
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Implementation and Performance of Portals
3.3 on the Cray XT3

Ron Brightwell Trammell Hudson Kevin Pedretti
Rolf Riesen Keith Underwood

Sandia National Laboratories
Scalable Computing Systems Department

IEEE International Conference on Cluster Computing
September 28, 2005

Outline

• Portals history
• Portals objects
• Portals implementation
• Portals for Cray SeaStar
• Performance
• Conclusions
• Future Work

Portals Timeline

• Portals 0.0 - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0 - 1993
– Data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0 - 1994
– Puma/Cougar
– Message selection (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0 - 1998
– Cplant/Linux
– Functional API
– Target intelligent/programmable network interfaces

Portals 3.3 Features

• Best effort, in-order delivery
• Well-defined transport failure semantics
• Based on expected messages
• One-sided operations

– Put, Get, Atomic swap
• Zero-copy
• OS-bypass
• Application offload

– No polling or threads to move data
– No host CPU overhead

• Runtime system independent

Put Operation

Initiator Target

Portal

Translation

Data
Transmission

Optional
Acknowledgement

Get Operation

Initiator Target

Portal

Translation

Request

Data
Transmission

Portal Translation
Operational BoundaryPortal Table

Memory
Descriptors

Event Queue Memory
Regions

Match List

Application
SpacePortal Space

Access Control Table

Match Entry Contents

– Source node id
– Source process id
– 64 match bits
– 64 ignore bits

Memory Descriptor

• Start address
– Optionally supports gather/scatter list

• Length in bytes
• Threshold

– Number of operations allowed
• Max size

– Low-water mark
• Options

– Put/get
– Receiver/sender managed offset
– Truncate
– Ack/no ack
– Ignore start/end events

• 64 bits of user data
• Event queue handle
• Auto-unlink option

Event Queue

• Circular queue that records operations on MDs
• Types of events

– Get (PTL_EVENT_GET_{START,END})
• MD has received a get request

– Put (PTL_EVENT_PUT_{START,END})
• MD has received a put request

– Reply (PTL_EVENT_REPLY_{START,END})
• MD has received a reply to a get request

– Send (PTL_EVENT_SEND_{START,END})
• Put request has been processed

– Ack (PTL_EVENT_ACK)
• MD has received an ack to a put request

Event Scenarios

initiator target

reply end

reply start

ack

get start

get end

put start

put end

get

put

send end

send start

Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal table index
• Match bits
• Requested length
• Manipulated length
• Offset
• 64 bits of out-of-band data

What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a

message

Portals Reference Implementation Design

Transport

API

Library

API Space

Library Space

Network

Abstraction

Layer

Myrinet Kernel Implementation

API

Library

RTS/CTS MCP

User Space

Kernel Space

Network

Abstraction

Layer

Myrinet MCP Implementation

API

Library

Wire

User Space

NIC Space

Network

Abstraction

Layer

Cray SeaStar NIC/Router

• 16 1.6 Gb/s HyperTransport to Opteron
• 500 MHz embedded PowerPC 440
• 384 KB on-board scratch RAM
• Seven-port router
• Six 12-channel 3.2 Gb/s high-speed serial links

SeaStar Block Diagram

Cray Portals Bridge

• Needed single version of NIC firmware that
supports all combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference
implementation to allow NAL to interface multiple
API NALs and multiple library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications

SeaStar NAL

• Portals library currently in kernel-space
– Interrupt-driven
– “generic”

• Portals library moving to NIC-space
– No interrupts
– “accelerated”

Micro-Benchmarks

• ptlperf
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Single, persistent ME, MD, EQ
– Best-case performance for Portals

• mpilatency
– Standard best-case ping-pong latency and bandwidth

• NetPIPE 3.6.2
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Streaming bandwidth
– Implemented a Portals module

MPI Implementations

• MPICH 1.2.6 with Portals 3.3 device
– Originally developed for Cplant Linux clusters
– Uses a copy block for very short messages

• Avoids waiting for wire-level acknowledgment
• Avoids overhead of creating a memory descriptor

• MPICH2 0.97 with Portals 3.3 device
– Cray supported version for XT3

Disclaimer

• Results are from a developer snapshot of a Sandia code
base from last week

• This software may or may not make it to other Cray XT3
systems

• Accelerated implementation has undergone minimal tuning

ptlperf/mpilatency

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

mpich2-gen
mpich-1.2.6-gen

portals-gen
mpich2-accel

mpich-1.2.6 accel
portals-accel

NetPIPE Latency

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

mpich2-gen
mpich2-accel

mpich-1.2.6-gen
portals-gen

mpich-1.2.6 accel
portals-accel

NetPIPE Bandwidth (Default)

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals-accel
mpich-1.2.6-accel

portals-gen
mpich2-accel

mpich-1.2.6-gen
mpich-1.2.6-gen

NetPIPE Bandwidth (Preposted)

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals-accel
portals-gen

mpich-1.2.6-accel
mpich-1.2.6-gen

mpich2-accel
mpich-1.2.6-gen

NetPIPE Bandwidth (Bidirectional)

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals-accel
mpich-1.2.6-accel

mpich2-accel

NetPIPE Bandwidth Comparison

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

portals accel stream
portals gen stream

portals accel
portals gen

Conclusions

• Portals 3.3 is the lowest-level network
programming interface on the Cray XT3

• Cray bridge abstraction allows single instance of
firmware to support multiple API and Library
paths

• Accelerated NIC-space implementation achieves
~3.8 µs latency

• Generic kernel-space implementation achieves
~4.7 µs latency

• Asymptotic bandwidth is ~1.1 GB/s

Future Work

• Tune accelerated implementation
• Work with Cray to get short message optimization into

MPICH2
• More optimizations for MPI

– Use persistent memory descriptors for send side
• Avoid creating an MD for all sends

– Rendezvous protocol for benchmarking
• More and better benchmarks

– CPU utilization/overhead
– Collective operations

• NIC-based collective operations
• Next-generation Portals API

Questions?

