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Abstract

Peridynamics (PD) is a continuum theory that employs a nonlocal model to de-
scribe material properties. In this context, nonlocal means that continuum points
separated by a finite distance may exert force upon each other. A meshless method
results when PD is discretized with material behavior approximated as a collection
of interacting particles. This paper describes how PD can be implemented within a
molecular dynamics (MD) framework, and provides details of an efficient implemen-
tation. This adds a computational mechanics capability to an MD code, enabling
simulations at mesoscopic or even macroscopic length and time scales.
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1 Introduction

Molecular dynamics (MD) suffers from well-known computational limitations
in the length and time scales it can address, even on large parallel supercom-
puters. Numerous recent efforts attempt to coarse-grain MD or to couple it to
meso- and macro-scale models to enable “multiscale” modeling of phenomena
such as crack growth, indentation, flow near surfaces, and heat transfer as
described in [4,9–11].

The purpose of this paper is to describe how peridynamics [14,17], a continuum
theory, can be implemented within an MD framework so enabling meso-scale
and macroscale modeling. As we shall see, the force interactions that result
from discretizing peridynamics (PD) are similar to traditional MD forces,
yet have additional characteristics that must be addressed for an efficient
implementation. Thus, with minor modifications, an MD code can perform
PD calculations. The recent paper [19] explains how PD converges to the
classical elastic material model assuming that the underlying deformation is
sufficiently smooth. This suggests that a computational mechanics capability
at length scales substantially beyond those typically associated with MD are
realizable within an MD framework.

The PD theory of continuum mechanics belongs to the class of microcontin-
uum theories defined by generalizing the local force assumption to allow force
at a distance (see [1,3] for general discussions and references) so introducing
a length-scale. In the classical continuum context, “local force” means that
only continuum points in direct contact can exert a force on each other. The
force arises from a stress vector acting at a point on an oriented surface. In
contrast, PD employs an integral operator to sum forces avoiding the use of
stress/strain fields in its equation of motion. Instead, the material behavior in
PD is specified by nonlocal force interactions, assumed to be a function of the
positions of the continuum points. No assumption are made on the continuity
or differentiability of the displacement field. Because the displacement field is
not assumed even weakly differentiable, PD can be employed for deformation
that does not satisfy the smoothness assumptions of classical continuum me-
chanics, e.g. fracture or fragmentation. The reader is referred to [16,2,15] for
information describing PD 2 modeling in several applications at length and
timescales up to meters and seconds, respectively.

When PD is discretized, a meshless method [15] results, where the material is
approximated as a collection of interacting continuum points. Meshless meth-
ods such as SPH (Smoothed Particle Hydrodynamics), EFG (Element Free
Galerkin), RKPM (Reproducing Kernel Particle Method), and XFEM (Ex-

2 See http://en.wikipedia.org/wiki/Peridynamics.
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tended Finite Element Method), have received considerable attention from
the continuum mechanics community [8], and are typically formulated by dis-
cretizing the classical equations using a set of nodes. Although a local force
assumption is assumed in the continuum model, a notion of nonlocality is often
introduced at the discrete level in an ad-hoc fashion. In contrast, discretized
PD inherits nonlocality because the continuum PD model is nonlocal.

The remainder of the paper is organized as follows. We first review PD in
section 2 and its discretization in section 3. We have implemented PD in
LAMMPS, Sandia National Laboratories’ molecular dynamics code [13]. De-
tails of the implementation are discussed in section 4. Finally, section 5 il-
lustrates the style and scope of macroscopic simulations such a modified MD
code can then perform.

2 Peridynamics

We briefly review the salient details of peridynamics. The reader is referred
to [14,15,17] for further details. Let a body in some reference configuration
occupy a region B. For any x ∈ B the PD equation of motion is

ρ(x)ü(x, t) =
∫
B
f(η, ξ)dVx′ + b(x, t), t ≥ 0 (1)

where u(x, t) is the displacement field with initial conditions u(x, 0) = u0(x),
u̇(x, 0) = u̇0(x). The vector function f(η, ξ) denotes the force density per unit
reference volume exerted on a point y = x+u(x, t) by the point y′ = x′ +u′,
where u′ = u(x′, t). The vectors η = u′−u, and ξ = x′−x denote the relative
displacement and relative position in the reference configuration, respectively.
Hence y′ − y = ξ + η, gives the current relative position between x and x′

in the deformed configuration. The vector b(x, t) is the loading force density,
and the mass density is denoted by ρ(x).

We now discuss the properties that a function f should possess so that linear
and angular momentum are conserved. Consider Ωx ⊂ B and integrate (1)
over Ωx to obtain∫

Ωx

ρ(x)ü(x, t)dVx =
∫
Ωx

∫
B/Ωx

f(η, ξ)dVx′dVx +
∫
Ωx

b(x, t)dVx. (2)

The first term on the righthand side of (2) represents the internal force that
the material B/Ωx exerts on the material Ωx. This internal force is nonlocal
precisely because the interaction of material inside Ωx with material outside
Ωx cannot be restricted to a contact force along the surface of Ωx, in contrast
to the classical theory of continuum mechanics. The derivation of (2) used the
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relation∫
Ωx

∫
B
f(η, ξ)dVx′dVx =

∫
Ωx

∫
Ωx

f(η, ξ)dVx′dVx +
∫
Ωx

∫
B/Ωx

f(η, ξ)dVx′dVx

= 0 +
∫
Ωx

∫
B/Ωx

f(η, ξ)dVx′dVx

where the latter equality follows from conservation of linear momentum. More-
over, the conservation principle also implies that f(η, ξ) + f(−η,−ξ) = 0.

To consider conservation of angular momentum, take the cross product of (1)
with y and integrate over Ωx to obtain∫

Ωx

y× ρ(x)ü(x, t)dVx =
∫
Ωx

∫
B
y× f(η, ξ)dVx′dVx +

∫
Ωx

y× b(x, t)dVx. (3)

The lefthand side of (3) represents the torque about the origin caused by the
material in the domain Ωx. We may write the first term on the righthand side
as ∫

Ωx

∫
B
y × f(η, ξ)dVx′dVx =

∫
Ωx

∫
Ωx

y × f(η, ξ)dVx′dVx (4)

+
∫
Ωx

∫
B/Ωx

y × f(η, ξ)dVx′dVx.

Under the assumption that f(η, ξ) is antisymmetric (from above), and also
that y×f(η, ξ) is antisymmetric, we may conclude that (y′ − y)×f(η, ξ) = 0,
and that∫

Ωx

∫
Ωx

y × f(η, ξ)dVx′dVx =
∫
Ωx

∫
Ωx

(y′ − y)× f(η, ξ)dVx′dVx = 0.

This allows us to replace the first term on the righthand side of (3) with the
rightmost term in (4), and to conclude that f(η, ξ) is parallel to the current
relative position vector y′ − y.

The material behavior is specified by f(η, ξ), which maps the deformation
given by η for a bond ξ to the force density (per unit volume). For a mi-
croelastic material, this map can be derived from a micropotential Φ. As an
example, consider a prototype microelastic material [15] where the potential
(per unit volume squared) is

Φ(η, ξ) =
1

2

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖)2 (5)

where c/ ‖ξ‖ > 0 is the stiffness per unit volume squared and ‖ξ‖ is the
equilibrium length of the spring. The gradient of (5) gives a pairwise force
density per unit volume function of

f(η, ξ) = ∇ηΦ(η, ξ) =
c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖
. (6)
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A standard assumption is that for a given material, f(η, ξ) = 0 for all η
when ‖ξ‖ > δ for some δ > 0, the horizon. We denote the horizon of x by
δ(x). We remark that δ(x) is a constitutive parameter defined in the reference
configuration, and that f(η, δ) may not be a negligible force. We also denote
by H(x) the spherical neighborhood of x in B with radius δ(x).

The spatial discretization of (2) divides the region B into subdomains Ωx

so that B =
⋃

x∈B Ωx where the number of subdomains is finite. A discrete
approximation to the internal force in (2) using (6) results in

∫
Ωx

∫
B/Ωx

f(η, ξ)dVx′dVx =
∫
Ωx

∫
H(x)/Ωx

f(η, ξ)dVx′dVx

≈
∑

x′∈H(x)/Ωx

c

‖ξ‖
(‖η + ξ‖ − ‖ξ‖) η + ξ

‖η + ξ‖
Vx′Vx, (7)

where Vx′ and Vx are the volumes associated with Ωx′ and Ωx, respectively.
Hence, the discretization of PD gives rise to an interacting set of “particles”
approximating the behavior of the material where a particle x is identified
with a subdomain Ωx. The resulting semidiscrete equation of motion can be
combined with a velocity-Verlet time integration scheme for a fully discrete
approximation to the PD equation of motion (1). This correspondence allows
PD to be implemented within an MD framework because of the analogous
computational structure.

The force functions introduced in [14] (and discussed above) assumes a central
force interaction. The recent paper [17] generalizes central force interactions
to those depending upon the force state, or collective behavior, at y′ and y.
This extension of PD allows a continuum generalization of multibody force
interactions. We also remark that an MD notion of a cutoff can be introduced
so that if ‖η + ξ‖ exceeds a prescribed value, the force interaction is set to
zero. The cutoff is defined in the deformed configuration in contrast to the
material parameter δ(x) defined in the reference configuration.

3 Inter-particle Forces Used in Peridynamics

We now discuss the form of inter-particle forces that result from a discretiza-
tion of PD. As an example, we derive forces and a particle equation of motion
for the prototype microelastic brittle (PMB) material model introduced in [15].
A PMB material specializes the force interaction of (7) to allow for a bond
breaking mechanism. We also discuss short-range repulsive forces and the cal-
culation of particle volumes.
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3.1 Prototype Microelastic Brittle (PMB) Materials

For a PMB material

f(η, ξ) = g(η, ξ)
η + ξ

‖η + ξ‖
, (8a)

g(η, ξ) =

cs(t,η, ξ)µ(η, ξ) ‖ξ‖ ≤ δ,

0 ‖ξ‖ > δ,
(8b)

depends upon the bond strain

s(t,η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
,

and a history-dependent scalar boolean function

µ(t,η, ξ) =



1 s(t′, η, ξ) < min {s0(t
′, η, ξ), s0(t

′, η′, ξ′)} , 0 ≤ t′ ≤ t,

s0(t,η, ξ) = s00 − αsmin(t,η, ξ),

smin(t) = minξ s(t,η, ξ),

η′ = u(x′′, t)− u(x′, t), ξ′ = x′′ − x′

0 otherwise

(9)

where s0(t,η, ξ) is a critical strain and s00 and α are material-dependant
constants. µ is 1 for an unbroken bond and 0 otherwise. Although s0(t,η, ξ)
is expressed as a property of a particle, bond breaking must be a symmetric
operation for all particles sharing a bond. That is, particles x and x′ must
utilize the same test when deciding to break their common bond. This can be
done by any method that treats the particles symmetrically. In the definition
of µ above, we have chosen to take the minimum of the two s0 values for
particles x and x′ when determining if the bond between x and x′ should be
broken.

We remark that (8) and (9) imply that a PMB material does not allow “heal-
ing”, e.g. once a bond between two particles is broken, the bond remains
broken. The assumption is that once the underlying material fractures, then
the material remains fractured. This is in contrast to MD where force inter-
actions between atoms may be zero or non-zero over time. However, material
healing (or lack thereof) depends upon the constitutive relationship f(η, ξ)
and does not represent any intrinsic limitation of PD.
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3.2 Short-Range Forces

In the preceding section, particles interact only through bond forces. A particle
with no bonds becomes a free non-interacting particle. To prevent subsequent
particle overlap, short-range repulsive forces are introduced. We add to the
force f in (1) the following force

fS(η, ξ) =
η + ξ

‖η + ξ‖
min{0, cS

δ
(‖η + ξ‖ − dS)}, (10a)

dS = min {0.9 ‖x− x′‖ , 1.35(rS + r′S)} , (10b)

where rS is defined as the node radius. Given a discrete lattice of particles, we
choose rS to be half the lattice constant. Note that short-range forces are only
repulsive, never attractive. The repulsive force above may also be replaced by
a “hard” potential, e.g. ‖η + ξ‖−12, the repulsive part of the Lennard-Jones
potential.

3.3 The Discrete Equation of Motion

The region defining a peridynamic material is discretized into particles forming
a cubic lattice with lattice constant a, where each particle i is associated with
some volume Vi = a3. Recall that xi and yi denote the reference configuration
(initial position) and position at time t, respectively, of particle i. Further, for
any particle i, let

Fi = {j | ‖xj − xi‖ ≤ δ, j 6= i}, (11a)

FS
i = {j | ‖yj − yi‖ ≤ dS, j 6= i}, (11b)

where dS is defined in (10b). The former denotes the family of particles within
a distance δ of particle i in the reference configuration, and the latter de-
notes the family of particles within a distance dS of particle i in the current
configuration.

We explicitly track and store the positions and not the displacements of the
particles associated with a discretization of (2) because ÿ(x, t) = ẍ+ ü(x, t) =
ü(x, t). Using (8), (10)–(11) the semi-discrete peridynamic equation of motion
can then be written as

(ρ(xi)Vi)ÿ
n
i =

∑
j∈Fi

f(un
j − un

i ,xj − xi)ṼjVi +
∑

j∈FS
i

fS(un
j − un

i ,xj − xi)VjVi

+ bn
i Vi, (12)

where Ṽj = ν(xj−xi)Vj. We introduce the function ν(xj−xi) as a scale factor
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on Vj for the following reason. Some of the particles j to which particle i is
bonded will be near the boundary of H(xi) (the sphere of radius δ surrounding
particle i). For these interactions only a portion of Vj is inside the sphere
and the bond strength should be diminished as a result. The following linear
dimensionless nodal volume scaling function accounts for this effect:

ν(x− x′) =


− 1

2rS
‖xj − xi‖+

(
δ

2rS
+ 1

2

)
δ − rS ≤ ‖xj − xi‖ ≤ δ

1 ‖xj − xi‖ ≤ δ − rS

0 otherwise

(13)

Note that if ‖xj − xi‖ = δ, ν = 0.5, and if ‖xj − xi‖ ≤ δ − rS, ν = 1.0.

4 Implementation of PD in LAMMPS

We now explain how equation (12) was implemented within the molecular dy-
namics code LAMMPS [13], an open-source, general-purpose, massively par-
allel MD simulator. LAMMPS provides a variety of interatomic potentials
for biological and polymer systems, solid-state materials, and other coarse-
grained models, but PD was the first continuum-level model added to the
code. LAMMPS is well-suited for implementing PD because it is designed
to allow new potentials, boundary conditions, and particle attributes to be
easily added without affecting the code’s operation when non-PD models are
simulated.

From an MD perspective, equation (12) can be rewritten succinctly as a po-
tential for the energy of particle i in the following form

Ui =
∑

j∈FS
i

Φshort-range(uj − ui,xj − xi) +
∑
j∈Fi

Φbond(uj − ui,xj − xi), (14a)

where

Φshort-range(uj − ui,xj − xi) =


cs

2δ
(‖yj − yi‖ − dS)2 ‖yj − yi‖ ≤ dS

0 otherwise
(14b)

Φbond(uj − ui,xj − xi) =

Φ(uj − ui,xj − xi) if bond unbroken

0 otherwise

(14c)

where Φ(uj − ui,xj − xi) is defined in equation (5).

The first term Φshort-range is the short-range potential (derived from equa-
tion (10)) that prevents particles from overlapping. When particles are sep-
arated by a distance greater than dS the interaction is zero. This term is
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effectively the repulsive portion of a harmonic spring with equilibrium length
dS. Note that this is a much softer short-range repulsive potential than the
‖xj − xi + uj − ui‖−12 repulsion provided, for example, by a Lennard-Jones
interaction [7]. (See [2] for results combining a Lennard-Jones interaction and
harmonic potential.)

The second term Φbond is the cohesive potential for the material, summed
over all j ∈ Fi particles that are initially within a distance δ of particle i.
This is effectively a list of harmonic “bond” partners of particle i. Note that
the effective bond strength falls off as the inverse of the initial bond length
xj − xi, which can be seen from equation (5), and is also a function of the
scaled volume factor Ṽj defined in equation (12). The bond potential is set
to zero once it stretches beyond a critical length, as discussed for the PMB
material model in equations (8) and (9). An individual bond is active for all
time t until this occurs. If the bond breaks, it is never again active, even if
the two particles later come close together. However, as explained at the end
of subsection 3.1, this is a constitutive assumption on the material, and bond
healing may easily be incorporated.

The critical strain s0 of equation (9) is defined on a per-particle basis and is
computed each timestep for testing that particle’s bonds. To ensure symmetry
in bond breaking, if the strain of the bond between particles i, j exceeds the
smaller of s0 for particle i or s0 for particle j, then the bond “breaks”. The
bond is deleted from the lists Fi and Fj of bond partners for both particles
and contributes no energy or force to the system for all subsequent timesteps.

As equation (14a) implies, the following parameters are input by the user to
define the PD potential for a specific material: ρ, c, s00, α, and δ. If different
particle types represent multiple materials in a more complex model, each of
these parameters can be defined for each pair of interacting particle types.
The functional forms of Φshort-range and Φbond are specific to the PMB material
model of section 3. However, PD models for other materials result in poten-
tial functions with similar characteristics: a short-range repulsive term and a
history-dependent cohesive term that can turn off as large deformations occur.

We now detail how equation (14a) was implemented in LAMMPS. First, a set
of consistent units suitable for macroscopic simulations was needed. LAMMPS
allows the user to choose units convenient for their particular simulations,
each of which is implemented as a handful of conversion factors. These are
used when, for example, kinetic energy (1/2mv2) is computed with velocities
in Angstroms/fmsec and the result should be in Kcal/mole (for an atomistic
simulation). For peridynamic simulations, an “SI” option was added where
energy = Joules, distance = meters, time = seconds, etc.

LAMMPS operates in parallel in a spatial-decomposition mode [13], where
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each processor owns a sub-domain of the overall simulation box and the par-
ticles within the sub-domain. To compute pairwise or bond forces, a processor
communicates with its neighboring processors via distributed-memory mes-
sage passing (MPI) to acquire information about nearby “ghost” atoms owned
by those processors. To improve the efficiency of the computation of pairwise
forces, LAMMPS uses Verlet neighbor lists [20] that are recomputed every few
timesteps via binning particles on a regular grid and searching nearby bins to
find neighbors [5]. These are also the timesteps on which particles migrate to
new processors as needed. For peridynamic simulations, Verlet neighbor lists
are used only when computing the family of short-range interacting particles,
FS

i .

Each PD particle stores 4 quantities in addition to the usual coordinates,
velocities, forces, etc. These are the critical strain s0 from equation (9), the
particle volume V , the particle density ρ, and the initial position of the particle
x0. V is precomputed for each particle based on the initial problem geometry.

These 4 quantities migrate with particles as they move from processor to
processor. Additionally, the s0 value for each ghost particle is communicated
every timestep, since it is a dynamic quantity and the breakage criterion for
bond i, j depends on the s0 value of both particles. Similarly, the V value for
ghost particles is needed to scale the bond force between particles i, j. Since V
is a static quantity, it is only communicated on timesteps when reneighboring
is done.

The short-range term in equation (14a) is conceptually identical to standard
short-range pair potential computations within an MD code. In LAMMPS a
“half” neighbor list is used to efficiently find neighboring particles within a
distance dS on a given timestep. By “half” we mean that any interacting pair
i, j is only stored once in the list, either by particle i or by particle j. The
forces on particles i, j are computed for each pair in the list. At the end of
the force computation, forces on ghost particles are communicated back to the
owning processor.

Computation of the bond term in equation (14a) requires knowledge of which
bonds are already broken. Thus each particle stores a list of its bond partners,
denoted by Fi in (11a), and flags them as they break. For each partner, the
initial bond distance ‖xj − xi‖ is also stored, since it is used to calculate bond
strength. The bond family of particles Fi for each particle is computed only
once, on the first timestep of the simulation, based on the initial undeformed
state of the material. The union of Fi over all particles is effectively a “full”
neighbor list where the geometric neighbors of particle i within a cutoff dis-
tance δ are stored. By “full” we mean the interacting pair i, j is stored twice,
once by particle i and once by particle j.
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With this information, the bond term in equation (14a) can be computed by
looping over the particles in Fi for each particle i. The bond is skipped if it
previously broke. If both particles i, j are owned by the processor, the bond is
also skipped if i > j, taking advantage of Newton’s 3rd law. For active bonds,
the bond is flagged as “broken” if the bond strain s(t,η, ξ) exceeds the current
strain criterion s0 for either particle i or j as defined in (9). While bond forces
are computed, a new strain criterion s0 is also calculated, which will be used to
break bonds on the next timestep. Note that the min operation in (9) implies
a loop over all bonds of particle i. As each bond is calculated, the contribution
to the new s0 of both the i and j particles is accumulated. Thus at the end of
the bond loop, each particle has a new s0, valid for the next timestep. Since
the bond partner list stores all bonds for each particle owned by a processor,
no extra communication is necessary to generate s0, e.g. due to bonds with
ghost atoms.

The bond partner list is another particle property that must migrate with par-
ticles as they move to new processors. This is done by packing and unpacking
the Fi set of bond neighbors and distances into a message-passing buffer each
time a particle migrates. During this operation, broken bonds are pruned from
the list, so that a minimal amount of information is communicated.

Once the short-range and bond terms of (14a) have been computed, a final
scaling by the volume Vi of each particle is applied. This results in an effective
force on each particle that can be used by a standard MD time integrator
(velocity Verlet in the case of LAMMPS) in the usual way to update particle
velocities and coordinates. For PD models we use a constant NVE integrator.
Thermostatting is not used, since temperature is an ill-defined quantity for
macroscopic PD particles. The “pressure” due to PD interactions can be com-
puted via the virial in the usual MD manner, except that the kinetic energy
term contributing to the pressure is ignored. Alternatively, a precise notion of
PD stress has been formulated in [6] and may be used.

5 Numerical Experiments

To validate the new additions to LAMMPS against an existing PD code,
EMU [18], the experiment in section 6 of [15] was performed. Consider the
impact of a rigid sphere on a homogeneous block of brittle material. The
sphere has diameter 0.01 m and velocity of 100 m/s directed normal to the
surface of the target. The target material has density ρ = 2200 kg/m3. A
PMB material model is used with k = 14.9 GPa and critical bond strain
parameters given by s00 = 0.0005 m and α = 0.25. The target was created as
a 3d cubic lattice of particles with lattice constant a = 0.0005 m and horizon
distance δ = 0.0015m = 3a. The target is a cylinder of diameter 0.074 m and
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thickness 0.0025 m, and contains 103,110 particles. Each particle i has volume
Vi = a3 = 1.25× 10−10m3.

The stiffness constant c in the PMB material model was set to

c =
18k

πδ4
=

18(14.9× 109)

π(1.5× 10−3)4
≈ 1.6863× 1022. (15)

The timestep was set to 1.0× 10−9 seconds, using a CFL-like criterion [15].

The projectile used in the LAMMPS simulation was similar, but not identical
to the one used in [15]. The projectile was modeled as an indenter, exerting a
force

F (r) = −ks(r −R)2

on each particle, where ks is a specified force constant, r is the distance from
the particle to the center of the indenter, and R is the radius of the indenter.
The force is repulsive and F (r) = 0 for r > R. For our problem, the projectile
radius was R = 0.05 m and ks = 1.0× 1017 (compare with (15) above).

A 200, 000 timestep simulation was performed. A sample cut view of the disk
(projectile not shown) appears in Figure 1, showing the debris cloud that
results from the impact. An image of the top monolayer of particles at the
end of the simulation is illustrated in Figure 2, showing fracture of the brittle
target. These results agree qualitatively with EMU, both in the size and shape
distributions of the resulting fragments.

Fig. 1. Cut view of target after impact by a projectile.

To break symmetries, each particle in the initial lattice was randomly per-
turbed by a distance no more than 10% of the lattice constant. These per-
turbed positions were used as the reference configuration for each particle.
Such random perturbations are routinely included as a way of incorporating
the inherent randomness in the distribution of defects in real materials. How-
ever, these perturbations have only a minor effect on crack trajectory, and
are not needed to reproduce crack growth directions as dictated by loading
conditions.
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Fig. 2. Top monolayer of brittle target showing fragmentation.

To demonstrate further the effects of symmetry-breaking and the peridynamic
horizon δ upon the solution, we show in Figure 3 this numerical experiment
repeated for several values of δ, where the initial mesh is either perturbed
or unperturbed. Qualitatively, the results do not depend on regularity of the
lattice for large enough δ. However, a symmetric initial mesh acted upon by
a symmetric projectile produces a symmetric solution, as is required.

Finally, we compare the serial and parallel performance of PD within LAMMPS
to that of a standard Lennard-Jones (LJ) model. For the PD calculation, a
non-periodic cube of size 2.3 cm on a side was simulated, using roughly 100, 000
particles on a simple cubic lattice. The same PD material parameters described
in the previous section were used. For the LJ calculation, a 3d periodic cube
with the same number of particles was used to represent a solid. The LJ cutoff
was set to 3σ so that the number of neighbors per particle (≈ 150) roughly
matched the number of bond partners per particle in the PD system. Bench-
mark runs were performed on a large Linux cluster built consisting of 3.6
GHz Intel EM64T processors and an Infiniband communication network with
230 Mb/sec and 9 µsec bandwidth and latency performance for point-to-point
MPI message passing.

The timing results are presented in Table 1 for runs of 10,000 timesteps each,
on processor counts from 1 to 64. The results indicate the PD potential is
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δ unperturbed perturbed

1.50a

2.00a

2.25a

3.00a

Fig. 3. Top monolayer of target after impact for different values of δ, and for initially
unperturbed and perturbed meshes. For sufficiently large δ, crack growth is arbi-
trary. Perturbation of the initial mesh acts only to break symmetry of the solution.
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about four times more expensive to compute than a LJ potential. Similar
parallel scalability for both models was observed.

Table 1
CPU timings (in seconds) for 10, 000 timesteps of 100,000-particle peridynamics
(PD) and Lennard-Jones (LJ) systems.

Number of LJ LJ PD PD

Processors (sec) Speedup (sec) Speedup

1 4053.0 1.0 17302.6 1.0

2 2157.9 1.9 9028.4 1.9

4 1133.3 3.6 4673.6 3.7

8 587.6 6.9 2413.4 7.2

16 317.7 12.8 1327.9 13.0

32 172.5 23.5 714.6 24.2

64 94.0 43.1 380.2 45.5

6 Conclusions

Peridynamics (PD) is a continuum theory based on a nonlocal force model.
We have shown that the inter-particle forces that result from discretizing PD
have a functional form analogous to interatomic potentials commonly used
in molecular dynamics (MD). We have demonstrated that PD can be imple-
mented within an MD framework. Enhancing an MD code in such a way allows
users familiar with MD to effectively simulate continuum material. The PD
extensions made to the LAMMPS MD package are available for download from
the LAMMPS WWW site http:\\lammps.sandia.gov. For more details on
using the code, see the user guide [12].

Future work involves computing thermodynamic quantities such as tempera-
ture, computing the PD stress given by [6], implementing the more general PD
state theory [17] to go beyond central force interactions, and the simulation
of classical elasticity given by the results of [19]. The latter capability enables
multiscale simulation because both molecular dynamics and classical elasticity
can be performed within LAMMPS.

15



Acknowledgments

The authors thank Ed Webb (Sandia National Laboratories) and an assiduous
reviewer for their helpful comments.

References
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