
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Initial Performance Evaluation of the
Cray SeaStar Interconnect

Ron Brightwell Kevin Pedretti Keith Underwood
Sandia National Laboratories

Scalable Computing Systems Department

13th IEEE Symposium on High-Performance Interconnects
August 18, 2005

Outline

• Red Storm requirements
• Cray SeaStar
• Portals programming interface
• Performance results
• Future work
• Conclusions

ASC Red Storm Performance Goals

• Peak of ~40 TFLOPS based on 2 FLOPS/clock
– Expected performance is ~10 times faster than

ASCI Red
• Linpack (HPL) performance

– >14 TFLOPS
– Expect to get ~30TFLOPS

• Aggregate system memory bandwidth
– ~55 TB/s

• Aggregate sustained interconnect bandwidth
– >100 TB/s

Red Storm Interconnect Performance Goals

• MPI zero-length half round trip latency
requirements
– <2 µs nearest neighbor
– <5 µs furthest neighbor

• Peak node bandwidth
– 1.5 GB/s each direction

• Peak link bandwidth
– 3 GB/s each direction

Red Storm Architecture

• True massively parallel processing machine
• Designed to be a single system
• Distributed memory MIMD parallel supercomputer
• Fully connected 3D mesh interconnect
• 10,368 compute nodes
• ~30 TB of DDR memory
• Red/Black switching: ~1/4, ~1/2, ~1/4
• 8 Service and I/O cabinets on each end (256 processors for

each color)
• > 240 TB of disk storage (> 120 TB per color)

Red Storm Network Topology

• Compute node topology:
– 27 x 16 x 24 (x, y, z) – Red/Black split: 2,688 –

4,992 – 2,688
• Service and I/O node topology

– 2 x 8 x 16 (x, y, z) on each end (network is 2 x 16 x
16)

– 256 full bandwidth links to Compute Node Mesh
(384 available)

Red Storm Layout
(27 × 16 × 24 mesh)

Disconnect Cabinets

Normally
Classified

Normally
Unclassified

Disk storage system
not shown

Switchable Nodes

I/O and
Service Nodes

I/O and
Service Nodes

Red Storm System Software

• Operating Systems
– LINUX on service and I/O nodes
– Catamount lightweight kernel on compute nodes
– LINUX on RAS nodes

• Run-Time System
– Logarithmic loader
– Intelligent node allocator
– Batch system (PBS)
– Libraries – MPI, I/O, Math

• File Systems
– Lustre for both UFS and Parallel FS

Red Storm Processors and Memory

• Processors
– AMD Opteron (Sledgehammer)
– 2.0 GHz
– 64 KB L1 instruction and data caches on chip
– 1 MB L2 shared (Data and Instruction) cache on chip
– Integrated dual DDR memory controllers @ 333 MHz
– Integrated 3 Hyper Transport Interfaces @ 3.2 GB/s each

direction
• Node memory system

– Page miss latency to local processor memory is ~80 ns
– Peak memory bandwidth of ~5.3 GB/s for each processor

Cray SeaStar NIC/Router

• IBM 0.13u ASIC process
• 16 1.6 Gb/s HyperTransport to Opteron
• 500 MHz embedded PowerPC 440
• 384 KB on-board scratch RAM
• Seven-port router
• Six 12-channel 3.2 Gb/s high-speed serial links

SeaStar Block Diagram

SeaStar Network Interface

• Independent send/recv cache-coherent DMA
engines between Opteron memory and network

• Message-based
– DMA engines handle packetization

• Attempts to minimizes host overhead
• Supports reception of multiple simultaneous

messages
• Delivers boot code to Opteron

SeaStar Embedded PowerPC

• Message preparation
• Message demultiplexing

– MPI matching
– Native IP packets

• End-to-end reliability protocol
• System monitoring

Integrated Router

• Six high-speed network links per ASIC
• More than 4 GB/s per link
• Reliable link protocol with 16-bit CRC and

automatic retry
• Support for up to 32K nodes in a 3D toroidal

mesh

Network Reliability

• SECDED on scratch RAM with scrubbing
• SEC on routing lookup tables
• Parity protection on DMA tables
• Monitor port accesses on PowerPC and Opteron

state
• Link protocol – 16-bit CRC with automatic retry
• NIC computes 32-bit message CRC

SeaStar Programming Interface

• Cray chose Portals 3.3 API developed by Sandia
and the University of New Mexico

• Portals was designed to support
intelligent/programmable network interfaces

Portals Timeline

• Portals 0.0 - 1991
– SUNMOS (Sandia/UNM OS)
– nCUBE, Intel Paragon
– Direct access to network FIFOs
– Message co-processor

• Portals 1.0 - 1993
– Data structures in user-space
– Kernel-managed and user-managed memory descriptors
– Published but never implemented

• Portals 2.0 - 1994
– Puma/Cougar
– Message selection (match lists)
– Four types of memory descriptors (three implemented)

• Portals 3.0 - 1998
– Cplant/Linux
– Functional API
– Target intelligent/programmable network interfaces

• Portals 3.3 – 2003
– Red Storm

Portals 3.3 Features

• Best effort, in-order delivery
• Well-defined transport failure semantics
• Based on expected messages
• One-sided operations

– Put, Get, Atomic swap
• Zero-copy
• OS-bypass
• Protocol offload

– No polling or threads to move data
– No host CPU overhead

• Runtime system independent

Portals Addressing
Operational BoundaryPortal Table

Memory
Descriptors

Event Queue Memory
Regions

Match List

Application
SpacePortal Space

Access Control Table

Match Entry Contents

– Source node id
– Source process id
– 64 match bits
– 64 ignore bits

Memory Descriptor

• Start address
– Optionally supports gather/scatter list

• Length in bytes
• Threshold

– Number of operations allowed
• Max size

– Low-water mark
• Options

– Put/get
– Receiver/sender managed offset
– Truncate
– Ack/no ack
– Ignore start/end events

• 64 bits of user data
• Event queue handle
• Auto-unlink option

Event Queue

• Circular queue that records operations on MDs
• Types of events

– Get (PTL_EVENT_GET_{START,END})
• MD has received a get request

– Put (PTL_EVENT_PUT_{START,END})
• MD has received a put request

– Reply (PTL_EVENT_REPLY_{START,END})
• MD has received a reply to a get request

– Send (PTL_EVENT_SEND_{START,END})
• Put request has been processed

– Ack (PTL_EVENT_ACK)
• MD has received an ack to a put request

Event Scenarios

initiator target

reply end

reply start

ack

get start

get end

put start

put end

get

put

send end

send start

Event Entry Contents

• Event type
• Initiator of event (nid,pid)
• Portal index
• Match bits
• Requested length
• Manipulated length
• Offset
• MD handle
• 64 bits of out-of-band data
• Link
• Sequence number

What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a

message

Portals 3.3 for SeaStar

• Cray started with Sandia reference implementation
• Needed single version of NIC firmware that supports all

combinations of
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray added bridge layer to reference implementation to
allow NAL to interface multiple API NALs and multiple
library NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications

SeaStar NAL

• Portals processing in kernel-space
– Interrupt-driven
– “generic” mode

• Portals processing in NIC-space
– No interrupts
– “accelerated” mode

Micro-Benchmarks

• PtlPerf
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Single, persistent ME, MD, EQ
– Best-case performance for Portals

• NetPIPE 3.6.2
– Ping-pong latency and bandwidth (uni- and bi-

directional)
– Streaming bandwidth
– Implemented a Portals module

Disclaimer

• PtlPerf results
– From a snapshot of developer code base in May
– Sandia-developed C-based firmware
– Only generic mode

• NetPIPE results
– From a snapshot of developer code base on Tuesday
– Sandia/Cray merge of C-based firmware
– Generic and accelerated modes
– Some features that may impact performance are not

implemented
• End-to-end reliability protocol

PtlPerf Latency

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

get
put-bi

put

PtlPerf Bandwidth (10KB-100KB)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 20000 40000 60000 80000 100000

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

put
put-bi

get

PtlPerf Bandwidth (100KB-2MB)

 0

 200

 400

 600

 800

 1000

 1200

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

put
put-bi

get

NetPIPE Portals Latency

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(u
s)

Message Size (bytes)

Generic (2.0 GHz)
Generic (2.4 GHz)

Accelerated (2.0 GHz)
Accelerated (2.4 GHz)

NetPIPE Portals Bandwidth

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Stream - Accelerated (2.4 GHz)
Stream - Generic (2.4 GHz)

Accelerated (2.4 GHz)
Accelerated (2.0 GHz)

Generic (2.4 GHz)
Generic (2.0 GHz)

NetPIPE Portals Bi-directional Bandwidth

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Accelerated (2.4 GHz)
Generic (2.4 GHz)

Accelerated (2.4 GHz)
Generic (2.4 GHz)

NetPIPE TCP/IP Latency

 0

 5

 10

 15

 20

 25

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

Portals (2.0 GHz)
Native (2.0 GHz)

NetPIPE TCP/IP Bandwidth

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

Portals (2.0 GHz)
Native (2.0 GHz)

Future Work

• Accelerated implementation
– Finish implementation
– Optimize

• NIC-based atomic memory operations (for
SHMEM)

• NIC-based collective operations

Conclusions

• Latency performance
– Accelerated: 3.88 µs

• We may be able to reduce this numbers slightly
– Generic: 4.61 µs

• Bandwidth performance
– Asymptotic: 1.1 GB/s
– Cray is currently working on SeaStar 2.0

Acknowledgments

• Lots of people at Cray
– Especially Bob Alverson (from whom I stole some

slides)
• Lots of people at Sandia

– Especially Tramm Hudson, Jim Laros, and Sue
Kelly

Questions?

Die Layout

Red Storm 4-Node Compute Node Board

AMD Opteron

Standard DIMMs
RAS controller

SeaStar

MPI Latency

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Message Size (bytes)

shmem-preposted
shmem

mpich2-preposted
mpich-1.2.6-preposted no vshort ls 5

mpich-1.2.6-preposted
mpich2

mpich-1.2.6 no vshort
mpich-1.2.6

