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Abstract

This paper describes the evolution of the Portals mes-
sage passing architecture and programming interface from
its initial development on tightly-coupled massively paral-
lel platforms to the current implementation running on a
1792-node commodity PC Linux cluster. Portals provides
the basic building blocks needed for higher-level protocols
to implement scalable, low-overhead communication. Por-
tals has several unique characteristics that differentiate it
from other high-performance system-area data movement
layers. This paper discusses several of these features and
illustrates how they can impact the scalability and perfor-
mance of higher-level message passing protocols.

Keywords– message passing, network protocol, os by-
pass, workstation cluster, massively parallel

1. Introduction

The advent of cluster computing over the last several
years has motivated much research into message passing
APIs and protocols targeted for delivering low-latency high-
bandwidth performance to parallel applications. Relatively
inexpensive Programmable network interface cards (NICs),
like Myrinet [2], have made low-level message passing pro-
tocols and programming interfaces a popular area of re-
search [33, 34, 26, 22, 14, 9, 28]. Most of these research
activities have been focused on delivering latency and band-
width performance as close to the hardware limitations as
possible.

To some extent, the research on clusters of PCs with
gigabit networking hardware is addressing many of the
same problems that proprietary distributed-memory mes-
sage passing parallel machines of the early 1990’s faced.
Despite the differences in hardware architecture between
custom-built parallel machines and today’s PC cluster,
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many of the issues with respect to delivering message pass-
ing performance to parallel applications are similar.

Research into high-performance message passing proto-
cols and interfaces was begun at Sandia National Labora-
tories in collaboration with the University of New Mexico
nearly ten years ago. This research addressed the poor per-
formance and scalability of applications running on mas-
sively parallel machines containing thousands of proces-
sors. This research culminated in the Cougar lightweight
kernel, which was deployed on the 9000+ processor In-
tel ASCI/Red machine installed at Sandia in early 1997.
Later that same year, we began the Computational Plant [4]
(CplantTM) project, which was an evolution of our system
software research from custom, vendor-supplied systems to
Linux-based PC clusters.

A key component of this evolution is the Portals data
movement layer. This paper discusses the development of
Portals from the lightweight kernel research through the
current implementation in use on our 1792-node CplantTM

cluster. We will show that Portals provides an interface for
implementing many of the features required for low-latency,
high-bandwidth, low-overhead, scalable message passing
on massively parallel distributed-memory computing plat-
forms.

The rest of this paper is organized as follows. We be-
gin with an introduction to Portals as they were shaped by
our lightweight kernel research in Section 2. Section 3 de-
scribes the challenges with implementing Portals on a PC
running the Linux operating systems. We continue in Sec-
tion 4 by discussing the current Portals API and semantics.
We outline several benefits of this API as compared to other
similar research projects in Section 5. We conclude in Sec-
tion 6 with a summary of this paper and outline our plans
for future work in Section 7.

2. Puma Portals

Portals were an outcome of early research into high-
performance message passing in the Sandia/University of
New Mexico Operating System(SUNMOS) [17] on the
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nCUBE and Intel Paragon machines. Portals were initially
designed and implemented in the successor to SUNMOS,
called Puma, to address the need for zero-copy message
passing, where incoming messages are delivered directly
into an application’s address space without intermediate
buffering by the operating system [18]. The Puma operating
system [31] implemented the second generation of Portals
(now called Portals 2.0), which extended the functionality
of the original design and provided the basic building blocks
for various high-level message-passing layers.

Puma was designed to take full advantage of the hard-
ware architecture of compute nodes on the Intel Paragon
and ASCI/Red. Compute nodes are composed of two pro-
cessors, memory, and a high-speed network interface inte-
grated on the memory bus. The Puma kernel delivers mes-
sages directly from the network into an application’s ad-
dress space with no intermediate buffering. The network
interface is able to perform DMAs directly between user-
space and the network.

Portals in Puma are data structures in an application’s ad-
dress space that determine how the kernel should respond to
message-passing events. Portals allow messages to be deliv-
ered directly to the application without any intervention by
the application process. In particular, the application pro-
cess need not be the currently scheduled process or perform
any message selection operations, such as tag matching, to
process incoming messages. We refer to this feature asap-
plication bypass, since the application is not involved in the
data transfer once it has been set up. We will discuss the
benefits of application bypass in greater detail in Section
5.1.

The fundamental characteristics and semantics of Portals
can be attributed to their origin on these massively paral-
lel distributed memory machines. In particular, Portals are
connectionless and provide protected, reliable, in-order de-
livery. They were designed to support multiple communi-
cating processes per node and communication between pro-
cesses created from different executables. Portals were also
designed to efficiently support multiple protocols within the
same process. Since the only way to communicate with
a process on a compute node is via Portals, they had to
support not only application message passing, but also I/O
protocols to a remote filesystem, and protocols between the
components of the parallel runtime environment.

Since Portals pre-dated the development of the MPI stan-
dard [20], multiple application-level message passing APIs
were implemented on top of Portals, such as Intel’s NX [27]
interface and nCUBE’s Vertex [23] interface. The MPI im-
plementation for Portals in Puma [7] also utilized a high-
performance collective communication library [1] imple-
mented directly on Portals and contained a preliminary im-
plementation of the MPI-2 [21] one-sided functions.

3. Portals in Linux

Despite our experience with the poor performance and
scalability of full-featured UNIX kernels that motivated
the research on lightweight kernels, the effort required to
port and maintain these kernels on commodity PC hard-
ware for the CplantTM project was extensive. In using Linux
on CplantTM, we hoped to leverage its portability and open
source model. Linux allows us to have an operating sys-
tem that runs well on the very latest commodity hardware,
and the source code availability gives us the opportunity to
manipulate the standard kernel to create an operating sys-
tem that exhibits the important characteristics of our past
lightweight kernels.

Our initial plan was to port Portals 2.0 to Linux, first as
a Linux kernel module and then as a Myrinet Control Pro-
gram (MCP) running on the Myrinet NIC. We hoped that
the module implementation would allow for a rapid port of
the parallel runtime environment and that the MCP imple-
mentation would eventually allow us to realize the perfor-
mance benefits of application bypass that Portals in Puma
provide.

Portals 2.0 in Linux was implemented via two kernel
modules that work with a Sandia-developed MCP that runs
on the LANai processor on the Myrinet interface card. The
Portals 2.0 module is responsible for determining how in-
coming messages are processed. It reads the application
process’ memory and interprets the Portals data structures.
The Portals module communicates information about mes-
sage delivery to the RTS/CTS module, which is responsi-
ble for packetization and flow control. The RTS/CTS mod-
ule communicates packet delivery information to the MCP,
which is essentially a packet delivery device. Outgoing
message data is copied into kernel memory, then copied into
the Myrinet NIC. On the receive side, packets are copied
from the Myrinet NIC into kernel memory, and then from
kernel memory into the application’s memory. All of these
memory copies are overlapping, so we are able to achieve
reasonable bandwidth due to packet pipelining. But since
the module implementation was not our end goal, we put
little effort into further optimizing this approach.

Soon after beginning the implementation of the Portals
2.0 kernel module, we discovered several problems with our
approach. Most of these problems were a result of the lack
of a functional API for Portals 2.0 and our limited knowl-
edge of the internals of the Linux kernel. We discuss two
of these problems below. For a more in-depth discussion of
these limitations, see [6].

The lack of an API prevented us from moving Portals-
related data structures out of user-space. Ideally, these
data structures should be able to exist in user-space, kernel-
space, or NIC-space – whichever provides the highest per-
formance for the underlying network hardware.
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The lack of an API also does not allow for pre-validation
of user-space addresses. Because there is no API, the appli-
cation process has no way to give the Puma kernel a desti-
nation address before a matching message arrives. There-
fore, addresses of message destinations are validated when
the message arrives and the appropriate user-space buffer is
located. This strategy works well for Puma, which uses a
physically contiguous memory management scheme where
address validation is a simple bounds check and the trans-
lation from virtual to physical is simply an offset from the
base physical address.

However, Linux only validates addresses for the cur-
rently running process, usually via a system call. Linux
kernels beyond version 2.1 assume that a given user address
is valid and perform the read or write operation. Should
the address not be valid, the hardware will generate a page
fault, and the kernel will gracefully recover. This method
optimizes for the common case where the address is valid,
and takes a significant performance hit when the address is
not valid. This creates many problems for Portals 2.0, since
address validation is not done from a system call for the
currently running process.

It became clear that Portals 2.0 was designed to take ad-
vantage of the highly specialized features of the Puma ker-
nel and that we would never be able to reach our perfor-
mance goals with a Portals 2.0 MCP implementation for
Linux. We decided to try to develop a functional API that
would allow for the key message-passing data structures to
exist in the most optimum address space while still provid-
ing the key message passing features of Portals 2.0.

In December of 1999, we released the first version of
the Portals 3.0 message passing interface [5]. We imple-
mented a reference implementation over TCP/IP, as well as
an implementation that works with the existing RTS/CTS
module for Myrinet. We have a port of MPICH version
1.2.0 over Portals 3.0, a port of MPI Software Technol-
ogy’s MPI/ProR

�
implementation of MPI over Portals 3.0,

and the components of the CplantTM parallel runtime sys-
tem [3] have been ported to use Portals 3.0 as well. Portals
3.0 has been in production use on our large CplantTM clusters
since August of 2000. Our largest CplantTM cluster is cur-
rently 1792 nodes, and has demonstrated 706 gigaFLOPS
on the Linpack benchmark, placing it at number 30 on the
November 2001 list of the Top 500 fastest supercomputers
in the world [24].

We believe the Portals 3.0 API will allow us to achieve
the functionality and relative performance for Linux and
Myrinet that Portals 2.0 provided for Puma on ASCI/Red.
A Portals 3.0 MCP implementation is currently in progress,
and is achieving less than 20� sec for a zero-length ping-
pong latency test.

4. An Overview of the Portals API

Our primary goal in developing the Portals 3.0 API was
to support an implementation on CplantTM. However, Por-
tals 3.0 is an API that allows for different implementations
on many different types of networking hardware. Some of
this hardware is better suited to our performance and scal-
ability goals than others. In this section, we provide an
overview of the API, semantics, and characteristics that we
believe are important for a high-performance, scalable mes-
sage passing layer. See [5] for a more complete description
of the API and semantics.

4.1. Scalability

The primary goal in the design of Portals is scalability.
Portals are designed specifically for an implementation ca-
pable of supporting a parallel job running on the order of
ten thousand nodes. Performance is critical only in terms
of scalability. That is, the level of message passing perfor-
mance is characterized by how far it allows an application
to scale and not by how it performs in a two-node ping-pong
benchmark.

Portals are designed to allow for scalability, but do not
guarantee it. Portals cannot overcome the shortcomings of
a poorly designed application program or overcome limita-
tions in an underlying network transport layer. Applications
that have inherent scalability limitations, either through de-
sign or implementation, will not be transformed by Portals
into scalable applications. Scalability must be addressed at
all levels. Portals are designed to not limit scalability.

To support scalability, the Portals interface maintains a
minimal amount of state. Portals provide reliable, ordered
delivery of messages between pairs of processes. They
are connectionless: a process is not required to explicitly
establish a point-to-point connection with another process
in order to communicate. Moreover, all buffers used in
the transmission of messages are maintained in user-space.
The target process determines how to respond to incom-
ing messages, and messages for which there are no buffers
are discarded. That is, Portals are based on expected mes-
sages. Higher-level message passing layers that need sup-
port for unexpected messages, such as MPI, need to set
aside a certain amount of space to receive unexpected mes-
sages. For many message passing systems, such as VIA [9],
the amount of memory required for unexpected messages
grows linearly with the number of connections. Portals al-
low for the amount of memory used for unexpected message
buffers to be based on the needs and behavior of the appli-
cation rather than based simply on the number of processes
in a parallel job.
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4.2. Communication Model

Portals combine the characteristics of both one-side and
two-sided communication. They define a “matching put”
operation and a “matching get” operation. The destination
of a put (or send) is not an explicit address; instead, each
message contains a set of match bits that allow the receiver
to determine where incoming messages should be placed.
This flexibility allows Portals to support both one-sided op-
erations and traditional two-sided send/receive operations.

Portals allows the target to determine whether incoming
messages are acceptable. A target process can choose to ac-
cept message operations from any specific process or can
choose to ignore message operations from any specific pro-
cess.

4.3. Data Movement

A Portal represents an opening in the address space of
a process. Other processes can use a Portal to read (get)
or write (put) the memory associated with the Portal. Every
data movement operation involves two processes, theinitia-
tor and thetarget. The initiator is the process that initiates
the data movement operation. The target is the process that
responds to the operation by either accepting the data for a
put operation, or replying with the data for a get operation.

In this discussion, activities attributed to a process may
refer to activities that are actually performed by the process
or on behalf of the process. The inclusiveness of our ter-
minology is important in the context ofapplication bypass.
In particular, when we note that the target sends a reply in
the case of a get operation, it is possible that reply will be
generated by another component in the system, bypassing
the application.

Figures 1 and 2 present graphical interpretations of the
Portal data movement operations: put and get. In the case
of a put operation, the initiator sends a put request message
containing the data to the target. The target translates the
Portal addressing information in the request using its local
Portal structures. When the request has been processed, the
target optionally sends an acknowledgment message.

Transmission
Data

Translation

Optional
Acknowledgement

Portal

TargetInitiator

Figure 1. Portal Put (Send)

In the case of a get operation, the initiator sends a get
request to the target. As with the put operation, the target

translates the Portal addressing information in the request
using its local Portal structures. Once it has translated the
portal addressing information, the target sends a reply that
includes the requested data.

Translation
Portal

Transmission
Data

Request

Initiator Target

Figure 2. Portal Get

We should note that Portal address translations are only
performed on nodes that respond to operations initiated by
other nodes. Acknowledgments and replies to get opera-
tions bypass the Portals address translation structures.

4.4. Portal Addressing

One-sided data movement models (e.g., shmem [10],
ST [32], MPI-2 [21]) typically use a triple to address mem-
ory on a remote node. This triple consists of a process id,
memory buffer id, and offset. The process id identifies the
target process, the memory buffer id specifies the region of
memory to be used for the operation, and the offset specifies
an offset within the memory buffer.

In addition to these standard address components, a por-
tal address includes a set of match bits. This addressing
model is appropriate for supporting one-sided operations as
well as traditional two-sided message passing operations.
Specifically, the Portals API provides the flexibility needed
for an efficient implementation of the send/receive opera-
tions in MPI, which defines two-sided operations with one-
sided completion semantics1.

Figure 3 presents a graphical representation of the struc-
tures used by a target in the interpretation of a Portal ad-
dress. The process id is used to route the message to the
appropriate node and is not reflected in this diagram. The
memory buffer id, called theportal id , is used as an in-
dex into the Portal table. Each element of the Portal table
identifies a match list. Each element of the match list spec-
ifies two bit patterns: a set of “don’t care” bits, and a set
of “must match” bits. In addition to the two sets of match
bits, each match list element has a list of memory descrip-
tors. Each memory descriptor identifies a memory region
and an optional event queue. The memory region specifies
the memory to be used in the operation and the event queue
is used to record information about these operations.

1The Progress Rule in MPI mandates local completion semantics for
the standard non-blocking two-sided message passing operations
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Memory
Descriptor

List

Memory
Region

Match List

Library Space

Portal Table

Application Space

Event Queue

Figure 3. Portal Addressing Structures

Figure 4 illustrates the steps involved in translating a Por-
tal address, starting from the first element in a match list. If
the match criteria specified in the match list entry are met
and the first entry in the memory descriptor list accepts the
operation, the operation (put or get) is performed using the
memory region specified in the memory descriptor. (Note,
while the match list is searched for a matching entry, only
the first element in the memory descriptor list is considered
for the operation.) If the memory descriptor specifies that it
is to be unlinked after a successful operation, it is unlinked
from the list of memory descriptors. Next, if the memory
descriptor is unlinked and this empties the memory descrip-
tor list, the match entry will also be unlinked if its unlink
flag has been set. Finally, if there is an event queue speci-
fied in the memory descriptor, the operation is logged in the
event queue.

Match Entry
Unlink

Unlink
Memory Desc

Get Next
Match Entry

Message
Discard Increment

Drop Count

no

Entry

Match?

Accepts?

no

yes

yes

Operation
Perform

First MD

noEvent

Queue?

yes

noMD Empty &
Unlink ME

noUnlink

MD?

yes

Record
Event

yes

yes

More
Match
Entries?

no

Exit

Figure 4. Portals Address Translation

If the match criteria specified in the match list entry are
not met or the memory descriptor associated with the match
list entry rejects the operation, the address translation con-
tinues with the next match list entry. If the end of the match
list has been reached, the address translation is aborted and
the incoming request is discarded.

4.5. Access Control

A process can control access to its Portals using an ac-
cess control list. Each entry in the access control list speci-
fies a process id and a Portal table index. The access control
list is actually an array of entries. Each incoming request in-
cludes an index into the access control list (i.e., a “cookie”
or hint). If the id of the process issuing the request doesn’t
match the id specified in the access control list entry or the
Portal table index specified in the request doesn’t match the
Portal table index specified in the access control list entry,
the request is rejected.

Process identifiers and Portal table indexes may include
wildcard values to increase the flexibility of this mecha-
nism. When the access control list is initialized, the entry
with index zero enables access to all Portals for all processes
in the same parallel application and the entry with index one
enables access to all Portals for all system processes. The
remaining entries are set to disable all other access.

Two aspects of this design merit further discussion. First,
the model assumes that the information in a message header,
the sender’s id in particular, is trustworthy. In most contexts,
we assume that the entity that constructs the header is trust-
worthy; however, using cryptographic techniques, we could
easily devise a protocol that would ensure the authenticity
of the sender.

Second, because the access check is performed by the
receiver, it is possible that a malicious process will generate
thousands of messages that will be denied by the receiver.
This could saturate the network and/or the receiver, result-
ing in a denial of service attack. Moving the check to the
sender using capabilities, would remove the potential for
this form of attack. However, the solution introduces the
complexities of capability management (exchange of capa-
bilities, revocation, protections, etc).

4.6. The Semantics of Message Transmission

The Portals API uses four types of messages: put re-
quests, acknowledgments, get requests, and replies. In this
section, we describe the information passed on the wire for
each type of message. We also describe how this informa-
tion is used to process incoming messages.

Information Description
operation Indicates a put request
initiator Local process id
target Target process id
portal index Target Portal table entry
cookie Access control table entry
match bits Matching criteria
offset Offset within the target memory
memory desc Local memory region for an ack
length Length of the data
data Payload

Table 1. Information Passed in a Put Request
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4.7. Sending Messages

Table 1 summarizes the information that is transmitted
for a put request. Most information that is transmitted is
obtained directly from the put operation. Notice that the
handle for the memory descriptor used in the put operation
is transmitted even though this value cannot be interpreted
by the target. A process can also signify that no acknowl-
edgment is requested by using a special flag.

Information Description
operation Indicates an acknowledgment
initiator Acking process id
target Target process id
portal index Echoed
match bits Echoed
offset Echoed
memory desc Echoed
requested length Echoed
manipulated length Obtained from the operation

Table 2. Information Passed in an Acknowl-
edgment

Table 2 summarizes the information transmitted in an ac-
knowledgment. Most of the information is simply echoed
from the put request. Notice that the initiator and target are
obtained directly from the put request, but are swapped in
generating the acknowledgment. The only new piece of in-
formation in the acknowledgment is the manipulated length,
which is determined as the put request is satisfied.

Information Description
operation Indicates a get operation
initiator Local process id
target Target process id
portal index Target Portal table entry
cookie Access control table entry
match bits Matching criteria
offset Offset within target memory
memory desc Local memory region for reply
length Length of requested data

Table 3. Information Passed in a Get Request

Table 3 summarizes the information that is transmitted
for a get request. Like the information transmitted in a put
request, most of the information transmitted in a get request
is obtained directly from the get operation. Unlike put re-
quests, get requests do not include the event queue handle.
In this case, the reply is generated whenever the operation
succeeds and the memory descriptor must not be unlinked
until the reply is received. As such, there is no advantage to
explicitly sending the event queue handle.

Table 4 summarizes the information transmitted in a re-
ply. Like an acknowledgment, most of the information is
simply echoed from the get request. The initiator and target
are obtained directly from the get request, but are swapped
in generating the acknowledgment. The only new informa-
tion in the acknowledgment are the manipulated length and
the data which are determined as the get request is satisfied.

Information Description
operation Indicates an acknowledgment
initiator Replying process id
target Target process id
portal index Echoed
match bits Echoed
offset Echoed
memory desc Echoed
requested length Echoed
manipulated length Length of requested data
data Payload

Table 4. Information Passed in a Reply

4.8. Receiving Messages

When an incoming message arrives on a network inter-
face, the runtime system first checks that the target process
identified in the request is a valid process that has initialized
the network interface (i.e., that the target process has a valid
Portal table). If this test fails, the runtime system discards
the message and increments the dropped message count for
the interface. The remainder of the processing depends on
the type of the incoming message. Put and get messages are
subject to access control checks and translation (searching
a match list), while acknowledgment and reply messages
bypass the access control checks and the translation step.

Acknowledgment messages include a handle for the
event queue where the event should be recorded. Upon re-
ceipt of an acknowledgment, the runtime system only needs
to confirm that the event queue still exists. Should the event
queue no longer exist, the message is simply discarded and
the dropped message count for the interface is incremented.
Otherwise, the runtime system builds an acknowledgment
event from the information in the acknowledgment message
and adds it to the event queue. Event queues are circular,
which prevents indexing out of bounds. The higher level
protocol needs to insure that there are enough event slots
and the rate of event consumption is able to keep up with
the rate of event production to avoid missing events.

Reception of reply messages is also relatively straight-
forward. Each reply message includes a handle for a mem-
ory descriptor. If this descriptor exists, it is used to receive
the message. A reply message will be dropped if the mem-
ory descriptor identified in the request doesn’t exist or if the
event queue in the memory descriptor has no space and is
not null. In either of these cases, the dropped message count
for the interface is incremented. These are the only reasons
for dropping reply messages. Every memory descriptor ac-
cepts and truncates incoming reply messages, eliminating
the other potential reasons for rejecting a reply message.

The critical step in processing an incoming put or get re-
quest involves mapping the request to a memory descriptor.
This step starts by using the Portal index in the incoming
request to identify a list of match entries. This list of match
entries is searched in order until a match entry is found
whose match criteria matches the match bits in the incom-
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ing request and whosefirst memory descriptor accepts the
request.

Because acknowledge and reply messages are generated
in response to requests made by the process receiving these
messages, the checks performed by the runtime system for
acknowledgments and replies are minimal. In contrast, put
and get messages are generated by remote processes and the
checks performed for these messages are more extensive.
Incoming put or get messages may be rejected because: the
Portal index supplied in the request is not valid; the cookie
supplied in the request is not a valid access control entry;
the access control entry identified by the cookie does not
match the identifier of the requesting process; the access
control entry identified by the access control entry does not
match the Portal index supplied in the request; or, the match
bits supplied in the request do not match any of the match
entries with a memory descriptor that accepts the request. In
all cases, if the message is rejected, the incoming message
is discarded and the dropped message count for the interface
is incremented.

A memory descriptor may reject an incoming request for
any of the following reasons: the memory descriptor has
not been enabled for the incoming operation; or, the length
specified in the request is too long for the matching memory
descriptor and the truncate option has not been enabled;

5. Benefits of Portals

We believe that the Portals API provides many benefits
over other message passing interfaces designed for clus-
ters as well as proprietary distributed memory parallel plat-
forms. In this section we outline several of these benefits.

5.1. Zero Copy, OS-Bypass and Application Bypass

In traditional system architectures, network packets ar-
rive at the network interface card, are passed through one or
more protocol layers in the operating system, and eventually
copied into the address space of the application. As network
bandwidth began to approach memory copy rates, reduction
of memory copies became a critical concern. This concern
lead to the development of zero-copy message passing pro-
tocols in which message copies are eliminated or pipelined
to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an
interrupt for the CPU when a message arrives from the net-
work. The interrupt handler then controls the transfer of the
incoming message into the address space of the appropriate
application. The interrupt latency, the time from the initi-
ation of an interrupt until the interrupt handler is running,
is fairly significant. To avoid this cost, some modern NICs
have processors that can be programmed to implement part
of a message passing protocol. Given a properly designed

protocol, it is possible to program the NIC to control the
transfer of incoming messages, without needing to interrupt
the CPU. Because this strategy does not need to involve the
OS on every message transfer, it is frequently calledOS-
bypass. Scheduled Transfer (ST) [32], Virtual Interface Ar-
chitecture (VIA) [9], FM [16], GM [22], and Portals are
examples of APIs and/or protocols that support OS-bypass.

However, many protocols that support OS-bypass still
require that the application actively participate in the pro-
tocol for data to be transferred. This is especially true in the
case of active message architectures, such as AM [34] and
FM [26]. The fundamental concept of active messages is
to integrate computation and communication. Conversely,
the fundamental concept of Portals is to decouple the host
processor from the network and allow data to flow with vir-
tually no application processing.

Portals are aimed at significantly reducing receive over-
head, which has been shown to have a greater impact on ap-
plication performance [35, 19] than latency and bandwidth.
Most studies that analyze receive overhead also do not ac-
count for the necessary protocol processing that higher-level
protocols such as MPI must do as well.

5.2. MPI Progress

The limitations of OS-bypass with respect to overlap of
computation and communication are most evident in im-
plementations of higher-level protocols, such as MPI. Since
MPI is typically the main message passing interface that
OS-bypass protocols are targeting, it is interesting to ana-
lyze the effectiveness of OS-bypass protocols in supporting
overlap for implementations of MPI.

MPI has asynchronous send and receive calls that al-
low high quality implementations the opportunity to overlap
computation and communication. MPI also defines rules
for how asynchronous communication operations make
progress. The Standard states: “A communication isen-
abled once a send and a matching receive have been posted
by two processes. The progress rule requires that once a
communication is enabled, then either the send or the re-
ceive will proceed to completion. ... In particular, if the
matching send is nonblocking, then the receive completes
even if no complete-send call is made on the sender side. ...
Similarly, a call ... that completes a send eventually returns
if a matching receive has been started, even if no complete-
receive call is made on the receiving side.”

Every OS-bypass MPI implementation described in cur-
rent literature [15, 29, 25, 11] requires application process-
ing to move data. These implementations typically use a
two-level protocol, where short messages are sent eagerly
and long messages are sent using a rendezvous protocol.
The short eager messages are buffered at the receiver and
copied by the application into the appropriate receive buffer
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after context and tag matching occur. In the rendezvous pro-
tocol, the sender sends a request to the receiver. This request
is recognized by the application, the context and tag match-
ing occur, and when the appropriate receive buffer is found,
a message is sent back to sender indicating the exact loca-
tion in memory where the data can be delivered. However,
because the application must be involved in these transfers,
the opportunity for significant overlap is lost.

The semantics of Portals 3.0 support the necessary
progress engine for an MPI implementation without the
need for explicit application intervention. Portals 3.0 pro-
vides the necessary building blocks for protocols to be im-
plemented on NICs in a way that is not specific to MPI and
is general enough to support several other higher-level data
movement interfaces.

5.3. Demonstration of Application Bypass

In order to demonstrate the benefits of application-
bypass, we conducted an experiment using a simple MPI
program running on two nodes. Table 5 outlines the basic
experiment. Both nodes iterate over this outline although
only one node performs “work.”

pre-post several non-blocking receives;
barrier;
post a batch of sends;
work (fixed loop iterations);
get time A;
wait for the batch of messages;
get Time B;
repeat;

Figure 5. Testing For Application Bypass

In our experiment, a batch consists of ten equal sized
messages and timings were averaged by repeating the ex-
periment several times. Also, the work, or fixed number of
loop iterations, establishes a “work interval” during which
parallel or concurrent message handling may proceed if al-
lowed by the MPI implementation. We varied the work
interval and timed how much of the message handling re-
mained to be done after the work interval.

We ran this application bypass test on a 500 MHz Pen-
tium III with a LANai 7.2 Myrinet NIC running GM 1.4 and
MPICH/GM 1.2..7. We also ran the test on a CplantTM clus-
ter running the Portals 3.0 and RTS/CTS kernel modules
with our Portals 3.0 port of MPICH 1.2.0.

Figure 6 presents the duration of waiting for mes-
sages as a function of work interval for MPICH/GM and
MPICH/Portals 3.0 for 50 KB messages. MPICH/GM does
not make any progress on message passing until we either
wait for the messages or make other calls to the MPI li-
brary. In related testing not shown here, we introduced three
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MPICH/Portals For 50KB Messages

calls to MPI Test during the work interval and MPICH/GM
could then make significant progress before the call to wait.

In contrast, the Portals implementation has a greater de-
gree of application bypass and makes progress indepen-
dently of the application making library calls. Given a
large enough work interval, Portals can virtually complete
message handling whereas MPICH/GM makes very little
progress. We ran the same experiment on MPICH/Portals
with the work interval having three test calls. The resulting
graph of Portals data is essentially the same curve as shown
in Figure 6.

This issue is not only specific to implementations of MPI
on clusters using Myrinet [30], but have also been analyzed
on proprietary parallel platforms as well [13]. The funda-
mental problem is the protocols underlying the MPI im-
plementation that require the MPI library to be directly in-
volved in the message selection activities. There are several
ways to accomplish this, as suggested most recently in [30]:
a separate thread can handle MPI progress, interrupts can be
used to run MPI handler routines, or MPI-aware firmware
can be placed on the NIC. However, the most popular ap-
proach is to ignore the progress rule and simply require
the application to make frequent calls to the MPI library.
This method allows the MPI library to continually check
for outstanding communication operations and attempt to
complete them.

Using a separate thread to facilitate the overlap of com-
putation and communication has several disadvantages. The
implementation of MPI must be designed to take advantage
of using a separate thread for progress. Unfortunately, the
most popular implementation of MPI, MPICH [12], was
not. Care must be taken to reduce the amount of interfer-
ence that a separate communication thread creates. Since
nearly all message passing systems do not allow threads to
be scheduled in response to message events, some overhead
is incurred on the host processor.
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Using interrupts to run MPI handler routines also has
many drawbacks. Interrupts and context switching can be
very expensive. In fact, it is this cost that motivated the OS
Bypass approach in the first place.

Requiring the application to make frequent MPI calls
in order to guarantee progress directly conflicts with the
progress rule. In fact, this is the very situation that the
progress rule intended to avoid. Some implementations ex-
plicitly state this limitation [8], but most do not. Along with
the illegality of this approach, it also has several implemen-
tation drawbacks. Primarily, it forces non-portability of ap-
plications. Applications that are MPI compliant must be
sprinkled with superfluous MPI calls in order for commu-
nications to make progress. The most effective places to
insert calls are highly dependent on the underlying imple-
mentation. More importantly, some operations are atomic
and MPI calls cannot be inserted at all. For example, post-
ing a receive just before calling a BLAS library routine or
calling an I/O operation. The BLAS library or I/O routines
would need to be compiled to occasionally make unneces-
sary MPI calls. These are the very types of operations where
overlap is most desirable and would be most effective.

Finally, implementing MPI-aware firmware on the NIC
alleviates many of the problems with the other approaches.
The NIC is able to make progress on MPI message op-
erations independently from the application process, thus
providing the opportunity to efficiently overlap computa-
tion and communication. However, this method is specific
to MPI constructs and semantics. Ideally, the opportunity
for overlap should be exploitable by all high-level mes-
sage passing interfaces. The Portals API allows for NIC
firmware to implement MPI semantics without being spe-
cific to MPI, so that other higher-level protocols can also
reap the benefits of application bypass and reduced over-
head.

The particular implementation of Portals 3.0 that we
used for the above experiment is interrupt-driven, so it has
the same drawbacks that an interrupt-driven implementa-
tion of MPI would have. However, the NIC-based imple-
mentation of Portals will address these limitations and still
provide the desired benefits of application bypass.

6. Summary

This paper has described the evolution of the Portals
message passing architecture and programming interface
from its initial development on tightly-coupled massively
parallel platforms to the current implementation running
on a 1792-node commodity Linux cluster. The current
generation Portals API provides the basic building blocks
necessary for higher-level protocols to implement scalable,
high-performance communication. The availability of pro-
grammable NICs with significant processing power makes

it possible to implement Portals in such a way as to signif-
icantly reduce receive overhead, even for higher-level mes-
sage passing layers such as MPI.

7. Future Work

As mentioned previously, work on the Portals MCP for
Myrinet is currently under way. We expect to complete this
work in early 2002 and be able to demonstrate the full per-
formance advantages of the programming interface. We are
also working on ports to other networking hardware, specif-
ically Quadrics and programmable gigabit Ethernet cards.
We are also considering porting Portals 3.0 into the Cougar
lightweight kernel to validate our approach on a massively
parallel tightly coupled platform.

We have also considered adding a few features to Por-
tals since the initial release of the API. We would like to
extend the API to support gather/scatter operations more ef-
ficiently, and we have had requests from filesystem imple-
mentors to extend the functionality of memory descriptor
processing to more easily accommodate an in-kernel imple-
mentation.
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