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Abstract

We consider Taylor-Aris dispersion in columns of nearly rectangular cross section
of large aspect ratio. We generalize the results of [1] and [2] who showed that the
effective diffusion rate for perfectly rectangular cross sections is remarkably differ-
ent than the diffusion rate between two parallel plates – as the aspect ratio goes to
infinity, the effective diffusion rate does not approach the effective diffusion rate for
two parallel plates. In particular, we examine columns of nearly rectangular cross
section having both non-parallel walls and asymmetric ends of arbitrary shape. In
particular, this includes geometries common to microfabricated gas chromatography
columns. We develop an expression for the effective diffusivity showing the contri-
butions from the walls and the ends, and the relative importance of each. We also
discuss the large effect that a small nonuniformity in the middle of the cross section
can have on the effective diffusion rate, and how the ends of the cross section can
be modified to control the effective diffusion rate.

Key words: Taylor-Aris dispersion, gas chromatography, high aspect ratio, end
effects

1 Introduction

In the classical papers by G. I. Taylor [3] and Rutherford Aris [4], they considered the
advection and diffusion of a solute down a straight tube whose diameter is much smaller
than its length. They showed that the solute is advected down the tube with the average
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velocity of the fluid in the tube, and that its concentration profile satisfies a one dimensional
advection diffusion equation with an effective diffusion constant that has the form

Deff = D
(

1 +KPe2
)

. (1)

Here D is the diffusivity of the solute, K is a constant that depends only on the geometry
of the cross section of the tube, and Pe is the Péclet number

Pe =
Ru

D
.

Here R is the radius of the tube, and u is the average velocity of the fluid in the tube. One of
the most striking features of this formula is that for large values of Pe, the effective diffusion
coefficient is inversely proportional to the physical diffusivity. In [5], a similar analysis is used
to lay the foundations for capillary gas chromatography.

In [2], Doshi, Daiyai, and Gill considered Taylor-Aris dispersion in rectangular cross sections
of large aspect ratio and came up with a surprising result, which we now summarize. Suppose
the rectangular cross section has height H0, width W , and define the inverse aspect ratio as

ǫ =
H0

W
.

Consider two dimensional Taylor-Aris dispersion between two parallel plates. Intuitively, we
might expect that the effective diffusion coefficient for a rectangular channel approaches the
effective diffusion coefficient for the case of two parallel plates as the inverse aspect ratio
approaches zero. These authors showed that this is not the case. In particular, the constant
K in (1) is about 8 times bigger for a rectangular cross section of arbitrarily high aspect
ratio as it is for two parallel plates. This phenomenon was discovered independently in [6]
and applied to the case of dispersion by turbulent flow in [1].

In [7], Guelle, Cox, and Brenner discovered a related phenomenon. For a smoothly varying
cross section that has a high aspect ratio (such as an elongated ellipse), the constant K in
(1) is proportional to 1/ǫ2. This is equivalent to saying that the appropriate Péclet number
to use in (1) is the Péclet number based on the width of the cross section, not on the height.
For example, if we take a rectangular cross section of large aspect ratio, and we inscribe
an elongated ellipse in it, the constant K for the inscribed ellipse will be on the order of
1/ǫ2 times larger than the constant for the rectangle. This phenomenon is also discussed in
[8] and [9]. A similar phenomenon was noted by Golay [6], who pointed out that in a large
aspect ratio channel, even a mild deviation from a rectangular geometry could drastically
effect the constant K.

With the exception of the papers by Dutta and Leighton [10–12], the papers concerning
Taylor-Aris dispersion in large aspect ratio channels can be grouped into two categories.
The first deal with cross sections where the middle part of the cross section is not close to
rectangular [9,7]. In this case the constant K is proportional to 1/ǫ2, and any end effects will
give only a small correction to this value. The other class of papers deal with the specific
case of a rectangular cross section. The papers in this class [13–16] all are concerned with
the effects of the ends. They discuss the end effect by doing asymptotics on the analytical
expression (an infinite series expansion) for the constant K in a rectangular channel.

The purpose of this paper is to present an analysis of Taylor-Aris dispersion in nearly rectan-

2



gular cross sections of high aspect ratio. By nearly rectangular, we mean that the geometry
of the walls of the middle of the cross section deviate only slightly from the rectangular case,
but near the ends we may deviate significantly from a rectangular cross section. We do not
assume the ends are symmetric. This particular geometry is important for microfabricated
gas chromatographs, and hence we believe it deserves special attention. We will present the-
ory combining the effects upon the dispersion of the geometry of the middle of the cross
section with the effects of the ends of the cross section, and show the relative importance of
each.

Our paper offers contributions that complement and extend the results in [10–12]. In [12],
the authors consider situations similar to those discussed in this paper, but develop their
analysis using heuristic arguments based on an analogy between the layer of slowly moving
fluid at the ends of the channel and the thin layer of stagnant fluid in gas chromatography
(see equations 14 and 15 in [12]). Although they showed considerable insight in writing down
these equations, essentially without derivation, we instead develop our analysis in a more
rigorous fashion without recourse to heuristic arguments. However, we also show in Appendix
B that our results agree with theirs for the case of nearly rectangular cross sections, thus
providing support for their conclusions. Additionally, our analysis drops their restriction that
the end effects at both ends be the same.

In [10], Dutta and Leighton discuss nearly rectangular cross sections and present numerical
results to demonstrate the effect of modifying the geometry at the ends of a rectangular
cross section. In particular, they show that by suitably modifying the ends of a rectangular
cross section it is possible to reduce the dispersion to the value for a parallel plate. In their
example they have the ends of the tube bulge out as in figure 2(a). For a symmetrical cross
section, in order to achieve the nearly parallel plate result it is necessary to have the average
velocity in the channel be the same as the average velocity for the parallel plate case. One
would suspect that this requires that the ends bulge out. Though this result seems intuitive,
we feel that it merits a proof, which we show in §5.

We now discuss the source of the large effect that the end regions and small distortions of the
middle region can have on the dispersion coefficient. Away from the ends of the cross section,
the flow exponentially approaches plane Poiseuille flow. That is, we have u(x, y) → upp(y)
for x away from the ends, where upp(y) is the velocity profile for Poiseuille flow between two
parallel plates. When we compute the average velocity u of the flow in the channel we find
(see (22) in § 4) that

u = U
pp
− ǫU

pp
(αL + αR) + O(ǫ2).

Here U
pp

is the average velocity for Poiseuille flow between two parallel plates, and αL and
αR are constants that depend on the geometry of the left (L), and right (R) end regions,
but not on ǫ.

Assuming the mid section of our cross section has parallel side walls, we will see that (see
(35))

K = Kpp +
α2

L − αLαR + α2
R

3
+ O(ǫ).

Here Kpp = 1
210

is the effective diffusion coefficient for Taylor-Aris dispersion between two
infinite parallel plates. Note that the effect of the end regions does not vanish even in the
limit as ǫ → 0. Since the quadratic form α2

L − αLαR + α2
R is positive definite, the only way

we can make the end correction vanish is if both αL and αR are identically zero.
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In §5 we show that the only way we can make αL (or αR) vanish is if the end bulges out so
that the height in the end regions exceeds the height in the middle region (as in figure 2(a)),
and also in [10]. In the case of a symmetrical cross section where αL = αR, this requires
that the ends be modified such that the average velocity in the channel is the same as the
average velocity between two parallel plates. One might be tempted to think that in the
non-symmetrical case, the dispersion could also be reduced to the parallel plate value by
having the average velocity in the cross section be the same as the average velocity for the
parallel plate case (for example, by having only one of the ends bulge out, as in figure 2(b),
while keeping the other end as in a rectangular cross section), but we show that we can
reduce the dispersion to its parallel plate value only if both αL and αR vanish, and hence
only if both ends bulge out.

In this paper we also analyze the case where the walls of the middle of the cross section
have a small deviation from the parallel plate geometry. Although they do not consider this
case specifically, the results in [7] and [9] suggest that mild deviations from the parallel plate
geometry could significantly change the constant K. This is consistent with the comments
made by Golay [6], although his discussion of this point was limited to the case where the
walls have a constant slope, and his remarks were both exceedingly brief and confusing.

We consider the case where the height of the cross section varies as a function of x as

H(x) = H0 (1 + δγ(x/W )) .

In § 7 we show that assuming δ and ǫ are both small, we have

K ≈ Kpp +
α2

L − αLαR + α2
R

3
+K1(αL, αR)

δ

ǫ
+K2

δ2

ǫ2
,

Here K2 is independent of ǫ ,δ, αL, and αR. The constant K1(αL, αR) is independent of δ and
ǫ, and is linear in αL and αR. This equation shows both the effects of the ends of the cross
section, and the effects from variations in the middle of the cross section, and the relative
effect caused by each. We see that even if δ and ǫ are both small we can in fact get a very
large change in the effective diffusion constant due to a small variation in the cross section.

This work was largely motivated by problems in gas chromatography where microfabrication
techniques have made it convenient to manufacture gas chromatography channels of nearly
rectangular cross section. In this situation, we would like to keep K as small as possible.
In particular, we show an end correction in § 8.2 that essentially recovers K = Kpp for a
column of rectangular cross section. The results given in this paper should be of immediate
interest to the gas chromatography community.

We now summarize the contents of this paper. In § 2 we will discuss how to compute the
effective diffusion coefficient for an arbitrary shaped cross section. Although this result is
not entirely new, we believe that our formulation is simple enough that it deserves being
written down, and is necessary for understanding the results for nearly rectangular cross
sections. The derivation we give of how to compute K is similar to that given in [17] where
the authors Fourier transform in the axial direction, but our results are applicable to any
cross sectional shape, and our derivation is more succinct since we are only concerned with
the long time behavior of the solution (e.g., the value of K).

In § 3 we compute the effective diffusion coefficient Kpp for flow between parallel plates.
In § 4 we discuss how to compute the average velocity in a channel of nearly rectangular
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cross section, which we will need for later sections. We see that the average velocity in a
wide channel differs from the average velocity in an infinitely wide channel by an amount
that is proportional to ǫ = H0/W . In § 5 we prove that in order to have αL vanish, it is
necessary to have the ends bulge out. In § 6 we give the results for mid-sections of constant
height (δ = 0), and in § 7 we give the results for slowly varying mid-sections (δ 6= 0). In § 8,
we confirm our results through direct numerical experiment. In Appendix A we give some
details of the calculations that were omitted in the main part of the paper, and in Appendix
B we compare our results to those in [12].

2 Taylor-Aris Dispersion for Arbitrarily Shaped Cross Sections

We consider the advection and diffusion of a solute down a column of constant but arbitrary
cross section. We denote the cross section of the column by Ω, the boundary of the cross
section by ∂Ω, the area of the cross section as A, and the axial coordinate by z. The velocity
down such a column is unidirectional and independent of z. In particular the velocity is given
by u = (0, 0, u(x, y)) where

µ∇2
2u =

∂p

∂z
in Ω (2a)

and

u = 0 on ∂Ω. (2b)

Here ∇2
2 represents the two dimensional Laplacian (ignoring the z component), µ is the

dynamic viscosity of the fluid, and p is the pressure in the fluid.

Suppose a species with concentration C(x, y, z, t) is being advected and diffused down the
column. The evolution of the concentration distribution is given by [3]:

∂C

∂t
+ u(x, y)

∂C

∂z
= D∇2C, (3a)

∂C

∂n
= 0 on ∂Ω. (3b)

The theory of Taylor-Aris dispersion shows that, assuming the length of the column is much
greater than the characteristic length of the cross section, the evolution of the concentration
profile is very well approximated by the one dimensional advection diffusion equation

∂C

∂t
+ u

∂C

∂z
= Deff

∂2C

∂z2
. (4)

Here u is the average value of the velocity, and Deff is an effective diffusion constant that
has the form given in (1). There have been numerous derivations of this result [4,14,18]. We
give an alternative derivation that is an extension and simplification of the arguments used
in [17].

Our derivation is based on the fact that the equations (3) are linear and invariant under
arbitrary shifts in both t and z. The invariance under shifts in z make the equations amenable
to an analysis by Fourier transforms. In particular, if Ĉ(x, y, k, t) is the Fourier transform in
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z of C(x, y, z, t), then for each value of k, Ĉ satisfies the evolution equation

∂Ĉ

∂t
+ iku(x, y)Ĉ = D

(

∇2
2Ĉ − k2Ĉ

)

(5a)

along with
∂Ĉ

∂n
= 0 on ∂Ω. (5b)

Due to the time shift invariance of these (and our original) equations, we can solve (5) by

expanding Ĉ in terms of functions of the form exp
(

σ(m)t
)

φ(m)(x, y, k), where σ(m) satisfies
the eigenvalue problem

σ(m)φ(m) + iku(x, y)φ(m) = D
(

∇2
2φ

(m) − k2φ(m)
)

, (6a)

∂φ(m)

∂n
= 0 on ∂Ω. (6b)

If σ(m)(k) is the mth eigenvalue as a function of the wavenumber k, then for the m = 0
mode, this eigenvalue problem has the eigenvalue σ(0)(0) = 0, along with the eigenfunction
φ(0)(0) = 1. All of the other eigenvalues will be on the order of

σ(m)(0) = O(
D

R2
), m > 0,

where R is a characteristic length of the cross section. This shows that as long as tD/R2 > 1,
all of the modes with m > 0 will be rapidly damped out. Note that the time it takes for
the concentration peak to move a distance l down the column is t = 1/u. This means that
the modes with m > 0 will be significantly damped out if Pe R/l ≪ 1. Thus, as long as
the Péclet number is not too large, and the length of the column is much greater than its
characteristic diameter, we are justified in ignoring all but the mode m = 0. Physically this
means that the profile will become nearly uniform across a cross section.

When k 6= 0, we get similar behavior. However, in this case the m = 0 mode will also be
significantly damped if tDk2 ≫ 1. If as in the last paragraph we set t = l/u, we see that
any mode such that R2k2 ≫ Pe R/l will be significantly damped out. The main conclusion
from all of this is that when analyzing the concentration profile down a long but very thin
column, we need only concern ourselves with the small k limit of the mode m = 0. For ease
of notation, we will refer to the eigenvalue of interest merely as σ(k) (dropping the zero
superscript). We will now use subscripts to denote the expansion of this eigenvalue in terms
of a Taylor series in k. In particular if we write the expansion

σ(k) = iσ1k + σ2k
2 + . . . , (7)

we can see that the one dimensional diffusion equation

∂C

∂t
− σ1

∂C

∂z
= −σ2

∂2C

∂z2

satisfies the same dispersion relation as (4). That is, we have

u = −σ1 and Deff = −σ2.
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A rigorous asymptotic analysis shows that as a solute is advected and diffused down a long
narrow column, the concentration becomes nearly constant across a cross section, and the
value of this concentration is governed by the above one dimensional advection diffusion
equation. It should be noted that the above equation governs the long time behavior of
the concentration profile. It does not, for example, resolve the fast initial transient that
occurs if you place a species in the column with a nonuniform concentration distribution
across the cross section of the column. Including higher order terms in (7) will lead to a
one dimensional partial differential equation that has higher order spatial derivatives, and
that is more accurate for shorter time scales. For a more complete discussion of the transient
behavior in Poiseuille flow, see [17] and [19].

The above arguments show that the behavior of our solution can be well understood by
determining the parameters σ1 and σ2. In this paper when we compute the Taylor-Aris
dispersion coefficient numerically, we compute the eigenvalue σ(k) for a few values of k
that are small, and then do a polynomial curve fit of this function to determine σ1 and
σ2. Alternatively, one can use the perturbation theory of eigenvalues to determine these
quantities.

We omit the details, but the perturbation theory of eigenvalues shows that

σ1 = −u

and

σ2 = −D −
D

A

∫

Ω
| ∇φ1 |

2 dA, (8)

where u is the average value of the velocity, and φ1 is the solution to

D∇2
2φ1 = (u(x, y) − u) , (9a)

∂φ1

∂n
= 0 on ∂Ω. (9b)

This solution is uniquely determined up to a constant, which does not influence the value of
σ2.

This is the expression for σ2 that will be used in our analysis of rectangular and nearly
rectangular cross sections. From (9) it should be clear that φ1 is proportional to u

D
. The

form of the above expression for σ2 shows that when we put our equations in dimensionless
form, the effective diffusion coefficient has the form described in (1).

3 Taylor-Aris Dispersion Between Two Parallel Plates

If our cross section is a rectangle with a very large aspect ratio, we might expect that the
effective diffusion constant would be nearly equal to that calculated for the case of dispersion
between two infinitely large flat plates. In the next few sections we will see that this is in
fact not the case. As a preliminary to those sections we will calculate the effective diffusion
for the case of infinite parallel plates.

We assume that the plates are a distance H0 apart and that the average velocity between
the plates is U

pp
. The well known solution for flow between parallel plates shows that the
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velocity profile is given by
upp(y) = U

pp
f pp(y/H0),

where
f pp(η) = 6

(

1/4 − η2
)

. (10)

In this case we get
σpp

1 = −U
pp
.

The first order term φpp
1 in the eigenfunction satisfies

D
d2φpp

1

dy2
= upp(y) − U

pp
,

dφpp
1

dy
= 0 at y = ±H0/2.

This has the solution
φpp

1 (y) = Pe H0G
pp(y/H0),

where

Gpp(η) =
η2

4
−
η4

2
−

7

480
, (11)

and

Pe =
U

pp
H0

D
.

In order to evaluate σ2 using (8) we are more concerned with the quantity

dφpp
1

dy
= Pe gpp(y/H0), (12)

where

gpp(η) =
dGpp

dη
. (13)

Substituting this solution into (8) we find

σpp
2 = −D

(

1 +
1

210
Pe2

)

. (14)

Using our definition of K in (1), we see that

Kpp =
1

210
(15)

4 The Average Velocity in High Aspect Ratio Cross Sections

In order to compute the effective diffusion coefficient it is necessary to compute the average
velocity in the column. Although the average velocity in a high aspect ratio cross section is
nearly equal to the average velocity between two parallel plates, we will see in § 6 that this
small discrepancy can lead to an order one change in the effective diffusion coefficient.

We limit the results of this section to the case where the height away from the ends of the
cross section is constant. In § 7 we extend this to the case where the height in the middle of
the cross section changes by a small and slowly varying amount.
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As in the previous section, U
pp

will denote the average value of the velocity in the parallel
plate approximation. If u is the true average value of the velocity, we can write

u =
1

A

∫

Ω
u dA =

1

A

∫

Ω
(u− U

pp
) dA+ U

pp
. (16)

The velocity profile for Poiseuille flow through a rectangular cross section can be written
down in terms of an infinite series. This solution shows that for a cross section of height
H0 and width W that has a large aspect ratio (H0/W ≪ 1), the velocity approaches the
parallel plate profile exponentially fast as we move away from the ends. Significant differences
between the parallel plate and true velocity profiles only exist in a region that is on the order
of H0 near the ends. For a channel where the ends are not perfectly straight, we see similar
behavior, namely an exponentially fast approach to the parallel plate approximation as we
move away from the ends.

Since the velocity is exponentially approaching the parallel plate profile, to a very good
approximation, we do not need to compute the integral of u− U

pp
except near the ends. In

order to compute this integral near the ends we can isolate each end region. To simplify the
explanation we show how to do this for a rectangular cross section, and then note how the
results are easily generalized to cross sections that are not rectangular.

For a rectangular cross section, we can analyze the end region by considering the semi-infinite
region ΩL defined by

(x, y) ∈ ΩL iff x ≥ −W/2 and | y |≤ H0/2.

In this end region we consider the problem

µ∇2u =
∂p

∂z
in ΩL,

u = 0 on ∂ΩL,

u→ upp(y) = U
pp
f pp(y/H0) as x→ ∞.

In order to compute the average velocity we need to compute the integral

IL =
∫

ΩL

(u− U
pp

) dA =
∫

ΩL

v dA+
∫

ΩL

(

upp(y) − U
pp
)

dA, (17)

where

v = u− upp(y). (18)

Since both u and upp(y) satisfy the Poisson equation with the same constant right hand side,
and u vanishes on the boundary, we have

∇2v = 0, (19a)

v = −upp(y) on ∂ΩL , (19b)

v → 0 as x→ ∞. (19c)

If we set

v(x, y) = U
pp
v̂(X, Y )
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where
(X, Y ) = (x+W/2, y)/H0,

then we have
∇2v̂ = 0, (20a)

v̂ = −f pp(Y ) = 0 for X ≥ 0 and Y = ±1/2, (20b)

v̂ = −f pp(Y ) for X = 0 and | Y |< 1/2 , (20c)

v̂ → 0 as X → ∞. (20d)

In terms of these dimensionless variables we can write

IL = −H2
0U

pp
αL, (21)

where

αL = −
∫ 1/2

−1/2

∫

∞

0
v̂(X, Y ) dX dY = −

∫ 1/2

−1/2

∫

∞

0
(f pp(y) − 1) dX dY.

The constant αL is clearly dimensionless.

The computation of αL for a rectangular cross section can be found in several locations
including [13] where it is shown that

αL ≈
96

π5

∞
∑

k=0

1

(2k + 1)5
≈ .3151

Almost identical arguments would apply if the cross section were not rectangular, but for
example had a semi-circular section attached at x = −W/2. In this case the region ΩL would
be a region that properly gives the geometry of the end near x = −W/2, but ignores the
right end, replacing it with a semi-infinite region of constant thickness. In the general case
(17), (19), and (21) still hold.

A similar analysis holds when we consider the velocity profile on the right side of the cross
section. It follows that our expression for the average velocity can be written as

u = U
pp
−
U

pp
H2

0

A
(αL + αR) .

Note that A ≈ H0W , so that to first order in ǫ we have

u = U
pp
− ǫU

pp
(αL + αR) . (22)

5 A Necessary Condition for the Vanishing of αL

In this section we will show that in order to have αL vanish, it is necessary that the left end
bulges out as in figure 2(a). That is, it is necessary to have | y |> H0/2 somewhere in the
end section. Identical results apply for αR. A modification of this type to increase the fluid
velocity in the end regions was proposed in [10] and was shown to reduce the dispersion. We
extend the results of [10] by proving below that such a modification is, in fact, a necessary
condition.
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Using the expression upp(y) = U
pp
f pp(y) where f pp(y) is defined in (10), we can show that

1

2

(

1

12
| ∇upp |2 −U

pp
)

+
(

upp − U
pp
)

= 0. (23)

Using the fact that ∇2upp = −12, and ∇2v = 0, we can write (17) for IL as

IL =
1

12

∫

ΩL

(

upp∇2v − v∇2upp
)

dA+
∫

ΩL

(

upp − U
pp
)

dA.

Using Green’s identity, this gives us

IL =
1

12

∫

∂ΩL

(

upp ∂v

∂n
− v

∂upp

∂n

)

dA+
∫

ΩL

(

upp − U
pp
)

dA.

We now use the fact that u vanishes on the boundary, and hence v = −upp on the boundary.
This allows us to write

IL =
1

12

∫

∂ΩL

(

upp∂u
pp

∂n
− v

∂v

∂n

)

dA+
∫

ΩL

(

upp − U
pp
)

dA.

Using Green’s identity, we can write

∫

∂ΩL

v
∂v

∂n
dS =

∫

ΩL

| ∇v |2 dA,

∫

∂ΩL

upp∂u
pp

∂n
dS =

∫

ΩL

(

| ∇upp |2 +upp∇2upp
)

dA =
∫

ΩL

(

| ∇upp |2 −12upp
)

dA

It follows that we can write

IL = −
1

12

∫

ΩL

| ∇v |2 dA+
∫

ΩL

(

1

12
| ∇upp |2 −U

pp
)

dA. (24)

If we divide (24) by two, and add the result to (17), and use (23), we get

3

2
IL = −

1

24

∫

ΩL

| ∇v |2 dA+
∫

ΩL

v dA. (25)

We now use the fact that upp(y) > 0, if | y |< H0/2. That is, the function giving the parallel
plate velocity is always bigger than zero if we evaluate it between the parallel plates. Our
boundary condition for v in (19) shows that if we always have | y |< H0/2, then v is always
negative on the boundary. The maximum principle for Laplace’s equation now implies that
v is always negative. In this case our expression (25) is clearly negative. This shows that if
the end does not bulge out, then IL is negative, and hence αL is positive.

6 Channels with Mid-Sections of Constant Height

Here we discuss how to compute the effective diffusion coefficient in the case where the cross
section is constant away from the ends. We discuss the case where we have a small and slowly
varying deviation from a constant cross section in the next section.
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We assume that away from the ends x = ±W/2, the cross section has constant height H0.
Near the ends, we can have quite arbitrary shapes. We will assume that ǫ ≡ H0/W ≪ 1. We
will also utilize the dimensionless rescalings ξ = x/W and η = y/H0.

In order to use (8) to compute σ2, we need to compute φ1 that satisfies (9), which we write
as

D

(

∂2φ1

∂x2
+
∂2φ1

∂y2

)

= u(x, y) − u =
(

u(x, y) − U
pp
)

+ U
pp
S(x/W ), (26a)

where

S(ξ) =
U

pp
− u

U
pp ≈ ǫ (αL + αR) . (26b)

In the equation for φ1 we have split the right hand side up into the term u(x, y)−U
pp

whose
integral across the slice x = constant vanishes (if we are sufficiently away from the ends), and
a source term S(x/W ) whose integral across the slice does not vanish. In the case at hand,
the function S(ξ) is a constant, but we have chosen to include the functional dependence on
ξ since a similar analysis will hold in the next section where S(ξ) will not be a constant.

Away from the ends x = ±W/2 of the cross section, u(x, y) will be very close to Poiseuille
flow between parallel plates a distance H0 apart, Assuming that ǫ is small we expect that
the derivatives with respect to x of φ1 will be much smaller than those with respect to y.
Furthermore, since S(ξ) is small, we might guess that the leading order term in (26) is given
by

D
∂2φ1

∂y2
= Upp(y) − U

pp
,

along with the boundary conditions ∂φ1

∂y
= 0 at y = ±H0/2. This has the solution

φ1(x, y) = φpp
1 (y) + F (x), (27a)

where
φpp

1 (y) = Pe H0G
pp(y/H0), (27b)

and Gpp(η) is defined in (11).

Our paradoxical behavior arises from the fact that the function F (x) in (27a) is 1/ǫ larger
than the term φpp

1 . This is related to the general high aspect ratio case [7] where the leading
order term is proportional to 1/ǫ2. The necessity for having a leading order term of 1/ǫ can
be seen when trying to compute the next order correction to this term (see Appendix A).
Intuitively it arises from the fact that if we include the source S(x/W ) in (26), then we
cannot solve this equation if we ignore the partial derivatives with respect to x on the left
hand side of this equation. The more rigorous perturbation theory shows that the leading
order term F (x) must be chosen so that the derivatives on the left cancel the source term
U

pp
S(x/W ) on the right. That is,

DF ′′ = U
pp
S(x/W ). (28)

This has the solution

F ′(x) =
U

pp

D

(

∫ x

−W/2
S(x/W ) dx+H0Cint

)

, (29)

which can be written as
F ′(x) = Pe β(x/W ), (30a)

12



where

β(x/W ) =
1

ǫ

(

∫ x/W

−1/2
S(ξ) dξ + ǫCint

)

. (30b)

At this point the constant Cint is not known, but we now show that

Cint = −αL. (30c)

To do this we define the regions Ω(s) to be the part of our cross section that has x ≤ s. If
we integrate the equation

D∇2
2φ1 = u(x, y) − u

over the region Ω(x), and use the fact that ∂φ1

∂n
vanishes on the boundary of Ω, we get

D
∫

x=const

∂φ1

∂x
dy =

∫

Ω(x)
(u− u) dx dy.

When x is in the interior of the cross section, (27a) shows that the left hand side of this
expression is clearly approaching DH0F

′(x). It follows that in the interior of the cross section
we have

DH0F
′(x) ≈

∫

Ω(x)

(

u− U
pp
)

dx dy +
∫

Ω(x)

(

U
pp
− u

)

dx dy. (31)

Since u is asymptotically approaching U
pp

as x moves away from the end region, the first
integral on the right is well approximated by

∫

Ω(x)

(

u− U
pp
)

dx dy ≈ −αLU
pp
H2

0 . (32)

The second integral can be approximated by

∫

Ω(x)

(

U
pp
− u

)

dx dy ≈ H0U
pp
∫ x

−W/2
S(x/W ) dx. (33)

Note that in making this approximation we have assumed that the height of the channel is
everywhere given by H0, which is not true in the end region, but ignoring this fact gives us
an error that is on the order of ǫ. Combining (31), (32), and (33) we see that in the interior
we have

F ′(x) ≈ −Pe αL +
Pe

ǫ

∫ x/W

−1/2
S(ξ) dξ.

If we compare this to equation (30c), we see that we must have Cint = −αL in order to have
these two expressions agree. Now that we know that Cint = −αL, we can compute β(x/W ):

β(ξ) = (αL + αR)
(

ξ +
1

2

)

− αL. (34)

We now argue that when computing the integral (8), there is a small contribution to the
integral coming from the end regions, but the main contribution comes from the interior
region. From (26), we see that the function φ1 in the end region is on the order of φ1 =
O(Pe H0). The square of the gradient in the end region will be on the order of | ∇φ1 |2=
O(Pe2). The integral of the square of the gradient in the end region will be on the order
of Pe2H2

0 . We will now see that the integral of | ∇φ1 |2 in the interior is on the order of
Pe2 H0W , which is 1/ǫ bigger than the integral in the end region.

13



Equations (27a) and (30a) show that in the interior we have

| ∇φ1 |
2≈ Pe2

(

(gpp(y/H0))
2 + (β(x/W ))2

)

.

This term is on the order of Pe2, so when we integrate it over the whole cross section, we
get a term that is on the order of Pe2H0W , which is what we claimed in the last paragraph.
Using this form to compute the integral in (8) we get

σ2 = −D
(

1 + Pe2K
)

,

where

K ≈
1

210
+ Λ, (35a)

Λ =
∫ 1/2

−1/2
β2(ξ) dξ =

α2
L − αLαR + α2

R

3
. (35b)

We emphasize that the effect of the ends gives an order one contribution to the effective
diffusion coefficient, even in the limit as ǫ→ 0.

7 Slowly Varying Mid-sections

In this section we extend the results of the last section to include cross sections that have
slowly varying mid-sections. The analysis is almost identical to the one in the last section,
requiring only that we use a different function S(ξ) for the source term in equation (30c).

We assume that away from the ends, the height of the channel varies like

H(x) = H0 (1 + δγ(x/W )) , (36)

where | δ |≪ 1. We also assume that away from the ends ξ = ±1/2, γ(ξ) and its derivative
are both order one or less, and that ǫ = H0/W ≪ 1. In other words, we have a nearly
rectangular channel that has a small and slowly varying deviation from a rectangular shape
in the middle of the cross section, and possibly a large deviation near the ends (for example,
semi-circular ends).

In this case, the function φ1 satisfies

D

(

∂2φ1

∂x2
+
∂2φ1

∂y2

)

= u(x, y) − u =
(

u(x, y) − U(x)
)

+ U0S(x/W ), (37a)

where

S(x/W ) =
U(x) − u

U
pp . (37b)

U(x) denotes the average value of the velocity across the slice of the cross section with x
held constant:

U(x) =
∫

x=const
u(x, y) dy. (37c)

In the last section U(x) was equal to U
pp

, but in this section it will vary slowly in the channel.
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We need the formula for S(ξ) in the middle of the channel. To derive this we use the fact
that the velocity profile for flow between parallel plates a distance h apart is given by

u(y) = −
∂p

∂z

1

2µ
(h2/4 − y2).

Integrating this expression from y = −h/2 to y = h/2 shows that for a given value of the
pressure gradient, the average velocity is proportional to the square of the distance between
the plates. In our channel where the thickness varies slowly with x, the average velocity
across the slice of the channel with x constant will be very nearly

Upp(x) =
H2(x)

H2
0

U
pp

= U
pp

(1 + δγ(x/W ))2 .

Here U
pp

is the average velocity in plane Poiseuille flow where the plates are a distance
H0 apart, and the pressure gradient is the pressure gradient that is being imposed on our
system. Assuming that δ is small we have

Upp(x) ≈ U
pp

+ 2δU
pp
γ(x/W ). (38)

In order to compute S(ξ) we need to calculate the average velocity in the channel. In what
follows, we will assume that the function γ(ξ) is defined so that it properly gives the behavior
in the interior of the channel, but makes no attempt to model the profile in the end regions.
For example, if we had a rectangular channel that varies linearly in x in the interior region,
but has semi-circular end regions; we do not attempt to have the function γ(ξ) capture the
behavior in the end regions. For this reason, we assume that δγ(ξ) is small on the whole
interval | ξ |≤ 1/2. Although it does not capture the behavior in the end region, we assume
that it is still defined in that region.

We can write

u− U
pp

=
1

A

∫

Ω

(

u(x, y)− U
pp
)

dx dy =
1

A
(I1 + I2) ,

where

I1 =
∫

Ω
(u(x, y) − Upp(x)) dx dy,

I2 =
∫

Ω

(

Upp(x) − U
pp
)

dx dy.

The first of these integrals can be evaluated just as we did in § 4. In particular, we assume
that the integrand goes to zero exponentially fast as we move away from the ends. We only
need to compute the integral in the end regions. Doing this we get

I1 = −H2
0U

pp
(αL + αR) ,

where αL and αR would be the same constants we would get when the channel asymptotes
to a channel of constant height H0. In doing this we are ignoring terms that are on the order
of δH2

0U
pp

.

The integral I2 can be computed by noting that away from the end regions we have
∫

x=constant

(

Upp(x) − U
pp
)

dy ≈ U
pp
H02δγ(x/W ).
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This expression is not quite right in the end regions, but when computing I2, the contribution
from the end regions is small, so to a very good approximation we have

I2 ≈ U
pp
H0

∫ W/2

−W/2
2δγ(x/W ) dx = 2δU

pp
H0WCγ,

where

Cγ =
∫ 1/2

−1/2
γ(ξ) dξ. (39)

Note that both I1 and I2 are small, so when we divide them by A if we make the approxi-
mation A ≈ H0W , we get an error that is second order in δ and ǫ. That is,

1

A
(I1 + I2) ≈ −U

pp
ǫ (αL + αR) + 2δU

pp
Cγ.

This shows us that
U

pp

U
pp ≈ 1 − ǫ (αl + αR) + 2δCγ. (40)

Using the definition of S(ξ) in (37b), (38), and the expression in (40), we get

S(ξ) ≈ 2δγ(ξ) + ǫ (αL + αR) − 2δCγ for x away from the ends. (41)

As in the previous section, the solution φ1 in the interior can be written as

φ1(x, y) ≈ U
pp
H0G

pp(y/H0) + F (x),

where F ′ is given by (29). We can use the same argument as in the last section to show that
Cint = −αL. This implies that we can write

F ′(x) = Pe β(x/W ),

where

β(ξ) =
δ

ǫ
B(ξ) + (αL + αR)

(

ξ +
1

2

)

− αL, (42a)

and where

B(ξ) = 2
∫ ξ

−1/2
γ(s) ds− 2(ξ + 1/2)Cγ. (42b)

As in the last section we have
σ2 = σpp

2 − Pe2Λ, (43a)

where

Λ =
∫ 1/2

−1/2
β2(s) ds, (43b)

and σpp
2 is given in (14). Our expression for σ2 implies that

K = Kpp + Λ (44)

We illustrate this formula with two examples. Suppose that we have a symmetric channel
with a quadratic variation in height. In this case we have γ(ξ) = ξ2, and αL = αR = α.
Substituting these expressions into (43b) we get

Λ = Pe2630α2 − 42αδ/ǫ+ δ2/ǫ2

1890
. (45)
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If we set δ = 0, we get the result

Λ = Pe2α
2

3
.

We can minimize this expression by setting δ/ǫ = 21α. If we do this we get

Λ = Pe2α
2

10
.

In order to facilitate comparison between our results and those in [12] we give the example
γ(ξ) = 4ξ2 − 1 that is used in that paper. Assuming that αL = αR = α, we get

Λ =
α2

3
−

4αδ

45ǫ
+

8δ2

945ǫ2

This agrees with equation 29 in [12]. (We note that α, δ, and K = Kpp + Λ here are called,
respectively, δ, ǫ, and f/210 in [12]).

As another example, we suppose that we have a linear variation in the height of the cross
section. This gives us

Λ = Pe2

(

α2

3
+

δ2

30ǫ2

)

. (46)

8 Numerical Results

In this section, we first numerically confirm the effective diffusion coefficients for the high
aspect ratio models developed in the previous section. We then explore a modification of the
ends of a channel of rectangular cross section that minimizes the end effects discussed in § 6.
Finally, we numerically minimize σ2 for a cross section with asymmetric ends.

8.1 Model Confirmation

In this section we confirm via numerical experiment the expressions in (45) and (46).
 

H0 

W 

(a) Linear side walls.

 

H0 

W 

(b) Quadratic side walls.

Fig. 1. Cross sections of nearly rectangular columns with height H0 and width W .

We first consider a model with linear side walls. Let the height be described in (36), with
γ(ξ) = ξ, and δ = 0.05. The correction to the effective diffusion of the parallel plate case is
given by (46). An example cross section is shown in figure 1(a). We fix the height H0 = 1 and
numerically compute the velocity profile for various values of W , fixing the Péclet number to
be Pe = 1. We then determine the eigenvalue σ(k) for several values of k, and do a polynomial
fit of σ(k) to determine σ1 and σ2. Theoretical values of Λ from (46) are compared with
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Aspect Ratio σ2 Numerical Λ Theoretical Λ Relative Error

1 1.0084 -0.0295 0.0000 354.7987

10 1.0451 0.0072 0.0083 0.1355

20 1.0695 0.0316 0.0333 0.0507

40 1.1569 0.1191 0.1333 0.1069

80 1.5422 0.5043 0.5333 0.0544

160 3.1154 2.0775 2.1333 0.0262

320 9.6658 8.6280 8.5333 0.0111

Table 1
Numerically determined values of σ2 for various aspect ratios for a cross-section with linear side
walls. The numerical correction value is compared with the theoretical correction value Λ from
equation (46).

Aspect Ratio σ2 Numerical Λ Theoretical Λ Relative Error

1 1.0086 -0.0293 -0.0007 41.1190

10 1.0291 -0.0088 -0.0065 0.3574

20 1.0261 -0.0118 -0.0119 0.0116

40 1.0191 -0.0188 -0.0195 0.0376

80 1.0154 -0.0225 -0.0222 0.0135

160 1.0571 0.0192 0.0234 0.1785

320 1.3428 0.3050 0.3177 0.0401

Table 2
Numerically determined values of σ2 for various aspect ratios for a cross-section with quadratic
side walls. The numerical correction value is compared with the theoretical correction value Λ from
equation (45).

numerical values of Λ in table 1, and the relative error tabulated. Note that the theoretical
results are valid only in the case of a large aspect ratio.

Of interest in this model is that σ2 approaches infinity with W , whereas a column with a
perfectly rectangular cross section (corresponding to δ = 0) has σ2 approaching a value close
to one. This rapid growth in σ2 is confirmed numerically in table 1.

We next consider a model with quadratic side walls. In this case, γ(ξ) = ξ2, and the correction
to the effective diffusion of the parallel plate case is given in (45). An example cross section
is shown in figure 1(b). We have again chosen δ = 0.05, and fixed Pe = 1 and H0 = 1.
Following the same procedure as before, we numerically compute the velocity profile for
various values of W . We then determine the eigenvalue σ(k) for several values of k, and then
do a polynomial fit of σ(k) to determine σ1 and σ2. Theoretical values of Λ from (45) are
compared with numerical values of Λ in table 2, and the relative error tabulated. Again, note
that the theoretical results are valid only in the case of a large aspect ratio.

Of interest in this model is that σ2 again approaches infinity with W , but does so much
less slowly than for the linear model. This reduced growth in σ2 is confirmed numerically
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H 0 

W 

r 

(a) Symmetric ends.

 

H 0 

W 

r 

(b) Asymmetric ends.

Fig. 2. Cross sections of nearly rectangular columns with height H0 and width W with with one or
two bulb shaped ends of radius r.

in table 2. Also note that from (45), there is a sign change in the correction term, meaning
that for a particular aspect ratio, the expected value of σ2 is the same as for a perfectly
rectangular cross section. This change of sign is observed in table 2. As we would expect,
there is an increase in the relative error near this critical point, although the absolute error
remains quite small.

8.2 Minimization of End Effects

In this section, we consider modifying the ends of a channel of rectangular cross section to
minimize the effects discussed in § 6. In particular, we seek an end configuration such that
Λ in (35) is essentially zero.

Following a hint given in [6], we consider using a “bulb” on the ends of the channel cross
section, as shown in figure 2(a). We set the height H0 = 1 and the width W = 100. For a
circular bulb of radius r = 0.7, we numerically observe that the term Λ in (35) is 0.00039.
In effect, this high aspect ratio channel has the effective diffusion coefficient of two parallel
plates, and the effect of the ends has been removed.

8.3 Asymmetric Ends

Here we consider a cross section similar to that in figure 2(a), but with the right end a bulb
of radius r and the left end rectangular. We set the height H0 = 1 and the width W = 100.
We seek to minimize σ2 by varying the radius r, which means minimizing Λ in (35). § 5 tells
us that since the left end of the cross section does not bulge out like the right end, we can
never eliminate the end effects (i.e., make Λ = 0). Numerically determined values of σ2 are
shown in table 3 as a function of r. We see that the smallest observed value of σ2 occurred
for r = 0.63.
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r σ2

0.61 1.0298

0.62 1.0295

0.63 1.0293

0.64 1.0294

0.65 1.0298

0.66 1.0305

Table 3
Numerically determined values of σ2 for various values of the radius r for a cross section with
asymmetric ends. The minimum value of σ2 observed occurred for r = 0.63.
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Appendix A

The purpose of this appendix is to give a more rigorous justification of the fact that the
function F (x) must satisfy (28) in the interior region of the cross section. To simplify the
discussion, we consider the case where δ = 0; a similar discussion holds for δ 6= 0.

To do this we define the dimensionless variables

ξ = x/W, η = y/H0, ψ = φ1/H0.

In the interior region, the velocity is very nearly equal to the parallel plate velocity upp(y).
In terms of the dimensionless variables, the equation for φ1 in the interior can be written as

(

ǫ2
∂2ψ

∂ξ2
+
∂2ψ

∂η2

)

= Pe (f pp(η) − 1) + Pe ǫ(αL + αR),

along with the boundary conditions

∂ψ

∂η
= 0 at ξ = ±1/2.

We now do a formal perturbation expansion assuming that ǫ is small. In particular we will
assume that

ψ(ξ, η) =
1

ǫ
ψ−1(ξ, η) + ψ0(ξ, η) + ǫψ1(ξ, η) + . . . .

We have chosen to start the expansion with 1/ǫ because, as we will see, this is necessary in
order to satisfy the equations.
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If we collect powers of 1/ǫ, we see that we must have

∂2ψ−1

∂η2
= 0,

∂ψ−1

∂η
= 0 at η = ±1/2.

This implies that we have
ψ−1(ξ, η) = F (ξ).

As we shall see, the fact that ψ−1 is independent of η is in fact the main result of this
appendix.

If we now carry out the expansion to zeroth order, we find that

∂2ψ0

∂η2
= Pe (f pp(η) − 1),

∂ψ0

∂η
= 0 at η = ±1/2.

This implies that
ψ0(ξ, η) = Pe Gpp(η) + F (ξ).

Finally collecting the powers of ǫ, we find that

d2F

dξ2
+
∂2ψ1

∂η2
= Pe (αL + αR),

∂ψ1

∂η
= 0 at η = ±1/2.

In order to be able to solve for ψ1 we must satisfy the compatibility condition

∫ 1/2

−1/2

(

d2F

dξ2
− Pe (αL + αR)

)

dη = 0.

This implies that

F (ξ) = Pe (αL + αR)
ξ2

2
+ A1ξ + A0.

We could continue in this fashion, to determine the terms to higher and higher order, but
this is sufficient to see that the form we guessed in § 6 is in fact correct. In particular, it
is not necessary to know the function F (ξ) in order to compute the limit of the effective
diffusion coefficient as ǫ → 0.

Appendix B

In this appendix we briefly outline how to compare the results in [12] to those in this paper.
We first explain the proper relationships between their and our notations. What they call f
is related to what we call K by

K =
f

210
.

22



We use h(x) for what they call h⋆(x), g(x) for what they call g⋆(x), ǫ for what they call
d/W , v(x) for what they call u⋆, V for what they call U

⋆
, and α for what they call δ. Here

we are assuming that αL = αR = α, as is assumed in their paper. Equation 14 in [12] states

1

h(x)

d

dx
(h(x)g′(x)) = k −

v(x)

V
, (B1a)

g′(±1/2) = ∓αkǫ, (B1b)
∫ 1/2

−1/2
g(x)h(x)dx = αǫ (g(−1/2) + g(1/2)) . (B1c)

Readers of [12] may be confused because (B1b) and (B1c) have been incorrectly typeset as
a single equation without a separating semicolon. Here the constant k is given by

k =

∫ 1/2
−1/2 h(x) dx

2αǫ+
∫ 1/2
−1/2 h(x) dx

The expression for f in equation 15 of [12] is

f =

∫ 1/2
−1/2(v(x)/V )2h3(x) dx

∫ 1/2
−1/2 h(x) dx

+ 210
1

ǫ2

∫ 1/2
−1/2

v(x)
V
g(x)h(x) dx

∫ 1/2
−1/2 h(x) dx

(B2)

We can transform this expression for f into an expression that only depends on the derivative
of g by using (B1a) to convert the second integral to the integral of (v(x)/V − k) h(x)g(x),
plus an additional boundary term. We can then use (B1b) to write this as the integral
of −(h(x)g′)′g(x). After integrating by parts and using the boundary conditions (B1c), we
arrive at

f =

∫ 1/2
−1/2(v(x)/V )2h3(x) dx

I1
+ 210

1

ǫ2

∫ 1/2
−1/2 h(x)(g

′(x))2 dx

I1
(B3)

If we now let h(x) = 1 + δγ(x), and assume that δ ≪ 1 (what we call δ they call ǫ), we find
that to first order in δ and ǫ, what we call β(x) is related to g(x) by

β(x) = −
g′(x)

ǫ
.

We now see that our expressions (43b) and (44) agree with (B2) in the limit as δ and ǫ
approach zero.
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