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Portals Timeline

• Portals 0.0  - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0  - 1993
– Data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0  - 1994
– Puma/Cougar
– Message selection (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0  - 1998
– Cplant/Linux
– Functional API
– Target intelligent/programmable network interfaces



Portals 3.3 Features

• Best effort, in-order delivery
• Well-defined transport failure semantics
• Based on expected messages
• One-sided operations

– Put, Get, Atomic swap
• Zero-copy
• OS-bypass
• Application offload

– No polling or threads to move data
– No host CPU overhead

• Runtime system independent
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Match Entry Contents

– Source node id
– Source process id
– 64 match bits
– 64 ignore bits



Memory Descriptor

• Start address
– Optionally supports gather/scatter list

• Length in bytes
• Threshold

– Number of operations allowed
• Max size

– Low-water mark
• Options

– Put/get
– Receiver/sender managed offset
– Truncate
– Ack/no ack
– Ignore start/end events

• 64 bits of user data
• Event queue handle
• Auto-unlink option



Event Queue

• Circular queue that records operations on MDs
• Types of events

– Get (PTL_EVENT_GET_{START,END})
• MD has received a get request

– Put (PTL_EVENT_PUT_{START,END})
• MD has received a put request

– Reply (PTL_EVENT_REPLY_{START,END})
• MD has received a reply to a get request

– Send (PTL_EVENT_SEND_{START,END})
• Put request has been processed

– Ack (PTL_EVENT_ACK)
• MD has received an ack to a put request
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Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal table index
• Match bits
• Requested length
• Manipulated length
• Offset
• 64 bits of out-of-band data



What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for 

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space, 
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and 
scalable buffering of “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a 

message
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Cray SeaStar NIC/Router

• 16 1.6 Gb/s HyperTransport to Opteron
• 500 MHz embedded PowerPC 440
• 384 KB on-board scratch RAM
• Seven-port router
• Six 12-channel 3.2 Gb/s high-speed serial links



SeaStar Block Diagram



Cray Portals Bridge

• Needed single version of NIC firmware that 
supports all combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference 
implementation to allow NAL to interface multiple 
API NALs and multiple library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications



SeaStar NAL

• Portals library currently in kernel-space
– Interrupt-driven
– “generic”

• Portals library moving to NIC-space
– No interrupts
– “accelerated”



Micro-Benchmarks

• ptlperf
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Single, persistent ME, MD, EQ
– Best-case performance for Portals

• mpilatency
– Standard best-case ping-pong latency and bandwidth

• NetPIPE 3.6.2
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Streaming bandwidth
– Implemented a Portals module



MPI Implementations

• MPICH 1.2.6 with Portals 3.3 device
– Originally developed for Cplant Linux clusters
– Uses a copy block for very short messages

• Avoids waiting for wire-level acknowledgment
• Avoids overhead of creating a memory descriptor

• MPICH2 0.97 with Portals 3.3 device
– Cray supported version for XT3



Disclaimer

• Results are from a developer snapshot of a Sandia code 
base from last week

• This software may or may not make it to other Cray XT3 
systems

• Accelerated implementation has undergone minimal tuning



ptlperf/mpilatency
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NetPIPE Latency
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NetPIPE Bandwidth (Default)
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NetPIPE Bandwidth (Preposted)
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NetPIPE Bandwidth (Bidirectional)
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NetPIPE Bandwidth Comparison
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Conclusions

• Portals 3.3 is the lowest-level network 
programming interface on the Cray XT3

• Cray bridge abstraction allows single instance of 
firmware to support multiple API and Library 
paths

• Accelerated NIC-space implementation achieves 
~3.8 µs latency

• Generic kernel-space implementation achieves 
~4.7 µs latency

• Asymptotic bandwidth is ~1.1 GB/s



Future Work

• Tune accelerated implementation
• Work with Cray to get short message optimization into 

MPICH2
• More optimizations for MPI

– Use persistent memory descriptors for send side
• Avoid creating an MD for all sends

– Rendezvous protocol for benchmarking
• More and better benchmarks

– CPU utilization/overhead
– Collective operations

• NIC-based collective operations
• Next-generation Portals API



Questions?


