
An Evaluation of the Impacts of Network
Bandwidth and Dual-Core Processors on

Scalability

Ron Brightwell, Keith D. Underwood, and Courtenay Vaughan
Sandia National Laboratories

P.O. Box 5800, MS-1110
Albuquerque, NM 87185-1110

{rbbrigh, kdunder, ctvaugh }@sandia.gov

Abstract— A portion of the Cray Red Storm sys-
tem at Sandia National Laboratories recently com-
pleted an upgrade of the processor and network
hardware. Single-core 2.0 GHz AMD Opteron pro-
cessors were replaced with dual-core 2.4 GHz AMD
Opterons, while the network interface hardware was
upgraded from a sustained rate of 1.1 GB/s to 2.0
GB/s (without changing the router link rates). These
changes more than doubled the theoretical peak
floating-point performance of the compute nodes and
doubled the bandwidth performance of the network.
This paper provides a analysis of the impact of this
upgrade on the performance of several applications
and micro-benchmarks. We show scaling results for
applications out to thousands of processors and
include an analysis of the impact of using dual-core
processors on this system.

I. INTRODUCTION

The emergence of commodity multi-core
processors has created several significant chal-
lenges for the high-performance computing
community. One of the most significant chal-
lenges is maintaining the balance of the system
as the compute performance increases with
more and more cores per socket. Increasing
the number of cores per socket may not lead
to a significant gain in overall application per-
formance unless other characteristics of the
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system – such as memory bandwidth and net-
work performance – are able to keep pace. As
such, understanding the impact of increasing
the number of cores per socket on application
performance is extremely important.

The Cray XT3 system was designed by Cray
and Sandia National Laboratories specifically
to meet system balance criteria that are nec-
essary for effectively scaling several impor-
tant DOE applications to tens of thousands of
processors. Several large XT3 systems have
been deployed and have demonstrated excellent
performance and scalability on a wide variety
of applications and workloads [1], [2]. Since
the processor building block for the XT3 sys-
tem is the AMD Opteron, existing single-core
systems can be upgraded to dual-core simply
by changing the processor.

The Red Storm system at Sandia, which is
the predecessor of the Cray XT3 product line,
recently underwent the first stage of such an
upgrade on more than three thousand of its
nearly thirteen thousand nodes. In order to help
maintain system balance, the Red Storm net-
work on these nodes was also upgraded from
SeaStar version 1.2 to 2.1. The latest version
of the SeaStar provides a significant increase in
network bandwidth. Before conducting initial
studies of single-core versus dual-core perfor-
mance, the system software environment had
to be enhanced to support multi-core compute
nodes. Performance results from a small system



were encouraging enough to justify upgrading
the full Red Storm system to dual-core nodes.
With the first stage of the upgrade completed,
we are now able to analyze the impact of the
processor and network upgrade on application
performance and scaling out to several thou-
sand cores.

The main contribution of this paper is an in-
depth analysis of application performance and
scaling on a large-scale dual-core system. We
provide results for multiple representative DOE
applications and compare single-core versus
dual-core performance on up to four thousand
cores. Few such studies have been conducted
on commodity dual-core systems at this scale,
and we believe this is the first such study of
the popular Cray XT3 platform. This paper
also includes an analysis of the performance
of the SeaStar 2.1 network using traditional
micro-benchmarks. The Red Storm system is
the first (and perhaps only) XT3 product to
have the SeaStar 2.1 network, which will be
the network deployed in the next-generation
XT product. The combination of dual-core
compute nodes with the SeaStar 2.1 network
should provide a glimpse as to the level of
performance and scaling that will be available
in Cray’s follow-on system. Also, this paper
provides a description of the enhancements that
were made to Sandia’s Catamount lightweight
kernel environment and Portals network stack
to support dual-core XT3 systems.

The rest of this paper is organized as fol-
lows. In the next section, we describe how
this study complements previously published
research. Section II contains the specific de-
tails of the processor, network, and system
software upgrade, including a detailed descrip-
tion of the necessary changes to Catamount.
Micro-benchmark performance for the SeaStar
2.1 network is presented in Section III, while
higher-level network benchmark results are
shown in Section IV. Section V provides a de-
tailed analysis of several real-world application
codes, both in terms of application scaling and
absolute system performance. We summarize
the conclusions of this study in Section VI and
close by discussing avenues of future work in

Section VII.

II. OVERVIEW OF SYSTEM UPGRADE

While the goal of the Red Storm upgrade
was to provide enhanced processing and net-
work capabilities, it was also necessary to en-
hance the system software to leverage the dual-
core capabilities. This section describes the
hardware enhancements, their implications, and
the software enhancements needed to leverage
the new hardware.

A. Hardware Upgrade

The Red Storm system was designed to
accommodate both a processor and a network
upgrade. The original system had 2.0 GHz
single-core Opteron processors for a peak per-
formance of 4 GFLOPs per node. It was antic-
ipated that dual-core processors would become
available in the lifetime of the machine, and the
current upgrade is installing socket-compatible
2.4 GHz dual-core Opteron processors that
have a peak performance of 9.6 GFLOPs per
node — an improvement of almost 2.5×.

At Sandia’s request, the board-level design
placed the network chips on a mezzanine that
could easily be replaced. Thus, along with the
processor upgrade, the SeaStar 1.2 network
chips are being replaced with SeaStar 2.1 net-
work chips. The new network chips increase
the sustained unidirectional bandwidth from 1.1
GB/s to 2.1 GB/s and the sustained bidirec-
tional bandwidth from 2.2 GB/s to 3.6 GB/s.
This increase helps to maintain the balance
of the system, but the change is primarily a
change in injection bandwidth — SeaStar 1.2
chips could receive up to 2 GB/s, but they
could only send 1.1 GB/s. Notably, neither
message latency or message rate properties
of the SeaStar itself were changed. Similarly,
the router link bandwidth has not increased.
The router links, which could only be half
subscribed by a SeaStar 1.2 node, can now
be almost fully subscribed by a single SeaStar
2.1 node; thus, network contention will be
significantly increased.



B. Software Upgrade

Compute nodes on the Cray XT3 system
run a lightweight kernel called Catamount [3],
which is a third-generation operating system
developed by Sandia and the University of
New Mexico (UNM). Sandia and Cray worked
jointly to provide Catamount for the XT3,
and Sandia provided enhancements to Cray to
support dual-core compute nodes. The lowest-
level network programming interface on the
XT3 is called Portals [4], which was also
developed jointly by Sandia and UNM. As
with Catamount, Sandia and Cray have worked
closely to provide the implementation of Por-
tals for the SeaStar. The following describes
the changes that were necessary to Catamount,
the parallel runtime system, and to Portals to
support running parallel applications on dual-
core compute nodes.

Catamount consists of three components: the
Quintessential kernel (QK), the Process Con-
trol Thread (PCT), and the parallel application
loader, called yod. The QK and the PCT work
together to manage the resources available on
a compute node. The QK provides all of the
mechanisms to manage hardware resources,
while the PCT, which is a privileged user-level
process, sets the policies for managing those
resources. Yod plays the part of the parallel
application launcher, similar to mpirun. Yod is
a service-node application that communicates
with a PCT to create a user-level process on a
compute node.

The QK is the lowest level of the operating
system. Logically, it sits closest to the hardware
and performs services on behalf of the PCT and
user-level processes. The QK supports a small
set of tasks that require execution in supervisor
mode, including servicing network requests,
interrupt handling, and fault handling. If the
interrupt or fault is caused by the application,
control is turned over to the PCT for handling.
The QK also fulfills requests made by the PCT,
including running processes, context switching,
virtual address translation and validation. How-
ever, the QK does not manage the resources
on a compute node. It simply provides the

necessary mechanisms to enforce policies es-
tablished by the PCT and to perform specific
tasks that must be executed in supervisor mode.

The PCT is a privileged user-level process
that performs functions traditionally associated
with an operating system. It has read/write
access to all memory in user space and is
in charge of managing all operating system
resources, including starting and scheduling
processes and memory management. When the
QK starts the PCT, the remainder of physical
memory is included in the PCT’s heap. When
the PCT starts a process, it allocates space for
the process from its heap. The user process is
encapsulated within the PCT’s address space,
which enables debugging and core dump pro-
cessing.

There are several important features of Cata-
mount that differentiate it from traditional full-
featured operating systems like Linux. First,
Catamount does not support virtual memory.
However, it does support virtual addressing
to provide protection between privileged and
non-privileged processes. Secondly, the default
allocation scheme for a compute node is to
commit all available resources to a process.
This means that when a process is started, its
stack size and heap size are fixed and consume
all of available memory. If a process requires a
larger stack space than the default or if the user
wants to start multiple processes on a node, the
user must explicitly tell the process loader how
much stack or heap to allocate.

Support for dual cores in Catamount is im-
plemented by virtual node mode (VNM). VNM
makes individual nodes appear as two sepa-
rate nodes to the parallel application. However,
since the number of processors is the only
resource that has been doubled, all other re-
sources, including node memory and the net-
work, must be shared. This mode does not
support any form of shared memory commu-
nication between the two application processes
on a node. All communication must still be
performed using network commands. The im-
plementation of the network transfer may use
shared memory, but this is not exposed to
the user-level processes. From the application



perspective, there are two totally independent
processes on the node just as if they were on
separate nodes.

The changes to the QK to support multiple
cores fell mainly into two categories: adding a
dimension to control variables and initializing
the second CPU at boot time. The QK does
not have a particular awareness of VNM, but
it does treat the processors in a master-slave
fashion. Since all PCT execution and schedul-
ing occurs on the first processor, the second
processor has a ’wait-for-work’ loop in the
QK. Running an application process on the
first CPU involves a context switch from the
PCT. Continuing a process on the second CPU
involves simply clearing the flag that allows
the processor to come out of the wait-for-work
loop.

For VNM, process load as seen from yod
is mostly unchanged. A single copy of the
executable is fanned out to the PCTs. This does
restrict the dual cores to having a single choice
of binary on each node. The PCT does use only
one copy of the text section of the process on
each node, but it allocates two copies of every
other section for the two processes. Both pro-
cesses on a node then begin independently and
the second process migrates to the second CPU
by making a system request. It then notifies
the PCT to switch schedulers and the VNM
scheduler lets the processes run as appropriate.
There is no true scheduling between them.

III. MICRO-BENCHMARK RESULTS

We used two micro-benchmarks to compare
the Seastar 1.2 and Seastar 2.1 network in-
terfaces. We began with a simple ping-pong
benchmark to measure the latency between
nodes. We also looked at the impacts of the up-
grade on message rate and peak bandwidth. To
measure peak bandwidth, we used a benchmark
developed by the Ohio State University, which
posts several messages (64) at the receiver and
then sends a stream of messages from the
sender.

A. Ping-Pong Latency and Bandwidth

Figure 1(a) shows the impact of the upgrade
on ping-pong latency. While the Seastar 2.1 did
not incorporate any features that should reduce
latency, the move from a 2.0 GHz processor
to a 2.4 GHz processor reduced ping-pong
latency by a full microsecond. This is because
the majority of Portals processing happens on
the host processor in an interrupt driven mode.
Similarly, placing two processors on one node
currently means that both the send and receive
work happens on one processor1 and this in-
creases latency by over 2 microseconds. Future
versions of the Cray software are supposed
to short-circuit the trip through the Seastar to
drastically reduce latencies between two cores
on one node.

The step in latency between 16 and 32 bytes
is attributable to the need to take an extra
interrupt for messages that do not fit in the
header packet (messages greater than 16 bytes).
This step has been a constraint in the Red
Storm system, but should go away when Cray
implements a fully offloaded Portals[5].

B. OSU Streaming Bandwidth

In Figure 1(b), the improvements in the
Seastar 2.1 are evident as a two-fold increase
in sustained, streaming bandwidth. We can
also see an almost 20% improvement in mes-
sage rate that is provided by the 20% boost
in the processor clock rate. The significant
degradation in message rate for having two
processes on one node (in the dual-core case)
is attributable to the same source as the la-
tency increase in Figure 1(a) — competition
for processing resources on the node. Again,
this reduction in messaging rate would largely
evaporate with an offloaded Portals implemen-
tation.

The reduction in peak bandwidth when two
processes are on one node stems from com-
petition for HyperTransport bandwidth. The
transmit DMA engine must perform a Hyper-
Transport read to obtain data. This consumes

1System calls are proxied to one processor in a node.
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Fig. 1. Ping-pong latency (a) and streaming bandwidth (b)

some of the bandwidth that would otherwise
be used to receive data.

IV. HIGHER-LEVEL BENCHMARKS

While micro-benchmarks provide some in-
teresting insights into the network properties of
individual nodes, higher-level benchmarks can
provide much more insight into overall system-
level behaviors. Thus, we have included results
from the Pallas MPI benchmark suite[6] and
from the HPC Challenge benchmark suite[7].

A. Pallas

The Pallas benchmarks provide a slightly
higher level view of system-level network per-
formance by measuring the performance of
numerous MPI collectives. Figure 2 presents
data for three collectives that are particularly
common in scientific applications: Alltoall,
Allreduce, and Reduce. In each of the three,
the performance of the collectives using small
sizes is dominated by latency. As such, the
upgrade provides an advantage that is commen-
surate with the improvements in latency that are
seen with the faster processors. Furthermore,
moving to two cores per socket does not suffer
from the sacrifice in latency experienced by a
ping-pong test between cores in a single socket.
This is because most of the collectives involve
(at most) one or two communications between
the cores in one socket and not contention at
every phase of the algorithm.

At larger sizes, point-to-point bandwidths
dominate for both the Allreduce and Reduce.
Thus, the upgraded platform continues to see
remarkable improvements from the improve-
ment in bandwidth. In contrast, Alltoall per-
formance at large message sizes can become
constrained by bisection bandwidth. Thus, the
curves start to converge. A remarkably bad
region can actually be seen in the Alltoall
curve where using both cores on a single socket
causes significant degradation in performance.
This is likely caused by a particularly poor
allocation that causes regular synchronized link
contention between the cores in a socket. The
collective algorithms should generally be tuned
to better match the topology of the machine
with a particular focus on considering the im-
pact of multi-core.

B. HPC Challenge

The HPC Challenge benchmarks provide a
much broader view of system performance than
simply network measurements. Performance
measurements cover processor performance
(HPL), memory performance (STREAMS),
small message network performance (Rando-
mAccess), network bisection bandwidth per-
formance (PTRANS), and a coupled proces-
sor/network test (FFT). While far short of
a real application, in its baseline form, this
benchmark suite captures many more aspects
of system performance than other benchmarks.
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Fig. 2. 64 node Pallas benchmarks for (a) Alltoall, (b) Allreduce, and (c) Reduce

Figure 3 presents the performance of the
more processor centric HPCC metrics. As ex-
pected, moving from 2.0 GHz processors to 2.4
GHz processors provided approximately a 20%
boost per core for HPL. FFT received a smaller
(10%) gain, as it is a more memory bound
code. In contrast, STREAMS actually lost a
bit of performance. This is not surprising since
the benchmarks used the configurations tuned
for the slower processors, which may not be
optimal for the faster processor.

Figure 3 also presents dual-core performance
data along with a percent improvement per
socket achieved by using two cores instead of
one (while keeping the problem size constant).
HPL is clearly the largest winner with an 80 to
90% gain. FFT achieves a somewhat surprising
20 to 40% win, indicating that the second cache
is providing somewhat of a benefit. Finally,
STREAMS achieves a remarkable 10 to 30%

improvement. A growing trend in microproces-
sors is an inability to sustain higher bandwidth
due to the excessive relative memory latency.
Here we see evidence that two independent
issue streams in one socket can extract sig-
nificantly more memory bandwidth from the
memory controller.

The PTRANS and RandomAccess compo-
nents of the HPCC benchmark are shown in
Figure 4. Both of these benchmarks are much
more network centric and measure aspects of
the network that were not improved by the
upgrade. PTRANS focuses on bisection band-
width, which did not change since the router
links did not change. Likewise, the MPI mes-
sage rate, which is measured by RandomAc-
cess, did not change with the network upgrade.
RandomAccess did, however, see a significant
gain from the almost 20% gain in MPI mes-
sage rate that was provided by the processor
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Fig. 3. (a) HPL, (b) FFT, and (c) STREAMS results

upgrade.

Both the PTRANS and RandomAccess
benchmarks also show mixed results from us-
ing the second core in the socket. In the case
of PTRANS, a good placement of MPI ranks
on the nodes would yield much better perfor-
mance because more communications would be
“on node”; however, the allocation algorithm
currently in use in the Cray software stack is
particularly poor. This is particularly evident
in the case where using dual-cores yields a
large performance loss. RandomAccess gets no
gains in any cases from the second core. At
large scales, the additional traffic to the same
socket is negligible. Furthermore, two cores
now contend for one network interface, which
gives each one less than half of the message
throughput.

V. APPLICATIONS

We considered the impact of the Red Storm
upgrade on three applications from three gen-
eral perspectives. The applications include
SAGE, PARTISN, and CTH. Each of these are
commonly used application level benchmarks
within the DOE complex.

A. SAGE

SAGE, SAIC’s Adaptive Grid Eulerian hy-
drocode, is a multi-dimensional, multi-material,
Eulerian hydrodynamics code with adaptive
mesh refinement that uses second-order accu-
rate numerical techniques [8]. It represents a
large class of production applications at Los
Alamos National Laboratory. It is a large-
scale parallel code written in Fortran 90 and
uses MPI for inter-processor communications.
It routinely runs on thousands of processors for
months at a time.
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Fig. 4. (a) PTRANS and (b) RandomAccess results

B. PARTISN

The PArallel, TIme-dependent SN (PAR-
TISN) code package is designed to solve the
time-independent or dependent multigroup dis-
crete ordinates form of the Boltzmann trans-
port equation in several different geometries. It
provides neutron transport solutions on orthog-
onal meshes with adaptive mesh refinement in
one, two, and three dimensions. A multi-group
energy treatment is used in conjunction with
the Sn angular approximation. A significant
effort has been devoted to making the code run
efficiently on massively parallel systems. It can
be coupled to nonlinear multi-physics codes
that run for weeks on thousands of processors
to finish one simulation.

C. CTH

CTH is a multi-material, large deforma-
tion, strong shock wave, solid mechanics code
developed at Sandia. CTH has models for
multi-phase, elastic viscoplastic, porous and
explosive materials. Three-dimensional rect-
angular meshes; two-dimensional rectangular,
and cylindrical meshes; and one-dimensional
rectilinear, cylindrical, and spherical meshes
are available. It uses second-order accurate
numerical methods to reduce dispersion and
dissipation and to produce accurate, efficient
results. CTH is used for studying armor/anti-
armor interactions, warhead design, high ex-
plosive initiation physics, and weapons safety

issues.

D. Scalability Impact
When analyzing the impact of the upgrade,

there are three ways to think of the data. The
first viewpoint considers the impact of moving
from Seastar 1.2 to Seastar 2.1 on application
scalability. Another viewpoint asks the ques-
tion: how is overall scalability impacted by
having two cores share a connection to the
network? Finally, we can consider the perfor-
mance improvements in terms of the perfor-
mance gain per socket.

Figure 5(a) and (b) highlight the scalability
of PARTISN in the diffusion and transport
sections, respectively. Scalability is clearly not
a problem with the move to faster processors.
Furthermore, on larger problem sizes, the dual
core processors show very little scalability im-
pact as the number of processors increases;
however, the problem is very sensitive to the
contention for resources (both the network
interface and memory bandwidth) that arises
when two cores are placed in one socket.
Another interesting note is in the jaggedness
of the lines in Figure 5(b). Parallel efficiency
should be approximately monotonic; however,
we see numerous points where it increases
as we move to larger numbers of processors.
These increases typically occur because of par-
ticularly good mappings between the problem
specification and the way the allocator places
the MPI ranks on the physical nodes. These
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Fig. 5. Parallel efficiency impacts on PARTISN (a) diffusion and (b) transport portions and parallel efficiency impacts on (c)
CTH and (d) SAGE

data points could be greatly smoothed by mov-
ing to a better allocation algorithm[9].

Figure 5(c) shows scalability results for CTH
on two scaled speedup problem sizes (problem
size shown is per node). Notably, the overall
upgrade was neutral in terms of scalability for a
single core per node at the larger problem size.
Similarly, moving to two cores per node takes
an overall parallel efficiency drop as two MPI
tasks contend for memory bandwidth; however,
that drop is constant and overall scalability is
relatively unimpacted. At the smaller problem
size, however, we see one of the weaknesses of
the upgrade in that the upgraded processors do
not scale quite as well as the slower processors.
There are two sources of this issue. Foremost,
the processor performance improved by more
(20%) for the smaller problem than for the
larger problem (10%). In addition, MPI latency
did not improve as much as MPI bandwidth,

which impacts applications with smaller mes-
sages (in this case, from a smaller problem
size).

Like CTH, SAGE scales extremely well on
the upgraded machine, as indicated in Fig-
ure 5(d). In fact, the parallel efficiency of the
single core and dual core systems begins to
converge at large scales as scaling issues begin
to dominate single processor performance is-
sues. Thus, it is clear for both SAGE and CTH
that contention for the network interface is not
a particular issue. The only anomaly is at 512
nodes where the pre-upgrade machine has a
“magic data point” that is reproducible. As with
the PARTISN transport problem, these points
periodically arise as the application mapping to
the nodes hits a particularly good configuration
(or bad configuration in the case of PARTISN).
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Fig. 6. Percent improvement for PARTISN diffusion (a, c) and transport (b, d) portions for 243 (a, b) and 483 (c, d) problems

E. Dual-Core Improvement

Another way to consider the upgrade is
based on the improvement offered by using
dual core processors instead of single core
processors. This view holds the problem size
per socket constant (since the memory size
is constant) and graphs absolute performance
in terms of time on the left axis and percent
improvement on the right axis versus the num-
ber of sockets on the X-axis. The PARTISN
diffusion problem (Figure 6(a, c)) sees im-
provements of 20 to 40% on small numbers of
sockets; however, at large scale, the use of dual
core processors offers very little advantage. In
fact, there can even be a slight performance
loss associated with the drastic increase in MPI
tasks needed to support two cores in each
socket! In stark contrast, the transport problem
(shown in Figure 6(b, d)) achieves a consistent
25 to 50% performance improvement from

using the second core.
Much like the diffusion portion of PARTISN,

CTH receives an impressive 20 to 30% im-
provement per socket by using dual core pro-
cessors. This is impressive because the number
of MPI tasks has doubled, but the total work
has not. Thus, the work per time step per core
is reduced by a factor of two when using dual
core processors in these cases.

VI. CONCLUSIONS

This paper has described the dual-core and
network upgrade to the Red Storm system at
Sandia National Laboratories. This is the first
Cray XT3 system to be upgraded to dual-core
Opteron processors and SeaStar 2.1 network
chips.

Network micro-benchmarks show that half
round-trip latency has decreased by nearly 15%
due to improvements in the performance of
the Opteron. Peak unidirectional bandwidth has
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Fig. 7. Percent improvement for CTH sizes 50x120x50 (a) and 80x192x80 (b)

almost doubled, and peak bidirectional band-
width has increased almost 80%. Improved
performance of a single core of the Opteron
has also improved small message throughput
by over 20%.

We presented three perspectives on the up-
grade. First, we considered single-core, 2.0
GHz Opterons with Seastar 1.2 parts and com-
pared them to using a single 2.4 GHz core on
each node with Seastar 2.1 parts. This provided
insight into the improvements provided by the
increase in network bandwidth. Second, we
compared scaling efficiency of two cores per
node in the upgraded system to the scaling
efficiency of one core per node in the up-
graded system. This provided a different look
at the scaling impacts of network bandwidth
in the system. Finally, we compared absolute
performance per socket for using a single 2.4
GHz core with use of both cores to provide a
look at the advantage obtained from a dual-core
upgrade.

Our results showed that adding a second core
provides from 20% to 50% performance boost
to real applications on a fixed problem size per-
socket basis. Furthermore, the results indicate
that scalability is impacted relatively little by
the upgrade. Most degradation in parallel ef-
ficiency is directly attributable to contention
for resources caused by having two cores in
one socket; however, with the doubling in MPI
tasks that is typical of using dual-core proces-

sors, it is possible to see scaling effects that
are detrimental to overall performance when
running at the largest scale.

VII. FUTURE WORK

The full system upgrade of the processors
and network chips for Red Storm is sched-
uled to be completed before the end of the
2006 calendar year. In its largest configuration,
the final system will have nearly twenty-six
thousand processor cores, making it the largest
commodity-based dual-core Opteron system in
the world. In the Spring of 2007, Red Storm
is scheduled to undergo an upgrade of the
memory system. The current 333 MHz DDR
memory will be upgraded to 400 MHz DDR,
and all nodes in the system will have at least
6 GB of host memory.

There are a number of system software en-
hancements that are under development, but
which have not yet been deployed for produc-
tion dual-core systems. The manner in which
Catamount handles system call traps to initiate
messages has been changed to address fairness.
Currently, a trap on the second core causes the
first core to be interrupted so that the Qk can
process the request. Ideally, a trap to send a
message on the second core should be handled
by that core, without disturbing the other core.
In addition, message passing between two cores
on a node has not been optimized to its fullest
extent. There are planned enhancements that



can potentially reduce the latency of inter-node
messages significantly.

As mentioned previously, the current Cray-
supported implementation of Portals uses the
host to process incoming messages. Sandia has
developed an implementation of Portals that
runs entirely on the SeaStar network inter-
face [5]. This implementation does not use
interrupts and uses no host processor cycles to
process incoming messages. In addition to the
demonstrated network performance improve-
ment of this implementation, we expect it to
have some significant benefits for dual-core
systems.
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