have done
this, just for a reference to test a different technique described below. First, we give the details
of the numerical integration we used.

We will use the more standard notation here for stochastic differential equations and for
Brownian motions, W;. For an SDE of the form

dY, = a(Y)dt + b(Y)dW, 3.1)

one can construct a second-weak-order scheme simply by writing down the It6-Taylor expan-
sion for Y; and taking the first several terms. In doing so the scheme is

1
Yirt = Yy +agh + by AWy + Sbyb, (AW - h)

1 1
@bV + 5 (ana + za;’bﬁ)hz (3.2)

+ (anb; zb;’bﬁ) (AWh = V,)

where 4 is the time-step, a, = a(Y,), etc., and V,, is a process generated such that the covari-
ance of AW, and V,, is

hooin?
<AWh7 Vn> =(%hZ th)

This scheme is discussed in detail in [4], [2].

T.J. Blass and L.A. Romero 121

From now on, we will assume we are in the case of v = p = 0and a = a,b = —. We
use (3.2) to integrate s(#) from (1.7) on some interval [0, 7]. Then the equation for u is just
it = —au + Bs(t) where s is know on [0, T']. The solution to this equation is just

73
u(t) = e uy + Be™' f " s(t)dr.
0

Using a trapezoid method to calculate the integral, we get a second-order accurate representa-
tion of u on [0, T']. Now with s and « both known we can integrate x = —yx+&(as(f) —Bu(t))x
to second order with a Crank-Nicolson method

1+ g (_7 + E(QS,, _ﬁun)) X

— 4y + s@spn = Bun)

Xp+l =

The alternative method is derived as follows. Write the PDE 0,M = DM and take
moments in «. That is, multiply by #" and integrate with respect to du so that the only variable
left is s. Now, this will give an infinite a system of ODEs for M, (s,) = ﬁ& u"M(s,u,)du =

f u" x> P(s, u, x, t)dxdu. This gives the system

2
oM, = 0—76§MH + kOy(sM,) — naM,, + nBsM,_,
+ 2easM, —2eBM,1 —2yM,, (3.3)

—KSZ

> 0. We seek M,(s,1) = eYw,(s), and expand the w, in terms of products of e
and Hermite polynomials. We will use the notation ¢;(s) = e H (Vks), where H; is the

forn >

J-th Hermite polynomial. Then w,(s) = 372, a}¢;(s) and one can easily check that “—226345‘7 +
k0y(s¢;) = —jk¢;. Also, the Hermite polynomials satisfy H,i(x) —2xH;+2jH;_1(x) = 0, so
that we can write s¢;(s) = Z#W(qﬁjﬂ +2jpj-1).

Thus (3.3) can be written as

/lz a;%¢j = Z(—jk - na)a?% + ﬁa/ (¢j+l *2j¢i-0)
- 7

\fa,@,ﬂ +2jpi1) + +28Bd ¢ = 2ydg. (3.4)

The equation for the coefficients of ¢; becomes becomes

/la. = —(jk + na + Zy)a + %(a +2(j + l)aﬁl) 3.5)
(a] |20+ Ddl,,) + +2epd (3.6)

\/_

If we write truncate the system to 0 < n < N; and 0 < j < N,, then we can approximate
(3.5) by an NiN, X NiN, matrix eigenvalue problem, Aw = Qw. The matrix Q will be
block tri-diagonal, and w is a column vector with components w = (a', aZ,...,a"), where
a" = (aj,a),...dy,). This can be solved very quickly and converges for even small values of
N; and N,.

We can also solve the initial value problem w = Qw. In particular, if we write w(f) =
3w Cn®@ e’ where @, are the eigenvectors of Q, then we can find the long-time behav-
ior of M,(¢) by looking at the first component of w. To see this, recall that M,(s,7) =

122 Stability with Colored Noise Forcing

fRZ X2u"P(x,u, s,)dxdu = Y j a’;gb j(s) and that we are interested in the second moment in x,
which is M, (1) = j;@ x2P(x, u, s,)dxduds. So if we have an expression for My(s,), we can
integrate it M (f) = fR My(s, t)ds. Because the Hermite polynomials H ;(vks) are orthogonal

with respect to the weight ¢ and Hy = 1 is constant, we have ngb i(s)ds = \/% forj=0

and vanishes for j > 0. Therefore, once we have solved w = Qw, the function \/%wo(t) will

be a good approximation to M,,. In practice, we can even truncate the system further once
we know the eigenvalues. Since eigenvalues 4, with negative real part will play little role
for large times (and it is the large time limit we are interested in) we can simply approximate
wo(?) by the terms in the series corresponding to the eigenvalues with the largest real part.
Two examples are show in Figures 3.1(a) and 3.1(b) for different values of the parameter
&. The solid lines are the results of the stochastic integrator plotted against ¢t € [0, 7] with
T = 10, and the dotted lines are the results of the truncated initial value problem against .
The critical value of ¢ for those parameter values is € = 0.0165.. ., so in fact the solution is

(a) €=0.02 (b) £ =0.07

FiG. 3.1. The horizontal axis is time, t € [0, 10]. The parameter values on both plots are @ = 0.3,k = 0.5,8 =
1,y=001l,0=1

unstable in both cases. This is easily seen in Figure 3.1(b), but is not apparent in Figure 3.1(a).
If the analytic expression for 4, ; from Theorem 2.5 were unknown to us, then we might not
know that both cases are unstable. To see the instability using the stochastic integrator, one
would have to integrate for a much larger value of 7. However, when solving the initial value
problem, we find the largest eigenvalues of Q and hence for D, which in the case € = 0.02 is
A = 0.0094

4. Conclusions and Future Work. We have developed a method for determining the
stability of (1.7) that generalizes to higher-order filters. The stability boundary, defined as the
solution to 4y = 0, where Ay is the largest eigenvalue of D has an analytic expression. In the
case of first and second-order filters, this is achieved by solving (2.8) and (2.10) for €. The
numerical methods that we have described generalize naturally to higher-order differential
equations. In particular, they are applicable to the Mathieu equation (1.1). We have used
them to determine the stability of (1.1), and found they match the results from perturbation
theory. We plan to investigate whether the ladder operators exist for higher-order differential
equations, such as (1.1). If there are ladder operators in this case, it is not clear if they
completely determine the stability as in the case of the first-order equation.

T.J. Blass and L.A. Romero 123

REFERENCES

[1] L. ArNovLp, Stochastic differential equations as dynamical systems, in Realization and modelling in system
theory (Amsterdam, 1989), vol. 3 of Progr. Systems Control Theory, Birkhduser Boston, Boston, MA,
1990, pp. 489-495.

[2] S. Asmussen anp P. W. GLYNN, Stochastic simulation: algorithms and analysis, vol. 57 of Stochastic Modelling
and Applied Probability, Springer, New York, 2007.

[3] P. A. M. DirAc, The Principles of Quantum Mechanics, Oxford, at the Clarendon Press, 1947. 3d ed.

[4] P.E. KLoEDEN AND E. PLATEN, Numerical solution of stochastic differential equations, vol. 23 of Applications of
Mathematics (New York), Springer-Verlag, Berlin, 1992.

[S] H. Lawms, Hydrodynamics, Cambridge Mathematical Library, Cambridge University Press, Cambridge,
sixth ed., 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch].

[6] N. G. van Kawmpen, Stochastic processes in physics and chemistry, vol. 888 of Lecture Notes in Mathematics,
North-Holland Publishing Co., Amsterdam, 1981.

CSRI Summer Proceedings 2010 124

COMPARISON OF SENSITIVITY ANALYSIS METHODS FOR NUCLEAR
REACTOR NEUTRONICS

W. CYRUS PROCTOR*, BRIAN M. ADAMS', CRISTIAN RABITF, AND HANY S. ABDEL-KHALIK®

Abstract. This preliminary study compares adjoint-based local sensitivity analysis to global sensitivity methods
on a simplified nuclear reactor neutronics model. Sensitivity analysis methods manipulate computational models
to investigate how variations in input parameters affect system responses of interest. For linear models involving
large numbers of parameters and few responses, adjoint methods efficiently yield accurate local sensitivities. As
nonlinearities are introduced, the associated computational burden grows, at best, in proportion to the number of
input parameters to estimate all cross-derivative terms. For strongly nonlinear models, global sensitivity analysis
is more appropriate for estimating parameter importance, as it can account for nonlinear interactions and response
variations over the whole admissible parameter range, not solely at nominal values. However, as the number of
parameters increases, global methods become computationally infeasible. This work exercises local and global
methods on a neutron diffusion simulation of a sodium-cooled fast reactor, considered in a linear regime with a
modest number of input parameters. It compares the relative rankings and strength of influence resulting from both
approaches. Future work will develop hybrid methods to simultaneously address the curse of dimensionality and
nonlinearities, and apply them to a simulation of nonlinear reactor phenomena with many input parameters.

1. Introduction. Advances in computational systems and simulations enable ever-more
efficient and complex calculations for nuclear reactor phenomena such as neutronics, thermal-
hydraulics, structures, or plant dynamics. Of particular interest to the nuclear engineering
community is reactor core simulation in novel operating regimes [7]. Such simulations re-
quire specification of many governing parameters describing physics, chemistry, or the envi-
ronment/operating conditions. It is crucial to understand how system responses are influenced
by input data as experiments to improve these data, reducing uncertainty, can be exception-
ally expensive and must be carefully selected and designed [2]. Sensitivity analysis of model
outputs with respect to input parameters critically informs the selection process for experi-
mental data collection and can make uncertainty quantification more computationally feasible
by propagating only the most crucial factors.

Nuclear reactor core neutronics simulations (the target of the present work) rely primar-
ily on microscopic cross-section data to estimate the rates of interaction between neutrons and
various reactor materials. Cross-section data, which are experimentally evaluated, are com-
plicated functions of neutron energy, reaction type, and reactor materials. To characterize
them in raw form would lead to impractical computational cost. Therefore reactor physicists
appeal to homogenization techniques to reduce the complexity of cross-section data [12]. Our
work employs a simplified core model with cross-section data describing interaction rates for
45 isotopes, each with 5 reaction types, each with 33 energy groups (a group is an energy
range over which cross-sections are assumed constant). Uncertainties in these cross-section
data are a major source of uncertainty for reactor physics simulation [6] and therefore are the
focus of this study.

Historically for neutronics, sensitivity analysis is a common first step in the identification
of input data uncertainty contributions to response uncertainty. In particular, adjoint-based
methods for uncertainty propagation are commonly used for steady state reactor physics
models because in steady state, key performance metrics of interest to design and operation
(such as k-eigenvalue, peak power, or reactivity coefficients) behave almost linearly within
the range of interest for cross-sections variations. Since analyses typically involve only a

*North Carolina State University Nuclear Engineering, weprocto@ncsu.edu
fSandia National Laboratories, briadam @sandia. gov

#Idaho National Laboratory, cristian.rabiti @inl.gov

$North Carolina State University Nuclear Engineering, abdelkhalik@ncsu.edu

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 125

handful of integral response metrics and orders of magnitude more cross section input vari-
ables, adjoint approaches compute the necessary derivatives efficiently, using only marginally
more computation than a nominal forward calculation.

In this special linear case, measured experimental variance-covariance information of
model input parameters is readily combined with sensitivity information to propagate mo-
ments to obtain confidence bounds on responses of interest. In this method, only the first
and second moments of input probability density functions are propagated through the model
to estimate the first and second moments of the responses [9]. The accuracy of this method
depends on the validity of the linearity assumption used in extrapolating the function value
and gradient data to the entire range of input parameter variations considered. For cross-
sections, the range of variation is set by the accuracy of the experimental procedure employed
to measure cross-section data. For steady-state neutronics calculations, it has been reported
that models’ deviation from linear behavior could be ignored, thereby allowing the use of
adjoint-based methods for sensitivity analysis and uncertainty quantification [6]. As neu-
tronics models are tightly coupled with other physics however, such as thermal hydraulics,
and fuel performance codes, the linearity assumption breaks down, and other methods for
sensitivity analysis must be explored.

This manuscript numerically compares various sample-based sensitivity techniques avail-
able in Sandia National Laboratories” DAKOTA software to the derivative-based adjoint ap-
proach common in nuclear engineering applications. It will provide a brief computational
model overview followed by general overviews of the sensitivity techniques considered. Re-
sults in the form of relative sensitivity coefficients are presented for comparison. Additional
insights from simple and partial rank correlations as well as Sobol indices are discussed.

2. Reactor Neutronics Simulation. The sodium-cooled fast reactor model of interest in
this work is simulated with a FORTRAN 90 code developed specifically for this comparison.
It utilizes point-wise Gauss-Seidel with successive over relaxation to solve a multi-group
neutron diffusion equation in both forward and adjoint modes. Consider the forward form of
equations, [3] for energy groups g =1,...,G

G g-1 G
X1
=V -DiVgy +Zg ¢ = 7 Z Ve Xy Pg + Z Ly —>gby + Z Ly — by
g'=1 g'=1 g'=g+1
Y2 G g1 G
V- DaVor + Zrdy = D VeTrebe + D Tog ey + Y T by
g'=1 g'=1 g'=g+1
@2.1)
p G G-1 G
G
~V-DVd6 +Zreda = D Ve Tty + Y Doy eyt Y Tep gy
g'=1 g'=1 g'=G+1

where the spatial dependence 7 has been suppressed, and the physical parameters are defined
in Fig. 2.1.

The removal cross section contains total and within group scatter terms, while the right-
hand side would include the fission, downscatter and upscatter terms. k is called the mul-
tiplication factor which balances the system of equations such that the number of neutrons
produced equals the number of neutrons lost. A multiplication factor equal to one implies
that the associated reactor system is in steady state, i.e. capable of self-sustained production
of neutrons.

126 Comparison of SA Methods for Neutronics

D, diffusion coefficient [cm]
o neutron flux [cmfzsecfl]
DN macroscopic removal cross section [em™]
Xe fission neutrons yield [-]
k multiplication factor (inverse of largest eigenvalue) [-]
Vg average number of neutrons created per fission [-]
PP macroscopic fission cross section [em™]
Zs,g, —> macroscopic group to group scattering cross section [cm_l].

FiG. 2.1. Physical parameters for the neutron diffusion equations.

Specifically for cylindrical (r, z) geometry we may write for energy group g

10 o 0 0
- (;Eng (r,2) i B_zDg (r,2) a—z)fﬁg (r,2)
+ (5 (1,2) = Ty g (1,0) ¢ (1,2) = S¥(1,2) 2.2)

where

g-1 G
S5 =) T R D+ D Ty (D¢ (2
g'=1

g'=g+l1

Xg (r,z) g 4 g r'd
+=2) ()R (R ¢ ().
g=1

Equation (2.2) was discretized using a Finite-Volume scheme, and the resulting system of
equations may be written matrix form as:

1
Lo = EF(IZ

and solved via r-line ordering starting from r = Oto r = Rand z = 0 to z = H. Thus, the
corresponding eigenvalue system may be transformed into the iterative solution of G fixed-
source matrix systems via a power iteration technique to obtain the dominant eigenvalue A
and corresponding eigenvector ¢ [3].

This eigenvalue system may be written in terms of a broader general framework designed
to encompass not only eigensystems but also fixed-source problems:

Ap =0,

where A = L — %F and Q = 0 in this case. Utilizing the variational method of [8], we
may consider the system as constraints on the output response R. These constraints may be
incorporated with the response using Lagrange multipliers to create an augmented functional
T:

T =R-<Z(A¢ - Q) >,

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 127

where Z is the Lagrange multiplier. A change in some input parameter @ results in 7 — 7”.
We may expand 7’ via first order Taylor series expansion about the reference state to obtain
oT

or oT
T'=T —AZ —A —A
<o 96 o+ > .

The perturbation in the response may be rewritten as

oT oT or
AR =< —Aa>+<—AZ>+<—A¢>
oo 0z ¢
If we wish T to be stationary to changes in the Lagrange multiplier we must set A¢ — Q = 0,
which, for the case of our eigensystem, is true. If we wish T to be stationary to changes in
the neutron flux we must choose Z to be the adjoint neutron flux (Z = ¢*) which satisfies the
equation

OR
A* Eo_ -
¢ =3 n
Thus, the perturbation of a general response R due to a change in parameter a is given as
orT OR
AR =< —Aa >=< (— - —q) ¢ —Q)Aa > . 2.3)

o

The adjoint flux physically denotes the importance of neutrons in the phase space to the re-
sponse of interest. a is determined based on the response, implying that the adjoint equation
must be solved independently for every response of interest. This places a limitation on the
use of adjoint methods for problems involving many responses. In this paper we focus only
on the multiplication factor as a response, for which % = 0. Carrying out a first-order ap-
proach, an estimate of the change in the multiplication factor (R = k) due to a change in the
cross-section data o is given by:

oL _ 19F
%z—k<¢ -G k"“)¢>. (2.4)
oo < ¢*, F¢p >

This result may be compared directly to a finite-difference approach for derivative approxi-
mation. Equation(2.4) may also serve as the basis for a relative sensitivity coefficient between
the output response k and the input parameters o

9k « (L _ 10F

T <P (52— 15500 >

S(k,O')=E=—kO' <o Fo>

(2.5)

3. Global Sensitivity Analysis. In contrast to local sensitivity, the goal of global sensi-
tivity analysis is to assess the influence of input parameters, considered over their whole pos-
sible range, on output responses. Such an approach is typically used to rank the importance of
the input factors, determine the effect of their variance on the variance of the output, or assess
whether higher-order interactions between parameters affect output responses [10]. Global
sensitivity and uncertainty analysis methods may offer additional problem insight when re-
sponse linearity as a function of input variables is violated. Sampling-based approaches to
sensitivity and uncertainty analysis, such as Latin hypercube sampling (LHS), can be very
robust even in the presence of strong nonlinearity, but can be computationally expensive for
screening studies, where (10 X number of input variables) evaluations of the model are typi-
cally used. An advantage of sampling, however, is that it can be applied without modifying the

128 Comparison of SA Methods for Neutronics

solver (simulator); this favorable characteristic is also true for other “black-box” approaches
to sensitivity and uncertainty analysis, such as design and analysis of computer experiments
(DACE), reliability analysis, and stochastic expansion methods such as polynomial chaos and
stochastic collocation.

Global sensitivity analysis methods typically identify an ensemble of well distributed
points in the input variable space, evaluate the computational model at these points, and
perform statistical analysis of the resulting function values (and possibly derivatives, if avail-
able). Sandia’s DAKOTA (Design Analysis Kit for Optimization and Terascale Applications)
includes numerous algorithms for sensitivity analysis and uncertainty quantification, includ-
ing those briefly described here (for further details, consult the DAKOTA User’s Manual [1]).
DAKOTA provides a flexible, extensible interface to any analysis code, permitting its ready
use for global sensitivity analysis of a fast reactor simulated with a neutronics model.

3.1. Latin hypercube sampling and correlation. Latin hypercube sampling (LHS) is
among the most robust, ubiquitous, and accepted global sampling and analysis techniques,
which include other sampling methods such as standard Monte Carlo, quasi-Monte Carlo,
orthogonal arrays, and jittered sampling. It relies on a probabilistic characterization of input
uncertainties (cross section deviations in the present context), from which realizations of
the input variables are generated for model evaluation, and then statistical analysis on the
corresponding response values can be performed. LHS typically resolves statistics with fewer
samples than standard Monte Carlo and can generate sample designs respecting input variable
correlation structure [15]. DAKOTA reports the mean, standard deviation, and coefficient of
variation of each response (together with confidence intervals based on the number of samples
used) and correlation coefficients (both on the data and on their ranks). For example, a simple
(Pearson) correlation between output y and input x is given by

Drs = 2i(xi =X =)
’ \/Zi (x; =)2 2 i —)

whereas partial correlation coefficients adjust for the effects of other variables. The results
presented here focus on the simple and partial correlation coefficients, which are scaled be-
tween —1 and 1. Larger absolute magnitudes indicate stronger linear relationship between the
input and output (see [1]). Additional statistical techniques (such as regression analysis) can
also be used to analyze the parameter/response pairs resulting from an LHS study [13].

3.1)

3.2. Variance-based decomposition. Variance-based decomposition (VBD) summa-
rizes how model output variability can be attributed to variability in individual input variables.
This relationship is captured in a main effect sensitivity index

_ Var, [E(Y|x)]

Si= Var(Y) (3-2)

which reflects the fraction of output uncertainty attributable to x; alone, and the total effect

index

T = E[Var(Y|x-;)] _ Var(Y)— Var (E[Y]x_]
Y Vary) Var(Y)

, (3.3)

where x_; indicates variable i is omitted from the vector of input variables, which accounts
for variability due to x; and its interactions with other input variables. Larger values of these
Sobol indices indicate a stronger influence of an input on variance of the output. The sum of
main effect indices is less than or equal to 1 (and equal to 1 for a linear model), whereas the
total effect indices need not be. See [10] and [11] for further information.

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 129

For d input parameters, VBD requires the evaluation of d-dimensional integrals and,
when implemented with replicates in sampling, typically requires d + 2 replicates of N LHS
samples. As this can be prohibitively expensive, even for tens of variables, the sensitivity
indices are often calculated based on a surrogate model or polynomial chaos approximation.

3.3. Surrogate model acceleration. Another use of LHS sample designs is to construct
global surrogate models, also referred to as response surfaces or meta-models. For instance, a
modest number of evaluations (typically on the order of 2—10 times the number of input vari-
ables) of the computational model can be used to train a Kriging (Gaussian process), MARS,
or artificial neural network model [5]. This surrogate model is comparatively inexpensive to
evaluate and can be sampled tens or hundreds of thousands of times to calculate correlation
coeflicients or Sobol sensitivity indices.

Polynomial chaos expansions (PCE) globally approximate the output y as a function of
input random variables x:

P
Y0 & Y (o), (3.4)

J=0

where orthogonal polynomials i; are selected to yield optimal convergence of the approx-
imation [4]. Specifically, they are chosen to be orthogonal with respect to the probability
distribution of the inputs x with the same support, e.g., Hermite polynomials are used with
normal random variables whereas a Legendre basis is optimal for uniform. The coefficients
«; can be calculated with spectral projection and multi-dimensional integration or regression.
Here, sparse-grid quadrature and cubature integration techniques for PCE are considered.

Once constructed, a PCE can again be exhaustively sampled, but often statistics of in-
terest can be calculated analytically using the structure of the approximation. Sudret [14]
demonstrated that Sobol sensitivity indices can be calculated directly from a PCE, and that
approach as implemented in DAKOTA [16] is used here.

4. Reactor Core Model. The model employed in this study is a cylindrical, axially
symmetric, two-region, and spatially homogeneous approximation of the Sodium-cooled Fast
Reactor. Approximations in geometry and compositions are necessary to reduce the size of
cross-section data used to describe the reactor core (the total number of cross-section data
is 7425, which is reduced from 380952). The fuel region is capped axially by two neutron
reflectors to reduce neutron leakage and hence reduce the core size necessary for a self-
sustained reaction. Figure 4.1 illustrates the geometry and boundary conditions used. See
reference [7] for fuel and reflector materials composition. Overall dimensions were set at
R =100cm, h = 75 cm and H = 100 cm. A radial and axial mesh of 30 by 40 nodes is
used throughout the comparison. This spacing allowed for adequate resolution of the neutron
flux at the fuel interfaces. The cross section data are based on an ERANOS model for a
Sodium-cooled Fast Reactor also discussed in [7].

5. Comparison of global and local sensitivity approaches.

5.1. Analysis approaches used. Several DAKOTA SA methods as well as the adjoint-
based sensitivity coefficients output from the computational model were compared in terms
of importance rankings and relative sensitivities. The DAKOTA methods compared were
Latin hypercube sampling (LHS) with or without variance-based decomposition (VBD) or
surrogates (Gaussian process or Kriging models), and polynomial chaos expansions (PCE)
directly yielding Sobol indices and local sensitivity estimates. The Gaussian process model
used has a quadratic trend function, while the Kriging model has a constant trend. While
exhaustive numerical experiments were conducted varying sampling size and method type,

130

Comparison of SA Methods for Neutronics

REFLECTOR

—z=h

FUEL

TALLTTR

VATV

REFLE-TIVE

FiG. 4.1. Cross section of cylindrical two-region layout of reactor.

TaBLE 5.1

Abbreviations for DAKOTA methods and options.

DAKOTA Method Shorthand | # model evals
LHS, 180 samples LHS 180 180
LHS, 1800 samples LHS 1800 1800
VBD, 180 samples, 20 replicates VBD 180 3600
PCE, cubature level 3 C3 36
PCE, cubature level 5 C5 649
PCE, sparse grid level 2 SG2 721
PCE sparse grid level 3 SG3 9841
Kriging, 180 true samples KRIG 180 180
+ 1000 surrogate samples
Gaussian process, 180 true samples GP 180 180
+ 1000 surrogate samples

only a few are considered for brevity. Table 5.1 lists the DAKOTA methods/options presented
here.

Global sensitivity methods in DAKOTA are tractable for tens of variables. The relatively
large input space (7425 parameters) defined for this comparison required choosing groups
of parameters and assigning one control for DAKOTA to manipulate. First, the eighteen
fissioning isotopes out of the total forty-five isotopes in the reactor were selected as the focus
of this comparison. Then, the microscopic fission cross sections of each of these isotopes
were bundled together into eighteen independent meta-parameters. In other words, for each
of 18 parameters DAKOTA perturbed, a total of thirty-three microscopic cross section values
for that specific isotope were perturbed by the same multiplier.

A perturbation of thirty-three cross sections in ensemble compares well with the output
of the adjoint-based method embedded in the model due to the predominantly linear behavior
of the system. The sensitivity coefficient for a group of cross sections is simply the sum
of the individual cross section sensitivity coefficients. As an illustrative example, consider
the isotope Plutonium-239 (PU239). The DAKOTA control parameter will perturb all thirty-
three energy groups of the fission cross section of PU239. As a result, a relative sensitivity
coefficient for response y; with respect to this set of cross sections can be designated as

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 131

S (Vk» 0pu239.FIssioN.ALL)- This sensitivity coefficient may be computed with

G
S (Vk» OPU239,FISSION,ALL) = Z S (V&> OPU239,FISSION,g)-
g=1

5.2. Conversion of DAKOTA Results. Outputs from DAKOTA and the neutronics
model may be compared both qualitatively via rankings of relative importances and also
quantitatively via relative sensitivity coefficients introduced in equation (2.5). To compare
the global statistical approaches of DAKOTA to the local sensitivities of the adjoint form
of the model, the simple correlation, Oxjyes between the k™ output response, yi, and the j’h
input parameter, x;, output by DAKOTA must be transformed to a metric comparable to a
local gradient. DAKOTA’s LHS based methods calculate Pearson correlations in the form of
Equation (3.1). These are based on a regression in which the model is assumed linear. For
the neutronics model, the input that DAKOTA provides to the model during sampling is a
multiplier on the nominal value of the input parameter X; (relative variation) rather than the
absolute parameter value. In other words,

Xj = Cjxjs

the perturbed input parameter x; is derived from multiplying the nominal input parameter
value %; by a multiplier ¢; which has been chosen as ¢; ~ N(1,0.03) to represent roughly
+10% variation. It follows that,

Oy _ Oy 0% _ Oy
6cj ﬁxj 8cj (9xj I

As the number of samples increases, the sample means converge to their nominal values and
the relative sensitivities may be compared as follows:

~
52
\ ;(yzk r) |

to Pen " (5.1
\ Z(Cij -z
i=1

where the terms in the square roots are the standard deviation of output k over standard de-
viation of input multiplier j. Similarly, all PCE based methods return the absolute local
sensitivities (based on the global polynomial approximation’s derivative) directly and need
only to be scaled by the inverse of nominal output ¥;. This is possible since the nominal
values of the ¢; multipliers are one.

Relative importances may be measured by simple correlations, partial correlations, Sobol
main effect indices or total Sobol indices. Based on the absolute values associated with these
metrics, a larger value implies stronger correlation and, hence, a stronger sensitivity. Various
DAKOTA methods may be compared based solely on the rankings of these metrics.

Oyi X
anyk

5.3. Sensitivity analysis results. Results here focus on sensitivity of the multiplication
factor k. In the discussion, the result from the neutronics model is treated as a reference result
because it provides an exact (to within numerical precision) estimate of local derivatives.
The most common application of global SA is to rank the importance of input parameters,
however, it should also offer reasonable predictions of local first-order sensitivities for this
predominantly linear parameter to response mapping. Table 5.2 shows rankings based on

132 Comparison of SA Methods for Neutronics

TaBLE 5.2
Comparison of isotope importance rankings as determined by various methods. LHS, Kriging and Gaussian
Process methods show simple correlations, whereas PCE/C3 and VBD show Sobol index-based rankings. Anomalies
are indicated in blue italics. All methods omitted from results produced the same rankings as the local adjoint and
LHS 1800 results.

ADJOINT | LHS 180 | KRIG 180 | GP 180 C3 VBD 180 | LHS 1800
(relative) (correl) (correl) (correl) (Sobol) (Sobol) (correl)
PU239 PU239 PU239 PU239 PU239 PU239 PU239
PU240 PU241 PU240 PU240 PU240 PU238 PU240
PU241 PU240 PU241 PU241 PU241 PU242 PU241
AM242M | AM242M | AM242M | AM241M | AM242M | AM242M | AM242M
PU238 PU238 PU238 PU238 PU238 AM243 PU238
PU242 PU242 PU242 PU242 PU242 CM245 PU242
U238 CM245 U238 U238 U238 NP237 U238
CM245 U238 CM245 CM245 CM245 CM246 CM245
AM241 CM244 AM241 CM244 AM241 CM243 AM241
CM244 AM241 CM244 AM241 CM244 U236 CM244
NP237 AM243 NP237 NP237 NP237 CM242 NP237
AM?243 U234 AM?243 AM?243 AM?243 CM244 AM?243
U235 NP237 U235 U235 U235 U234 U235
CM242 U236 CM242 CM242 CM242 U235 CM242
CM246 CM242 CM246 CM246 CM246 AM241 CM246
U234 CM246 U236 CM243 U234 U238 U234
CM243 CM243 CM243 U236 CM243 PU241 CM243
U236 U235 U234 U234 U236 PU240 U236

relative sensitivity coefficient, simple correlation, or Sobol index §;. Most methods, except
LHS 180 and VBD 180, which can probably be considered under-resolved, agree on the
rankings. Those that are under-resolved still get approximate ordering correct. Taking 180
LHS samples and building a Kriging model helps with the ranking, as does directly using
1800 LHS samples.

The isotope importances given in Table 5.2 agree reasonably on physical grounds based
on the initial nuclide concentration given in [7]. The loading for this reactor is predominantly
Plutonium-239 and Uranium-238. These two isotopes and their neutron capture daughter
isotopes, e.g. Plutonium-240 or Plutonium-241, are most crucial for reactor criticality.

Figure 5.1 offers a comparison of the relative sensitivity coefficients and the comparable
DAKOTA-based measures derived in Section 5.2. There is significant discrepancy between
the adjoint-based approach and LHS 180, but as the number of samples increases to 1800
the differences nearly vanish. All other methods (some requiring far fewer computational
model evaluations), also capture these relative sensitivities. When 180 LHS samples are
used to construct a Kriging model (KRIG 180), results comparable to the LHS 1800 case are
achieved.

A somewhat arbitrary, but often useful, screening heuristic is that correlations greater
than 0.2 in magnitude can generally be considered relevant and those greater than 0.5 sig-
nificant. The results for simple correlations shown in Figure 5.2 indicate significant linear
relationship between a number of isotopes and response k. The partial correlation coefficients
shown in Figure 5.3 illustrate that controlling for the effects of other input factors may reveal
other significant factors, indeed all but a handful are likely significant. The sample size has
little influence on these metrics, reflecting that for a linear analysis, few samples are needed

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 133

—
= e
-
R
ke
1]
i i
— .
= qu_a..l- g
L] 9
—— &
—— F,_-l;_a." E
—
g — 40 '
= £
g —— v &
e g
é EEEE— w w
= —— e £
TF — -
-'_i — F._ﬂ.‘.ﬁ E
c —
3 : P
o H Ld 5
= i g
= i a5
g | g
] L |
s = B
g = o 4
= &
z = o 2
-
3 - ot i
E & H
(=]
0 ot o
-
f st
E s
L
_—
-
A’
" .
=
L - 8 - : 2 3 3

iy B

FiG. 5.1. Relative sensitivities (RS) estimated by local derivatives compared to scaled global estimates from
DAKOTA methods.

to capture the effects.
Sobol indices shown in Table 5.3 offer another measure of variable importance. They
indicate a dominant effect of Pu239, and marginal effects of Pu240, Pu241, and Am242M.

134 Comparison of SA Methods for Neutronics

o
=
=
@
=%
2
[=]
n
2 ©
=] =2
i =1
L £
= o
@ =
S "
o 35
2 < & m
o % o
E - B
W @0
S 2
© ®
[
w N I
5 d B
w
=
a
=
z l I
i.._. -0l __sliB -
" =
e R e E R R E
5555558535085 E8848358
D-ﬂ-ﬂ-ﬂ-ﬂ-zumuuu:cgﬂ
|
=]

UCHIBBI0T)

FiG. 5.2. Simple correlation coefficients calculated using 180 and 1800 LHS samples.

6. Conclusions. This exploratory comparison of DAKOTA and adjoint methods for
a linear neutronics model will serve as the foundation for future development of hybrid
global/local-adjoint methods to combat the curses of nonlinearity and dimensionality. Reas-
suringly, the comparisons of the qualitative rankings and quantitative sensitivity coefficients
between local adjoint and DAKOTA methods employed for this study converge as the number
of function evaluations increase. In as few as 36 function evaluations for PCE-based methods,

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 135

1.0

Multiplication Factor Partial Correlation by Isotope

U236 -

= e |
0.0 02 0.4 06 08
Isotope
ELHS 180 Partial BLHS 1800 Partial

R R L E R R E R
3555555535885 848%558
Loooo Zo Do =<
<
|
=]
UOEBUIDT

FiG. 5.3. Partial correlation coefficients calculated using 180 and 1800 LHS samples.

the Sobol indices and sensitivity coefficients were appropriately captured as compared with
the adjoint-based approach used in the neutronics model. Similarly, the surrogate-enhanced
Kriging model successfully captured almost all rankings and sensitivity coefficients within
1.3% with 180 function evaluations. These methods show promise in capturing main effects
while they are known to be less likely to misinform in the presence of nonlinearity, see [11],
pp-10-12, 16-33, and references therein, though with a significant increase in computational

136 Comparison of SA Methods for Neutronics

TaBLE 5.3
Sobol total effects T; and main effects S; for each isotope as calculated with PCE, cubature level 5 (all other
stochastic expansion methods produced identical results).

Isotope T; S
AM241 | 0.001 | 0.001
AM242M | 0.030 | 0.030
AM243 | 0.000 | 0.000
CM242 | 0.000 | 0.000
CM243 | 0.000 | 0.000
CM244 | 0.001 | 0.001
CM245 | 0.002 | 0.002
CM246 | 0.000 | 0.000
NP237 0.000 | 0.000
PU238 0.015 | 0.015
PU239 0.806 | 0.806
PU240 0.072 | 0.072
PU241 0.067 | 0.067
PU242 0.004 | 0.004
U234 0.000 | 0.000
U235 0.000 | 0.000
U236 0.000 | 0.000
U238 0.002 | 0.002

cost (10x to 100x due to required forward runs of the model). However, their scalability
in number of parameters is limited, so ongoing research is investigating the use of adjoint-
generated derivative information in global sensitivity approaches.

Acknowledgments. This work was supported by the DOE Nuclear Energy Advanced
Modeling and Simulation (NEAMS) program, and performed in large part at Sandia National
Laboratories (SNL) and Idaho National Laboratory (INL). Internships facilitated by Dr. Cris-
tian Rabiti of INL and Dr. James Stewart of SNL made this work possible. Dr. Laura Swiler
of SNL provided valuable insight on the mechanics of global sensitivity methods; and Drs.
William Rider and James Kamm of SNL gave excellent feedback on the manuscript.

REFERENCES

[1] B.M. Apams, W. J. BOHNHOFF, ET AL., DAKOTA: A multilevel parallel object-oriented framework for design op-
timization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.0 users
manual, Tech. Rep. SAND2010-2183, Sandia National Laboratories, December 2009.

[2] M. Cuabwick, P. OsLozinski, M. HErMAN, N. GReene, R. McKnigaT, D. SmitH, P. YounG, R. MACFARLANE,
G. HaLE, S. FRANKLE, ET AL., ENDF/B-VII. 0: Next generation evaluated nuclear data library for nuclear
science and technology, Nuclear Data Sheets, 107 (2006), pp. 2931-3060.

[3] J. Duperstapt AND L. HamirroN, Nuclear reactor analysis, John Wiley & Sons New York, 1976.

[4] M. S. ELprep, C. G. WEBSTER, AND P. CONSTANTINE, Evaluation of non-intrusive approaches for wiener-askey
generalized polynomial chaos, in Proceedings of the 10th AIAA Non-Deterministic Approaches Confer-
ence, no. AIAA-2008-1892, Schaumburg, IL, April 7-10 2008.

[5] A. A. Giunta, J. M. McFarLanD, L. P. SWiLER, AND M. S. ELDRED, The promise and peril of uncertainty quan-
tification using response surface approximations, Structure and Infrastructure Engineering, 2 (2006),
pp. 175-189.

[6] M. Jesseg, H. ABDEL-KHALIK, AND P. TurINsKY, Evaluation of BWR Core Attribute Uncertainties due to Multi-
group Cross-Section Uncertainties, Proc. of M&C, (2007).

[7]

[8]
[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 137

C. Rasiti, G. PaLmiorTi, M. ASSAWAROONGRUENGCHOT, M. SALVATORES, H. S. ABDEL-KHALIK, W. C. PROCTOR,
R. NourGaLIEV, B. M. Apawms, aND L. P. SWILER, NEAMS VU: Report on sensitivity techniques selection,
FY2009, tech. rep., Idaho National Laboratories, September 2009.

Y. RoneN, CRC handbook of nuclear reactors calculations, vol. 3, CRC, 1986.

, Uncertainty analysis, Franklin Book Company, Incorporated, 1988.

A. SALTELLL, Sensitivity analysis in practice: a guide to assessing scientific models, John Wiley & Sons, Inc.,
2004.

A. Sarrer, K. CHaN, anp E. Scort, eds., Sensitivity analysis, John Wiley & Sons, Inc., 2000.

K. SmritH, Assembly homogenization techniques for light water reactor analysis, Progress in Nuclear Energy,
17 (1986), pp. 303-335.

C. SToRLIE, L. SWILER, J. HELTON, AND C. SALLABERRY, Implementation and evaluation of nonparametric regres-
sion procedures for sensitivity analysis of computationally demanding models, Reliability Engineering
and System Safety, 94 (2009), pp. 1735-1763.

B. Suprer, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System
Safety, 93 (2008), pp. 964-979.

L. P. SwiLer anD G. D. Wyss, A user’s guide to Sandia’s latin hypercube sampling software: LHS UNIX
library and standalone version, Tech. Rep. SAND04-2439, Sandia National Laboratories, Albuquerque,
NM, July 2004.

G. Tang, G. IaccariNo, aAND M. ELprRED, Global sensitivity analysis for stochastic collocation expansion, in
Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference (12th AIAA Non-Deterministic Approaches Conference), no. AIAA-2010-2922, Orlando,
FL, April 2010.

138 CSRI Summer Proceedings 2010

E.C. Cyrand S.S. Collis 139

Meshing and Optimization

The articles in this section have an over arching theme of optimization. The first three
articles use optimization technology to improve the quality of meshes used in finite element
analysis. The remaining articles focus on practical implementation of various optimization
strategies.

Voshell et al. describe a mesh untangling algorithm using the target matrix paradigm for
quadratic elements. The authors present results using quadratic triangles, quadrilaterals, tetra-
hedrons and hexahedron that the show the algorithm is beneficial. Franks and Knupp present
a new metric for quadratic 2D mesh untangling. Using the target matrix paradigm the authors
present numerical results that indicate comparable performance to previously developed met-
rics. Park et al. consider the effect different vertex orderings have on the performance of a
local mesh smoothing algorithm. Timings varied by a factor of 2, with no clearly optimal
strategy. However several strategies were seen as appropriate for an all-purpose ordering.
Berwald et al. summarize two projects. The first explores using tools from computational
topology to estimate the local density of points in an attractor. The second describes the ex-
tension of the TEVA-SPOT software suite. Steele and Watson describe an implementation of
the Benders decomposition for large scale linear programming in Pyomo. Hunter et al. con-
sider the use of stochastic optimization for energy economy optimization models. Orsini and
Gray discuss an ACRO implementation of the EAGLS algorithm for hybrid optimization.

E.C. Cyr
S.S. Collis

December 17, 2010

140 CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 141

QUADRATIC ELEMENT MESH UNTANGLING AND SHAPE OPTIMIZATION
VIA THE TARGET-MATRIX PARADIGM

NICHOLAS VOSHELL*, PATRICK KNUPP', AND JASON KRAFTCHECK?*

Abstract. When meshes containing high-order elements are inverted, it is often due to the projection of high-
order nodes onto the domain boundary. Addressing the inversion requires either re-meshing or post-processing the
mesh. The Target-matrix paradigm (TXP) for mesh optimization provides a framework we use to develop a node-
movement post-processing method that addresses meshes containing inverted quadratic elements. Our proposed
algorithm includes two optimization stages; one stage uses a non-barrier size quality metric to untangle the mesh,
and the second stage uses a barrier shape quality metric to improve shape quality while preventing the mesh from
inverting. The method is tested on non-hybrid meshes with four element types: triangles, quadrilaterals, tetrahedra,
and hexahedra. Overall, the algorithm proved to be beneficial, although there is no guarantee that the optimized
mesh will be untangled.

1. Introduction. Quadratic finite elements are sometimes used to achieve high accuracy
simulations. Such meshes are usually created by first creating elements with straight sides and
then curving boundary sides by projecting mid-side and mid-face nodes onto the bounding
geometry [15]. This approach creates boundary-conforming, quadratic element meshes on
complex geometries in which the resulting boundary elements can be poor or even inverted,
especially if elements are large compared to the associated geometry curvature. The poor
quality elements can impact simulation accuracy, reduce efficiency and, if the Jacobian is
negative, even prevent proceeding with calculations.

Finite element methods are based on a local map from a logical element to a given mesh
element. The element is usually considered inverted if and only if there exists some point p
in the logical element such that de#(J) < 0, where J is the Jacobian matrix of the map. This
test is relatively simple for linear elements because the determinant is linear in the logical
coordinates. Quadratic and other higher-order elements are more difficult to determine if
they are inverted. Convergence theory for finite elements requires that the mesh contain no
inverted elements.

There have been limited studies into untangling or improving element shape qualities
within meshes that include high-order elements. In [17, 18], the authors derive the re-
gions that mid-side nodes can be placed to ensure that elements are non-inverted. Others,
in [13, 14], have looked into untangling and improving quality of high order meshes using
vertex insertion and removal, flipping of edges and faces, along with other topological mesh
modifications. In [16], the authors investigate extending quality metrics to assess the quality
of quadratic elements. Approaches using node-movement based on optimization appear to
be limited to [2, 3, 12]. One approach to extend linear quality metrics using an angle-based
penalty term was used in [2, 3]. They smoothed triangle and quadrilateral meshes but are
limited to isotropic two-dimensional meshes. This work continues and extends the work of
[12].

The present work focuses not on detecting whether an element is inverted, but instead
on optimizing shape quality such that inverted elements rarely occur. This work follows a
node movement strategy called the Target-matrix paradigm [11]. Topological techniques are
recognized to be quite powerful and it is hoped that they can eventually be combined with
effective node movement strategies such as TXP. This work also expands on recent work to
add node-movement capabilities to the Mesquite mesh quality improvement library [1] and

“The Pennsylvania State University, njv1 16 @cse.psu.edu
Sandia National Laboratories, pknupp @sandia.gov
#The University of Wisconsin, kraftche @cae.wisc.edu

142 Quadratic Mesh Untangling and Shape Optimization

involved adding support for the 27-point hexahedral element.

2. Mesh Optimization. Mesh optimization here refers to a technique for moving ver-
tices without changing the connectivity. The optimization uses an objective function to quan-
titatively compare the quality of alternative meshes. Various constraints are also used, for
example limits on the positions of boundary vertices. Then the optimization attempts to find
the mesh with the minimum objective function score that satisfies the constraints. Often the
objective function is a combination of individual component qualities, for example, in this
approach we select many sample points and combine the local quality metric scores for all
the sample points to create the objective function. As of this writing, most effort on mesh
optimization has focused on linear elements. This has produced good element quality metrics
for many linear elements.

Currently, Mesquite supports multiple methods to constrain vertex positions. Among
them are (a) fixed (the vertex does not move), (b) free (the vertex can move anywhere in the
space), and (c¢) constrained to some geometry (the vertex stays within some lower dimensional
space, such as a plane, curve, or point).

Some work has dealt with tangled meshes (meshes containing inverted elements) using
mesh optimization. Multiple mesh untangling algorithms have been proposed (see [4, 5,
6, 21] and the contained references). However, none of these algorithms have theoretical
guarantees of untangling. Also, focusing only on untangling means that the results often have
elements of poor shape quality. This issue is likely to arise in quadratic element meshes often,
since curving the boundary of the initial linear mesh to the boundary geometry inverts some
elements and causes others to have poor shape quality. The approach in this work does not
use such untangling approaches, instead using a TXP approach in an attempt to untangle the
mesh while addressing other shape quality issues.

In the Target-matrix paradigm, each element of the mesh has a C! mapping from a logical
element to itself (the maps used in this work are described in appendix A). For an ideal target
element, the Jacobian matrix of this mapping is referred to as W. For an active element the
Jacobian matrix is denoted using A. From this one can get a Jacobian matrix for a transfor-
mation from the target element to the active element 7 = AW~!. This Jacobian is evaluated
at some sample point, k, and is used as the input to a local quality metric which determines
the quality of the mesh at the sample point, 1 = u(T). The local quality metric gives a non-
negative real number that represents how well A represents W, often using properties such as
shape, size, and orientation.

Local quality metrics, yy, in the Target-matrix paradigm can be classified based on
whether they are barrier metrics or not. A barrier metric can be used with a mesh that is
not initially inverted to guarantee that the resulting optimal mesh will not be inverted. A non-
barrier metric should be used when the initial mesh is inverted since it allows elements to
transition between being inverted and non-inverted. If optimization with a non-barrier metric
creates a non-inverted mesh, the result can be further optimized using a barrier metric without
worry of the result being inverted.

The first metric of interest is the Shape metric in [7, 8]. It was shown that ug > 0 for all T’
and pg = 0 if and only if T is a scaled rotation matrix. In that case, A has the form A = sSRW
with arbitrary positive scalar s and arbitrary rotation R. Then the shape of the active matrix is
the shape of the target-matrix. The barrier form of the shape metric in 2D or 3D is:

(T) = —“T”% - (2.1
MSB2D =53 dei(T) .
T 3
usp3p(T) = Ll (2.2)

3V3del(T)

N. Voshell, P. Knupp, and J. Kraftcheck 143

Note that || - || refers to the Frobenius norm (the square root of the sum of the squares of all
elements in a matrix). The second metric of interest is the Size (Sz) metric, given in both 2D
and 3D by:

us(T) = (det(T) — 1)* (2.3)

This metric obeys us, > 0 for all 7 and g, = 0 if and only if det(T) = 1, i.e., det(A) =
det(W). Thus, at the minimum, the local sizes of the active and target matrices agree. Because
this metric has no barrier, it can potentially untangle an inverted mesh as well as improve
relative size. It does not, however, encourage the shape of the active element to be close to
the shape of the target element. Thus, the target is chosen so that its primary use in the present
application is to encourage mesh untangling because det(W) > 0.

In [9], many issues in measuring sample point quality are investigated. A label invari-
ance property is also discussed, which is important since there are many possible mappings
from a logical element to another elements based on the correspondence between logical and
physical vertices. Conditions are derived for the metric formulation, sample point selection,
and target element selection to guarantee label invariance of the local quality metric. It was
shown that the metrics/element types used in the present study are label invariant.

The selection of sample point locations is an important issue and can affect the label
invariance of the metric and the ability to detect inverted elements. Since, the current study
does not attempt to provide robust untangling, it is the label invariance that dominates this
selection. Specifically, we use sample points at all the vertex positions (corner, mid-side,
mid-face, mid-element, etc.) that are used to define the element for all elements.! Further
experiments into robust untangling are left for future work.

The local qualities, 1, at all the sample points, k, are combined into an objective function
to be used in our numerical mesh optimization. Specifically, we use a power-mean, giving
the following objective function:

1
OF = — Z m (2.4)
Sample Point k

3. Algorithm. This work extends the work of the previous summer [12] in which it was
found that, for quadratic triangular elements, a two stage algorithm in which the first stage
untangles the mesh using a size metric and the second stage maintains the untangled prop-
erty of the mesh while improving shape quality by using a shape barrier metric. We extend
the algorithm to scale the target matrices and scale the and work with quadratic tetrahedral,
quadrilateral, and hexahedral elements. This gives the algorithm depicted in figure 3.1. We
motivate the choices made in this algorithm, then give the proposed algorithm and present
pseudocode.

The algorithm is currently structured to properly handle cases of non-inverted meshes,
inverted meshes, and uninvertible meshes. The area optimization is the primary untangling
step, and is protected by checks from running on non-inverted meshes to avoid unnecessary
computation and because it has been found to tangle meshes with element size heterogeneity.
The shape optimization was added because the untangling stage often produces meshes of
poor shape quality. It is protected by checks to prevent operating on tangled meshes and
also is run on input non-inverted meshes of poor quality in an attempt to improve quality.
This is different from the previous structure of two stages, one after the other, in that an
initially non-inverted mesh does not go through the area optimization (which may potentially
invert the mesh), also a mesh that doesn’t untangle in the area optimization avoids the shape

Note that a mesh vertex can have multiple associated sample points.

144 Quadratic Mesh Untangling and Shape Optimization

3 || 2v.aea |[3 Com 'w’-; [aa || . snepe |

* | Copstucs W/ Opemization| T, &0 | FlComstuct W) | Optmization
1. Loagl Iz Compuie -\:l} "'.-r"nsﬂ - e]
Mosh: (1 &g [T T > Prag B il

Mo ™ Mo

Fic. 3.1. Quadratic element untangling and shape improvement algorithm. This is a flow depiction of the
algorithm, note there are two branches. The first branch is decided based on whether the mesh is inverted (top is
inverted). The second branch is decided based on whether the mesh is poor quality and not inverted (taking the top,
otherwise taking the bottom).

optimization, whereas before it would go through the shape optimization enough to produce
an error.

The target matrices, W, used in the optimization steps of the proposed algorithm are in-
tended to target the solvers towards ideal elements. here, we use the notation from the LVQD
matrix decomposition [10]. In this case Q4. corresponds to the Jacobian matrix for an ideal
element of standard size, skew, and orientation. This suffices for the shape optimization since
it is using a shape barrier metric that is sensitive only to the shape of the elements. The size
optimization however also uses A so that the target matrix corresponds to an element of ap-
propriate size. Specifically A is the mean over all the sample points of the A size values from
the LVQD decomposition of the Jacobian matrix of the mapping at that sample point. This
setting of A corresponds well to experiments (not presented due to space) that confirmed that
a setting significantly larger or smaller tended to hinder the ability of the area optimization to
untangle the mesh.

FiG. 3.2. Boundary Tangling. Both figures depict a mesh for a cube with a hemisphere cut out. Left is the gen-
erated mesh of linear tetrahedra, whereas the right figure depicts the same topology with quadratic tetrahedra. Note
that the projection of the mid-side nodes around the edge of the hemispherical cut causes the triangular boundary of
one tetrahedron to become tangled. This cannot be untangled without moving vertices on the boundary of the mesh.
Coloring is based on element ID since ParaView draws extra edges to connect mid-nodes to the rest of the mesh.

As has been described before, high order meshes tend to have problems on the bound-
aries. this can cause some trouble if the boundaries are held fixed. One potential problem is
depicted in figure 3.2, in which converting the linear mesh to a quadratic one causes a bound-
ary triangle of at least one tetrahedron to become inverted. Thus fixing boundary vertices will
mean that this element can not be untangled by the area optimization. This problem is why
the boundary geometric constraints were added to this algorithm. Since the inverted boundary
triangle can now be untangled by moving the vertices within their relevant boundary geome-
tries.

To be precise, the algorithm starts out by loading the mesh and determining, for each ver-

N. Voshell, P. Knupp, and J. Kraftcheck 145

tex, which geometry the vertex belongs to. This is used to constrain boundary vertices to the
appropriate boundary geometry (eg. plane, cylindrical surface, line, circle, point). The sec-
ond step is to detect whether the mesh contains inverted or poor quality elements (or neither).
This is accomplished by looping over all the sample points and detecting the minimal de#(T")
value, 7,,:,, and the maximal ugp value, (us g)min. The third step then applies only if some in-
verted sample point is found (i.e. if 7,,;, < 0). In the third step, an area optimization attempts
to untangle the mesh. Step 3a constructs the target matrices, in this case it corresponds to an
ideally shaped element of size A (which is the average of the sizes detected at all the sample
points). The area optimization (step 3b) then runs to convergence (400 iterations is more than
enough for the meshes investigated) using the geometric constraints, target matrices, and the
size metric. It does not use A since the Us g 1s size invariant. Afterward it is unknown whether
the area optimization was successful, thus step 3c detects if the mesh is inverted or has poor
quality. Step four then operates to improve the quality of the mesh without inverting it, thus
it should only be run if the mesh has poor quality elements and is not inverted (i.e. T, > 0
and (Usp)max < Heuroff)- In our experiments, we use fUeuors = 2, but other values could be
used. Step four starts by defining the target matrices (step 4a) based on an ideal element of
unit size, then the shape optimization procedure (step 4b) is run to convergence using the
target matrices and geometric constraints previously defined. This shape optimization uses
the shape barrier metric in order to prevent the mesh from inverting.

Quadratic Element Untangling and Shape Improvement Algorithm
1. Load mesh and determine geometric constraint
2. Compute minimum area, 7,,;, and worst quality, (ts g)max
3. 7y, <0
(a) Construct Target Matrices, W
i. Compute size parameter, A
ii. W= A Qigeq at all sample points.
(b) Area Optimization
i. Boundaries: Constrained to geometry.
ii. Metric: us.(T) (Size metric, no barrier).
iii. Termination Criterion: 1 iteration outer, 400 inner (converged).
iv. Solver: SteepestDescent.
(C) ComPUte Tmin and (HSB)max
4. If Tmin > 0 AND (llSB)max < Meutof f
(a) Construct Target Matrices, W = Q.4 at all sample points.
(b) Shape Optimization
i. Boundaries: Constrained to geometry.
i. Metric: pgp(T) The Shape barrier metric.
iii. Termination Criterion: 1 iteration outer, 400 inner (converged).
iv. Solver: SteepestDescent.

The treatment of the boundary vertices in theory is that they should be constrained to the
appropriate geometric entity (corner, curve or surface). This is implemented by setting all the
vertices to free and placing the boundary vertices under the ownership of the relevant surface
geometric entity in step 1. This ownership is respected in the two optimization stages where
the solver optimizes vertex positions using unconstrained optimization techniques, then all
vertices are snapped back to their owning geometry.

—-

4. Numerical Examples. In this section we present results of this algorithm applied
to various meshes composed of four types of quadratic elements; triangles, quadrilaterals,
tetrahedra, or hexahedra. Details of these different element types are presented in appendix

146 Quadratic Mesh Untangling and Shape Optimization

Fic. 4.1. Smoothing the triangular Part mesh. Input is left, output of the area optimization is center, and
algorithm output is right. Note that the area optimization produces poorly shape elements in an untangled mesh.

Fic. 4.2. Smoothing the unperturbed Homogeneous mesh. Initial inverted elements are at the top of the two cuts
into the lower edge and at the bottom of the rightmost cut into the top. Input is left, output of the area optimization
is center, and algorithm output is right.

A. Most examples were created using Cubit [19] or Triangle [20] by first creating a mesh
of linear elements and then converting it to quadratic elements and projecting boundary mid-
side and mid-face nodes to the geometry. Most of the presented examples are cases in which
this procedure created tangled meshes.

For the 2D meshes, we present a quadrilateral result (figure 4.3) and two triangle results
(figures 4.1 and 4.2). Figure 4.2 was created using triangle, and the rest were created using
Cubit. All three of the 2D figures (4.1, 4.2, and 4.3) were created such that the conversion to
quadratic elements tangled the mesh.

Fic. 4.3. Smoothing the quadrilateral Part mesh. Input is left, output of the area optimization is center, and
algorithm output is right. Note that some interior edges are needlessly curved by the area optimization.

One can see from figures 4.1, 4.2, and 4.3 that the proposed algorithm is capable of
untangling and smoothing some 2D quadratic elements (both tri6 and quad9). In this case one
can also see that some of the interior regions far from the tangled elements are significantly
affected by the size optimization. Also, many of such elements are moved back to nearly
their initial position by the shape optimization. This computational inefficiency is one issue
we hope to address in future work.

For the 3D meshes depicted in figures 4.4, 4.5, and 4.6; all were created with Cubit.
However the hex27 mesh (figure 4.6) was not tangled after creation, so selected boundary
vertices were manually moved to create the tangled elements on the boundary of the mesh.

The figures show that the proposed algorithm is capable of untangling various 3D tangled
meshes. Due to the difficulty of visualizing 3D meshes it is difficult to assess the amount that
some interior elements may be needlessly changed by the size optimization.

N. Voshell, P. Knupp, and J. Kraftcheck 147

Fic. 4.4. Untangling and Smoothing Tetrahedral Cut Cube Mesh. The mesh is tangled as generated by Cubit,
without any perturbations. The upper row of the figure has the input and the bottom row has the output. The leftmost
figures shows the elements depicted in different colors. The center figures show the inverted elements (elements
having a sample point where det(T) < 0) along with a wireframe of the entire mesh. The rightmost figures show
the poor quality elements (elements having a sample point where usp(T) > 2) along with a wireframe of the entire
mesh. Note that the algorithm untangles the mesh and reduces the amount of poor quality elements.

Fic. 4.5. Untangling and Smoothing Tetrahedral Cut Cylinder Mesh. This figure shows the results of the
proposed algorithm on a mesh created by taking a spherical cut out of a cylinder with a refined top. The idea for this
is based on some untangling present in the SLAC mesh. Furthermore, the mesh is tangled as generated by Cubit,
without any perturbations. The left three figures depict the input and the right three figures depict the output. The
leftmost figures of each side show the elements depicted in different colors. The center figures of each side show the
inverted elements (elements having a sample point where det(T) < 0) along with a wireframe of the entire mesh. The
rightmost figures of each side show the poor quality elements (elements having a sample point where usp(T) > 2)
along with a wireframe of the entire mesh. Note that the algorithm untangles the mesh and reduces the amount of
poor quality elements.

5. Conclusions and Future Work. We have given a proposed algorithm extending our
previous work [12], to untangle and improve the shape quality of meshes containing quadratic
elements. Various aspects of this algorithm were motivated, and results were shown with
6 point triangular elements, 9 point quadratic elements, 10 point tetrahedral elements, and
27 point hexahedral elements. Plans for future work include investigating other and more
robust untangling methods into the algorithm. We also plan to look into methods to improve
the efficiency of the algorithm, specifically we plan to investigate constraining some of the
interior vertices to prevent them from moving in a manner that doesn’t hinder the untangling.

148 Quadratic Mesh Untangling and Shape Optimization

FiG. 4.6. Untangling and Smoothing Hexahedra. In this figure, we show the results of untangling and smoothing
the 3Dpart Hex27 mesh that has been generated by paving one side, sweeping through the volume and perturbing
some of the corner vertices on the boundary of the mesh. The upper row of the figure has the input and the bottom
row has the output. The leftmost figures shows the elements depicted in different colors. The center figures show the
inverted elements (elements having a sample point where det(T) < 0) along with a wireframe of the entire mesh. The
rightmost figures show the poor quality elements (elements having a sample point where usp(T) > 2) along with a
wireframe of the entire mesh. Note that the algorithm untangles the mesh, it also improves the quality of the poorest
quality elements, though that is difficult to see.

REFERENCES

[1] M. BREWER, L. DiacHiN, P. KNupp, T. LEURENT, AND D. MELANDER, The Mesquite mesh quality improvement
toolkit, Proceedings of the 12th International Meshing Roundtable, (2003), pp. 239-250.
[2] Z. Cuen, J. TristaNo, aAND W. Kwok, Combined Laplacian and optimization-based smoothing for quadratic
mixed surface meshes, Proceedings of the 12th International Meshing Roundtable, (2003), pp. 361-370.
, Construction of an objective function for optimization-based smoothing, Engr. w/Cmptrs., 20 (2004),
pp. 184-192.
[4] J. EscoBar, E. RobriGUEz, R. MONTENEGRO, G. MONTERO, AND J. GONZALEZ-YUSTE, Simultaneous untangling
and smoothing of tetrahedral meshes, Computer Methods in Applied Mathematics and Engineering, 192
(2003), pp. 2775-2787.
[5] L. FrErmag anp P. Prassmann, Local optimization-based untangling algorithms for quadrilateral meshes,
(2001).
[6] P.Knupp, Hexahedral mesh untangling & algebraic mesh quality metrics, Proceedings of the 9th International
Meshing Roundtable, (2000), pp. 173-183.
, Local 2D metrics for mesh optimization in the target-matrix paradigm, Sandia National Laboratories,
(2006), pp. SAND2006-7382J.
, Analysis of 2D, rotation-invariant, non-barrier metrics in the target-matrix paradigm, Sandia Na-
tional Laboratories, (2008), pp. SAND2008-8219P.
, Label-invariant mesh quality metrics, Proceedings of the 18th International Meshing Roundtable,
(2009), pp. 139-155.
, Target-matrix construction algorithms, Sandia National Laboratories, (2009), pp. SAND2009-7003P.
, Introducing the target-matrix paradigm for mesh optimization vie node-movement, to appear in Pro-
ceedings of the 19th International Meshing Roundtable, (2010).
[12] P. Knupp, N. VosHELL, AND J. KRAFTCHECK, Quadratic triangle mesh untangling and optimization via the target-
matrix paradigm, CSRI Summer Proceedings, (2009), pp. SAND2010-3083P.
[13] X. Luo, M. SHepHARD, L. LEg, L. GE, axp C. Na, Moving curved mesh adaptation for higher order finite
element simulations, Engineering with Computers, submitted., (2006), pp. 42—142.
[14] X. Luo, M. SuepHARD, L. LEg, C. Ng, anp L. Gk, Tracking adaptive moving mesh refinements in 3d curved
domains for large-scale higher order finite element simulations, Proceedings of the 17th International
Meshing Roundtable, (2008), pp. 585-601.
[15] S. RoBert, R. O’BARA, AND M. SHEPHARD, Curvilinear mesh generation in 3D, Proceedings of the 8th Interna-
tional Meshing Roundtable, (1999), pp. 407-417.
[16] A. SaLem, S. CANANN, AND S. SAIGAL, Robust distortion metric for quadratic trianglular 2D finite elements,
Trends in Unstructured Mesh Generation, ASME, AMD-Vol. 220 (1997), pp. 73-80.
[17] ———, Mid-node admissible spaces for quadratic triangular arbitrarily curved 2D finite elements, Int. J.

[3]

[7]

[8]

[9]

[10]
[11]

N. Voshell, P. Knupp, and J. Kraftcheck 149

Numerical Methods in Engineering, 50(2) (2001), pp. 253-272.

[18] A. SaLEM, S. SAIGAL, AND S. CANANN, Mid-node admissible space for 3D quadratic tetrahedral finite elements,
Engineering with Computers, 17 (2001), pp. 39-54.

[19] Sanpia, The cubit website, http://www.cubit.sandia.gov/, (2010).

[20] J. SHEwcHuUK, Triangle: Engineering a 2d quality mesh generator and delaunay triangulator, Applied Com-
putational Geometry: Towards Geometric Engineering, 1148 (1996), pp. 203-222.

[21] P. VacHAL, R. V. GARIMELLA, AND M. J. SHasukov, Untangling of 2d meshes in ale simulations, Journal of
Computational Physics, 196 (2004), pp. 627-644.

Appendix

A. Quadratic Element Maps and Target Matrices. The four shapes focused on in this
work are depicted in figure A.1, which shows the location and ordering of the points. Using
the standard basis vectors for R? one can define a logical triangle which serves as the master
element for the transformations used by quadratic elements.

7 18]
3 ! I
15 22 /14
19 25 17
2 9\2 3 —6 — 2 / 3 1 2
/\ 7 8 | | 23 /» 21
4 16 5
5 4 e% 7 8 5 w
/ \ | | 12 /20 13
0 — 4 — 1
0 —3 — 1 0 —4 —1 0 8 1

Fic. A.1. Element Shapes. Depicted are the 6 point triangle (left-most), 9 point quadrilateral (center left), 10
point tetrahedron (center right), and 27 point hexahedron (right-most).

Based on the vertex ordering depicted in A.1, the quadratic triangle has the following map-
ping:

n-1

Tio(r, $) = D Nir, $)%, (A1)
i=0

u=1-r—s (A2)
No=uu-1) (A.3)
Ny =r2r— 1) (A.4)
N = s2s— 1) (A.5)
N3 =4ru (A.6)
Ny=rs (A7)
Ns = 4su (A.8)

The 10 point tetrahedral mapping is as follows:

150 Quadratic Mesh Untangling and Shape Optimization

n—1
Frerto(r 5,0 = D Ni(r, 5,0%; (A9)
i=0
u=1-r—s—t
Ni=uQRu—-1) N4y=1tQ2t—-1) Ng=4tu
N> =rQ2r-1) N5 = 4ru Ng = 4rt (A.10)
N3 =s52s—1) Ng = 4rs Nig = 4st
N7 = 4su

The mapping and target matrices are different for the other element types. The Quad9
(nine point quadrilateral) and Hex27 (twenty seven point hexahedron) elements are closely
related and can be expressed using the following basic approaches:

n—1

Faas(r,8) = Y Nir,)% (A1)
i=0
No=(r=D@r=D(s=D2s—=1) Ns=rr—1)s(l - s)
Ny =rQRr-D(s-1R2s-1) Ne =4r(1 —r)s(2s—1)
N, =rQ2r—-1)s2s-1) N;=(r—-1DQ2r-1)4s(1 —) (A.12)
Ny;=(r-1DQ2r-1s2s-1) Ng =4r(1 — r)ds(1 — s)
Ny = 4r(1 = (s — 1)2s — 1)
n—1
FBrear(r 8,0 = Y Nins.0% (A13)
=0
LhE=E-D2E-1) Db =410-8 L) =626-1)
No = lLi(DL(HL(@) No = BNLSHL(H) Nig = L(NE(s);5()
N1 = LMLOHLE) Nio = L(MBSOLE) N = L(Nh(s)5()
Ny = B(G(HLE) Ni = 6L(hL($)L@) Ny = L)L)
N3 = Li(NG(L(E) Nip=L(HL()L@) Nap = L(n)h(s)h(?) (A.14)

Ny = L(NL(s)5(0)
Ns = B(rL(s);(0)
Ne = B(nL(s)5(0)
N7 = Li(N(s)5()
Ng = L(NhL(s)1(?)

Niz = B(HL($)L(D)
N1y = B(r)l3(s)h(1)
Nis = L(r)l3(s)k(?)
Nig = L)l (s);(2)
Ni7 = B(r)L(s)5(2)

Ny = b(r)3(s)h(?)
Nz = Li(n)l () (1)
Ny = L(r)h () (1)
Nas = L(r)la(s)i(2)
Nag = L(r)L ()L ()

For an isotropic domain, there is no reason for the target element to break symmetry, so

the equilateral triangle is a good choice for the target. For theoretical reasons explained in
[10], we choose the area of the target equilateral triangle to be one. Then the Jacobian of the
logical to target mapping is as follows:

1 2 1
Wideat.trie = \/_2—\4/5 [0 \/5] (A.15)

The tetrahedral ideal element also corresponds to an equilateral element, and has the
following Wigear:

2 1
Wideatgeno = 27/% |0 V3 (A.16)
0 O

N. Voshell, P. Knupp, and J. Kraftcheck 151

For the quadrilateral and hexahedral elements, the W;4.,; from equilateral elements of
unit size is an identity matrix (2x2 for quadrilateral and 3x3 for hexahedral).

1 0

Wideal,quad9 = |:O 1] (A.17)
1 0 0

Wideal,hex27 =10 1 O (Alg)
0 0 1

CSRI Summer Proceedings 2010 152

A NEW STRATEGY FOR UNTANGLING 2D MESHES VIA NODE-MOVEMENT

JASON W. FRANKS' AND PATRICK M. KNUPP*

Abstract. A new mesh optimization strategy for untangling quadrilateral meshes, based on node-movement, is
investigated. The strategy relies on a set of Propositions which show that, for certain quality metrics 0 < u < o
within the Target-matrix paradigm, if 4 < 1 then the local area is positive. The Propositions are exploited in devising
a new strategy for simultaneous mesh untangling and quality improvement. Numerical results confirm the expected
behavior of the new strategy.

1. Introduction. A common problem in mesh generation is the creation of meshes hav-
ing inverted, invalid, or tangled elements. In general, such meshes cannot be used in computer
simulations. Many methods for repairing or untangling inverted meshes exist, including re-
meshing, local mesh modification, and mesh optimization and smoothing via node-movement
techniques. Re-meshing tends to be non-automatic. Local mesh modification can be very ef-
fective but, for the most part, is limited to simplicial meshes. Mesh optimization can address
meshes containing a wider variety of element types, but current methods do not guarantee
that the optimized mesh will be untangled. While we recognize the value of re-meshing and
local mesh modification methods in mesh untangling, in this paper we set them aside in order
to focus on node-movement methods.

There exists a wide variety of node movement methods and the majority of them do not
specifically address the mesh untangling problem. For example, Laplace smoothing is widely
used to create ’smooth’ meshes consisting of well-shaped elements. The fact that Laplace
smoothing can sometimes untangle an inverted mesh is somewhat incidental in that it is not
specifically designed to do so. In fact, it is well known that Laplace smoothing can create a
tangled mesh from one that initially is untangled. Many other smoothing and optimization
methods behave similarly. The common approach to avoiding tangled meshes has been to
devise node-movement strategies with “invertibility guarantees’, i.e., they guarantee that the
result of the node-movement will be a non-inverted mesh. Winslow smoothing is perhaps the
first node-movement method which provided such a guarantee [11]. However, the guarantee
is limited to 2D meshes only. Moreover, the method has proved somewhat difficult to extend
to unstructured meshes.

Winslow smoothing is based on the numerical solution of a partial differential equation.
Other node-movement strategies are based on numerical optimization of objective functions
which are defined in terms of discrete geometric entities such as edge-lengths, angles, areas,
and volumes. These methods are more easily applied to unstructured meshes and, moreover,
provide node-movement methods similar to Winslow. The main example would be the dis-
crete objective function based on a summation of the squares of edge-lengths, divided by the
local area or volume:

&+0
F:ZT (1.1)

These methods belong to a set of methods known as barrier methods. In this example, ele-
ments having volumes close to zero are penalized because the objective function tends to in-
crease rapidly as the volume approaches zero. If all the elements of the initial mesh have pos-
itive volume, then optimization of this objective function will (when properly implemented)

Tjasonwfranks @ gmail.com
Sandia National Laboratories, pknupp @sandia.gov

J.W. Franks and P.M. Knupp 153

guarantee that the minimizing mesh is untangled. A drawback to the barrier methods, how-
ever, is that they cannot be used when the initial mesh is tangled (because there is no way to
cross the barrier to the non-inverted region).

Two approaches have been proposed to overcome the limitation that barrier methods
cannot be applied to tangled initial meshes. In the first, the barrier is moved by replacing V in
the objective function by V — V,,;,, where V,,;, is the minimum volume over the initial mesh.
A homotopy method is applied to gradually increase the minimum volume until it is positive
(see [1] for details). While this method is often effective, it is relatively expensive and does
not guarantee that the final result will be non-inverted. In the second approach, the barrier is
removed entirely, with V being replaced by a blending function that is approximately equal
to (V +|V])/2. As V goes from positive to negative, the blending function transitions from
V to zero, so that elements having negative areas are heavily penalized (see [2] for details).
While effective, the method does not provide an invertibility guarantee.

As an alternative to node-movement methods that provide an invertibility guarantee,
there exist methods which directly try to untangle an inverted initial mesh. We refer to those
methods as pure untanglers because they are specifically designed to untangle meshes and
generally neglect other aspects of mesh quality such as element Shape. The intended use of
pure untangle methods is to first untangle a mesh and then to subsequently apply a barrier
method to improve Shape or other mesh qualities.

Freitag and Plassman developed a pure untangler based on a system of linear programs
with the intent to maximize the minimum area/volume of elements within each local patch of
the mesh [3, 4]. When optimized, the system is guaranteed to converge, but not necessarily
to an untangled mesh. This method proves to be very effective for untangling but counter-
productive for mesh improvement, because ‘a small but perfectly shaped element is likely to
be distorted in an effort to maximize its area’ [10].

Shashkov et. al. used a computational geometry approach to compute feasible regions in
which a vertex could be placed to produce positive areas [6, 7, 10]. The feasibility region for
a given free vertex is the space in which that vertex can be shifted such that all of its incident
elements become or remain uninverted. By constructing halfspaces parallel to the edges of
each element adjacent to the vertex in question, the feasibility region can be constructed from
the intersection of these halfspaces (note that the feasible region can be empty for a given
free vertex). The free vertex is then placed in the center of this feasible set. The feasible
region approach to untangling proves very effective in removing large quantities of invalid
elements from meshes, and is useful in multi-stage algorithm approaches to untangling. But
disadvantages do exist when using this method. First, in local submeshes where elements
take extreme shapes or very small size, the feasibility region is naturally very small. When a
large cluster of vertices and elements exist with minuscule feasibility regions it often occurs
that passes over the submesh will yield null or oscillatory results, as moving one vertex to
untangle one element will tangle and invert another element. The second weakness is that
the feabible regions are more difficult to calculute for elements having non-planar faces (e.g.
hexahedra). The commonly practiced solution in this event is to employ the Simplex method.
By optimizing just four linear functions, f = x, f= -x, f =, f = -y, as opposed to one for every
edge, and if the feasible set is not empty, a subset can be found [10].

Knupp gave a method of untangling that used a local non-barrier metric that penalized
inverted elements [7]. Global optimization of the objection function proved to be more robust
in terms of untangling larger and more difficult meshes, as every element is considered only
once and simultaneously via a global sweep. This *Untangle-Beta’ metric contained a global
parameter 8 which was needed to ensure that elements of exactly zero area were not created.
Proper selection of the 8 value was sometimes problematic, particularly if the area of elements

154 A New Strategy for 2D Untangling Meshes

in the mesh was highly variable. The choice of the value of 8 sometimes made the difference
as to whether the optimal mesh was tangled or not. Another problem with the metric was
that it was non-differentiable at certain points. R. Liska showed that this problem could be
fixed by squaring the metric, thus making the method susceptible to standard optimization
methods. As with the other pure untanglers, there is no guarantee of obtaining an untangled
mesh with this method.

The focus in the present paper is on a new strategy for untangling 2D meshes via the
Target-matrix Optimization Paradigm (TMOP) [9]. TMOP is an algebraic approach rooted
in matrix analysis, allowing for the development of metrics with the property to be able to
improve or preserve specific mesh qualities such as element size, shape, and orientation.
This is accomplished by establishing a collection of sample points within the elements of the
mesh, as well as a set of Target-matrices that describe the desired optimal mesh. For linear
quadrilateral mesh elements, one sample point is normally assigned per corner, and that is
the choice used in this work. Local metrics in TMOP are functions from a set of real, square
matrices Tyyg, With d = 2 for 2D meshes. In turn, T = AW~!, where A is the Jacobian
matrix of the element map and W the target matrix. Target matrices are constructed prior to
the optimization phase and describe the Jacobian of the map in the optimal mesh; targets are
constructed such that det(W) > 0. The determinant of A gives the local size at a sample point
in the active mesh and 7 = det(T) = det(A)/det(W) measures Sizes in the active mesh relative
to the desired optimal mesh. In order to use TMOP metrics, one must specify the targets. In
this study, targets of the form

W= ASidml (12)

are used. The first term in this product is a scalar and is equal to the average edge length in
the mesh. The second term in the product is a matrix which describes the ideal shape of the
element; for quadrilateral elements, S ;4. is the Identity matrix. This particular form of the
Target-matrices says that the desired Jacobian matrices in the optimal mesh should be squares
whose edge lengths are given by A. Although in general the set of Target-matrices can vary
from one sample point to another, in this study a constant Target suffices. If a different target
form were chosen, the results in this study might change.

To clarify the terminology used in this paper, we first define a mesh to be tangled or
inverted if it contains an inverted element. In the Finite Element Method, an inverted element
corresponds to an element for which there is a point within the master element for which the
map is non-invertible. Unfortunately, it can be rather difficult to tell whether or not an element
is inverted based on this definition, particularly for linear hexahedral elements and quadratic
or higher-order elements. For convenience, we substitute for this definition the following:
within TMOP, an element is inverted if it contains an invalid sample point. An invalid sample
point is a sample point for which the determinant of the matrix A (or T') at the sample point is
less than or equal to zero. An element containing an invalid sample point is always inverted,
but elements can also be inverted (according to the strict Finite Element definition) without
containing an invalid sample point. In practice, this substitute definition for inverted elements
is quite useful.

2. Establishing a Baseline. In this section we describe four tangled initial meshes and
show the results of applying either Laplace smoothing or the Untangle-Beta metric to them.
This is useful when later comparing results to the new untangle methods described later. The
four tangled meshes in Figure 2.1 constitute the set of 2D test meshes we use to study the
behavior of untangling and other algorithms’ behavior.

All of our 2D test meshes are composed of quadrilateral elements because experience
has shown that 2D meshes with triangle elements are relatively easy to untangle. The tangled

J.W. Franks and P.M. Knupp 155

(a) Tangled Horseshoe (b) Hole in Square

iz

1 1.8

fii

N

(c) Inverted Hole (d) Shest Grid

N\

2/

FiG. 2.1. Four tangled test meshes.

Horseshoe was created by applying the Laplace smoother to an untangled Horseshoe mesh.
The Hole-in-Square mesh is a result of a paved mesh subjected to Laplacian smoothing.
The Inverted Hole mesh was produced by a sweeping algorithm. The Shest grid mesh was
produced by an ALE calculation. It is known a priori that untangled meshes having the same
mesh topology in all four of these test meshes exist.! More difficult test meshes than these
four exist, but the four are adequate for a preliminary investigation of our strategy.

The degree of inversion or tangling varies from one initial mesh to another, with as little
as 9 inverted elements (Shest Grid) to 40 (Inverted Hole). As was mentioned in Section 1,
some smoothers that improve mesh quality (e.g., Laplace smoothing) can incidentally un-
tangle meshes without having been designed with this goal as their primary function. For
comparison to our new algorithms, Fig. 2.2 shows how the Laplacian smoother performed
on our test meshes.> The Horseshoe and Hole-in-Square meshes are not shown because the
Laplacian smoother (run to convergence) was used to generate them and therefore applying
Laplace smoothing again will fail to untangle them.

'In general, given a tangled mesh, there is no way to determine a priori if an untangled mesh with the same
connectivity exists.

2 All numerical results in this paper kept the boundary vertex coordinates unchanged so that only interior vertices
were moved as a result of smoothing or optimization.

156 A New Strategy for 2D Untangling Meshes

T

i A

i __-n,-,‘,r;};

I R
SEENl

(a) Shest Grid - Laplacian (b) Inverted Hole - Laplacian

FiG. 2.2. Laplacian smoothing applied to two initially tangled meshes.

As can be seen in Fig 2.2, the Laplacian smoother completely untangled the Shest and
Inverted Hole meshes when driven to convergence. This illustrates that some smoothers can
untangle a mesh, even though that is not their main purpose. Of course, we see that the Shest
grid’s original character was destroyed during the untangling, so that could make the use of
Laplace inappropriate in this instance. If the Laplacian smoother is not driven to convergence,
results may differ in terms of number of inverted elements and invalid points.

As an additional comparison, we apply the Untangle-Beta untangler to the four tangled
test meshes. The Untangle-Beta metric has the form:

ps(T) = {lr = Bl = (r = P 2.1)

with 8 > 0 an adjustable parameter. This metric is non-negative, with yz = 0 if and only if
T > B[6]. Unlike the Laplacian smoother, the Untangle-Beta metric was specifically designed
to untangle meshes, i.e. it is a “pure’ untangler that does not guarantee Shape or Size quality.
Figure 2.3 shows the results.> With 3 set to A?/20 (approximately 1/20th of the average cell
area) for each mesh, all four meshes were untangled. As expected for pure untanglers, the
Shape quality in these meshes is poor.

(a) Horseshoe (b) Shest Grid

3The Laplace, Untangle-Beta, and newer algorithms were implemented in the Mesquite code.

J.W. Franks and P.M. Knupp 157

— :' — b
L X\ i
il f
| | va [_,
A 0
Y SS== - t i
] G ! - = |
(c) Hole in Square (d) Inverted Hole
Fic. 2.3. All four meshes after optimization with the ug metric.
Horseshoe Shest Hole-in-Square Inverted Hole
Initial -0.178098 -0.315243 -0.957579 -1.47294
Laplace | -0.178098 0.106715 -0.957579 0.707527
g 0.00480571 0.00121174 0.0202237 0.014298

TasLE 2.1
Tin for each mesh before and after Laplace and pg.

Number of Inverted Elements
Horseshoe | Shest | HoleSq | Inv Hole
I O I O 1 O] 1 o
Laplacian | 12 12 9 0123 23|40 O

1 12 0 9 023 0 1[40 O
TaBLE 2.2
Initial Mesh (I) and Optimized Mesh (O).

Number of Invalid Sample Points
Horseshoe | Shest | HoleSq | Inv Hole
I (¢ I o1 O I O
Laplacian | 44 44 |9 0|70 70| 156 O

Hp 44 0 9 0|70 0 | 156 O
TaBLE 2.3
Initial Mesh (1) and Optimized Mesh (O).

Define 7,,;, to be the minimum value of 7 over all the sample points in a given mesh. A
non-positive value for 7,,;, signifies a tangled mesh. Entries in Table 2.1 give the minimum
values for each of the four initial meshes and the results after Laplace smoothing and the
Untangle-Beta were applied. Because 7,,;, > 0 after optimization with ug, we conclude that
the Untangle-Beta metric is able to untangle all four test meshes. Notice also that when
Laplacian smoothing is able the untangle a mesh, the corresponding value of 7,,;, is often
larger than what one gets when using Untangle-Beta. This is because Laplacian smoothing is
not a pure untangler.

Tables 2.2 and 2.3 report the number of inverted elements and the number of invalid

158 A New Strategy for 2D Untangling Meshes

sample points in each of the four meshes, both before and after optimization.

Except for Laplace, all numerical optimization results reported in Sections 2 and 3 used
the Block Coordinate Descent method (local patches with a global objective function), a
tight termination criterion of ’absolute vertex movement’ less than A/1000, and Mesquite’s
Steepest Descent Solver. The Objective Function was simply the linear average of the metric
over all sample points in the mesh.*

3. A New Strategy for Mesh Untangling. Previous untangling strategies rely on com-
putational geometry, simplex methods, or on ’untangling’ metrics. In this section we ex-
tend the latter strategy though the use of hybrid metrics which improve Size or Shape+Size,
while at the same time encouraging untangling. Our strategy is particularly interesting in
that the approach is based on a series of newly proved Propositions. First we briefly discuss
previously-studied Size and Shape+Size metrics and how they behave with respect to untan-
gling. Second, we prove certain Propositions about these metrics. Third, the Propositions
are exploited to devise hybrid metrics that encourage untangling, as well as improve Size
and Shape+Size. Fourth, numerical results for the new strategy are shown, based on the four
tangled initial meshes.

3.1. Size and ShapeSize. In this section we consider two previously proposed TMOP
quality metrics [8] because they are key components in our new strategy for untangling. The
first metric is the so-called relative Size metric, given by

pso(T) = (r— 1) 3.1

It is easy to see that 0 < ug, with ug, = 0 if and only if 7 = 1. The primary purpose of this
metric is thus to make the local Size in the optimal mesh as close as possible to the Size A
specified by the Target-matrices. Although the metric is not designed to be a pure untangle
metric, it is clear that this metric would tend to untangle meshes since us, = 0 means that
det(A) = det(W) > 0.

The second metric is designed to improve element Shape and Size:

psnso(T) = |TI* = 2y(T) +2 (3.2)
with
W(T) = \ITP + 27 (3.3)

In previous work it was shown that 0 < g5, with ug,s, = 0if and only if 7 = R, where R is
any rotation matrix. That means the metric is invariant to orientation, but sensitive to Shape
and Size. Although the metric is not designed to be a pure untangle metric, it is clear that this
metric would tend to untangle meshes since ug, = 0 means that det(T') = det(R) = 1 and thus
det(A) > 0.

So, much like Laplace smoothing, both the Size and the ShapeSize metric, with the
Target-matrix given in equation (1.2), will tend to create untangled meshes when optimized;
they do not guarantee it, however. The two metrics are applied to the four tangled test meshes
to illustrate the expected behavior..

4One point on which we elaborate is the use of the Block Coordinate Descent (BCD) algorithm. An alternative
provided in Mesquite is the Global Patch solver which moves all the ’free’ mesh vertices simultaneously. Unfortu-
nately, it was found that the Global Patch did not prove as effective as BCD in terms of speed or robustness. The
Shest Grid eventually converged to the same results as BCD, but took a substantially longer time to terminate with
Global Patch, and the Hole-in-Square mesh always terminated, but not always to the same final mesh (suggesting
that there may be tangled local minima in the global objective function). Problems also arose when Global Patch
was utilized with the SizeUntangle metric because convergence to the final untangled mesh for this metric took the
longest amount of computer time.

J.W. Franks and P.M. Knupp 159

(a) Horseshoe (b) Shest Grid

T

(c) Hole-in-Square (d) Inverted Hole

Fic. 3.1. All four meshes after optimization with the us, metric.

Figure 3.1 gives results for optimization with the Size metric. As this figure demon-
strates, the Size metric created near-equal area elements and somewhat non-Smooth meshes;
this is the expected behavior of this metric. More to the point, it was able to untangle three of
the four meshes. It failed to untangle the Hole-in-Square, but reduced the number of inverted
elements from 23 to 6. We conjecture that, had we used a more sophisticated Target-matrix in
which the Size factor is allowed to vary with the sample point, the mesh might have untangled
with the Size metric.

Figure 3.2 shows how the ShapeSize metric performed. The same three meshes were
untangled when using the ShapeSize metric. The Size metric reduced the Hole-in-Square
mesh to 6 inverted elements compared to 12 for the ShapeSize metric. Comparing the results
in Figure 3.2 to 3.1 one sees the expected characteristic differences between the Size and
ShapeSize metrics. The results of ShapeSize bears a strong resemblance to the Laplacian
results as well for the Shest Grid and the Inverted Hole meshes.

Now that we have some data on the effects of some basic TMOP metrics on tangled
meshes, we give some Propositions that will allow us to develop new untangling metrics.

3.2. Propositions. In this section it will be shown that certain local metrics u within
TMOP enjoy the following property: for any d X d real matrix 7T, if u(T) < 1, then 7 > 0.
Proposition 3.2.1. Let 7 be a d X d matrix. If u(T) = (t — 1)> < 1, then 0 < 7 < 2.

160 A New Strategy for 2D Untangling Meshes

IANENEEFN

NS EESEEEEEsEEaETE

bl LI T T

y i -
il |

LR -4
111381 "2
o
L3 . 'JI.:I 1 IREN |' i
(a) Horseshoe (b) Shest Grid
= |
(c) Hole-in-Square (d) Inverted Hole

Fic. 3.2. All four meshes after optimization with the s s, metric.

Proof. Suppose the metric is less than one. Then

(r-172<1
2-2r+1<1
2-2r<0

T(r-2)<0

Soceither: A)r<Oand7—2>0orB)r>0and -2 < 0.
Case A is impossible, leaving B: 0 < 7 < 2. O

Thus, when the Size metric is less than 1, the determinant is positive. On the other hand,
having the determinant positive does not necessarily mean that the Size metric will be less
than 1.

Here is another metric which enjoys a similar property:

J.W. Franks and P.M. Knupp 161
Proposition 3.2.2. Let 7 be a dxd real matrix. If y(T) = |T|>=2y(T)+2 < 1, then 7 > 0.

Proof. Suppose the metric is less than one. Then

TP -2y +2<1
TP -2y +1<0
TP +1 <2y

But (|T] - 1)> > 0 leads to 2|T| < |T|> + 1. Combining these results gives
ATI < ITP +1 <2y

and thus |T'| < . Therefore

T <y = VTP + 27

IT]> <|T) + 27

and so we have 0 < 7. O

Although Proposition 3.1.2 is proved for d X d matrices, the metric itself is not a Shape
metric unless d = 2, and thus the Proposition is only useful for 2D meshes. For 3D meshes,
the Shape metric has a different form [5].

The converse to this Proposition is only true if 7 is such that (7)) = 1. To see this,
suppose 0 < 7. Then

0<27

TP <|TP+27

T < y?

TP =20 +2<y? -2y +2
w(T) <1+ —1y (3.4)

As a final result, we have the following Proposition for the 2D non-barrier Shape metric
usn(T) = TP =27
Proposition 3.2.3 Let 7 be a 2 X 2 matrix. If ug,(T) = 0, then 7 > 0.
Proof. In [8] it was shown that ug;, = 0 if and only if T is a scaled rotation, i.e., T has the
form T = sR. In that case, T = det(sR) = s> > 0. O

3.3. Exploiting the Propositions. Both the Size and ShapeSize metrics have the poten-
tial to untangle meshes because their target matrices are non-inverted. Based on the Propo-
sitions of the previous section, these metrics can further be used to devise new metrics that
encourange untangling even more. Let 4 be a TMOP metric such that ¢ < 1 guarantees that
0 < 7. Then consider the following function f(T) = f(u(T)), which can be considered to be
a TMOP untangle metric:

F@ ={ll1 =€l =l = (1 = €] = wy? (3.5

with 0 < € a number that is small compared to 1. It is easy to see that f(T) > 0. Further,
f(T)=0ifand only if u < 1 — € < 1. Therefore, if f = 0, then 7 > 0 (note the similarity with
Hp).

162 A New Strategy for 2D Untangling Meshes

Propositions 3.2.1 and 3.2.2 thus allow us to create two new metrics having an increased
potential to untangle meshes:

fsa = {I[1 — €] = sl — (1 — €] — ps)f (3.6)
Fsnsew = 11 = €] = psnsel = ([1 — €] = psns))* (3.7

Note that fs.y = 0 gives ug. < 1 and, therefore, 0 < 7 < 2. Thus the metric tends to
both untangle and to encourage 7 = 1. In contrast, the Untangle-Beta metric only tends to
untangle. Similarly, the second metric should tend to untangle and to encourage well-shaped
elements. Proposition 3.2.3 shows that the use of the Shape metric ugy, in f(1) would be
unproductive.

3.4. Numerical Experiments with the New Untangle Metrics. First, the SizeUntangle
quality metric (fs.y) was applied to the four tangled test meshes, with a constant value of
epsilon = 0.01. The optimized meshes are shown in Figure 3.3. Not surprisingly, the results
are similar to the results obtained by the Size metric shown in Figure 3.1. Results for the
Hole-in-Square differ the most, with the SizeUntangle results looking less close to being
inverted. In fact, the SizeUntangle metric was able to untangle all four meshes.

(a) Horseshoe (b) Shest Grid

(c) Hole-in-Square (d) Inverted Hole

Fic. 3.3. All four meshes after optimization with fs .

J.W. Franks and P.M. Knupp 163

(a) Horseshoe (b) Shest Grid

(c) Hole-in-Square (d) Inverted Hole

FiG. 3.4. All four meshes after optimization with fss.u.

In Figure 3.4, the optimal meshes resulting from the ShapeSizeUntangle metric (fsys.v)
are shown. These meshes look very similar to those obtained by applying the s, metric
(Figure 3.2). The one noticeable difference, as the following data will further detail, is that
our new metric reduced the Hole-in-Square mesh to 4 of its original 23 inverted elements,
while the ShapeSize metric only obtained a result of 12. Overall, due to the untangling of
the Hole-in-Square mesh, the SizeUntangle metric performed better - as an untangler - than
the ShapeSizeUntangle metric. As was noted in Section 3.1, Size was able to reduce Hole-
in-Square to 6 inverted elements, while ShapeSize only managed 12. Perhaps this provides
insight as to why the SizeUntangle metric was able to untangle the mesh when the Shape-
SizeUntangle metric could not.

Several items to note from Table 3.1: The Shape metric performed the same, in terms
of untangling, as Laplace smoothing. Comparing the results of the two u vs. their f(u)
counterparts, we see that the latter did prove somewhat more effective in untangling meshes.
The original 15 metrics remains highly competitive. Better shaped elements are produced by
the SizeShape and SizeShapeUntangle metrics when compared to the Size and SizeUntangle
metrics, although the latter are perhaps superior in terms of ability to untangle.

For completeness we also optimized the four meshes using fs,unsangle, €ven though this
is not supported by a Proposition similar to 3.1.1 and 3.1.2. Results were the same as for pgy,

164 A New Strategy for 2D Untangling Meshes

TaBLE 3.1
Summary of Whether a Given Method Was Able to Untangle a Given Mesh
T means ’not able to untangle’, U means ’able to untangle’

Horseshoe Shest Hole-in-Sq Inv. Hole #T
T

Initial Mesh
Laplace

Hp

HMsSz

szU

MShSz
Ssnszu

MSh
#T

N = = O = O N

NHCCCCccCaHH
olcccacccca

R R Rl Wt
olcocccaccH

in terms of ability to untangle.

Table 3.2 gives the values of 7,,;, resulting from the various optimizations. As one can
see, the Hole-in-Square has the smallest 7,,;, values, and shows the relative success of the
various methods in untangling it.

TaBLE 3.2
Minimum t value for each mesh before and after optimization with the TMOP metrics.

Horseshoe Shest Hole-in-Square Inverted Hole
Initial | -0.178098 -0.315243 -0.957579 -1.47294
HUs 0.804821 0.253687 -0.188222 0.672569
fszv 0.790504 0.270406 0.0570835 0.717553
usnsz | 0.354348 0.192078 -0.901212 0.736087
Ssns.u | 0.295828 0.169121 -0.312364 0.735972
Hsh -0.178098 0.193576 -0.957579 0.735989
TaBLE 3.3

Initial Mesh (I) and Optimized Mesh (O)

Number of Inverted Elements

Horseshoe | Shest | HoleSq | Inv Hole

I ¢ I O 1 O|1 (0]

Size 12 0 9 0|23 6 |40 O
SizeUntangle 12 0 9 023 01|40 O
ShapeSize 12 0 9 01]23 12|40 O
ShapeSizeUntangle | 12 0 9 023 4140 O
Shape 12 12 |9 0123 23140 O

4. Conclusions. A new mesh optimization strategy for untangling 2D meshes, based on
node-movement, has been investigated. The strategy relies on a set of Propositions which
show that, for certain quality metrics 0 < u < oo within the Target-matrix paradigm, if © < 1
then the local area is positive. The Propositions were exploited in devising a new strategy
for mesh untangling that can also incorporate other goals such as Size or ShapeSize improve-
ment (i.e., the new metrics are not pure untanglers). In this way, the new strategy is similar
in purpose (but not in approach) to the method in [2]. Numerical results showed that the new

J.W. Franks and P.M. Knupp 165

TaBLE 3.4
Initial Mesh (O) and Optimized Mesh (O)

Number of Invalid Points

Horseshoe | Shest | HoleSq | Inv Hole

I o I o1 O I o

Size 44 0 9 0|70 6 |156 O
SizeUntangle 44 0 9 0|70 O | 156 O
ShapeSize 44 0 9 0|70 31|15 O
ShapeSizeUntangle | 44 0 9 0|70 4 | 156 O
Shape 4 4 |19 070 70| 156 O

metrics (especially SizeUntangle) performed reasonably well when compared to the authors’
previous Untangle-Beta metric (additional tangled meshes are needed to confirm this conclu-
sion). Significantly, the new metrics do not require that one specify a parameter similar to the
awkward 8 parameter.’ It is unfortunate that a useful Proposition for the Shape metric does
not exist since if it did, one could avoid having to construct proper values for A in the Target-
matrices, because the Shape metric is Size-invariant. Future work within this new strategy
might include more sophisticated models for the Size parameter A in the Target-matrix to
allow untangling of meshes having heterogeneously-sized elements. Work on extending this
approach to 3D meshes has already commenced. Finally, like all the other untangling algo-
rithms appearing in the literature, the new metrics do not guarantee an untangled result.

Acknowledgments The initial impetus for this paper is due to Evan van der Zee, who first
proved that the ShapeSizeOrientation metric, |T — I|?, obeys a Proposition very similar to
those given in Section 3.2. This metric was not used in this study because it requires one
to include Orientation information within the Target-matrix construction step, and it is not
obvious what that information should be in mesh untangling.

REFERENCES

[1] P. BARRERA-SANCHEZ AND J. TiNoco-Ruiz, Smooth and Complex Grid Generation over General Plane Regions,
Mathematics and Computers in Simulation, 46 (1998), pp. 87-102.
[2] J. EscoBar, E. RobrRIGUEZ, R. MONTENEGRO, G. MONTERO, AND J. GONZALEZ-YUSTE, Simultaneous Untangling
and Smoothing of Tetrahedral Meshes, Computer Methods in Applied Mathematics and Engineering,
192 (2003), pp. 2775-2787.
[3] L. FrEImaG anp P. PLassMANN, Local Optimization-Based Simplicial Mesh Untangling and Improvement, Intl.
Journal of Numerical Methods in Engineering, 49, pp. 109-125.
[4] , Local Optimization-Based Untangling Algorithms for Quadrilateral Meshes, (2001).
[5] P. Knupp, Local 3d metrics for mesh optimization in the target-matrix paradigm, manuscript.
[6] , Hexahedral Mesh Untangling and Algebraic Mesh Quality Metrics, 9th International Meshing
Roundtable, (2000), pp. 173-183.
, Hexahedral and Tetrahedral Mesh Untangling, Engineering with Computers, 17 (2001), pp. 261—
268.
, Local 2d Metrics for Mesh Optimization in the Target-matrix Paradigm, SAND2006-7382J, Sandia
National Laboratories, (2006).
, Introducing the target-matrix paradigm for mesh optimization via node-movement, Proceedings of
the 19th International Meshing Roundtable, (2010).
[10] P. VAcHAL, R. V. GARIMELLA, AND M. J. SHAsHKOV, Mesh Untangling, Los Alamos National Laboratory - Sum-
mer report, (2002).
[11] A. WinsLow, Numerical solution of the quasilinear poisson equations in a nonuniform triangle mesh, J. Comp.
Phys., 2 (1967), pp. 149-172.

[7]
[8]

[9]

SThe parameter € in f(u) is easier to choose than 3 since it only needs to be small compared to 1, whereas 8
must be small compared to 7. Moreover, A can be constant over the mesh even if the mesh is Size-heterogeneous.

CSRI Summer Proceedings 2010 166

STATIC VERTEX REORDERING SCHEMES FOR LOCAL MESH QUALITY
IMPROVEMENT

JEONGHYUNG PARK!, PATRICK KNUPP** AND SUZANNE M. SHONTZ'*

Abstract. Numerical experiments were conducted to investigate how timings in a local mesh Laplacian-
smoothing algorithm vary as a function of the ordering of the vertices (and patches) in the mesh. Timings varied by
roughly a factor of 2, depending which of the 20 orderings was used. Sensitivity of these results as a function of
mesh size, mesh quality, and termination criteria was investigated. No particular ordering was best in all situations,
although certain orderings appear to be viable candidates for an all-purpose ordering.

1. Introduction. The mesh and its quality can greatly impact: (1) the accuracy of the
PDE solution and (2) the conditioning, stability, and efficiency of the associated PDE solver.
[11, 7]. The quality of the mesh can be improved by adaptivity [1, 6], smoothing [8, 2], or
swapping [4, 5]. Mathematically rigorous mesh smoothing is performed via optimization of
an objective function which measures the mesh quality. In mesh smoothing, vertex movement
strategies are applied in order to change the mesh vertex coordinates, while maintaining the
connectivity of the initial mesh. In this paper, we focus on static vertex reordering schemes
within the context of local mesh optimization in order to improve mesh quality.

1.1. Related Literature. Shontz and Knupp previously performed research on vertex
reordering schemes within the context of local mesh optimization [12]. Key findings from
their paper [12] are as follows:

1. Vertex reorderings were most helpful when the initial mesh is far from optimal.
2. Vertex reorderings were most helpful when the initial vertex ordering is poor.
3. Dynamic vertex reordering schemes were too expensive relative to static vertex re-
ordering schemes.
These results form the motivation for the current study on static vertex reordering schemes
within the context of local mesh optimization.

Other researchers have also performed research vertex reordering within the context of
mesh smoothing performed via optimization. However, it should be noted that the papers to
be discussed below develop results on vertex reordering schemes applied to improving the
efficiency of the mesh optimization via improvements in the cache performance on a spe-
cific computer architecture. In contrast, we are developing general-purpose techniques, i.e.,
schemes which are independent of the computer architecture.

For example, Munson [9] and Munson and Hovland [10] developed a Feasible Newton
mesh optimization algorithm and benchmark. Their algorithm and benchmark employed both
data and iteration reordering in order to improve cache performance. One finding of their re-
search was that reordering of the input data can increase or decrease the number of iterations
taken by the inexact Newton method and can affect its success or failure [9]. The reordering
applied was a reordering of the vertices and elements in the mesh by applying a breadth-first
search and reversing the order in which the vertices were visited. When data and iteration
ordering were performed on the relevant hypergraphs, the reorderings were found to signif-
icantly decrease the number of cache misses in all phases of code execution and resulted in
significantly faster code [10].

Strout ef al. [13] investigated six data and iteration reordering schemes and applied them
to tetrahedral meshes before they were optimized using FeasNewt. With each reordering

IThe Pennsylvania State University, jxp975@cse.psu.edu
**Sandia National Laboratories, pknupp @sandia.gov
" The Pennsylvania State University, shontz@cse.psu.edu

J.Park, P.Knupp, and S.Shontz 167

scheme, the vertices and elements of the mesh were reordered using a hypergraph model.
The six orderings considered in their paper were: the (1) null ordering, (2) Hyper-BFS (a
breadth first search on hypergraph), (3) Hyper-CPack (consecutive packing on hypergraph),
(4) Hyper-Part (hypergraph partitioning), (5) HierBFS (Hierarchical BFS) and (6) HierCPack
(Hierarchical consecutive packing). They saw up to 40% better performance than the original
ordering. Their results show that hierarchical data reordering improves over the performance
of local reordering strategies. Performance metrics of interest were overall execution time
as well as various types of cache misses (L1, L2, and TLB). This paper lists two possibili-
ties for future research: (1) show that a particular ordering will never slow down a particular
algorithm if applied and (2) automatic determination of the best ordering.

1.2. Vertex Reordering Study. For the current study, we introduce vertex reordering
of the interior vertices within the context of the local Laplacian smoothing procedure. Many
other methods for mesh smoothing exist, but Laplacian was selected for this study because it
is simple and well-understood. Two classes of reordering techniques were suggested in [12]:
static vertex reordering and dynamic vertex reordering. In the static case, the initial ordering
of the vertex list provided to the mesh optimization algorithm is reordered by using some
criteria. The reordered list is used and kept fixed during the optimization. In the dynamic
case, the reordered list is updated at the end of each iteration within the optimization, thus
creating a sequence of vertex lists. In this paper, we focus on static reordering of the vertices.
The quality of the mesh is measured according to a normalized Laplacian mesh quality metric.
The principal goal of this study is to determine the key variables that affect the success of
the reordering methods as determined by the performance of the underlying Laplacian mesh
smoothing routine.

We specify the pseudocode for the local mesh optimization procedure which identifies
when vertex reordering is performed and also the details of the timing. Further details on the
timing metrics of interest will be described in the Numerical Experiments section.

1. Initialization: vertex list, tolerance values,
termination criterion, objective function,
control parameters.

-- CPU Timer_1
2. While tolerance not satisfied and iteration
count not exceeded
-- CPU Timer_2
Loop over list of free vertices
- update free vertex coordinates
(via optimization)

End loop over free vertices
-- CPU Timer_3
Reorder vertex list on first iteration
-- CPU Timer_4

End while loop

-- CPU Timer_5

1.3. Vertex Reordering Study Design. For our initial study, we fixed the following
variables: quality metric, optimization template (linear averaging), optimization solver (Laplace
smoothing), sorter (Quicksort), mesh connectivity, serial computation, architecture and vary
the mesh size, element type, element heterogeneity, element isotropy, solver convergence tol-
erance, and vertex reordering scheme. Mesquite, the Mesh Quality Improvement Toolkit [3],
was used for the study.

168 Mesh Vertex Reordering

2. Mesh Quality Improvement Problem. Let g denote the objective function as com-
puted by the Laplacian metric. Then g = ﬁ o lf, where [; is the length of the i”* interior
edge and n is the total number of interior edges in the mesh. Define the normalized Laplace
objective function by gy = %, where g;,;; is the initial value of the objective function,
qeur 18 the current value of the objective function during the optimization, and gy, is the
value of the objective function when the optimization is converged. The range of the nor-
malized objective function is from 0 to 1, with O being the optimal value. Minimizing gy is
equivalent to minimizing g.,,. The value of g y;,q;, which establishes convergence, was based

on observing when ¢, became nearly constant as the optimization progressed.

3. Vertex Reordering Schemes. We apply vertex reordering in the above mesh opti-
mization algorithm. Most of the schemes reorder the vertices at the beginning of the opti-
mization process. However, in the case of the vertex movement-related schemes, the vertex
reordering is executed after one optimization step is complete so that the distance between the
previous and the current vertex coordinates can be computed. In this paper, static vertex re-
ordering is considered, i.e., reordering is performed only once. The twenty vertex reordering
schemes explored are as follows (taken from [12]):

e Scheme (N): Null ordering. Do not reorder the vertex list.

e Scheme (R): Random Ordering. Generate a random integer from 1 to N, with N
being the total number of local patches in the mesh. Place the vertex assigned the
value 1 first in the list and N last.

e Scheme (WQP): Ordering by Worst Quality Patch. Evaluate objective function
on a local patch to measure local patch quality. Sort by putting the worst quality
patch first in the list, and so on.

e Scheme (GAVM): Ordering by Greatest Absolute Vertex Movement. Evaluate
the absolute distance moved by the free vertex in the local patch before and after
the local optimization. Sort by putting the patch with the greatest absolute distance
moved first in the list, and so on.

e Scheme (GRVM): Ordering by Greatest Relative Vertex Movement. Evaluate
the relative distance moved by the free vertex in the local patch before and after
the local optimization. Relative distance was measured by dividing the absolute
distance-moved by the initial absolute distance-moved; the normalizing quantity
thus varies from patch to patch. Sort by putting the patch with the greatest rela-
tive distance moved first in the list, and so on.

e Scheme (LNG): Ordering by Largest Norm of Gradient. Evaluate the {,-norm
of the local gradient of the objective function. Sort by putting the largest norm first
in the list, and so on.

e Schemes (D-WQP, D-GAVM, D-GRVM, and D-LNG): Distance schemes. Cre-
ated by measuring the distance of the free vertex in each patch from the position
of the free vertex which had the (i) worst patch quality, (ii) greatest average vertex
movement, (iii) greatest relative vertex movement, or (iv) largest norm of the gradi-
ent, respectively. Then sort by putting the patch with the smallest distance first in
the list, and so on.

e Schemes (-N, -R, -WQP, -D-WQP, -GAVM, -D-GAVM, -GRVM, -D-GRVM, -
LNG, -D-LNG): Reverse schemes. For each of the schemes above there is a corre-
sponding ordering scheme produced by reversing the ordering. For example, scheme
-WQP orders the vertex patches from best quality first to worst quality last.

4. Numerical Experiments. To determine the efficiency of the static vertex reordering
schemes, four numerical experiments were designed. Each experiment was designed to illus-

J.Park, P.Knupp, and S.Shontz 169

trate the impact of the following factors on the efficiencies of the mesh optimization algorithm
when used in conjunction with the various vertex reordering schemes: the final mesh quality
desired, the mesh size, the initial mesh quality, and the initial vertex ordering. The following
subsections will explain these experiments and the associated results in more detail.

A tetrahedral hook geometry was used to create the initial meshes for the experiments
(Figure 4.1).

FiG. 4.1. The tetrahedral hook geometry used to create the initial meshes for the experiments

Our mesh quality optimization procedure minimized the objective function ¢, which cor-
responds to the overall mesh quality. To evaluate the normalized metric gy, timing results
are reported for when the mesh optimization algorithm reached ¢ fjnu = 2.237975.

The timing results for each scheme were unstable due to the background tasks of the ma-
chine. Multiple runs were required in order to obtain stable relative rankings of the reordering
schemes. Because the average time results after five runs were close to stable, five runs of
each scheme for each experiment were performed, and their times were averaged for each
scheme. The average total time (over the 5 runs) of a given scheme is defined as 77 and all
timing results for each experiment used the 7T values of each reordering scheme.

To characterize the variation in total times over the 20 schemes, compared to the total
time of a typical scheme, results are reported as TT’"“; TToin 4 TT”‘“"; Twin where TT, i and
TTax are the minimum and maximum total times of all the reordering schemes. Also, the
percent variation in the total time was computed by dividing TT"’“"; T Tnin by TT’"‘”; TToin

To effectively compare the timing results of each scheme, we defined S as follows:

TT =TTy

4.1
T (@.1)

where T'T,,, is the average total time of all the reordering schemes. Note that if 8 > 0 for a
particular scheme, the scheme is slower than average. Similarly, if 8 < 0, the scheme is better
than average. The deviation in 8 used for each experiment represented the value farthest from
B =0.

All four experiments were performed with a multicore machine equipped with two pro-
cessors: a 4 quad-core AMD Shanghai processor running at 2.7 GHz with 96 GB of RAM
and a 2 quad-core Intel Nehalem processor running at 2.66 GHz with 24 GB of RAM. The
performance of each run was very sensitive, because the machine was multicore; thus, there
was memory contention between processors. Although five runs of each scheme for each ex-
periment were performed to obtain stable timing results, the timing results might be different
if the experiment environment is changed.

4.1. Experiment 1: Sensitivity to Outer Termination Criterion Tightness. The purpose
of this experiment was to observe the behavior of the mesh optimization algorithm when used

170 Mesh Vertex Reordering

in conjunction with the various reordering schemes when different outer termination values
were set. The mesh optimization algorithm was terminated based on the normalized Lapla-
cian metric (NLM). In this experiment, four NLM values were considered, i.e., 0.75, 0.5,
0.25, and 0, as termination values. The first three cases were used to observe the behavior of
each scheme when a relatively inaccurate solution is pursued, whereas the last case was used
to observe the behavior when an accurate solution is desired. After the mesh quality reached
the desired NLM value, the mesh optimization algorithm terminated, and the corresponding
timing information was recorded.

Ranking vs. Time (NLM=0.75) Ranking vs. Time (NLM=0.5)

Ranking

w_ @ % 00) o
Time (sec) Time (sec)

(a) NLM=0.75 (b) NLM=0.5

Ranking vs. Time (NLM=0.25) Ranking vs. Time (NLM=0)

Ranking
3

120 140 160 180 500 1000 1500 2500 3000 3500

o 2000
Time (sec) Time (sec)

(¢) NLM=0.25 (d) NLM=0

40 60 80

FiG. 4.2. Ranking vs. total time for the mesh optimization algorithm when used in conjunction with the various
vertex reordering schemes with various NLM values in Experiment 1.

Figure 4.2 shows the ranking results for each scheme in Experiment 1. The overall
scheme rankings were relatively stable although the rankings for some schemes, such as
GRVM, -LNG, and -D-GAVM, changed slightly for NLM=0. The mesh optimization algo-
rithm converged faster, independent of the NLM value, when most of the schemes other than
N were used for reordering. Thus, vertex reordering improves the efficiency of the mesh op-
timization algorithm.

In this experiment, the particular choice of reordering scheme is important. It was ob-
served that the time difference between the best and the worst ranked schemes was reasonably
large. The timing results were: 72.07+43.57 seconds for NLM=0.75, 86.86+52.42 seconds
for NLM=0.5, 101.64+61.27 seconds for NLM=0.25, and
2177.24+1225.05 seconds for NLM=0. That is, for NLM=0.75, 0.5, 0.25, and 0, the percent
variations in total time were 60.45%, 60.26%, 60.29%, and 56.27%, respectively. The reason
for the large difference in the variation in the total time was the relatively poor performance

J.Park, P.Knupp, and S.Shontz 171

of the scheme N. The total time of scheme N (3100 seconds) was approximately twice that
of the other reordering schemes (1520 seconds). Excluding this outlier, the percent variation
in the total time was 35% which was still significant. Therefore, appropriate selection of the
reordering scheme was required to converge quickly.

Similarly, the deviation in 5 (4.1) was relatively noticeable. Figure 4.3 shows the values
of 3 for each scheme in Experiment 1.

Beta vs. NLM (forward schemes) Beta vs. NLM (reverse schemes)

A —e—-R
—e—wap —e—waP
D-wap —s— -D-WaP

—b—D-GAVM —o— _o-aAvM|
1 —A— GRVM 1 —h— GRV!
—v— D-GRVM —y— -D-GRVM
—$— NG —p— _LNG
—4=D-ING —4—-D-ING

Beta
Beta

0 y 0
—
I
S
575 05 025 ° 37 05 025)
NLM NLM
(a) forward schemes (b) reverse schemes

Fic. 4.3. B vs. NLM for the 20 vertex reordering schemes in Experiment 1. Results for the 10 forward schemes:
N, R, WOP, D-WQP, GAVM, D-GAVM, GRVM, D-GRVM, LNG, and D-LNG are shown in (a). The results for the 10
reverse schemes: -N, -R, -WQP, -D-WQP, -GAVM, -D-GAVM, -GRVM, -D-GRVM, -LNG, and -D-LNG are shown in
(b).

In all cases, the deviations in 8 were greater than 1. In particular, the deviations were:
1.39 for NLM=0.75, 1.37 for NLM=0.5, 1.36 for NLM=0.25, and 1.16 for NLM=0. This
was because the value of 8 for scheme N was always greater than 1. In addition, the total time
for scheme N was twice that of the other schemes. Again, this demonstrated the importance
of the choice of vertex reordering scheme.

The -D-WQP scheme ranked the best in this experiment for all NLM values. GRVM,
D-LNG, and D-GAVM schemes also showed relatively good performance in this experiment.
Although small changes occurred in the relative rankings as the NLM value decreased, the
total time to converge was reduced through adequate choice of reordering schemes, especially
the -D-WQP scheme for this experiment.

4.2. Experiment 2: Mesh Size. The purpose of this experiment was to determine the
effect that mesh size has on the efficiency of the mesh optimization algorithm when used
in conjunction with various vertex reordering schemes. In this experiment, five different
sizes of meshes were used: 50K, 75K, 100K, 125K, and 150K. Appropriate mesh sizes were
determined through a preliminary experiment. Figure 4.4 shows the ranking vs. total time
results for each of the five mesh sizes in this experiment.

The rankings for each scheme were very sensitive to an increase in mesh size. Schemes
WQP and -WQP ranked very highly until the mesh size increased to 150K. However, when
the mesh size reached 150K, these schemes ranked the worst. The time difference between
the best and the worst ranked schemes was relatively noticeable. For mesh sizes 50K, 75K,
100K, 125K, and 150K, the timing results were: 72+20 seconds, 170+78 seconds, 600+305
seconds, 1622+853 seconds, and 2532+804 seconds, respectively. The percent variations
in the total time were: 27% for 50K, 47% for 75K, 51% for 100K, 53% for 125K, and
32% for 150K. Excluding the outlier, i.e., the 150K mesh, the time variations increased as
the mesh size increased. In this experiment, quality-related reordering schemes WQP and

172 Mesh Vertex Reordering

Ranking vs. Time (NLM=0) Ranking vs. Time (NLM=0)

) 7 T e 20 20 2e0 260
Time (sec) Time (sec)

(a) 50K (b) 75K

Ranking vs. Time (NLM=0) Ranking vs. Time (NLM=0)

30 0 1000 80 0 1000 1200 1ao0 W0 2000 2200 2000 2600

0 _ w0 0 600
Time (sec) Time (sec)

(c) 100K (d) 125K

Ranking

600 1800 2000 2200 00 2000 000 5200 340

B
Time (sec)

(e) 150K

FiG. 4.4. Ranking vs. total time for the mesh optimization algorithm when used in conjunction with the various
vertex reordering schemes with various mesh sizes in Experiment 2.

-WQP showed good performance when combined with the mesh optimization algorithm.
The deviation in 8 (4.1) also showed the sensitivity of the ranking results as the mesh size
increased (Figure 4.5).

The deviations in 8 were: 0.28, 0.65, 0.53, 0.97, and 0.51 for mesh sizes 50K through
150K, respectively. Although the deviation in 8 for mesh size 50K was small compared to
the deviation for the other mesh sizes, the overall 8 deviation from one mesh size to the next
was discernible.

4.3. Experiment 3: Sensitivity to Initial Mesh Vertex Coordinates. The purpose of this
experiment was to investigate the behavior of the mesh optimization algorithm when used in
conjunction with various reordering schemes when various meshes with different initial mesh
qualities were used. The input meshes differed from the original mesh used in Experiment
1 in their vertex coordinates. Four meshes of various qualities were obtained by randomly

J.Park, P.Knupp, and S.Shontz 173

Beta vs. mesh size (forward schemes) Beta vs. mesh size (reverse schemes)

05

Beta

125K 150K

B0k 75K 100K 125K 150K 50K 75K 100K
Mesh size Mesh size

(a) forward schemes (b) reverse schemes

Fic. 4.5. B vs. mesh size for the 20 vertex reordering schemes in Experiment 2. Results for the 10 forward
schemes N, R, WOP, D-WQP, GAVM, D-GAVM, GRVM, D-GRVM, LNG, and D-LNG are shown in (a).The results
for the 10 reverse schemes -N, -R, -WQP, -D-WQP, -GAVM, -D-GAVM, -GRVM, -D-GRVM, -LNG, and -D-LNG are
shown in (b).

perturbing the vertex coordinates of the original mesh as follows:
Xoew = orig T lel, 4.2)

where u is a random unit vector, L is the average of all the edge lengths in the mesh, and f
is the amount of perturbation. In this paper, f = 0,0.1,0.3, and 0.9. Note that f = 0 means
no perturbation, and f = 0.9 is a large perturbation. The perturbations are applied only to
the interior vertices in the mesh. Figure 4.6 shows the ranking results for each scheme in
Experiment 3.

As the perturbation size increased, the mesh optimization algorithm required more time
to converge for nearly all the reordering schemes. The time difference between the best and
the worst ranked schemes was noticeable. The timing results were: 1940+1148 seconds for
f =0, 1440+712 seconds for f = 0.1, 2013+£985 seconds for f = 0.3, and 37752270
seconds for f = 0.9. That is, for f = 0,0.1,0.3, and 0.9, the percent variations in total
time were 59%, 50%, 49%, and 60%, respectively. Hence vertex reordering can reduce the
amount of time for the mesh optimization algorithm to converge. In this experiment, schemes
D-GAVM for f =0, WQP for f = 0.1, -N for f = 0.3, and -D-GRVM for f = 0.9 ranked the
best. The mesh optimization algorithms with these schemes took less than half of the total
time for the mesh optimization algorithm with scheme N.

The plots of the values of 8 vs. perturbation size for each scheme are shown in Figure
4.7. The B deviations (4.1) were: 0.85 for f = 0, 0.51 for f = 0.1, 0.74 for f = 0.3, and 0.7
for f = 0.9. The values of 8 for each scheme deviate from 8 = 0 more than 0.5. The ranking
of each scheme was very sensitive with respect to the different perturbation size.

4.4. Experiment 4: Sensitivity to Initial Mesh Vertex Ordering. The purpose of this
experiment was to explore the effect that the initial vertex ordering had on the efficiency of the
mesh optimization algorithm when used in conjunction with the vertex reordering schemes.
The input meshes differed from the original mesh used in Experiment 1 in their initial vertex
orderings. Four different reordering schemes, i.e., LNG, R, N, and D-LNG were applied to
the original mesh to obtain four initial meshes. The results for this experiment are shown in
Figure 4.8.

When schemes LNG and R were used for creating the initial vertex ordering, the mesh
optimization algorithm with scheme -D-WQP required the least amount of time to complete.

174

Ranking vs. Time (NLM=0)

Mesh Vertex Reordering

Ranking vs. Time (NLM=0)

20 20 D-LNG
18 18
16 16
14 1
12 2
g g
= =
£ s
< 4
8 8
6 6
4 4
2 2
D-GAVM
500 7000 500 2000 2500) 300 600 800 1000 1200 1400 1600 1800 2000 2200
Time (sec) Time (sec)
(@ f=0 (b) f=0.1
Ranking vs. Time (NLM=0) Ranking vs. Time (NLM=0)
208 -D-LI
18 -D-GRVM
D-GAVM
18-
s
D-GRVM
12 LNG
g 2
=4 =
€10 <
& &

2500 8000 8500 4000

Time (sec)

(d) f=09

2000 2200 2400 2600 2800 3000 4500 5000 5500 6000 6500

Time (sec)

) f=03

1200 1400 1600 1800

FiG. 4.6. Ranking vs. total time for the mesh optimization algorithm when used in conjunction with the various
vertex reordering schemes with various perturbation sizes in Experiment 3.

Beta vs. perturbation size (forward schemes) Beta vs. perturbation size (reverse schemes)

Beta

02 03

04 05 06
Perturbation size

04 05 06
Perturbation size

(a) forward schemes (b) reverse schemes

Fic. 4.7. B vs. perturbation size for the 20 vertex reordering schemes in Experiment 3. Results for the 10
forward schemes N, R, WOP, D-WQP, GAVM, D-GAVM, GRVM, D-GRVM, LNG, and D-LNG are shown in (a). The
results for 10 reverse schemes -N, -R, -WQP, -D-WQP, -GAVM, -D-GAVM, -GRVM, -D-GRVM, -LNG, and -D-LNG
are shown in (b).

However, the rankings for the all of schemes were very sensitive with respect to the initial
vertex ordering of the initial mesh. In this experiment, the time difference between the best
and the wort ranked schemes was relatively large, i.e., over 2000 seconds. For the initial
vertex orderings created using schemes LNG, R, N, and D-LNG, the timing results were:

J.Park, P.Knupp, and S.Shontz 175

Ranking vs. Time (NLM=0)

Ranking vs. Time (NLM=0)

200 e oDlNG 20 D-WQP
wof "
1o} W
wt “
o} ‘2
g 2
o D-GRVM
8 8 waQpP
GAVM
o s
-D-wQP
ar 4 R
D-GAVM
2r 2 -D-LNG
-D-GAVM
500 1000 1500 2000 3000 3500 500 1000 1500 200(2500 3000 3500
Time (sec) Time (sec)
(a) scheme LNG (b) scheme R
Ranking vs. Time (NLM=0) Ranking vs. Time (NLM=0)
20 wor
s o}
s 1o}
s 1t
2} ol
> o
5 14
= 10 = 10F
= =
& &
o of
o o
hs o
2F D-LNG oL
-D-wQP
o o0 500 m 70 w000 500 % 0% 5 2000 2500 5000 5500
Time (sec) Time (sec)
(¢) scheme N (d) scheme D-LNG

FiG. 4.8. Ranking vs. total time for the mesh optimization algorithm when used in conjunction with the various
vertex reordering schemes applied to meshes with different initial vertex orderings in Experiment 4.

217341183 seconds, 2006+1055 seconds, 2177+1255 seconds, and 1920+1084 seconds, re-
spectively. That is, the percent variations in total time were: 54% for the LNG initial ordering,
53% for the R initial ordering, 56% for the N initial ordering, and 56% for the D-LNG initial
ordering. Figure 4.9 also shows the sensitivity of the ranking results for this experiment.

Beta vs. initial ordering (forward schemes) Beta vs. initial ordering (reverse schemes)

Beta
Beta

e R N D-LNG I)
Initial ordering Initial ordering

(a) forward schemes (b) reverse schemes

Fi. 4.9. B vs. the initial vertex ordering for the 20 vertex reordering schemes in Experiment 4. Results for the
10 forward schemes N, R, WOQP, D-WQP, GAVM, D-GAVM, GRVM, D-GRVM, LNG, and D-LNG are shown in (a).
The results for the 10 reverse schemes -N, -R, -WQP, -D-WQP, -GAVM, -D-GAVM, -GRVM, -D-GRVM, -LNG, and
-D-LNG are shown in (b).

176 Mesh Vertex Reordering

The deviation in S (4.1) as a function of initial vertex ordering was very significant. The
maximum value of 8 was: 1.33 for the LNG initial ordering, 1.11 for the R initial ordering,
1.16 for the N initial ordering, and 1.06 for the D-LNG initial ordering. Even scheme N had
the maximum value of 8 for the N and D-LNG initial vertex orderings.

5. Conclusions. Numerical experiments were conducted on a local-patch
Laplacian-smoothing algorithm to assess the effect of the ordering of the vertices in a tetrahe-
dral mesh on the CPU time to solution. Twenty orderings, based on mesh quality, gradients,
and movement, were created from the initial mesh for use in a set of four experiments. The
experiments were designed to explore the sensitivity of the timing results to (1) whether or
not an "accurate’ solution was found, (2) the mesh size, (3) the ’distance’ between the initial
and optimal meshes, and (4) the initial vertex orderings. The results reveal that the time-to-
solution within each experiment varied significantly (about 50%) over the twenty orderings,
showing that it does matter which ordering is used. Scheme N results in the initial ordering
that is supplied by the mesh generator; that scheme ranked 20th (worst) in Experiment 1, no
greater that 14th in Experiment 2 (except for the 150K mesh), and no greater that 10th in
Experiment 3, leading to the conclusion that re-ordering is often better than using the initial
ordering from the mesh generator.

In the previous paper [12], one of the conclusions was that the farther the initial guess
is from optimal, the larger the variation in the total time of the mesh optimization algorithm,
and thus the more significant the choice of reordering scheme becomes. A similar trend was
obtained in the results of Experiment 3. When the perturbation size f = 0.9 was applied, the
timing results showed more variation than other smaller perturbation size cases. However,
one could not see that vertex reorderings were most useful when the initial vertex ordering
was poor through Experiment 4.

In Experiment 1, the rankings of the schemes were remarkably stable as the ’accuracy’
of the solution was varied, with -D-WQP giving the smallest timings. Rankings were notably
less stable in the other experiments. Scheme WQP ranked well in the mesh-size experiments
(from 50K to 125K vertices); however, scheme -D-WQP, which ranked well in Experiment 1,
did not stand out in Experiment 2. Scheme GAVM ranked well in Experiment 3 for f < 0.9.
Scheme -D-WQP again ranked well in Experiment 4. Consequently, although no particu-
lar scheme did well under all circumstances, the after-mentioned schemes might be worth
considering if static re-ordering is to be applied prior to local-patch Laplacian-smoothing.

6. Future Work. Reducing the variability in the multicore timing results is planned in
the future. Furthermore, additional experiments will be performed to examine the perfor-
mance of the reordering schemes within other contexts such as aspect ratio and boundary
vertex reordering.

7. Acknowledgement. This work was supported in part through instrumentation funded
by the National Science Foundation through grant OCI-0821527. Also, this work was funded
in part by NSF grant CNS 0720749 and an Institute for CyberScience grant from The Penn-
sylvania State University.

REFERENCES

[1] R. Bank anp R. SmitH, Mesh smoothing using a posteriori error estimates, SIAM J. Numer. Anal., 34 (1997),
pp. 979-997.

[2] L.BraNETs AND G. CAREY, Smoothing and adaptive redistribution for grids with irregular valence and hanging
nodes, in Proc. of the 13 International Meshing Roundtable, 2004, pp. 333-344.

[3]

[4]

[5]
[6]

[7]
[8]
[9]
[10]

[11]
[12]

[13]

J.Park, P.Knupp, and S.Shontz 177

M. BREWER, L. A. FrEITAG, P. KNupPP, T. LEURENT, AND D. MELANDER, The Mesquite Mesh Quality Improvement
Toolkit, in Proceedings of the 12th International Meshing Roundtable, Sandia National Laboratories,
2003, pp. 239-250.

L. Frermag anp C. Oruivier-GoocH, Tetrahedral mesh improvement using swapping and smoothing, Int. J.
Num. Meth. Engr., 40 (1997), pp. 3979-4002.

B. KLINGNER AND J. SHEWCHUK, Aggressive tetrahedral mesh improvement, Springer-Verlag, 2008, pp. 3-23.

J. Lacuk ano E. Hecur, Optimal mesh for P1 interpolation in HI seminorm, in Proc. of the 15" international
Meshing Roundtable, Springer-Verlag, 2006, pp. 259-270.

1. M. Batporr, Computational study of the effect of unstructured mesh quality on solution efficiency, in Proc.
of the 13" Annual ATAA Computational Fluid Dynamics Conference, 1997.

R. MONTENEGRO, J. EscoBar, G. MoNTERO, AND E. RODRIGUEZ, Quality improvement of surface triangulations,
in Proc. of the 14" International Meshing Roundtable, Springer-Verlag, 2005, pp. 469-484.

T. MunsoN, Mesh shape-quality optimization using the inverse mean ratio, Mathematical Programming, 110
(2007), pp. 561-590.

T. MunsoN anNDp P. HovLanp, The feasNewt benchmark, in Proc. of The Second ACM SIGPLAN Workshop on
Memory System Performance (MSP), pp. 23-24.

J. SuewcHUK, What is a good linear finite element? Unpublished preprint, 2002.

S. SHonTZ AND P.KNUPP, The effect of vertex reordering on 2D local mesh optimization efficiency, in Proc. of
the 17 International Meshing Roundtable, Springer, 2008, pp. 107-124.

M. Strout, N. OsHEM, D. RosTrRON, P. HovLAND, AND A. PoTHEN, Evaluation of hierarchical mesh reorderings,
in Proc. of the 9" International Conference on Computational Science, pp. 540-549.

CSRI Summer Proceedings 2010 178

MULTIFRACTAL DIMENSIONS USING MAXIMAL SIMPLICES
AND PYTHON EXTENSIONS TO TEVA-SPOT

JESSE BERWALD*, DAVID DAY, SCOTT MITCHELL#, AND AFRA ZOMORODIAN?

Abstract. This article briefly summarizes two projects, the first on nonlinear dynamical systems and the second
on discrete optimization software.

Nonlinear dynamical systems, which are integral to a wide range of fields from biological modeling to climate
studies, often exhibit chaotic behavior. The attractors of such systems give a window into the global behavior of the
systems themselves. We introduce a new method for determining the multifractal spectrum and dimension of the
attractor of a dynamical system. We show that the tools developed for efficient analysis in the field of computational
topology are well-suited for the task of estimating the local density of points in the attractor.

Discrete optimization problems are found in a great variety of fields, such as architecture (e.g.,long term site
plans over many sites) to water planning and management to nuclear weapon stewardship. We describe below an
extension to the TEVA-SPOT suite developed by SNL and the EPA. We focus on the Pareto front of optimal solutions
to a pair of objectives and consider the near-optimal solutions dominated by these.

1. Introduction: Simplicial Measures. The discovery of strange attractors, such as
the Lorenz attactor and other chaotic systems, illuminated an incredibly rich structure in rela-
tively simply physical systems. Subsequent study showed that the attractors of such systems
are complex enough to have a continuum of scaling exponents [6, 12, 18]. This is in contrast
to the Cantor set, for instance, which has a single scaling exponent [6].

The concept of dimension can be generalized past the usual notions of length, area, and
volume. Many methods have been developed to approximate the dimension of the attractor
of a dynamical system. The two that we will focus on in this work are the box-counting di-
mension, also known as the Minkowski-Bouligand dimension, and the Hausdorft dimension,
which is estimated using the partition function and methods derived from thermodynamics
[6, 14, 17].

In order to approximate the dimension of an attractor computationally, one needs a way to
tease out the invariant measure on the attractor from a finite set of data points [5]. These data
are assumed to have been sampled from the distribution of points on the attractor (determined
by the invariant measure), either numerically by running a computer simulation for a “long
time” or through suitable measurement of a real physical system. Understanding the invariant
measure is difficult because it often has a highly irregular distribution on the attractor and can
only be studied using the finite data set.

We describe a new simplicial measure that gives an accurate approximation of the mass
distribution on the attractor and allows one to compute the fractal dimension as well as the
multifractal spectrum of the attractor. A simplicial measure is defined on a subset of simplices
in a Vietoris-Rips simplicial complex that has been constructed from a finite data set sampled
from the attractor. This subset is composed of the maximal simplices in the complex. These
structures provide detailed information about the density of points in the data set, allowing
one to approximate the invariant measure on the attractor itself.

1.1. Dynamical Systems. In this section we recall the definition of a dynamical system
as well as that of an attractor. A dynamical system specifies a rule that describes how one
state of a system evolves into another over time. We describe this situation for discrete-time
systems on a topological space X, the state space. (For a more thorough review including

“Department of Mathematical Sciences, Montana State University, berwald @math.montana.edu
Sandia National Laboratories, dmday @sandia.gov

¥Sandia National Laboratories, samitch@sandia. gov

$Department of Computer Science, Dartmouth College, afra@cs.dartmouth.edu

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 179

continuous time systems see [10, 18].) Given a map f : X — X the evolution of the system
is defined by x,11 = f(x;), where x, := f’(x) and r € N or Z. An attractor is a set A C X to
which a dynamical system evolves over time. We state this precisely as follows: A compact
set A C X is an attractor for f if there exists a neighborhood V of A and N € N such that
fN(V)yc Vand A =),qq f(V). We illustrate the above with an example.

1.1.1. Example (Cantor set). The Cantor set, F, is the prototypical example of an at-
tractor of a dynamical system that is also fractal. We describe a construction of the Cantor
set for which F is the attractor of an iterated function system (IFS) [6] defined in terms of a
simple dynamical system. Define the map f : R — R by

3
fx) = 5(1 = [2x = 1)). (1.1)

This is often referred to as a tent map, see Figure 1.1.

1.5¢

0.5¢

0 0.5 1

FiG. 1.1. The tent map defined by f. Intersection of the iterations of the branches of the inverse, fy and fi, give F.

Now define an IFS by the contractions fy, fi : [0, 1] — [0, 1] such that
X X
Jo(x) = 3 filo) =1~ 3 (1.2)

The equations (1.2) are the two branches of f~! since

f(fo(x) = x = f(fi(x) (1.3)

Let E = [0, 1] and define g(V) := fo(V) U f1(V), where V is a nonempty compact subset
of E. Using the Contraction Mapping Theorem we can conclude that there exists a unique,
nonempty, compact attractor in E corresponding to the Cantor set. We can define F in terms
of the IFS such that F = ;2 g"(E). From (1.3) we see that f(F) = F.

We detail some of f’s behavior on F. If x € R\ E, then fk(x) diverges to —oo as k — oo.
Similarly, if x € E'\ F, then there exists some N > 0 such that x ¢ U{f;, o fi, o --- o fi,(E)},
where i; € {0, 1}. Therefore, running the system forwards in time we see that fN(x) ¢ F. This
shows that F' is a repellor.

180 Multifractals and SPOT Extensions

To aid in the discussion in Section 1.3 we summarize the symbolic dynamics viewpoint
of f. The sequence of inverses provide a coding of the points in F as follows: Let x € F, then

X = Xijiyer =

-,

Il
o

i © fiy © fi,(E). (1.4)

J

Note that this provides an alternative way to write F, namely F' = (J{x;,;,...}. Now, it follows

from (1.4) that |x; ;.. — x,-fl,-;...l < 37% whenever i; = i{, ..., iy = i;. Applying f to a pointin F
we see that f(x;;,..) = Xi,i,... To see that orbits in F are dense under f, consider that for any
X = Xj,j,. € F, there is a k such that iy = ixy1, i2 = k2, -+, i = ix+s, from which it follows

that |x — fk(x)l < 37!, From this it follows that periodic points are also dense in F as well.

Points in F also exhibit sensitivity to initial conditions, showing that F is a chaotic re-
pellor for f. Alternatively, it is a chaotic attractor for the IFS defined by g. To see the
former, consider x = X;;,..;,0 and X’ = Xj,;,..;.1 Which are within 37% of one another. Then
F*(x) = x € [0,1/3] and f*(x’) = x; € [2/3,1]. Hence, points that begin near one another
can diverge under the action of f.

| i
0 1

Fic. 1.2. The ternary Cantor set showing the concept of self-similar, or fractal, structure. Shown is the third
“level”, i.e. F was iterated 3 times.

We compute the first few iterations and intersections of g, namely ﬂizo g5([0,17), in
Figure 1.2. This is the “third level”of the Cantor set. We will return to the Cantor set below.

1.2. Simplices, Simplicial Complexes, and Simplicial Sets. The simplicial measure
that we develop has its origins in computational topology. We therefore continue by de-
scribing some structures basic to topology and homology in particular. A more thorough
description can be found in [13].

A simplex is a geometric object that generalizes the notion of a triangle. A triangle is
formed from three vertices all of which are connected to form a 2-dimensional convex hull.
In general, an n-dimensional simplex is a polytope formed by the convex hull of n+ 1 vertices.
We denote a simplex o by its ordered set of vertices [vg, vy,...,V,] or simply vov; ..., for
brevity. The dimension of o we denote by dim(c"). A face T of an n-dimensional simplex
o is also a simplex and is defined as the convex hull formed by a (non-empty) subset of the
n + 1 vertices of o. A simplicial complex is a collection K of simplices such that for each
01,0, € K, 0y N o, is a face of both or empty; and any face of a simplex in K is also a
simplex in K.

Given 7, a face of o, o is a coface of 1. A maximal simplex is a simplex with no proper
coface in K.

We now describe the Vietoris-Rips (VR) complex. We begin with the Vietoris-Rips neigh-
borhood graph. Given a finite set of points ¥ ¢ R” and a real value € > 0, the VR neigh-
borhood graph, N, = N(Y), is the neighborhood graph composed of nodes (points) from Y,
and edges whenever d(x,y) < € for x,y € Y, where d is the Euclidean metric. We can expand
a neighborhood graph to a VR complex as follows. Let N = (V, E), where V and E are the

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 181

nodes and edges of N, respectively. When all edges of o, denoted by e(o0), are in N, we
append o to N, to obtain the VR complex

Re(Y):=VUEU{o |e(o) CE}, (1.5)

The last term simply states that if all edges of o~ are in N, then o belongs to R(Y). In other
words, R(Y) is composed of simplices whose vertices are each within € of every other vertex
in the simplex.

The VR complex is a critical tool for computational topologists as it represents the topol-
ogy of a point set and is relatively fast to compute [19]. Hence, in the computational setting
we utilize VR complexes exclusively. Nevertheless, to obtain the theoretical results below the
Cech complex is more suitable. It is constructed similarly to a VR complex [3, 9]. Given €, the
Cech complex C(Y) contains a simplex for every subset of balls of radius € with nonempty
intersection. It is easy to see that given €’ and € = 2¢’, R (Y) C Ce(Y). The relationship
between € and € can be made tighter, a fact which we formalize in Section 1.3.

(a) VR complex (b) Cech complex

Fic. 1.3. (a) The balls forming the VR complex have radius €. Since all edges are in the graph, the 2-simplex
(the triangle) is an element of the VR complex. (b) The Cech complex results from balls of radius %r. In this case

the balls have a nonempty intersection, so the 2-simplex defined by the three nodes is included in the Cech complex.

Lastly, a k-skeleton of a simplicial complex K is the subcomplex of K having faces of
dimension no larger than k. The 1-skeleton of R.(X) is just the neighborhood graph with a
threshold of € consisting of nodes (vertices) and edges between nodes that are less than e
apart. Recall that a clique is a set of nodes in a graph that include a complete subgraph. If
a clique cannot be made any larger then it is termed maximal. The maximal cliques in a VR
complex are the maximal simplices of the complex.

1.3. Simplicial Measures. Recall that we are interested in using the maximal simplices
in a VR complex to understand the density of points in an attractor. We first describe the
fundamental notions behind the definition of the simplicial measure. We then define the
simplicial measure.

Let f be a diffeomorphism of the manifold X. Suppose U is a neighborhood of the attrac-
tor A of f, which satisfies Smale’s Axiom A. Namely, we require i) that the non-wandering
points of f, Q(f), form a hyperbolic set; and ii) that the periodic points of f are dense in Q(f).
Given these assumptions, then for all x in U there exists a probability measure g, called the

182 Multifractals and SPOT Extensions

SRB measure, such that [16],

1
lim — Y 6p, = p, 1.6
Jim ”Z‘ fhx =M (1.6)
where
1, ifyeB
5,(B) = by (1.7)
0, ify¢B.

The limit in (1.6) is taken on the set B(X) of all Borel probability measures on X which
is given the weak* topology. Let y, = % ZZ;(I) O, be a measure in B(X) and let ¢ be a
continuous function on X. In the weak* topology u, — p iff f odu, — f ody.

We point out that general tent maps for which [f’| > 1, such as the one used to construct
the Cantor set in Section 1.1.1, satisfy the requirements of Axiom A systems. The nonwan-
dering set Q(f) = F is hyperbolic. And as was shown, the orbits of f, and in particular the
periodic points, are dense in F.

In summary, the existence of the SRB measure in (1.6) holds for almost every x in some
neighborhood U of A with positive Lebesgue measure. The measure y is concentrated on
A and is typically singular with respect to Lebesgue measure. In other words, the Lebesgue
measure of A is zero while u(A) = 1. And the ergodic averages on the left hand side of (1.6)
converge to u.

In practice, we assume that we have a set of data points ¥ C X generated by the observa-
tion of a physical system or by a computer model. By (1.6), the ergodic averages

n—1

1
N (1.8)
n k=0

approximate the measure i on the attractor of the system. The length of the transient can pose
issues, and is system-dependent. Methods related to (1.8) have historically been used to an-
alyze both physical systems as well as computer-generated models. Most assume something
about the attractor—either its existence or that points in Y tend toward it. Thus, while the SRB
measure theoretically provides a strong method of approximating the measure on an attractor,
in what follows we are forced to be less rigorous with respect to the actual measure that we
use. In other words, we do not assume that the measure we approximate is the unique SRB
measure.

Given € > 0, we construct a VR complex on the points in Y. It is convenient for the
theoretical development to use Cech complexes formed from balls of radius €. A theorem of
de Silva and Ghrist [3] provides the necessary relationship between VR complexes and Cech
complexes:

TueoreM 1.1. For a set of points Y in R%, the Cech complex C(Y) is bounded by VR
complexes as follows:

Re(Y) € Ce(Y) CR(Y) (1.9)

2d_
d+1°

We conclude from Theorem 1.1 that for each o € R (Y), there exists a point y € A such

2d
d+1°

extremal case, in which the vertices of the VR complex are each less than a distance €’ from

whenever € > €

that B¢(y) circumscribes the vertices of o, where € = € Figure 1.3 illustrates the non-

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 183

one another. The centroid falls inside the open neighborhood determined by the intersecting
balls in the Cech complex, as in Figure 1.3(b). In the extremal case, where the vertices of
R (Y) are exactly pairwise €’ apart, the intersection of the balls in a Cech complex is a single
point, y.

In fact, y is unique in both the extremal and non-extremal cases. To see this, define a map
from C.(Y) that chooses the centroid of each simplex,

¢e = : C(Y) > R (1.10)

given by ¢(0) = y.
CLam 1.1. ¢ is one-to-one.
Proof. Let dim(o) = n. Define

fx) = max]le—VII, (1.11)
VE|V,

055V

which determines the minimal radius of a ball circumscribing the vertices of o If ¢ is not
injective, then there exist points y # y" such that f(y)> = f(y')> = |v;—y|* = |[vi—y’||? for each
vertex v;. Relabeling y' = y + Av, 1 > 0 and v € R¥, we have that |[v; — y||> = [[vi — (y + W)|]%,
which holds iff A = 0.0

Fic. 1.4. A simplex with an associated circumscribing ball B. The centroid is denoted with an X. The ball has
a residence measure of 3/N.

Therefore, for each simplex o € R, (Y) there exists a unique ball centered at y = ¢(o)
with radius in [€’, €] that contains all of the vertices in 0. The simplices in R (¥) determine
the points y € A which approximate the local density of points in A.

To bring this into the sphere of measure and dimension theory, we define the residence
(probability) measure on a set U C X similarly to (1.6) by

w(U) = lim %#{m 1<k<m, ffx) eU) (1.12)

for any x € X. The measure computes the amount of time iterates of f spend in U. When

using the finite set of data points, ¥ = {x,-}fi |» We approximate u in Equantion (1.12) by

184 Multifractals and SPOT Extensions
removing the limit. Thus, for a subset U C Y, let
1
v(U) = ﬁ#{kl 1<k<N, fk(x)eU} (1.13)
1
= —# eU 1.14
N {x|xeU} (1.14)

Note that v(Y) = 1. The % term will be left off to avoid clutter.
Let M.(Y) be a collection of points in R¢ determined by the centroids in C.(Y) so that

M(Y) :={y € X | ¢(0) =y, for some o € Cc(Y)}. (1.15)

For each y in M(Y) there is a radius ¢ € [€’, €] such that v(Bs(y)) = k + 1 where k = dim(o)
and ¢(o) = y. Therefore, by abuse of notation, we can define the simplicial measure on
simplices R (Y) as

v(o) = v[Bs(¢(0))] = dim(o) + 1, (1.16)

where o € R (Y).
We now formulate a well-defined map between VR complexes R (Y) and centroids in
M(Y). From the first inclusion in Theorem 1.1, if o, = [vy, ..., v,] is a n-simplex in R (Y),

then [vo,...,v,] is a n-simplex in C.(Y), where e’(,/%) < €. Hence, via the inclusion

i:Re(Y) — C(Y) we associate to each o, € R (Y) an n-simplex in C.(Y). Thus, we define

gi=¢ol. (1.17)

This identifies every n-simplex in R (Y) with a point in A for which there is a ball of radius
€ with measure n + 1.

Since computation and simplex generation occurs at the level of the VR complexes, the
diagram in (1.18) serves to connect VR complexes to centroids in M(Y). The analysis above
shows how ¢ allows for the definition of a well-defined map from the VR complex R, to the
centroid set, and hence to balls of radius at most € which have the measure of the dimension of
each simplex in the complex. We summarize the above discussion in the following diagram:

M.
(1.18)

Ce PRe

i

We have dealt above with simplicial complexes containing all possible simplices. Since
every simplex contains many faces, and these faces all contain their own centroids, measures
of balls around points in M(Y) would grossly overestimate the density of a region of space
according to the simplicial measure. Yet, computing the dimension of A requires above all
else accuracy in the estimation of the density of a region. In the next section we briefly discuss
the reasons for this in the context of dimension theory.

1.4. Dimension. Fundamentally, determining the dimension of a set relies on “measur-
ing” how much space a set occupies at various scales. Thus, it is imperative that we are able
to faithfully estimate the density of a region of space using v. Thence, we must negate any
significant overlap amongst the simplices in R (Y). We detail in this section the heuristic

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 185

Fic. 1.5. In this small simplicial complex, the two maximal simplices are the filled (green) 2-simplex and
3-simplex. Since dim(c) > dim(t), T, = {o}. Symmetric reasoning holds for the 3-simplex on the right.

notions of “fractal dimension” in order to motivate our subsequent focus on the minimal set
of maximal simplices.

Suppose M (Y) is some measurement of the set Y at the scale €. As € — 0 we consider
how M.(Y) behaves. A spacial dimension for A can be approximated using the power law
relationship

M(Y) ~€“. (1.19)
The scaling exponent a > 0 is the dimension we seek. Taking the limit of € we get,

log M (Y
a:lim—og &)

1.20
e—0 — IOg € ()

which lends itself nicely to numerical estimation of a by finding the slope of the linear re-
gression line to the log-log plot of € vs. M,. For example, suppose M. measures ordinary
Lebesgue area in R2, then @ must be 2.

Sometimes, @ depends on the location at which a measurement is taken. In this case one
obtains an entire spectrum of scaling exponents leading to the multifractal spectrum of a set.
We discuss these ideas in more detail in Section 1.7.

1.5. Pruning the Family of Maximal Simplices. A crucial step in utilizing the simpli-
cial measure to determine the dimension of a set is to make sure that the simplicial measure
accurately approximates the mass distribution of points at scale €. By considering the sim-
plices of maximal dimension associated to each x € Y, we can exclude the measurement of
faces contained in these maximal simplices. We first show how to obtain this from R, (Y)
before we describe the computational aspects of this process.

For each x € Y let

Sy={ceReY) | xeo}). (1.21)
By considering only the maximal simplices in S, we associate to each x the set
T, = {0’ | dim(c’) > dim(c), Yo € S,} (1.22)

Figure 1.5 shows an example for a small simplicial complex composed of a 1-,2-,and 3-
simplices. The vertex x belongs to both o and 7, so S, = {0, 7}. Yetdim(o) > dim(r) so only
o isincluded in T,.

186 Multifractals and SPOT Extensions

Let 7 be the family {7,},cy of maximal simplices for each point in Y. In practice,
the formation of 7 is rather involved. Zomorodian has implemented fast algorithms for the
construction of the VR complex as well as the selection of maximal simplices from such a
complex (see [19, 20]). We utilize these to obtain 7~ for a VR complex R (Y).

For the example in Section 1.6.1, 7~ is composed of all sets in Figure 1.6. In general,
the generation of maximal simplices does not create disjoint simplices. Thus, even with 7 in
hand, we must implement a second round of pruning.

Algorithm 5 DisjoiNt-CovEr(7")
1: C « 0// C: disjoint simplicial set
2: P « 0 // P: candidates for filling gaps
3: R « 0// R: non-disjoint sets
4: while 7 # 0 do

5: o « 7 .next() // remove largest simplex from 7~

6: L « |0\ C| // number of non-intersecting vertices in o
7: if [theno is disjoint from C]|L| = |0

8: C « CU o //add o to cover

9: C.vertices « C.vertices U o.vertices

10: else

11: R«—o

12: end if

13: end while
14: make-hash(R, P) return C, P

1.6. The Tidy Cover Algorithm. Recall that a collection of sets {V, }4c is said to cover
aset Zif

U Ve D Z, (1.23)

where J is an index set. We define a simplicial cover to be a cover of the set Y by a collection
of simplices from R.(Y). We use the algorithms DisjoiNT-cover and GAP-COVER to pare down
7 to a subcollection of simplices that is close to the minimal number necessary to cover
Y. We term this collection a tidy cover. Together we call DisjoiNT-cover and GAP-cOVER the
TIDY-COVER algorithm.

Algorithm 6 MAKE-HASH(R, P)
1: foroc € Rdo

2: m « |L|

3: o.complement « L // add complement vertices as simplex attribute
4: P[m] « P[m] U o // add o to P, indexed by m

5: end for

Before calling DissoINT-Cover we sort the simplices in 7 in decreasing order. The pri-
mary purpose of DisjoINT-COVER is to cover Y as completely as possible with a collection
of the largest, disjoint simplices from 7. While it creates this collection an additional data
structure is constructed and returned along with C. These objects aid Gap-Cover in efficiently

filling in the gaps in C. We use the “.” notation from C++ to denote attributes and methods
in the algorithms.

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 187

As mentioned, DisjoINT-CoVER builds a disjoint collection from the largest non-intersecting
simplices in 7~ (line 7). While building C, if it finds a simplex that intersects one of the mem-
bers of C (line 11), this simplex is stored in R. When a disjoint cover of otained, the hash
table P is constructed in MAKE-HASH. Keyed by the complement sizes of simplices left out
of C, P maps these complement sizes to lists of simplices having that size complement. By
sorting P by its keys in decreasing order, this data structure allows GAP-cOVER to short circuit
earlier by adding the simplices that most efficiently cover the gaps of points left uncovered
during the construction of C.

Algorithm 7 Gap-Cover(C, P, N = |Y]|)
Require: P sorted by keys in decreasing order

1: form e Pdo
while P[m] # 0 do
3 o« P[m].next() // remove o with (possibly) most uncovered vertices
4 m « |o.complement N C|
5: if [theno has the most uncovered vertices]m = 0
6: C « C U // add to cover
7
8
9

»

C.vertices « C.vertices U o.vertices // mark vertices as covered
else[earlier addition to cover altered complement]
o.complement « o\ C

10: m’ « |o.complement]|

11: P[m’] « P[m’] U o // update P according to o”’s uncovered vertices
12: end if

13: if |C.vertices| = N then return C

14: end if

15: end while

16: end for

Now consider the Gap-cover algorithm. As noted, P is sorted by keys; let m be the largest
key, or complement size. Assuming that C is not a cover of ¥, GAP-covEr starts by adding
the first simplex, say o, in the list of simplices pointed to by P[m] (line 5). Thus, the most
possible new points are added to C. Once o is added, it is possible that the complement sizes
of some of the remaining simplices in P have changed. We determine this in a “lazy” way by
waiting until a simplex 7 is chosen from P[m] for which 7.complementNC is non-empty. Then
m (line 3) will be different from zero, triggering GAP-coveR to update 7’s position in P (lines
7-10). Note that elements in P[m] are removed from the front of the list and not returned.
If P[m] is empty, m is incremented to the next largest key (complement size). During this
process, if the number of vertices covered by simplices in C equals the number of data points,
GAP-COVER terminates.

An important aspect of the above algorithms is that only one set of simplices is con-
structed and used. While a number of data structures are constructed, only pointers are ma-
nipulated as simplices are “moved”. So the memory footprint is of size O(7").

By construction, the Tipy-cover algorithm returns a tidy cover of Y. We compared the
Tipy-cover algorithm to a naive greedy cover algorithm that updates complements without the
use of the adjacency graph. On a multifractal Cantor set with 10,000 points (see Section 1.6.1)
TIiDY-cOVER returns a tidy cover approximately 250 times faster than an algorithm that fills the
gaps but naively updates the complements without using the hash P.

With the tidy cover in hand we have an accurate notion of the density of points in an
attractor A using the sampling of points Y. We can now employ the techniques of dimension

188 Multifractals and SPOT Extensions

theory to approximate the fractal or multifractal properties of A.
We revisit the Cantor set to illustrate the above algorithms.

1.6.1. Example (Cantor set cover). Consider F, the Cantor set defined in Section 1.1.1.
Let p+¢g = 1 and wlog assume p < g. We construct a measure u on F. Consider the collection
E of 2% intervals of length 37% at each level of the construction of F. Then

F= ﬂ E,. (1.24)

The first level of the Cantor set, £, contains left and right subintervals, E1o and Eyy,
respectively. For the left interval assign a mass of p and for the right a mass of g. Similarly,
E, is composed of four subintervals: A left and a right subinterval within both of Ejy and
E\,. As before, to each of the left intervals assign a mass of p, and to each of the right assign
a mass of g. Continuing to divide the mass amongst the subintervals in the ratio p : ¢ yields
a mass distribution on F' [6]. The resulting set with the associated measure is referred to as a
multifractal Cantor set.

DL

Fic. 1.6. The Cantor set constructed with uneven mass distribution, covered by a disjoint simplices (DC) and
a set covering the gaps (GC). The tidy cover from Section 1.6 is the union of DC and GC. The stacks of sets (OL)
above are the simplices that overlap DC and are not used in GC. The disjoint collection DC contains 16 simplices,
the final cover contains 32 simplices, and there are 1645 sets discarded. The difference in sizes in OL is due to the
uneven distribution of points. The blow-up shows in detail the overlap created by the sliding € window mentioned in
the text.

Given a radius € we form a VR complex on the distribution of the N points at the kth level
of the Cantor set. Intuitively, since the intervals are all the same length, points are more or less
densely packed according which interval they fall into. For instance, the mass of an interval
at the kth level depends on the number of 0’s and 1’s in the coding described in Section 1.1.1.
An interval for which i; = 0 n times has mass p"g*™".

Since the Cantor set is 1-dimensional, the simplices are composed of points arranged
along intervals within a ball, or window, of size €/2 of one another. In regions of high
density, “sliding” this e-window will create many maximal simplices and impressive amounts
of overlap in a narrow region. The detail in Figure 1.6 shows the maximal simplices spread
out vertically that result from this phenomenon. One can see how the density in a region
affects the amount of overlap. The number of simplices in 7 in a region, as well as the
density of points in that region, is correlated to the height of the stacks OL in Figure 1.6. The

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 189

original arrangement of simplices can be recovered by projecting all of the simplicies in the
figure onto the x-axis (the horizontal level of DC).

In Figure 1.6, DC is the set of simplices returned by pisjoiNT-cover and GC is the set
returned by Gap-cover. The tidy cover is the union of the simplices in DC and GC. OL is the
remainder of maximal simplices from 7~ that were unused in the final cover.

1.7. Results for the Tidy Cover. The box-counting dimension is calculated by defining
M.(Y) to be the number of sets of “size” € necessary to cover Y. Computationally this is
often done by “gridding” the space into squares of side length €. Counting the number of
grid elements occupied by at least one point from Y gives M.(Y). For example, consider the
ordinary Cantor set described in Section 1.1.1. At the kth level there are 2* sets of size 37%
so the box-counting technique yields @ = log(2)/log(3) ~ 0.631, the fractal dimension of the
Cantor set.

A numerical approximation of the box-counting dimension of the Cantor set using sim-
plices in the tidy cover yields a similar result. We calculate a scaling exponent @ = 0.656,
which is within 0.025 of the true dimension. M, is the number of simplices in the tidy cover
at scale €. The log-log plot of this behavior is shown in Figure 1.7. We considered a sequence
of tidy covers for € in the range [37'°,373].

Physical and mathematical systems often exhibit regions of varying density in their at-
tractors [7, 8]. (Mandelbrot’s book contains many interesting examples and areas of real-
world study [11].) Let 4 be a measure on such an attractor A. Then this situation manifests
itself when the set of points for which p(B.(x)) ~ € determines a different fractal for a range
of a’s. The box-counting dimension ignores the finer structure of a measure and so we must
introduce a set of tools borrowed from statistical physics [5, 6, 17]. We briefly describe how
these work.

o—e «=0.656

3 4 5 6 7 8 9 10 11
—log(e)

Fic. 1.7. Estimation of the box counting dimension of the Cantor set by the number of simplices contained in
tidy covers at different €’s.

We introduce the partition function for g € R and € > 0:

Zq.€) =) (B, (1.25)
B

190 Multifractals and SPOT Extensions

80 slope=0.633
/ ™ intcpt=-0.626
g
/

1 2 3 4 5 6 7 B 9 10
q

(a) Partition functions (b) Power law behavior of Z

Fic. 1.8. In (a) each curve represents Z(q, €) as a function of € with a fixed value of q. The scaling behavior of
the Cantor set is clearly visible in the curves. The B(q) curve in (b) shows the scaling behavior of each Z(q, €) curve
across values of q.

where B is the set of balls B of radius € with y(B) > 0. In thermodynamics, g represents
inverse temperature and u measures a “state” of the system [14, 17]. We identify the power
law behavior of Z for each ¢ by [6]

log Z(q, €)

~oe0 (1.26)

B(g) = lim
e—0
We apply the partition function and Equation 1.26 to the ordinary Cantor set, C. In this
case there is no change to the mass distribution on C, and therefore we expect a single scaling
exponent. This forces the function (¢g) to be linear. For a measure we use the simplicial
measure v on each simplex in the tidy cover at scale e. We use the same sequence of tidy
covers as in the estimation of the box-counting dimension. The scaling structure of C can
be seen in the partition functions in Figure 1.8(a). The behavior of Z over a range of g is
seen to be linear in Figure 1.8(b) indicating a single fractal dimension. Let f(@) denote the
dimension of the set of points for which the power law p(Bc(x)) ~ € ® holds. It is obtained
from S via the Legendre transform [1, 6, 14].

fla) = Sulg{aq - B(@)}- (1.27)

Since B in Figure 1.8(b), is linear the Legendre transform of S is a single point located at
(a, f(a)). Note that f() is just the negative of the y-intercept of the line tangent to S with
slope @. And so the dimension of the set for which u(B.(x)) ~ € holds is f(a). For C,
we estimate from the functions shown in Figure 1.8 that the dimension is f(a) = f(0.633) =
0.626, which is close to the exact value of log(2)/ log(3).

If Bis not linear, an entire f(a) spectrum is derived via the Legendre transform of 5. This
yields the various fractal dimensions of the sets with scaling exponent . We have studied
this situation using both the multifractal Cantor set discussed in Section 1.6.1 as well as the
2-dimensional Henon attractor. Both of these dynamical systems have been shown in other
work to have rich multifractal structures leading to a spectrum of f(a) dimensions. Our
results are preliminary and unfortunately do not show the nonlinear behavior expected of S.

1.8. Conclusions. Attractors of relatively simple physical and dynamical systems often
possess rich structure whose study often sheds light on the system itself.

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 191

Recent work in computational topology has led to efficient algorithms for computing
simplicial structures on Y. We have introduced the notion of a simplicial measure using sim-
plices from a VR complex constructed on Y. In order to utilize this measure to approximate
the dimension of an attractor from the points in ¥ we must filter the simplices in the VR
complex.

The first step uses the algorithms implemented by Zomorodian to create a subset of
maximal simplices. We then developed the Tiy-cover algorithm to deal with the overlap
problem in the set of maximal simplices. The algorithm creates a cover in an efficient and
greedy way, using an adjacency graph and complement sizes to keep updates to a minimum.
We demonstrated the way in which this algorithm extracts a tidy cover from the VR complex
on a multifractal Cantor set, yielding a “minimal” set of maximal simplices that cover the set
by the simplices of highest dimension possible. By construction, these simplices have very
little overlap.

We showed the usefulness of the tidy cover in computing dimension. On an ordinary
Cantor set the tidy cover works very well for computing the dimension using box-counting
techniques. Furthermore, we demonstrated that techniques used on multifractal sets, such as
the partition function, behave well when the simplicial measure is used with the simplices in
the tidy cover. In both cases we were able to approximate the fractal dimension of the Cantor
set to within 0.025 of the actual dimension.

Our numerical methods have not yet performed well on multifractal systems, such as the
multifractal Cantor set discussed in Section 1.6.1 or the Henon attractor [6]. We will address
these issues in future work.

2. Extensions for the TEVA-SPOT Toolkit. The Threat Ensemble Vulnerability As-
sessment and Sensor Placement Optimization Tool (TEVA-SPOT) is a joint project of the U.S.
Environmental Protection Agency, Sandia National Laboratories, Argonne National Labora-
tory, and the University of Cincinnati. TEVA-SPOT was designed to model a wide range
of sensor placement problems to optimize a real-time, on-line contaminant warning system
(CWS) [2].

This section details a number of recently developed Python extensions to the TEVA-
SPOT Toolkit.

2.1. SP Module. The TEVA-SPOT sensor placement solvers are launched using the
spmodule. The module takes as input one or more MPACT files and returns a sensor placement.
sp interfaces with various MIP solvers. (See [2] for more details.)

2.2. Goal of the Extensions. We briefly describe optimization using objectives defined
in TEVA-SPOT. In this work optimization is synonymous with minimization of an objective.
A Pareto optimal set in the solution space is the set of feasible solutions such that for each
solution, there exists no feasible solution that is better than the reference solution in at least
one objective and is no worse in the remaining objectives [4].

In the preliminary work reported in this paper we consider the set of Pareto optimal
solutions associated with two objectives in a CWS, namely“expected contamination” (EC,
measured in pipe feet) and “mass consumed” (MC, measured in mass of contaminant). If
no bound is put on MC, then optimizing EC will yield a mean impact of approximately EC
~ 8500. But in this case MC ends up quite high with a mean impact of MC =~ 43650. If we
insist on a better value of MC we must constrain it by passing in an upper bound to the solver.
In doing so we necessarily drive EC up. A Pareto front or Pareto frontier is a set of discrete
or continuous regions representing such a set of tradeoffs. In general, these regions form d — 1
dimensional hyersurfaces in the solution space. The points on the Pareto front dominate the

192 Multifractals and SPOT Extensions

other solutions. Figure 2.1 shows the Pareto front generated by restricting MC to values less
than 43650. Infeasible solutions result for values of MC less than ~ 22, 000.

The primary goal of the extensions is to study such Pareto fronts. There are two avenues
that we plan to follow. First, we wish to investigate the structure of the near optimal solutions
along the Pareto front. We expose pico’s enumRelTol option in sp to allow an optimality
gap within a given percentage of an optimal solution. For instance, we constrain MC and
require that pico return all solutions within (say) 10% of the optimal EC value at the given
MC value. The Pareto front itself is discrete and forms a relatively sparse set in the solution
space. The near-optimal solutions form a set with potentially interesting topological features.
In addition, knowledge of near-optimal solutions allows more flexibility in real-world sensor
placement decisions. See Figure 2.1.

Another route of analysis is the graphical analysis of the water network itself. Statistics
such as the frequency of junction selection in solutions, distance between sensors (in linear
pipe feet), and mean impact of the sensor placement are relatively easy to study as node and
edge properties in a graph. See Figure 2.2.

2.3. SP Extensions for Near-Optimal Analysis. A number of Python modules were
added to the SPOT-TEVA code this summer to facilitate data analysis. They fall in a few
general categories. First, the most generically useful adds parsing and conversion utilities via
the RE_PARSER.PY module. Extraction of data for analysis relies on this module. Secondly, the
results can be analyzed in a traditional way by plotting one objective against a constrained
objective. This facility is generalized to allow the user to specify the objectives to be plotted.
Thirdly, the solutions can be considered on the network that produced the scenarios, with
appropriate statistics computed for nodes in the network. All of the extensions in Table 2.1
are new, with the exception of sp2 which is a copy of sp with pico’s enumRelTol option
exposed. We describe their capabilities in more detail below.

1. sp2: Added option parsing ability that exposes Pico option --enumRelTol and as-
sociated value. This extension is in the PICO() class and appends the option onto
the PICO call. Since this is the only addition to sp we will simply reference the sp
module where is appears below.

2. Re_PARSER: This regular expression parser handles sp’s text output. This is quite
useful in general since it creates Python dictionaries from sp output. We summarize
its current abilities:

e Handles regular sp output and enumerated output (only from pico’s raw text
output at the moment).

e Write solutions to yaML SOLN files. Also loads these yamL files.

e Functions PARSE_COORDINATE and PARSE_PIPES handle line input from INP file.
Respectively, return a geographic coordinate of each junction ID in the water
network and the pipe connections (eg., edges in a graph of the water network).

3. consTRAINED_OBJECTIVE: This module interfaces with sp to run optimization problems
with one constrained objective (see Figure 2.1). It contains two classes as well as all
options for input parsing. One handles command processing; the other handles the
subprocess call to sp:

o Class ProcEessor() contains the low level processing for input (creating com-
mand to pass to sp) and output (handling text solution returned or written to
disk by sp). It primarily uses RE_PARSER for this.

o (Class CoNsTRAINEDOBIJECTIVE() inherits from Processor(). It sets up the call to
sp, handles any enumeration parsing that must be done (assuming more than
PICO was operational via sp), and handles the returned solution with PROCESSOR’S

TaBLE 2.1
TEVA-SPOT Python Extensions

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 193

Name of extension

Summary

Status

sp2

A version of sp exposing
PICO’s enumRelTol op-
tion.

Working. Calls PICO;
sp’s default output does not
handle enumeration (han-
dled via RE_PARSER.PY).

CONSTRAINED_OBJECTIVE

Formulates a command to
pass to sp2 for calling a
solver with a constrained
objective.

Working. Currently
works only with PICO’s
enumRelTol option now.
Uses RE_PARSER.PY for
solution parsing.

RE_PARSER

Parses output from sp
and PICO enumerations.
Writes results in dictionary
format to vamL file.

Working. Should be easy
to add new parsing tools
by follow model of exist-
ing ones.

OPTIMA_ANALYZER

Contains tools for plotting
Pareto fronts, plotting net-
works (using NETWORK()
class), as well as exporting
to Protovis format.

Working. NetworkX
graphs, graph analyzers
and IO utilities are all
stable.

NETWORK_PROTOVIS

Converts node and edge
data created in NETWORK()
class and saved in .npy for-
mat to VTK format for
use with Titan’s Protovis
interface[15]. This ba-
sically pipes the data to
an interactive web browser
format.

alpha. Draws the network,
and node sizes. There are
still issues with Protovis/-
javascript.

methods.

4. opTIMA_ANALYZER: This module has two main purposes (plus unfinished tools):
o Plot Pareto front by extracting solutions from SOLN files (Python dicts).
e (Class NETwork() inherits from NETworkX.GRrRAPH() package. Nodes are water

network junctions, with node data ‘junctionID’, ‘size’, ‘longitude’, ‘latitude’.
All data is extracted from appropriate INP file except ‘size’, which is deter-
mined by how often a junction occurs in all enumerated solutions (in SOLN
files). Edges link nodes using Pipes field in INP files.

An experimental NETwoRK attribute related to nodes and edges is the ‘sensor’
attribute. This attempts to split ‘size’ into a more refined set of quantities
according to how often a node is chosen 1st, 2nd, etc.

All of the node, edge, and sensor attributes of a NETWORK object can be ex-
ported as a NUMPY array with custom data type. For instance, nodes — ar-
ray((junctionID, longitude, latitude, size), dtype=(int, float, float, float)). These
are more easily read and parsed for conversion to VTK Tables in
NETWORK_PROTOVIS.

5. NETwoRrk_ProTOVIS: Note: This is written on top of Titan, which must be installed

194

Multifractals and SPOT Extensions

to run this module. This module is very basic at the moment. All file names are
hardcoded-i.e. command line interaction has not been included yet.
NETWORK _PROTOVIS reads NUMPY arrays stored on disk (see OPTIMA_ANALYZER), CON-
verts them to VTK Tables, and converts these to an appropriate format (JSON) for
Protovis. VTK includes a wrapper for Protovis, so we embed Javascript code that is
piped Protovis. Calls browser and renders network. Output is similar to the network
rendered by oPTIMA_ANALYZER but with more interactive qualities. See Figure 2.2(b).

. NEAR_OPTIMA_SCRIPT: This small module loops over a set of upper bounds, running

CONSTRAINED_OBJECTIVE at each iteration.

2.4. Conclusions. We have developed extensions to the TEVA-SPOT software package

that facilitate data analysis. Most of the tools developed and discussed above are fairly general
and can be ported to other optimization problems with few modifications. Additionally, the
network visualization tools provide novel ways to understand multi-objective optimization
problems. Therefore, we are continuing to develop the visualization aspects of these modules.

[1]
[2]

[3]

[4]
[3]

[6]
[7]
[8]

[9]
[10]

(1]
[12]

[13]
[14]

[15]
[16]

(17]
(18]

[19]
[20]

REFERENCES

V. I. ArNoLD, Mathematical Methods of Classical Mechanics, Springer, 2nd ed., 1989.
J. BERRY, E. Boman, L. A. Riesen, W. E. Hart, C. A. PaiLLIPS, AND J.-P. Watson, TEVA-SPOT Toolkit 2.3 User’s

Manual, Sandia National Laboratories, Albuquerque, NM, October 2009.

V. bE Siva AND R. Gurist, Coverage in sensor networks via persistent homology, Algebraic & Geometric

Topology, 7 (2007), pp. 339-358.

K. DEB, Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, 2001.
J.-P. EckMANN AND D. RUELLE, Ergodic theory of chaos and strange attractors, Reviews of modern physics, 57

(1985).

K. FaLconER, Fractal Geometry, 2003.
P. GrasSBERGER, Generalized dimensions of strange attractors, Physics Letters A, 97 (1983), pp. 227-230.
T. HaLsey, M. JeNseN, L. KapaNoFE, I. PRocaccia, AND B. SHRAIMAN, Fractal measures and their singularities:

the characterization of strange sets, Physical Review A, 33 (1986), pp. 1141-1151.

J. G. HockiING anD G. S. Young, Topology, Dover, New York, 1961.
A. Karok AND B. HASSELBLATT, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univer-

sity Press, Cambridge, 1995.

B. ManpELBROT, The Fractal Geometry of Nature, W.H. Freeman, 1983.
K. MiscHaikow AND M. MRrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bulletin of the

American Mathematical Society, 32 (1995), pp. 66-72.

J. R. MunkRrEs, Elements of Algebraic Topology, Addison-Wesley, Redwood City, CA, 1984.
Y. B. PesiN, Dimension Theory in Dynamical Systems: Contemporary views and applications, University of

Chicago Press, Chicago, 1997.

Protovis, http:/vis.stanford.edu/protovis/. Protovis: A graphical approach to visualization.
D. RUELLE, A Measure Associated with Axiom-A Attractors, American Journal of Mathematics, 98 (1976),

pp. 619-654.
, Thermodynamic Formalism: The Mathematical Structures of Equilibrium Statistical Mechanics,
Cambridge University Press, 2nd ed., 2004.

S. StrROGATZ, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineer-

ing, Westview Pr, Cambridge, 2000.

A. ZoMORODIAN, Fast construction of the Vietoris-Rips complex, Computers \& Graphics, (2010).
A. ZomoropIaN, The Tidy Set: A Minimal Simplicial Set for Computing Homology of Clique Complexes, in

Proc. ACM Symposium of Computational Geometry, 2010.

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 195

.
20000 o v
L . e
% i
18000) . -
g -
16000 -
o ° § .
° o,
14000) -
° e
12000 o, .
10000} “ .o
%
.o ir g
898500 25000 30000 35000 20000 45000 s o L - e
mc
(a) Pareto front (b) Enumerated near optimal solutions

Fic. 2.1. (a) The Pareto front for objectives EC and MC, where a sequence of upper bounds have been imposed
on MC (side-constraints). The true optimum for minimization of EC for the given scenario (5 sensors and given

IMPACT files) is the point in the lower right. (b) Enumeration of solutions within 10% of Pareto optimal for the same
sequence of upper bounds.

Network junctions located geographically: Size corresponds to frequency
of occurence in optimal and near-optimal solutions

®
V1 r
o "
‘
F
g
- '}
F. i o
{qree, 1

g% po

(a) NetworkX-generated network (b) Protovis-generated network

Fic. 2.2. (a) Static image of the Net3 sample network. Node size corresponds to occurence of nodes in
near-optimal solutions. (b) Titan/Protovis-generated graph. Node size is the same as in (a). Each node carries
“mouseover” information. Many types of interactive statistics can be added using the Protovis package. We inter-
face to it using Titan’s Python library.

CSRI Summer Proceedings 2010 196

BENDERS DECOMPOSITION IN PYOMO

PATRICK STEELE* AND JEAN-PAUL WATSON'

Abstract. Large scale linear programs often have computationally intractable numbers of variables. Decompo-
sition methods such as Benders decomposition can reduce this number, but require very specific problem structures
not always present in the original formulation. We present a tool that removes the need to explicitly construct a
problem with such structure through the use of the algebraic modeling language Pyomo, a component of the Coopr
project.

1. Introduction.

1.1. Mathematical Programming. A mathematical programming or mathematical op-
timization problem is the problem of finding an element x in some set S that minimizes an
objective function f : S —=R. A specific class of such problems are convex optimization
problems or convex programs, which can be expressed in the form

min f(x)

S.L. gi(X) < bl‘,i = 1, ey 1M,

(1.1)

where f,g; : R" —R, i = 1,...,m are convex functions. Convex programs are a notable
class of problems because convexity often makes finding a solution more computationally
tractable than in a nonconvex program [5]. A class of convex programs that are particularly
well-studied are linear programs, in which all functions are not only convex, but linear. Linear
programs are most often expressed in matrix notation. If the variables in the vector x € R” are
decision variables, i.e., the variables manipulated to minimize the objective function, then a
general linear program has the form

min ¢'x
st. Ax=Db (1.2)
x>0,

where the matrix A € R™" and the vector b € R” form m constraints on X, and the elements
¢; of the vector ¢ € R" are the cost coefficients of each variable x;. We say a vector X € R" is
feasible to a problem if X satisfies all the constraints in the problem.

Although no closed-form solution to a general linear program is known to exist, several
algorithms have been developed to solve linear programs in acceptable amounts of time. One
commonly used algorithm is the simplex method, developed by George Dantzig, which at
worst requires exponential time to solve but in practice is quite efficient [11]. Many interior
point methods, such as that developed by Narendra Karmarkar, have polynomial runtime
complexity in the worst case [10]. Linear programming techniques are used to solve problems
ranging from portfolio management [12] to energy planning and forcasting problems [7] to
shortest path and network flow problems [6, 2]

1.2. Algebraic Modeling Languages. Linear programming problems often have a very
compact linear algebra formulation, such as (1.2). Other times, the form of each constraint in
the problem varies enough that forming the correct matrix and vectors to represent the prob-
lem as in (1.2) would be quite tedious. In either case, explicitly writing out all the constraints
in a problem is often unnecessary for human understanding, since many constraints have the

“The College of William and Mary, Department of Mathematics, prsteele@email .wm.edu
fSandia National Laboratories, Discrete Math and Complex Systems, jwatson@sandia.gov

P. Steele and J. Watson 197

same form, differing only by coefficient values — in fact, many problems solved today in-
volve millions of variables and constraints, making a hand-constructed problem impossible.
To overcome this, linear programming problems are often expressed via algebraic modeling
languages.

Algebraic modeling languages (AMLs) are computer languages designed to express
mathematical ideas in a form that can be understood by a human. Although applicable to
a wide range of mathematics, many AMLs are specifically designed to express mathemati-
cal programming problems. Both commercial AMLs, such as AMPL (A Math Programming
Language), GAMS (the General Algebraic Modeling System), or Optim], as well as open
source AMLs, such as FLOPC++ or MathProg, are commonly used to express linear pro-
gramming models in a form that can be manipulated by a solver. Some AMLs such as AMPL,
GAMS, and MathProg are stand-alone pieces of software with their own languages, while
others are embedded in general programming languages, like OptimJ (Java) and FLOPC++
(C++).

Another embedded AML is Pyomo (Python Optimization Modeling Objects), a compo-
nent of the Coopr (Common Optimization Python Repository) project [9, 1]. Pyomo is based
in Python, an interpreted, object-oriented programming language with a well-established
user- and code-base. In addition, Pyomo works cooperatively with other components of the
Coopr project, such as PySP, a stochastic programming toolkit, and CooprOpt, a Python in-
terface to many optimizers [8].

2. Benders Decomposition.

2.1. Motivation. Let us consider the problem of production planning. A company man-
ufactures a number of products which they sell to their customers. They have already taken
orders for the current year, and must fulfill these orders before the same time next year, at
which time they will receive orders for the second year. The company must purchase raw
materials to produce their products; the price of raw materials is expected to increase next
year, so the company can decide to purchase excess raw materials and store them for a fee.

Formally, the decision problem can be stated as

min) (f) + fiw) + (@) + @) +) (s

ieP(1.2) keRr ker
S.t. X; > Dy, VieP
w; > Dpp, VieP
Z re(Xi) = Yk = Sk VkeR
ieP
Z re(Wi) < e + Sk Vk e R (P1)
P
x; =0, VieP
w; >0, YieP
e 20, Yk e R
7t >0, Yk e R
sy >0, Vk e R,

where P is the set of products the company manufactures and R is the set of raw materials
used to produce the products; x; and w; are the decision variables representing the amount
of product i to produce in year one and two, repectively, y; and z; are the decision variables
representing the amount of raw material k to buy in year one and two, respectively, and sy is

198 Benders Decomposition in Pyomo

the amount of raw material k to store from year one to year two; f; is the net cost associated
with producing and selling product i, g; is the cost of purchasing raw material k in year
J» ¢ is the amount of raw material k needed to produce a material, and /; is the cost of
storing some amount of raw material k from year one to year two.! Additionally, D;; is the
demand for product 7 in year j. The objective is to minimize the total cost of production,
purchasing, and storage. The first constraint ensures that demand is met for each product
each year, and the second and third constraints ensure that there are sufficient supplies to
meet production requirements in the first and second year, respectively. Note that the year
one material constraint is a strict equality, since the company stores all unused materials,
whereas the second year is an inequality, since too much material could have been stored in
the first year.

An important omission from this model is the uncertainty of the year two demands; recall
the first constraint from (P1),

xij 2 Dy, Y(, j) € P x{1,2}.

This constraint treats both year one and year two demands as known parameters; however,
only year one demands are known with certainty. The values of the year two demands
Dp,i € P lie in some uncertainty set 9;. To model this uncertainty, we assume that cus-
tomer demand for product i will be one of Dl.lz, ey D% € 9;, which occur with probability
D1, ---,Pu, respectively. This results in M different scenarios that must be considered. Al-
low ¢, to be the cost of purchasing materials given that scenario m has occurred, with the
convention that an infeasible scenario has infinite cost; then we can consider minimizing our

expected cost with the objective

min > fixi) +). @) + D A5+ D Pt @D

i€P keR keR meM

Of course, this objective will obtain a value of positive infinity if at least one scenario is
infeasible. However, to enforce feasibility constraints on each of the scenarios, we must
replace the random variables Dj», i € P in (P1) with sets of variables representing the planned
course of action for each scenario, as well as constraint ensuring feasibility in each scenario.
This results in new formulation of (P1).

min f'x+g"'y+h's +pic + ... +pucu
s.t. X >d
y-s =rlx
s +z! —rTw! >0 (2.2
s +2zM —rTw¥ >0

where
cn= 2 FOW+ . (@,
ieP keR

Notice that with this formulation, each scenario is only loosely coupled to the others via
the year 1 variables; for this reason, we refer to year 1 variables as complicating variables.

IThe use of function notation here is for clarity only; all functions are assumed to be linear, and soon expressions
such as Y, f(x;) will be replaced with the dot product f'x.

P. Steele and J. Watson 199

Without them, each scenario could be solved independently. This is a common situation in
stochastic programming, or programming under uncertainty, since random variables are often
approximated as a number of discrete scenarios. PySP, a component of the Coopr library,
offers a toolkit designed to solve such problems. Because each scenario introduces another
set of variables, the number of variables in (2.2) often makes the problem computationally
intractable. To overcome this, we utilize Benders decomposition [3].

2.2. Formulation. Benders decomposition is a method designed to reduce the number
of variables in loosely-coupled problems such as (2.2). The primary goal of Benders de-
composition is to create a new master problem containing the the constraints and objectives
involving the complicating variables, and replacing each set of scenario variables with a sin-
gle auxiliary variable. Constraints are then added to the master problem to ensure that the
auxilliary variables ultimately attain the value of the original objectives. Consider the general
linear program

min ¢'x +fly, + ... +fly,
s.t. Ax =b
Bix +Dy, =d,
2.3)
Byx +Dy,, =dy

X >0

Like in our motivating example, x is a vector of complicating variables that loosely couple
the various y; sets of variables and associated cost components and constraints. In general,
the x variables may be either continuous or discrete. To solve this problem via Benders
decomposition, a relaxed master problem is created,

min ¢'x+17z

st. Ax=h, (24)
where z € R™, along with the subproblems
min fTy,
s.t. Dy = dw - BWX* (25)
w >0,
where m = 1,..., M. Note that in the master problem the z variables are unconstrained;

this is not a problem, because or constraint generating techniques will generate the relevant
bounding constraints.

At each iteration of the algorithm, the relaxed master problem is solved, and the optimal
value x* of variable x is recorded. The optimal variable values of x are then fixed in each
subproblem, which are then solved. If any subproblem m is dual-unbounded? in direction®

2Every linear programming problem has a ‘dual,” which is another linear programming problem closely related
to the original, or ‘primal,” problem. Briefly, each constraint in the primal corresponds to a variable in the dual, and
each variable in the primal corresponds to a constraint in the dual. One can think of the dual variables as penalties
applied to the primal for violating constraints. The most notable traits of a linear programming primal-dual pair is
that the cost associated with any feasible dual solution acts as a lower bound on the optimal cost of the primal, and
that the cost associated with any feasible primal solution acts as an upper bound on the optimal cost of the dual; this
is known as weak duality. In fact, it can be shown that if either the primal or dual has an optimal solution, then both
problems have an optimal solution and the associated costs are the same; this is known as strong duality. For a more
complete treatment of duality theory, see [4].

3Given a problem with variables x € R", a feasible direction is a vector d € R" such that x + 0d satisfies the

200 Benders Decomposition in Pyomo

v the constraint
(im)\T
V) (d,, - B,x) <0

is added to the relaxed master problem, constraining the master problem to choose stage 1
variables that do not allow that direction of unboundedness to be feasible. If any subproblem
m has a dual-optimal solution p/™™ with an associated cost greater than the value of z,,, the
constraint

(P™) @, -B,x) <z,

is added to the relaxed master problem, constraining the master problem to choose stage
1 variables that do not allow the optimal cost to be less than the optimal cost of the dual,
enforcing the condition usually imposed by weak duality. If neither type of constraint is
added during an iteration, the current master variable value x* is the optimal stage-1 variable
value, and the solutions to each subproblem are the optimal actions to be taken should that
scenario occur.

2.3. Representation in Pyomo. To solve a problem via Benders decomposition, knowl-
edge of the duals of the subproblems is required. Specifically, we need to be able to deter-
mine both the values of the dual-optimal variables for each subproblem and any directions of
dual unboundedness. Although some full-featured solvers, such as the commercial CPLEX
solver, are capable of providing such information, the Pyomo modeling language is designed
to be solver-independent, and so it cannot rely on this peripheral information to be available.
Rather, Pyomo must form the duals of the subproblems and then determine the directions of
unboundedness through the solution to an ordinary linear program.

The first step Pyomo must take is to form the duals of each subproblem. It is well known
that the primal-dual pair related to problem (1.2) is given by

min ¢'x max p'b
st. Ax=b st. prA<cl. (2.6)
>0

Note that the vector p contains a decision variable for each constraint in the matrix A, char-
acteristic of the dual. Thus, if Pyomo can express a problem in the form of (1.2), it can
immediately transform the problem to its dual. Fortunately, transforming a general linear
programming problem into the form of (1.2) is straightforward [4]. To accomplish this, the
following transformations are made:
1. For each variable y not explicitly constrained to be nonnegative, replace y with y* —
y~, where y*,y~ > 0.
2. For each less-than or equal-to constraint A;x < b;, replace the constraint with A;x +
e; = b;, where the excess variable satisfies e¢; > 0.
3. For each greater-than or equal-to constraint A;x > b;, replace the constraint with
A;x — s; = b;, where the slack variable satisfies s; > 0.
4. If the objective is of the form max ¢'x, replace it with min —cTx.

constraints of the problem for some positive 6 and feasible x. An unbounded direction is a direction d such that
X + 6d is feasible for all positive 6. A direction of improvement is a direction d such that given a cost vector ¢ € R”,
cT(x+6d) < Tx for some positive 6. Thus, an unbounded direction of improvement is a direction that can be chosen
to produce an optimal cost that is unbounded below.

P. Steele and J. Watson 201

The next step is to be able to determine the directions of unboundedness in the dual sub-
problems. If a dual subproblem is solved and found to be unbounded, we solve the auxiliary
subproblem (AUX) described in proposition 2.1 to determine the direction of unboundedness.

ProposiTion 2.1. Allow a linear programming problem to be given with a dual of the form

min Th
P (D)

s.t. prA<c’

If (D) is unbounded, a direction of unboundedness d* is given by an optimal solution to the
auxiliary problem

min d’o
s.t. dTA <o (AUX)
d'b > 1.

Thus, by solving these auxiliary subproblems when directions of dual unboundedness are
required, Pyomo has all the tools necessary to solve a problem via Benders decomposition
using the simplest of linear programming solvers.

3. Conclusions and Future Work. At present, the transformations required to solve
a problem via Benders decomposition in Pyomo are memory intensive. As Pyomo is built
on an interpreted language, Pyomo already consumes a large amount of computer memory
and the addition of these transformations will likely cause Pyomo to be unable to solve large
problems.

There are several immediate enhancements that can be made to conserve memory us-
age in the algorithm outlined above. The motivation for the transformations presented was
to overcome the disparity in the abilities between the various solvers supported by Pyomo.
By making these transformations, Pyomo is able to function with the least-capable solver
available. However, these transformations become unnecessary when attempting to solve a
problem with a solver capable of returning both the dual optimal solutions and directions of
dual unboundedness. Pyomo can take advantage of this, performing transformations only
when the solver is incapable of performing them itself.

Additional enhancements can be made to improve the run-time performance of this tech-
nique. Note that only constraints are added to the master problem (2.4); this of course corre-
sponds to adding variables to the dual, and so a dual-optimal solution to (2.4) is guaranteed
to be a dual-feasible solution after adding constraints. This allows the solver to be ‘warm
started’ using a previous solution, both eliminating the need for a phase-I simplex solve and
providing a near-optimal starting basis to the solver, potentially reducing the number of sim-
plex iterations required to solve the problem.

Recall that in section 2.1 we considered a problem with two stages of decisions, leading
to our formulation of problem 2.2. We can consider, however, the case where the various
scenarios of 2.2 in turn had a similar problem structure; this structure would lend itself to
nested Benders decomposition, wherein there are k ‘stages’ to consider, and each subproblem
is solved via Benders decomposition. Because Pyomo allows entire models to be abstracted
behind Block objects, it is possible to create a Benders decomposition method where the each
top-level scenario is solved via Benders decomposition, thus allowing an arbitrary number of
levels to be solved via Benders decomposition simply by having Block objects contain other
Block objects with a structure similar to (2.2).

202 Benders Decomposition in Pyomo

REFERENCES

[11 Coopr Home Page, 2010. https://software.sandia.gov/trac/coopr.
[2] R. E. BELLMANN, On a Routing Problem, Quarterly of Applied Mathematics, 16 (1958).
[3] J. BENDERS, Partitioning Procedures for Solving Mixed-Variables Programming Problems, Numerische Math-
ematik, 4 (1962), pp. 238-252.
[4] D. Bertsimas AND J. TsitsikLis, Introduction to Linear Optimization, (1997).
[5] S. Boyp anp L. VANDENBERGHE, Convex Optimization, Cambridge University Press, 2004.
[6] E.DukstrA, A Note on Two Problems in Connexion with Graphs, Numerische Mathematik, 1 (1959), pp. 269—
271.
[7] L. FisuBoNE anNDp H. ABiLock, MARKAL, a Linear-Programming Model for Energy Systems Analysis: Technical
Description of the BNL Version, International journal of Energy Research, 5 (1981), pp. 353-375.
[8] W. Hart anp J. Warson, Coopr: a COmmon Optimization Python Repository.
[91 W. Hart, J. WarsoN, anp D. Woobrurr, Coopr User Manual: Getting Started with the Pyomo Modeling
Language, (2009).
[10] N. KARMARKAR, A New Polynomial-Time Algorithm for Linear Programming, in Proceedings of the Sixteenth
Annual ACM Symposium on Theory of Computing, ACM, 1984, p. 311.
[11] V. Kteg, G. MiNTY, AND S. O., How Good is the Simplex Algorithm?, 1972.
[12] M. Young, A Minimax Portfolio Selection Rule with Linear Programming solution, Management Science, 44
(1998), pp. 673-683.

Appendix

A. Proof of Proposition 2.1. Proof. Suppose that (D) is unbounded, and that d* pro-
duces the optimal value of (AUX). Then d*T is feasible to (AUX), and so d*7 satisfies

d*TA < 0
dTp > 1.

Recall that for d* to be an unbounded direction in (D), it must satisfy

(p"+0a™)A <" (C1)
&b >0 (C2)

for all # > 0 some feasible p.
We first note that since d” is feasible to (AUX),

d"b>1

which trivially implies that d* satisfies (C2).
We now show that d* satisfies (C1). Since p is feasible to (D), it must be that

pPA<c’ = 0<c"-pTA.
Then, since d*TA <0,

0d*TA <c"-pTA, VO>0
pTA +60dTA < T
(pT + Hd*T)A <c',
as required.

We will now show that if (D) is unbounded, (AUX) has at least one feasible solution.
Allow d” to be given such that d* is an unbounded direction of improvement in (D). Since

P. Steele and J. Watson 203

d” is an unbounded direction of improvement, it must satisfy constraints (C1) and (C2) from
above. Allow 0 = 0; then we have that

(pT + GOT) A<ct
p'A <’
0<c' - pTA,
and so all components of ¢T — ¢TA are positive. Since
(pT + Hd*T)A <’ = 0d""A <" -pTA,

we can immediately see that if some component of d*TA, (d*TA)i, were positive, by choosing

(cT - pTA)_ +1

g~ Ji

(a74),

the previous constraint is violated. Thus, all components of d*TA are nonpositive, and so a’
satisfies the first constraint of (AUX), namely

dTA <.

If @Tb > 1, all constraints have been met in (AUX), and so d* is feasible to (AUX).
We now show that if @*™b = v < 1, a new unbounded direction of improvement d can be
constructed such thatd' b > 1. Recall that (C1) is satisfied by d* for all nonnegative 6; then
%d* also satisfies (C1), since v is constrained to be positve. Additionally,

Lamp

v

_ <

=

—_

k)

and so %d* is a feasible solution to (AUX) and an unbounded direction of improvement in
(D).

Thus, if (D) is an unbounded problem, (AUX) has at least one feasible solution which is
an unbounded direction of improvement in (D). O

B. Pyomo Formulation. Section B.1 shows the Pyomo code representing problem 2.2,
excluding the data necessary to instantiate the problem. Note how each scenario in 2.2 is
represented as a discrete Block object, keeping the Pyomo representation of the problem
similar to the original formulation. Section B.2 shows the PySP code necessary to solve the
Pyomo model via Benders decomposition.*

B.1. Model.
from coopr.pyomo import x

#
Set up the common data

“4Please note that as Coopr continues developing, the exact syntax of the Pyomo formulation and PySP solver
code may change. For up-to-date examples of Pyomo and PySP code, please refer to [1].

204 Benders Decomposition in Pyomo
#
master = Model ()

master .PRODUCTS = Set ()
master .MATERIALS = Set ()
master . SCENARIOS = Set ()

#
Stage 1 problem
#

master.stagel = Block()

master.stagel .costs = Param(master . MATERIALS)
master.stagel .buy = Var(master .MATERIALS)
master . stagel . produce = Var(master .PRODUCTS)
master . stagel . store = Var ()

master.stagel .buy_con = Constraint(master .PRODUCTS)
master.stagel .store_.con = Constraint(master .PRODUCTS)
master.stagel .prod_con = Constraint(master .PRODUCTS)

#
Stage 2 problems
#

master.scenarios = Block(master.SCENARIOS)

master.scenarios.costs = Param(master . MATERIALS,
master . SCENARIOS)

master.scenarios.buy = Var(master . MATERIALS)
master.scenarios.produce = Var(master .PRODUCTS)

master.scenarios .buy_con = Constraint(master .PRODUCTS)
master.stagel .prod_con = Constraint (master .PRODUCTS)

B.2. PySP Solver Code.

from coopr.opt.base import SolverFactory
from pyutilib.misc import import_file
from coopr.pysp import Benders

solver = SolverFactory (7 glpk™)

problem = import_file ("benders.py”).model
instance = problem.create(”some_data_file.dat”)

Specify the Block holding the complicating variables;
in this case, instance.stagel

P. Steele and J. Watson 205
solution = Benders(instance , instance.stagel).solve ()

print solution

CSRI Summer Proceedings 2010 206

STOCHASTIC OPTIMIZATION APPLIED TO ENERGY ECONOMY
OPTIMIZATION MODELS

KEVIN HUNTER!, JOSEPH DECAROLIS*, SARAT SREEPATHI*, AND JEAN-PAUL WATSON!

Abstract. Addressing future uncertainties is a key challenge with multi-decadal optimization of energy and
emissions projections. A common approach creates a small set of projections based on different exogenous scenario
assumptions to quantify the range of possible outcomes. While such scenario analysis can help expand thinking
about how the future might unfold, such projections are of limited value to policy makers, who must make long-lived
decisions before uncertainty is resolved. While stochastic optimization has been applied to energy system models,
the computation requirements have limited analysis to relatively simple probability trees. However, multi-stage
stochastic optimization enables a more sophisticated approach by embedding the probability of different outcomes
within model formulation, yielding a hedging strategy that accounts for future uncertainties.

1. Introduction. Over the next few decades, concerns over climate change and energy
security will drive fundamental changes in the global supply, transport, and use of energy.
Energy system and integrated assessment models play a vital role in the planning process by
providing insight related to the future impacts of policies and technology deployment. Energy
economy optimization (EEO) models attempt to optimize (planned) energy system develop-
ment over a time horizon, often with an objective function that minimizes the total cost or
maximizes social utility of energy supply. Since the early 1990s, EEO models have emerged
as key tools for analysis of energy and climate policy at the regional, national, and interna-
tional scale. Given advances in computing and the ever expanding core of mineable energy
and climate data, the scope and complexity of EEO models has expanded tremendously.

The application scope widening is a natural consequence of the power of optimization
modeling in general, but it remains to be seen whether increased model complexity buys a
modeler more objective insight. The thought goes that there is a positive correlation between
more complex models and more accurate future energy projections. However, accurately
modeling the future is akin to predicting the future, and little analysis is currently performed
on the likelihood of different outcomes. EEO modeling should provide robust results in the
face of future uncertainty; they have little value to policy makers otherwise.

2. An Open Source Energy Economy Optimization Model. Personal observation and
a survey of the literature have led us to identify two critical shortcomings regarding existing
EEO models. With few exceptions, the models are not open source.! Because EEO models
necessarily have long timeframes, expansive system boundaries, and encompass both physi-
cal and social phenomena, the level of descriptive detail that can be provided in model docu-
mentation and in peer-reviewed journals is insufficient to reproduce a specific set of published
results. While there have been rigorous efforts to compare model results?, the lack of access
to source code prevents a deeper level of external verification. Peer-reviewed journal articles,
model documentation, and distribution of executable models provide guidance, but without
the ability for researchers to investigate internal model equations and assumptions, insight
into specific model results is cursory, at best. Dubois noted in 2002 that replication and ver-
ification of scientific models can only be accomplished by freely available source code.[2]
Making EEO models open source, freely available, and electronically attainable solves both
the external replication and verification problems.

INorth Carolina State University, [kmhunte2, jdecarolis, sarat_s]@ncsu.edu
ISandia National Laboratories, jwatson@sandia.gov
IThe (recent) exceptions include Yale’s DICE model http://nordhaus.econ.yale.edu/, and the OSE-
MOSYS model http://osmosys.yolasite.com/
2e.g. the Stanford Energy Modeling Forum, http://emf.stanford.edu/

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 207

A second critical shortcoming of current EEO models is their treatment of uncertainty.
Either intentionally, or through project “feature creep,” a major trend in current EEO models
is toward large, complex models that endogenize all possible phenomena. The drawback is
that large and complex models are computationally expensive to iterate, which makes un-
certainty analysis difficult at best to perform. Further, given the multi-decadal time horizons
of EEO models, validation through comparative observation to real world phenomena is not
practical. This suggests that modelers have little ability to assess the strength of model fea-
tures toward model performance. Consequently, complex models are mainly used to create
highly detailed scenarios, keeping their applicability limited in scope, and often excluding
consideration of insights EEOs may offer for energy system analysis.[6].

In response to these issues, we introduce a new modeling framework called Tools for
Energy Model Optimization and Analysis. TEMOA is a technology explicit, partial equilib-
rium EEO model that minimizes the present system-wide cost of energy supply by optimizing
energy capacity installations and commodity flows to end-use demands. Technologies are di-
vided into three basic categories: resource supply, intermediate transformations, and demand
technologies.

Energy prices and flows are determined endogenously such that end use demands are
matched exactly by energy supply. The intersection of the inverse demand curve and supply
curve represents equilibrium, and this equilibrium is calculated for every commodity in the
energy system. Exogenously specified fixed demands will be used initially in TEMOA and
represent a vertical demand curve. In this case, the equilibria are not responsive to changes in
demand based on commodity prices. Elasticities can be specified in order to make demand re-
sponsive to price, but in either case, the model still represents a partial equilibrium on energy
markets because it does not take into account broader economic effects and the associated
feedbacks outside of the energy system. For a detailed explanation of the economic rationale
behind partial equilibrium models, see Loulou et al. (2004).[5]

2.1. Formulation as a Linear Program. The initial development phase of TEMOA
has focused on creating a simplified version that represents the energy system as a linear
programming (LP) model. LPs are restricted to have only linear objective functions and con-
straint equations and represent a well-studied class of optimization problems. For a feasible
set of assumptions (input parameters), LP algorithms guarantee finding the optimal solution.

The TEMOA objective function is provided below and represents the present cost of
supplying energy over the model time horizon (Cy,):

Tit
1- (1 + V,'_t)_r"1

Ucost(p, 1,v) = Cmyyp - vmatyyp - Utiliy
fp+1—Tp 1

Cror = Zp: Zt: Z Z(; (Icost(p,t,v) + Ucost(p,t,V)) - W
v y=

I +r,

Icost(p,t,v) = (Ci(t,v) . [} “imatyyp +C f(t,v,p)) -Capyy

where the parameters are defined in Fig. 2.1.

There are two driving sets to this equation: model time periods and technologies. There
is also the vintage set, but the model internally creates the vintage set (investment period) as
an upper triangle of periods X periods for each technology; the model uses the first period
axis to represent the period in which a technology was built — the “vintage”. The decision
variables Capicity and Utility represent the model’s decision to build capacity of a specific
technology in a certain year, and the model’s decision to utilize that capacity. The bracketed
terms are the standard economics multipliers to annualize the technology investment costs C;
and to convert to present-day value. Other parameters include the marginal cost of technology

208 Stochastic Optimization applied to Energy Economy Optimization Models

Civ) Investment cost for a technology and vintage

Crav,p) Fixed cost for a technology vintage, in a period

Cmyyp Marginal cost of operation of a technology vintage in a period
imatyy p Binary matrix; tracks technology loan investment lifetime by vintage
vmatyy p Binary matrix; tracks technology lifetime by vintage

Capyy Variable; installed technology capacity by vintage

Utilyyp Variable; technology vintage utilized by period

rit Technology investment rate

ry Global discount rate
FiG. 2.1. Parameters for the TEMOA objective function.

operation C,,, the technology-specific interest rate of the investment r; and loan life »;, and
finally the global discount rate r,. The precalculated imat and vmat multipliers are sparse,
three dimensional, binary matrices to track the investment period and technology lifetime by
vintage.

Beyond the basic nonnegativity constraints on the variables, there are three basic con-
straint equations:

o A technology-level constraint set ensures that commodity inputs are at least equal to
commodity outputs for each period.

o A technology-level constraint set ensures that production cannot exceed the installed
capacity for each period.

e A set of constraints enforces that all end use demands are met by production from
appropriate demand technologies for each period.

With the variables, objective function, and constraints defined, instantiating an LP prob-
lem from this model merely requires specification of each parameter.

2.2. Motivation for Stochastic Program Formulation. “Merely” is deceptive, how-
ever, as parameter specification is the crux of energy modeling. In the context of EEO mod-
els, LPs implement a “perfect foresight” expectation of a problem instance; to solve an LP,
every input parameter must be fully realized. Unfortunately, many real world problems have
parameters that cannot be specified until they are realized. For example, what will be the
price of fuel, or the efficiency rating of coal power plants in 2030? (Will we even have coal
power plants?) Without perfect foresight, it is impossible to know the route to an optimal
solution.

Stochastic programming (SP) is similar to linear programming, but more formally ad-
dresses inherent model uncertainty. SPs incorporate data into the objective function and
constraints that may be uncertain. Though real-world problems have unknown coefficients
(e.g. price of natural gas 10 years in the future), these can often be described via probability
distributions. For instance, though we do not yet know the price of natural gas one year in the
future, we exactly know the current price. We also have a conditional probability range for
the price next year, based on a range of mineable data inputs (e.g. historical usage, planned
business ventures, policy incentives). In this vein, we can assign a probability that the price
will increase (for example) by +5%. Though we still do not know how the price will change,
we can at least take action now to minimize a worst-case scenario next year.

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 209

One way to formulate a stochastic program is to break it up into two parts — what we
can decide now and what we can do after the consequences of the decision are known. This
method is called a “recourse” model. More generally, recourse models try to minimize the
cost of the non-anticipative stages and expected cost of the “recourse” decision[1]. Sub
problem 2.2 is the recourse:

min ¢'x+ EQ(x, &)

s.t. Ax<b @D
O(x,&) = ming'y
Wy =h - Tx (2.2)

y=>0

Here, the x vector denotes the non-anticipative variables for which all input parameters
¢ and all constraint coefficients A and b are known. The subproblem contains the recourse
decision variable y, the not-yet realized (anticipative) input parameters q, constraint coeffi-
cients h and T, and the outcome of the x decision as the new decision coefficient matrix W.
E¢ denotes mathematical expectation with respect to &.

In less formal math language, this basically means that an SP will optimize the variables
it can (the non-anticipative stages), and try to find a best preparatory step for minimizing
the future cost over the range of possible scenarios (expected future cost). Though the SP
is “aware” of the future possibilities, it must make a decision without knowledge of which
future scenario will actually occur: this is the non-anticipatory property. All future stages
can be resolved only when more information about them is realized, as by waiting a year.

Suppose a coal power plant is tasked with keeping a city’s lights on. The plant furnace
can acquire coal from either its own storage facilities or by purchasing coal from a coal mine.
Coal from the mine costs a certain amount normally, but during higher demand seasons, it
might be more. It’s a normal season this year, but given past weather data, it might also
be warmer or colder next year. Due to overhead, coal costs $0.04/lb/year to store. Finally,
the city’s general demand for electric lighting will increase during warmer or colder years.
(This information is summarized in Table 2.1.) Given that next year’s average temperature is
unknown, how should the coal plant plan its purchases?

Scenario Description Probability Coal Cost ($) Demand (units)

1 Normal 13 0.50 100

2 Warmer %5 0.55 110

3 Colder % 0.70 140
TaBLE 2.1

Example problem data summary

One method of solution replaces the expectation Q(x,) in the initial problem with a
weighted sum of the second-stage decision variables y; for each possible scenario. This
method is called the extensive form because it exhaustively states all possible scenarios in
the original problem:

210 Stochastic Optimization applied to Energy Economy Optimization Models

min 0.50x + 0.04 - (s1 + 52) + % - 0.50y; + % - 0.55y, + % - 0.70y3

S.t. x—s; =100 (a)
Yi+ S8 —85= 100 (b)
2.3)
y2+S1—S2:110 (C)
y3+ 851 — 52 =140 (d)

X, 81,852, Y1,Y2,¥3 2 0

Where x is number of coal units to purchase this year, y, are the number of coal units
to purchase for the respective scenarios in the following year, and s, are the amount of coal
units to put into storage in year 1 and 2. Constraint (a) ensures that demand is met in the first
year, and that any excess is put in to storage. Constraints (b), (c), and (d) ensure similar for
year two, but also take into account the left over storage from the first year. (Note that s, may
“intuitively” be O in the optimal solution, but this problem may more easily be extended to
multiple years.) The extensive form possible outcomes are summarized in Table 2.2.

Stage (Scenario) Bought Stored Cost ($)

1 200 100 104.00

2 (Normal) 0 0 0.00

2 (Warmer) 10 0 5.50

2 (Colder) 40 0 28.00
TaBLE 2.2

Example solution summary

The optimal expected cost is 104.00 + % - 0 + % - (5.50 + 28.00) = $117.40 over the two
years.

Stochastic programs can also be thought of in terms of scenario trees. Each leaf node of
the tree represents a possible scenario. For a simple 3 stage problem with 1 random parameter
with 3 discrete outcomes, the tree is small at 9 (32) scenarios (visually depicted in Figure 2.2).
But if there are x random variables, each with y possibilities, to be solved over z stages, that

is yxz_1 leaf nodes or scenarios.
L H l
M \H

L M/ H L M H l

olofo]clolo|clolo e

Fic. 2.2. Example single random variable 3-stage scenario tree

For EEO models that necessarily observe long time horizons and have between tens and
thousands of variable parameters, this represents a very real obstacle to calculating useful
results in a timely fashion.

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 211

2.3. Formulation as a Stochastic Program. While each constraint of the LP version
of TEMOA ensures that the model meets demand or production requirements at all periods,
the objective function minimizes the cost over the entire model time horizon. As time is
a natural stochastic partition point due to future uncertainty, we chose to remove perfect
foresight from TEMOA by converting the singular objective function into the sum of a set
of “sub-objectives”, indexed by the model period. Each sub-objective is aware of its model
period, the model decisions of the previous periods, and the expectation of future outcomes.
We implement this simplistically through the use of an additional period-indexed variable pc:

PCkep

Tit
1 - (1 + r,-‘t)_r"‘
Ucost(k, t,v) = Cmyyy - vmatyy . - Utilyy i

Tks1 =T 1

pPCk = Z Z Z(; (Icost(k,t,v) + Ucost(k,t,v)) - | ———|,
Vo y=

Lity=to
(1 + rg)

Icost(k, t,v) = (Ci(t,v) . [} . imatt,vyk + Cf(t,v,k)) . Capt,V

Vkep

Note that this reformulation removes the outer sum of the LP version for each pc index,
but replaces the entire objective function with this new sum:

Cior = Z PCk

kep

Finally, to make it stochastic, we must specifically describe which stages are anticipatory,
and which parameters are to be treated stochastically (to be decided by the modeler on a per-
run basis). In reference to equations 2.1 and 2.2, the anticipatory stages relate to x and the
non-anticipatory stages relate to y. Strictly speaking, this reformulation is not necessary, but
it splits up the actions of the model into logical parts (for cognitive purposes), and eases the
next step to describe the stochastic problem to the computer modeling system. We give a
brief code snippet of how to do this in the next section.

2.4. Modeling Environment. Algebraic modeling languages (AML) are computer lan-
guages used to describe optimization problems. There are a plethora of AMLs available,
but EEOs have historically favored AMPL3, AIMMS*, or GAMS?. The modeling language
choice is a critical decision because it heavily shapes interaction with developers and users
alike. We have chosen to use Python Optimization Modeling Objects (Pyomo), a package
that provides capabilities often associated with more well-known languages such as AMPL,
AIMMS, and GAMS. As the Pyomo application programmer interface (API) is written in
the high-level programming language Python, any model written with it gains access to a
number of Python advantages. Among other boons, Python offers cross-platform portability
and, given the popularity of Python in the scientific community, there exist a large number of
libraries for nearly any task.[3]

3 A Mathematical Pro gramming Language, http://www.ampl.com/
4http ://www.aimms . com/
SGeneral Algebraic Modeling System, http://www.gams . com/

212 Stochastic Optimization applied to Energy Economy Optimization Models

While Pyomo affords a powerful programming environment for mathematical optimiza-
tion problems, it lacks the compact nature of pure AMLs, which were specifically designed
with a concise syntax that closely mimics mathematical notation. Despite its verbosity, Py-
omo is intuitive and uses the same model structure (i.e., sets, parameters, variables, equations)
as AMLs. The example below is the Pyomo version of the TEMOA objective function from
the SP formulation above:

def AnnualCost (per, model):
M = model
cost = 0.0

for t in M.tech_new:
for i in M.invest_period:
if (t, i, per) in M.investment:
If we built it in a recent time period, need to finish
paying off that loan;
cost += (M.period_spread[per] *
M.xc[t, i]
* (M.investment_costs[t, i, per]
* M.loan_cost[t]
+ M.fixed_costs[t, i, per])
)]
else:
otherwise, if it’s still operational, we just need to pay
the operating costs (fixed 0&M).

cost += (
M.period_spread[per]
* M.xc[t, i]

* M.fixed_costs[t, i, per]

Finally, how much capacity did we use? Have to pay for that too.
cost += sum([
M.xul[t, i, per]
* M.marg_costs[t, i, per]
* M.period_spread[per]

for i in M.invest_period
for t in M.tech_all
1)

return cost

A secondary benefit of coding TEMOA against the Pyomo API is the tie-in with a sis-
ter project called PySP. PySP extends Pyomo to support multistage stochastic programs with
enumerated scenarios.[4] The PySP package enables a fairly simple declaration of the struc-
ture of an SP, and automatically handles many of the low-level solving details. Though each
node in a scenario tree requires unique input data (for each stochastic parameter’s probability
distribution), much of the tedium can be outsourced to a generating script.

To understand how to create a stochastic program with PySP, here is a simple 2 stage
scenario tree. For brevity, this snippet only illustrates how to set up the stage variables and
associated model variables.

param StageCostVariable :=
p2000 PeriodCost[2000]
p2010 PeriodCost[2010]

set StageVariables[p2000]
set StageVariables[p2010]

xc[*,2000] xul[*,2000,2000] ;
xc[*,2010] xul*,2000,2010] xu[*,2010,2010] ;

3. Future Work. The general design philosophy of TEMOA is to make the model just
complex enough to answer specific questions, but no more. The goal is to keep the model

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 213

lightweight in order to facilitate rigorous uncertainty analysis. We have only very recently
begun working with stochastic programming and PySP, but, with limited computing resources
available to us, we have already identified a challenge in regards to the sheer size of problems.
We have work ahead of us in learning how to “prune” our scenario trees. Relatedly, scenario
tree generation may prove to be an area of modeler workflow optimization in that we currently
manually modify our stochastic parameters. There is work underway to automate and script
scenario tree generation.

Making more efficient use of resources is fast becoming an issue. Currently we are only
developing in singleton runs and batch sets of output. However, as we migrate to a stochastic
model, the computational power increase predicted by Moore’s law will soon not be enough
to solve our model in a reasonable amount of time. The problem of a mushrooming number
of scenarios and choices will quickly necessitate a less naive approach to a model solution.

In a larger sense, uncertainty analysis is only one component of the project. We also
are working on a general EEO database, that we hope can be a basis and central repository of
interaction for a number of different EEO models. Short of time travel, true validation of EEO
model results in a timely fashion will never be possible. However, interacting with multiple
EEO models through a central hub of information may provide a form of relative validation.

REFERENCES

[1] J.R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Verlag, 1997.

[2] P.Dubois. Key Techniques for Open-Source Science. In Coalition for Academic Scientific Computation (CASC)
Seminar, March 2002.

[3] W.E. Hart. Python Optimization Modeling Objects (Pyomo). Operations Research and Cyber-Infrastructure,
pages 3-19, 2009.

[4] D Woodruff J Watson. PySP Version 1.1, User Documentation. https://software.sandia.gov/trac/
coopr/wiki/PySP, 2010.

[5] R. Loulou, G. Goldstein, K. Noble, et al. Documentation for the MARKAL Family of Models. IEA Energy
Technology Systems Analysis Programme. Paris, 2004.

[6] M.G. Morgan, M. Henrion, and M. Small. Uncertainty: a guide to dealing with uncertainty in quantitative risk
and policy analysis. Cambridge University Press, 1990.

CSRI Summer Proceedings 2010 214

AN ACRO IMPLEMENTATION OF THE HYBRID OPTIMIZATION ALGORITHM
EAGLS

JACOB W. ORSINI! AND GENETHA A. GRAY **

Abstract. EAGLS is a hybrid optimization which combines the global functionality of genetic algorithms with
the speed of a local direct search. This novel approach to hybridization has shown promise when used on various
benchmarking and real world applications. Due to this, there is a need to implement the algorithm in a widely
available package, such as Sandia’s DAKOTA, in order to allow public use. The task of implementing EAGLS into
DAKOTA is most easily done by using an existing front end available in DAKOTA. This front end, ACRO, has built
in libraries and interfaces which allow for developers to use pre-built optimizers in order to test their own problems
and create custom hybrid schemes.

1. Introduction. Comprehensive studies of complex systems in science and engineer-
ing benefit from the inclusion of physical experimentation. However, in many cases, such
experiments are prohibitively expensive or even impossible to perform. To overcome such
limitations, scientists and engineers take advantage of the fact that the behavior of many of
these systems can be imitated by computer models and use computer simulations as an alter-
native or augmentation to experimental data. Such simulations created a need for tools to help
assess and improve the predictive capabilities of numerical models. This can be achieved by
pairing the simulations with optimization models.

Many of these simulation-based optimization problems contain both continuous and in-
teger or categorical variables. In fact, within Sandia’s nuclear weapons program, there is an
abundance of mixed variable optimization problems. For example, a discrete variable may
represent a material type or the number widgets in a design. Mixed variable models are also
prevalent in the area of critical infrastructure such as the electrical grid, highway system, and
water supply system. Therefore, the research and development of optimization algorithms
that can handle MINLPs has become a focus.

It should also be noted that within the simulation-based framework, the objective func-
tion to be minimized is complicated in the sense that derivatives are unavailable and approx-
imate derivatives are often unreliable. Moreover, the objective function landscapes can be
disconnected, non-convex, non-smooth, or contain undesirable, multiple local minima due to
the complicated physical phenomena being modeled. Therefore, a variety of derivative-free
optimization methods have emerged and matured over the years to address simulation-based
problems in general. They are theoretically supported and have established convergence cri-
teria.

The evolutionary algorithm guiding local search, EAGLS, has been developed to address
derivative-free MINLPs of the form

minimize x € R,z € Z" f(z,x)
subject to c(z,x) <0
i @ x) (L.1)
2<7<2,
Xe <X < Xy

where ¢(x) : R'—=IR". This method has shown to be successful in common hydrology prob-
lems and shows promise among other standard tests. Due to this, it would be beneficial to
make the EAGLS available for a larger scale of use by implementing it within Sandia’s De-
sign Analysis Kit for Optimization and Terascale Applications (DAKOTA). DAKOTA was
chosen since it provides a flexible, extensible interface between analysis codes and iterative

IClarkson University Department of Mathematics and Computer Science, orsinijw @clarkson.edu
**Sandia National Laboratories, gagray @sandia.gov

J.W. Orsini and G.A. Gray 215

systems analysis methods [1]. This task is most easily accomplished by leveraging a common
repository for optimizers (ACRO), which is is a user friendly front end for solving optimiza-
tion problems in science and engineering [5]. Built into this software are robust versions of
common optimization algorithms, which can be executed singly or in parallel by a user. This
functionality allows for the implementing of custom hybrid schemes, such as EAGLS.

The goal of this project is to implement the EAGLS algorithm using optimizers currently
built into the ACRO package. This paper describes this process as follows. First, in Section
2, we give an overview of the EAGLS algorithm, focusing on the characteristics which are
most important in its implementation. Section 3 summarizes the ACRO package, and Section
4 describes how EAGLS was implemented as an ACRO scolib package. Finally, Section 5
gives some general comments and describes future work.

2. EAGLS. Derivative-free optimization via evolutionary algorithms guiding local
search, EAGLS, provides a novel way creating an asynchronous parallel hybrid optimization
scheme as seen in [7]. In the past, derivative free optimization methods have relied on relax-
ation techniques in order to approximate discrete variables, such as integers, using a similar
continuous function. Due to the fact that an approximation is being used it is possible that the
answer obtained may not be the best possible answer for the discrete case. EAGLS combines
an existing heuristic algorithm and direct search algorithm in order to efficiently search for
local optima. The heuristic algorithm used by EAGLS is the non-dominated sorting genetic
algorithm (NSGA-II) as described in [2]. By using this genetic algorithm, EAGLS is able
to search the entire domain for potential optimal area without having to rely on derivatives.
However, using a GA on its own would require large amounts of computational power in
order to fully run and get a set of solution points. To alleviate this, the EAGLS algorithm uses
the asynchronous parallel pattern search (APPS), as described in [3], in order to refine the
points found by NSGA. These two algorithms were chosen for this application as both have
been widely tested and are easily interfaced with other methods. This allows NSGA to focus
on handling integer variables and global searches while APPS runs local searches with real
variables.

2.1. Description of Algorithm. The algorithm shown in Alg 8 is a synchronous version
of EAGLS which demonstrates the algorithm’s core functionality. In practice, EAGLS is im-
plemented asynchronously in order to distribute computational loads evenly. Step 3 through
step 7 is the classical implementation of a genetic algorithm. Step 8 and Step 9 are the local
search portion of EAGLS. Points of synchronization occur at lines 1 and 5, where new points
of the GA are evaluated, as well as Step 9, when instances of APPS are called. To alleviate
the potential load imbalance that may occur at these steps a shared evaluation queue is used
so that the local search can run while waiting for the GA to complete its evaluations. A more
complete example how how EAGLS works can be seen in Figure 2.1.

2.2. Benefits of EAGLS. The real power behind the EAGLS hybrid is that the algo-
rithm allows NSGA-II and APPS to work together while focusing in on what each algorithm
does best. In doing this, the GA is able to pick promising areas for global optima and stop
before its own function evaluations begin to grow. After points are picked by the GA, the lo-
cal search then refines them quickly and sends the points back into the population in order to
be ran through the algorithm again. In [7], EAGLS in tested on a compression spring model,
a simulation-based hydrology application, and a standard mixed integer test problem. These
problems and results can be found in [7] and its references. Though testing and additions
need to be made for EAGLS, its numerical results are promising. Along with this, the solu-
tions found using EAGLS are comparable to those found using methods in each problems’
literature.

216 An ACRO Implementation of the Hybrid Optimization Algorithm EAGLS

Algorithm 8 Genetic Algorithm Guiding Local Search

Require: Population size: n,

Require: Maximum number of generations: n,

Require: Budget for local search: n,

Require: Number of parallel local searches desired: n;
1: Generate (evaluate in parallel) and rank initial population: Py = p1,..., py,,
2: fork=1,...,ngdo
3: Py = select(Py)

Piy1 = mutate(Pyy1)

Evaluate in parallel new points in Py

Piy1 = merge(Py, Pry1)

Py, = rank(Ppy1)

Choose first n; of P, for local search

® R

minimize f(x,int(p}))
9: Create n, instances of APPS for 1 <i < n, subproblems: ~ *<%*"
subjectto x; < x < X,

10 while number of evaluations < n;, do

11: Run APPS instance in parallel with parallel evaluations
12: end while

13: end for

14:

3. ACRO. A common repository for optimizers (ACRO) is an open source optimization
package developed and maintained by Sandia National Laboratories. ACRO is included in the
DAKOTA optimization package under the name Coliny for distribution to the public. ACRO
is the combination of previous optimization libraries developed by Sandia. These include
the common optimization library interface (COLIN) and the Sandia COLIN optimizer library
(SCOLIB), both originally developed by William Hart [6] and maintained by John Siirola.
These two libraries contain both first and third party optimizers to be used with the ACRO
interface. In addition to optimizers, the COLIN library contains package used for managing
execution of the objective function, handling of input and output, reading input from XML
files or AMPL methods as well as other background tasks which are required for ACRO to
run. Users are able to communicate with the ACRO package using either XML or AMPL via
the Coliny interface. Either method simply passes an objective function, what optimizer is to
be used, and whatever constraints and initial values are needed. With this input, Coliny will
handle running of ACRO automatically. Coliny also allows for the user to specify multiple
optimizers in order to create a hybrid scheme, provided the two optimizers have compatable
domains. One of the most notable libraries built into ACRO is UTILIB, a library of C and
C-++ utility methods similar to the Boost libraries [4]. UTILIB contains generic data types
which allow for optimizers and objective functions that may not have perfectly compatible
data types to talk to each other, as the data goes through a generic typecasting. With a deep
understanding of the aforementioned libraries, it is possible for a user to customize or develop
their own solvers. In this case, we will be implementing EAGLS into the ACRO package.

4. Implementing EAGLS into ACRO. In order to implement EAGLS into ACRO it
was necessary to have a full understanding of some specific libraries built into ACRO. The
PointSet package is used by ACRO in order to receive and set points used by each individual
optimizer. Methods within PointSet are able to get the final point, which would most likely
be the best answer, or set the initial point to be used in an optimizer call. In either of these

J.W. Orsini and G.A. Gray 217

|| Each Gitizen — ¥
EAGLS has its own Points submitted as (" Funetion ;IL
Citizen "queue”, workers become Evaluation

HOPS available \._Processors
NSGAN /@f Mediator §

Conveyor "/'

Function
Value

Paints returmed
as evaluations
complete

Fic. 2.1. EAGLS execution

cases, the points are stored in an appropriate container using ACRO’s generic typecasting
from the UTILIB library. The solver manager library, SolverMngr, allows for optimizers to
be easily called, whether it be by the Coliny interface directly or within another block of
code. In the case of EAGLS, the pattern search (PS) and generic evolutionary algorithm (EA)
in the SCOLIB library will be called from within a parallel framework using methods from
the aforementioned packages, without the worry of how each optimizer handles points them-
selves. These two optimizers were chosen due to their resemblance to APPS and NSGA-II,
which EAGLS was designed to use. Parallelism is done using the message passing interface
(MPI). MPI allows for the EA to be set as a master node which can call a number of slave
nodes based on how many available processors are defined by the user.

For actual implementation, only a small portion of the code shown in Alg 8 needs to be
considered. As mentioned previously, the optimizers used will be taken directly from ACRO,
so the extent of their implementation will be method calls and data passing. Input and output
is also handled directly by ACRO and require that the EAGLS package call the correct data
members which hold the data passed by the input file. In order to make the program asyn-
chrounous, a queue must be present in order to handle data going to the direct search. For the
time being, a queuing system built into ACRO will be used until a more specialized one can be
developed. The cache used to hold points found by the pattern search until they are required
to be used by the EA will be implemented similarly to the queue. To implement a parallel,
most of the necessary code and algorithms for MPI are widely available and just need to be
looped over in order to produce the same results as in EAGLS. Over the summer a basic
framework was created, but needs to have further development before any tests can be ran
on the new implementation of EAGLS. The full implementation could not be completed due
to the fact that several functionalities within ACRO which are necessary for EAGLS to run
are untested or have not been updated in recent releases. There are also several built features

218 An ACRO Implementation of the Hybrid Optimization Algorithm EAGLS

within ACRO, such as a data queue, which could serve the needs of EAGLS but are not as
powerful as the original EAGLS implementation. A fully functional implementation will be
due out in late fall.

5. Future Work. Currently, EAGLS is under further development to include more fea-
tures such as more appropriate stopping conditions and advanced constraint handling. Having
output with uncertainty quantification, so a user can be aware if there is any potential error
in their answer, is also planned. When these additions are made to the main EAGLS code,
it will be necessary to implement them in the EAGLS package within ACRO as well. It will
also be necessary to fully test the ACRO implementation of EAGLS against problems similar
to those that the EAGLS algorithm was tested on. Once this is done, a functional framework
will exist which will allow for more hybrid schemes to be easily created within ACRO. The
way the code is currently written will allow this simply by swapping one optimizer function
call with another.

REFERENCES

[1] B. Apawms, K. DaLBey, M. ELprep, D. Gay, L. SwiLer, W. Bonnnorr, J. Eppy, K. HaskeLL, anp P. HoucH,
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Esti-
mation, Uncertainty Quantification and Sensitivity Analysis Version 5.0+ User Manual, 2010.

[2] K. DEB, A. PraTAP, S. AGARWAL, AND T. MEYARIVAN, A fast and elitist multiobjective genetic algorithm: Nsga-ii,
IEEE Transactions on Evolutionary Computing, 6 (2002), pp. 182-197.

[3] G. A. Gray anp T. G. Korpa, Algorithm 856: Appspack 4.0: Asynchronous parallel pattern search for
derivative-free optimization, ACM Transactions on Mathematical Software 32(3):485-507, (September
2006).

[4] W. HaRT, UTILIB 3.0: A Utility ~ Library for Portable C/C++ Software,
https://software.sandia.gov/Acro/releases/votd/acro/packages/utilib/doc/uguide/html/.

[S] W. Hart anp J. Surora, A Common Repository for Optimizers (ACRO), https://software.sandia.gov/trac/acro.

[6] W.E. Harr, An Introduction to the COLIN Interface.

[7]1 J.D.GrrrriN, K.R.FowLER, G.A.GRrAY, T HEMKER, AND M.D.PARNO, Derivative-free optimization via evolutionary
algorithms guiding local search (eagls) for minlp. available as Sandia Technical Report SAND2010-3023],
2010.

E.C. Cyrand S.S. Collis 219

Computational Applications

Articles in this section discuss the use of computational techniques in physical simu-
lations. Presented, here are several simulations of varying physics at both the atomic and
continuum level.

Theofanis et al. describe the electron force field wavepacket molecular dynamics method.
They show that this force field is able to reproduce shock pressure for the material polyethy-
lene. Ortega and Scovazzi consider a new remapping approach for finite element arbitrary
Lagrangian-Eulerian methods based on flux corrected transport. They present results that
show that the new scheme preserves monotonicity and high-order convergence where the so-
lution is smooth. Maskey et al. perform a molecular dynamics study of a particular conjugated
nanoparticle polymer. Using these numerical results, the authors show that the particle is in
a stable collapsed state in a poor solvent but unravels in a good solvent. Anderson et al. use
density functional techniques to investigate defects in amorphous silicon dioxide. Takato et
al. use molecular dynamics to study the collision of two nanoparticles. There study finds dis-
tinct regimes where the particles undergo elastic and plastic deformations. Costolanski and
Salinger outline a method to model the performance of a resonant tunneling diode. Details
about the Trilinos implementation are presented and discussed.

E.C. Cyr
S.S. Collis

December 17, 2010

220 CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 221

AN ELECTRON FORCE FIELD STUDY OF SHOCKED POLYETHYLENE

PATRICK L. THEOFANIS*, THOMAS R. MATTSSON', AND AIDAN P. THOMPSON¢#

Abstract. Electron force field (eFF) wavepacket molecular dynamics simulations of the principal shock Hugo-
niot are presented for crystalline polyethylene (PE) models along with a description of the eFF method. The eFF
results are in reasonably good agreement with previous DFT theories and experimental data which is available up to
80 GPa. We predict shock Hugoniots for PE up to 450 GPa. In addition we provide an analysis of the phase trans-
formations which occur due to heating. Our analysis includes ionization fraction and particle temperatures during
isotropic compression. We find that above compression to 2.4 g/cm?® the PE structure begins to break down and
electrons are ionized. Despite using a simple spherical Gaussian wavepacket basis, eFF is able to reproduce shock
pressures for this relatively complex material and this demonstrates the potential for eFF as a method for studying
matter in extreme conditions

1. Introduction: Studying Materials Under Extreme Conditions With an Electron
Force Field. The next generation of materials sourced for energy production, high-velocity
transportation, military and medical devices, and computer hardware will need to reliably
operate under extreme conditions. We define extreme conditions as involving temperatures
in excess of 1000 Kelvin, static or dynamic pressures greater than tens of mega-Pascals,
strains and strain rates greater than 1 km/s, radiative fluxes greater than 100 dpa, high inten-
sity electromagnetic fields, and corrosive or erosive conditions whether these conditions be
encountered in combination or separately.

Properties of hydrocarbons under pressure are of significant interest for basic science as
well as for practical applications. At Sandia National Laboratories, hydrocarbon foams are
used in dynamical materials research, within the Inertial Confinement Fusion (ICF) program,
and as a source of high temperature x-rays in radiation research. There is also significant
interest in the properties of hydrocarbons under pressure stemming from the need to under-
stand the deep earth. For example, are there abiotic pathways for formation of methane and
longer hydrocarbons under pressure, possibly in combination with catalytic transition metals
present in the earth’s mantle? There are also astrophysical applications: the atmospheres of
the ice giants Uranus and Neptune contain significant amounts of methane, water, and am-
monia. Understanding properties of hydrocarbons under pressure are crucial in modeling the
structure of giant planets as well as exoplanets.

The interest in material responses to extreme conditions has prompted shock studies on
a wide variety of elements [1], but experimental and theoretical progress has been slower
for more complicated materials like polymers, semiconductors, superconductors, etc. Matts-
son and collaborators provided first-principles and molecular dynamics (MD) simulations
of shocked polyethylene (PE) to fill this research void [17]. PE is an interesting material
because of the wealth of experimental information about its thermodynamic, elastic, and
shocked properties [9][26][18]. Typical experimental data provides the equations of state for
materials through the Rankine-Hugoniot curves. This data is invaluable, but other impor-
tant measurements such as the temperature response to shock, ionization cross sections and
rates, and chemical compositions behind the shock wave are difficult or impossible to mea-
sure. Without such information it is impossible to determine the types and rates of chemical
reactions that occur behind the shock wave. Quantum and classical molecular dynamics sim-
ulations can provide temperatures corresponding to the Rankine-Hugoniot equations of state
but they cannot provide details regarding photochemical and photophysical processes, and

*Materials and Process Simulation Center, California Institute of Technology, ptheofan @caltech.edu
fSandia National Laboratories, trmatts @sandia. gov
*Sandia National Laboratories, athomps @sandia.gov

222 Shocked Polyethylene

most classical potentials cannot provide information about transient chemical species. The
electron force field (eFF) method, a semi-classical molecular dynamics technique is capable
of providing positions, forces, particle velocities and energies for both electrons and nuclei in
addition to the standard thermodynamics quantities [23]. We can simulate the experimental
observables mentioned above through eFF trajectories. The details of the eFF method are
provided in the next section of this manuscript.

In this paper, we will describe the eFF method and describe its application to a hydro-
static shock study of PE. From this study we hope to determine the PE Rankine-Hugoniot and
compare it to experiments and other theoretical methods. Mattsson and collaborators demon-
strated that DFT with the AMOS functional is able to model polyethylene shock physics de-
spite lacking explicit Van der Waals terms. Like most flavors of DFT, eFF has no explicit
energy expression for Van der Waals or London dispersion interactions. In fact, all chemical
phenomena like bond lengths and strengths, steric effects, charge distributions, conforma-
tional preferences, and electron shell filling are emergent properties in eFF. This study will
be an important test of eFF’s ability to describe non-covalent, non-metallic systems. We have
calculated material properties of the hydrostatically shocked PE and we have characterized
the chemical composition and physical phenomena resulting from the shock. Unlike most
other theoretical methods, eFF provides ionization yields and a reactive dynamics picture of
hydrostatic compression.

2. The Electron Force Field. eFF was developed with modeling matter under extreme
conditions in mind. Density functional theory and other ab initio quantum mechanical tech-
niques provide excellent descriptions of matter at low temperature and pressure and classical
plasma theories provide good descriptions of matter at high temperatures. There exists a
“computational no-man’s land” between these thermodynamic regimes that remains a chal-
lenge to theorists. eFF was developed to bridge this gap and provide good descriptions of
matter near its ground state and in highly excited states.

2.1. The eFF Energy Expression. eFF overcomes the difficulties of modeling poten-
tially non-adiabatic systems by evaluating the energy of the system as a function of the nu-
clear coordinates and electron coordinates with a small set of universal electron parameters.
This ensures that energy may be partitioned separately into nuclear and electronic degrees
of freedom, thus electrons may hop between states without concomitant nuclear motion. We
choose to describe nuclei as classical particles and we describe the electrons with a wave-
function of floating spherical Gaussian orbitals similar to the method of Frost [8]. We define
our wavefunction as the Hartree product of floating spherical Gaussian wavepackets as such:

v o5 -
J

With positions X, translational momenta py, radial size s and radial momental p,;. Rather
than use a fully antisymmetrized wavefunction (for which an energy evaluation would re-
quire O(N*) operations), we choose instead a Hartree product wavefunction which will only
requires O(N?) operations to compute the energy. Using a Hartree product wavefunction
violates the antisymmetry principle for fermions which requires that interchanging any two
fermions should cause the sign of the wavefunction to change. In order to satisfy the Pauli
principle, we must account for the difference in energy between a full antisymmetrized wave-
function, and a product wavefunction like our Hartree product. To do this we include an
explicit Pauli energy term which will be described shortly.
The full potential energy expression is:

2ps i) — x)?| - explipy - x] 2.1
R

E = Eke + Enuc-nuc + Enuc-elec + Eelec-elec + EPauli (22)

P.L Theofanis, T.R. Mattsson and A.P. Thompson 223

We define the component energies as follows:

n? 31

Eie = o 2un 32 (2.3)
| 7.Z;
Epycnue = - 2.4
47'(60 ; R,’j ()
1 V2R;
Encclec = 1) (2.5)
47TE()

1 1 V2x;;
Eclecelec = — Z _Erf(—sz) (2.6)

4re Xii
0 i<j U

Epaii =) EQDi+ > EL); @.7)

Ti=0; TiF0j

where (2.7) comprises the Pauli potential for same spin and opposite spin electrons, respec-
tively. (2.3) describes the “quantum” electronic kinetic energy, which should not be confused
with the classical translational kinetic energy of the electron. The error functions in (2.5)
and (2.6) arise from the fact that the electron charges are “smeared” over the volume of the
Gaussian sphere. Recall that an error function is defined as the integral over a Gaussian and
its argument is the upper limit of the integral. This formulation of the Coulomb interactions
ensures that the finite sized spherical Gaussians act like point charges at large distances from
the other interacting particle. The same spin Pauli energy function is defined as:

2 2

S
O = (% AU Ja7; 2.8)

S2

and the opposite spin Pauli energy is

(1-p)S2,
—)AT,- ; (2.9)

E(TL); =(T

where AT is the kinetic energy change upon antisymmetrization and S is the overlap of the
wavepackets. We can further define these two terms:

w23/1 1 2(3(52 + §2) — 2)?[2)
AT = __(_ _) _ J 2.10
S m, 2 §2+§2. (s +s2)2 @10
2 32 =2 2 2
S, = (—) exp(—2/(52 +) Q.11)

2,2 . 22
5 /sj + 57/5;

The last two equations contain the only empirical parameterizations in eFF. We define p =
—-0.2, X;j = x;;- 1.125 and §; = s; - 0.9. These parameters were fit using a small set of

224 Shocked Polyethylene

hydrocarbons and light metal hydrides. p can be thought of as an orthogonalization param-
eter while X and 5 are distance and size scaling parameters, respectively. The Pauli energy
functions in (2.10) and (2.11) are derived by taking the kinetic energy differences of or-
thogonalized and non-orthogonalized wavefunctions. The Pauli functions are derived from
E(MT) = E,— (1 - p)E,; and E(T]) = —pE,. The full derivation can be found in [23]. eFF
uses the difference between Slater and Hartree wavefunctions for the “ungerade” energy ex-
pression and the difference between a general valence bond and a Hartree wavefunction to
calculate the “gerade” energy expression. The physical interpretation of this effect is more
easily understood in terms of orthogonal orbitals. When two same-spin electrons approach
one another, their wavefunctions increase in slope to decrease their overlap (they compress in
width). This increase in slope increases their gradient and kinetic energy is increased. Wilson
and Goddard interpret this change in energy as the Pauli repulsion energy [28]. (2.7) recovers
this energy and ensures that eFF electrons satisfy the Pauli exclusion principle.

The beauty of eFF is in its simplicity. With only three empirical parameters it can repro-
duce a variety of physical quantities like bond lengths, angles, ionization potentials, and bulk
properties. The simple nature of the energy and gradient expressions makes eFF computa-
tionally far cheaper than conventional quantum mechanics calculations [23][24][25][12].

2.2. The eFF Equations of Motion and Dynamics. In 1975 Heller demonstrated wave-
packet molecular dynamics (WPMD) as a method for simulating systems in a semi-classical
manner [10]. Rather than making a WKB approximation, wherein one assumes that 7 is very
small [27][15], he approximated that the wavepacket exists in a local harmonic potential. By
substituting a wavefunction of the type in (2.1) into the time-dependent Schrédinger equation
with a harmonic potential Heller derived the Hamilton equations of motion:

px = mX px = -VV (2.12)

These equations are consistent with Ehrenfest’s theorem which states that the average position
of a wavepacket follows a classical trajectory [7]. Following the same procedure for the first
exponential in (2.1), and making the assumption that no external potential exists, we can
derive the equations of motion for the radial degree of freedom:

3) OE

Ps = Zmelecs Ps = _E

In eFF, m, is defined in three places: (2.3), (2.10), and (2.13). In the former two equa-
tions, which correspond to the electron’s potential energy, m, is defined as the true electron
mass. In the latter equation, it is a user-defineable parameter. Changing m, in the potential
energy terms would affect the sizes and bond lengths of electrons in GS atoms, so it is fixed.
Allowing the “dynamical” electron mass in the equations of motion to be adjusted by the
user serves a practical purpose: it allows the user to increase the electron’s mass so that it is
commensurate with the nuclear masses, and this allows the user to increase the time step of
dynamics simulations. It also makes for better coupling in deterministic thermostats. This is
not unprecedented; the Landau theory of Fermi liquids uses heavy quasiparticles that obey
Fermion statistics and the electron mass is adjustable in semi-classical theories of electron
transport in semiconductors. It is prudent to attempt simulations using both the real electron
mass, and a larger, user-defined electron mass. The factor of 3/4 in (2.13) arises directly from
the substitution of a Gaussian wave packet into the time dependent Schrodinger equation.
These equations are exact for harmonic potentials, and it was shown that they performed well
for simple anharmonic potentials like the double well potential [23]. We can use the energies
and forces from the electron force field in conjunction with this WPMD scheme as a fully
functioning molecular dynamics method.

2.13)

P.L Theofanis, T.R. Mattsson and A.P. Thompson 225

3. Construction of Simulation Cells and Computational Methods.

3.1. Polyethylene Models. A crystalline PE model was created by taking experimental
PE crystal lattice parameters and making the chains finite. Cell parameters were taken from
[3]. The final cell contained 12 X C,H»¢ molecules. In real samples of crystalline PE the
chains are finite in length and the PE is only crystalline in small domains with lamella ranging
from 70 to 300 A in thickness and extending several microns laterally [6]. The volumes of
the boxes were adjusted so that the densities of both systems was 0.98 g/cm?.

3.2. Computational Methods. A version of eFF incorporated into the popular and pow-
erful molecular dynamics simulator, LAMMPS, was used for all simulations [12][20].

To prepare the cells for shock simulations a conjugate gradient scheme was used to min-
imize the potential energy of each cell. The search terminated when either the linesearch a or
mean force became zero with a tolerance of 1.0x 1076 or if the energy difference between each
step was smaller than 1.0 x 1075 Preliminary microcanonical ensemble simulations revealed
that a timestep of 0.001 fs was necessary to prevent energy drift over simulation periods of
2 ps. Two canonical ensembles were prepared for the PE model: the first was prepared with
NVT using a Nose-Hoover thermostat, and the second was prepared using a Langevin ther-
mostat. System temperature was obtained from the kinetic energy of the atomic nuclei. The
samples were allowed to equilibrate for an additional 2 ps. From this “ground state” sample,
samples of densities between 1.3-3.0 g/cm? were generated by isothermally and isotropically
compressing the ground state simulation cell over a period of 100 fs using the LAMMPS “fix
deform” function in conjunction with either the Nose-Hoover or Langevin thermostat. A total
of 17 density points for each ensemble were generated for the 12 x Cj,Hy¢ cell in increments
of 0.1 g/cm?. These density points were also allowed to equilibrate for 2 ps at 300K.

3.3. The Principal Hugoniot. A Hugoniot curve is the locus of thermodynamic states
that can be reached by shock compression of an initial state. These states satisfy the Rankine-
Hugoniot energy condition [21][11]:

1
U-Up= E(P + Po)(Vo = V) 3.1

where U is the internal energy, P is the pressure of the system, and V is the cell volume.
The kinetic energy of the electrons is defined by (4.1). It is assumed that each point on this
curve Hugoniot corresponds to a state of thermodynamic equilibrium wherein the stress state
is hydrostatic. For solids, this latter condition is only valid when the yield stress is much
lower than the mean stress [S5]. When the initial state variables Py, V, and U are those of
the uncompressed sample at room temperature, the Hugoniot curve is called the principal
Hugoniot.

We generated states on the principal Hugoniot using the following iterative procedure.
First the volume of the system is specified, representing a particular degree of compression.
Then the temperature of the system is quickly increased by changing the set-point of the
thermostat. 20 fs of dynamics are run after the thermostat jump, during which averages of
the energy, temperature and pressure of the new state are obtained. These values are used to
evaluate the residual energy E,., given by

1
Eres = (U= Uy) - E(P +Po)(Vo = V). (3.2)

When E,es.i/Erei < 0.05 the Hugoniot condition is considered satisfied. If this inequality
is not satisfied another iteration is performed. The new thermostat setpoint is calculated from:

l Eres,i)

T,' = Tl(l +
! 2 Eke,i

(3.3)

226 Shocked Polyethylene

Polyethylene Rankine-Hugoniot

450 ‘ ‘
O LASL Handbook }
400 1— andbool b
<& DFT/AMO5
350 —— 4 Nellis
X OPLS
_ 300 7 o AIREBO (
& + ReaxFF
9 250 +—) ¢
@ =®—-eFF NVE/Langevin f‘
§ 200 | —®—eFF Nose-Hoover
g °
[
150 7
o
4
100 ©
| —0 >
A
50 /r/;@%{!
0 —" ﬁﬁ%‘ g I
1 1.2 14 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

e/p,

FiG. 4.1. Hugoniot data for the 12 X C12Hae system. Two eFF data series are plotted. In dark green closed
circles are the steady-state canonical ensembles computed using a Nose-Hoover thermostat. The light green closed
circles are the steady-state canonical ensembles computed using a Langevin thermostat. Experimental data from the
LASL handbook [1] and Nellis [18] is provided in open red squares and open orange triangles, respectively. Data
taken from [17] for the classical MD potentials, Reax, OPLS, and AIREBO is included for comparison.

Once this iterative calculation has converged, the final state is sampled for a further 5
ps. This calculation ensures that the Hugoniot condition is actually met, and the standard
deviation in pressure is used to provide error bars for the principal Hugoniot.

4. Results and Discussion. eFF is a reasonably fast and highly scalable MD technique.
eFF is slower than Lennard-Jones potentials by a factor of 1500. For reference, ReaxFF
is slower than LJ by a factor of 340. Speeds of 5 x 107 seconds/timestep/particle were
achieved for the 1632 particle 12 x Cj, Hye system during an NVE/Langevin equilibration run
on Los Alamos National Laboratory’s “Lobo” high performance computer cluster using 32
processors. More eFF performance information can be found in [12].

4.1. The Polyethylene Principal Hugoniot. Figure 4.1 is the principal Hugoniot pro-
jected onto the pressure-density plane. For intermediate compressions the Nose-Hoover ther-
mostat matched the experimental and DFT Hugoniot points quite closely. The Langevin
ensemble did not do as well, but still performed reasonable well, within 50% of the experi-
mental value. At greater compressions, both eFF methods predicted the shock pressure high
relative to DFT. The results show that eFF is systematically “too stiff” relative to the experi-
mental and DFT/AMOS [2] data. However, eFF outperforms several classical MD potentials
such as AIREBO [22], OPLS [13], and exp-6 [4]; the data for these can be found in [17].
These potentials met their pressure asymptote below 1.7 g/cm®. These results demonstrate
the difficulty in modeling the behavior of complex materials under shock compression.

At high compression interesting features appear in the principal Hugoniot. In the AMO0S5
data series a shoulder feature appears at 2.3 g/cm’. In the eFF Nose-Hoover data a series
of shoulders appear between 2.4 and 2.8 g/cm?. The first of these appears as a clear plateau
just past 2.4 g/cm?. The next two features are more subtle. Two shoulders appear in the eFF

P.L Theofanis, T.R. Mattsson and A.P. Thompson 227

Langevin data series. The first appears at 2.0 g/cm?® and the second can be found at 2.45
g/cm’. These data features correspond to tangible transitions in the the molecular structure.
Mattsson found that the AMOS5 shoulder corresponded to PE backbone bond breaking [17].
The possible causes for the eFF data features will be discussed shortly.

4.2. Structural Decomposition. The heat caused by hydrostatic shock induces molec-
ular dissociation and ionization. This causes the polymers to transition from liquid to atomic
liquid and finally, at extremely high shock pressures, to dense plasma. Along the way the ther-
mophysical character of the ordinarily insulating polymer changes drastically. These changes
are manifested in the specific heat capacity, conductivity, and emissivity of the material. The
material’s response to high shocks may have important implications for its use in certain
environments.

C-C Pair Distribution Function H-H Pair Distribution Function

——p=095

—p=15

2 =
p=2
—p=25

&)

IO

r[A]

r[A]

(a) C-C RDF (b) H-H RDF

C-H Pair Distribution Function H-C Pair Distribution Function

=
| LT NANReRY
i 3 \ i
ges M

o/ e INgs T e

5 2 25 3
(Al

—

—p=095

—p=15

’—‘;E‘:

| —

\§§
o ~——
¥§f“_
-
L —
LR

rlA]

(c) C-HRDF (d) H-C RDF

FiG. 4.2. Radial distribution functions for various pairs of nuclei. Each plot contains RDF data for densities of
0.95, 1.5, 2.0, 2.5, and 3.0 g/cm®. The H-H RDF (b) also contains an RDF for 2.8 g/cm?® because compression to
this density produces molecular hydrogen.

An analysis of the radial pair distribution functions for different degrees of compres-
sion demonstrates that significant structural decomposition occurs upon shock. Figure 4.2(a)
shows that carbon bonds are compressed as the sample is compressed. The carbon remain
discretely bound to their neighbors because a minima with a value of zero is found just be-
yond the standard C-C bond length of 1.5 A for each level of compression. Contrast this to
the C-H pair distribution function in Fig. 4.2(c) where the data indicate a phase change to
an atomic fluid of hydrogens. The 3.0 g/cm? series resembles a Lennard-Jones fluid. At this
level of shock compression the hydrogen are partially dissociated from the PE chains. This
behavior is also seen in the H-C pair radial distribution function in Fig. 4.2(d). From this data
we can conclude that between compression from 2.5 to 3.0 g/cm? the structure is shocked
strongly enough to cause a phase transition to a state where the carbon backbones remain

228 Shocked Polyethylene

lonized Electrons

16
T

14 ?
=&=NVT Nose-Hoover /
12 +— /

10 +— ~#-NVE/Langevin

% lonized Electrons
o oo
—
\‘-\

1 12 1.4 16 18 2 22 24 2.6 2.8 3

Density [g/cm”3]

FiG. 4.3. The percentage of ionized electrons at different stages of compression for the two eFF ensembles.

mostly intact but are solvated by loosely associated hydrogen atoms. For compression to 2.8
g/cm?, the small peak in the H-H data in Fig. 4.2(b) near 0.7 A shows that molecular hydro-
gen is formed. At this density the system has a shock temperature of 2992 K. Mattsson and
collaborators also found hydrogen formation when their shocked PE reached 2800-3100 K
[16]. In their simulations this temperature range corresponded to densities of 2.2-2.3 g/cm?.
For temperatures higher than 3100 K the molecular hydrogen becomes to energetic to stay
bound, and at lower temperatures the hydrogen do not have enough energy to dissociate from
their polyethylene backbone. The eFF results are consistent with MD and DFT results for
equivalent temperatures, but the structural changes occurring as a result of heating occur at
higher compressions in eFF.

One of eFF’s greatest assets is its ability to separate electron degrees of freedom, en-
ergies, positions, momentum, and forces from those of the nuclei. This gives us unrivaled
ability in the world of molecular dynamics to measure electronic physical quantities. In our
investigation of PE we have used this to measure the ion fraction at each stage of shock. To
do this we measure the total electron — potential and kinetic — energy of each electron at each
timepoint in our simulations. In eFF an electron’s kinetic energy is given by:

Ere = lmeﬁz + lémes'2

2 77 “4.1)

The electron’s potential energy is measured as half the sum of pairwise interactions plus the
electronic kinetic energy in (2.3). To measure the correct potential energy of an electron
we must multiply the potential energy of the electron in question by two and subtract the
quantum electronic kinetic energy (which was doubled by multiplying the potential energy
by two). To compute the total energy of the electron we add the electron classical kinetic
energy according to (4.1). We define an electron as being ionized if its total energy is greater
than zero. The data in Fig. 4.3 was computed in this manner. The number of ionized electrons
was averaged over each steady state calculation.

The results of the ionization calculations show that at compressions above a density of
2.4 g/cm? the electrons in PE begin ionizing. This implies that PE is conductive above this
density. Above this threshold electron ionization draws energy from the system and this
affects the pressure and temperature of the Hugoniot. The temperature suppression caused by
ionization can be seen in Fig. 4.1. The onset of ionization is likely a cause of the plateau and

P.L Theofanis, T.R. Mattsson and A.P. Thompson 229

Hugoniot Temperature Profile
4000 T T
© DFT/AMO5
3500 — XOPLS
O AIREBO &
3000 +— *+ ReaxFF
® eFF NVE/Langevin Teff T o
i~ 2500 | CJeFF NVE/Langevin Tnuclei
o o
=
2 +
® 2000
o o
o
g 1500
i + ©
°
1000 : & s =
8 ° G
o & o |2
500 =
0
Moo ¥ 8
0
0 20 40 60 80 100 120 140
Pressure [GPa]

Fic. 4.4. Pressure temperature Hugoniot relationships. Two temperatures are plotted for the eFF Langevin
ensemble: The closed light green circles correspond to the eFF temperature computed according to (4.2), and the
open light green squares correspond to the temperatures of the nuclei only. Data for DFT/AMOS, OPLS, AIREBO,
and ReaxFF is also provided from [17]

shoulder features in the principal Hugoniot.

4.3. Shock Temperatures. Before a discussion of the results is presented, the definition
of temperature in eFF ought to be discussed. (4.2) is the default temperature definition in eFF.
21
N 3kB N nuc

T (K) 4.2)
In this equation (K is the average kinetic energy of all the particles in the system, and N,
is the number of nuclear degrees of freedom. This definition sets the kinetic contribution to
the specific heat capacity to %kBT where only the nuclear degrees of freedom contribute. This
approximation should be valid below the Fermi temperature where electrons are not excited,
and thus have negligible kinetic energy. However, in practical eFF simulations electrons gain
kinetic energy, and thus a temperature, as soon as the temperature of the system rises above 0
K. As a result, the temperature computed by (4.2) will be too high.

Temperature i