
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

System Software R&D at Sandia:
To Red Storm and Beyond

Ron Brightwell
Scalable Computing Systems Department

Center for Computation, Computers, Information and Math
Sandia National Laboratories

rbbrigh@sandia.gov
http://www.sandia.gov/~rbbrigh

NCAR CISL Seminar
February 23, 2007

Outline

• Sandia’s massively parallel systems
• Evolution of Sandia’s system software and

networking environment
• Top three problems Sandia is facing
• OS research and development activities

Sandia Systems

Paragon
• Tens of users
• First periods

processing MPP
• World record

performance
• Routine 3D

simulations
• SUNMOS lightweight

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black

partitions
• Improved

interconnect
• High-fidelity coupled

3-D physics
• Puma/Cougar

lightweight kernel

Cplant
• Commodity-based

supercomputer
• Hundreds of users
• Enhanced simulation

capacity
• Linux-based OS

licensed for
commercialization

Red Storm
• 41 Tflops
• Custom interconnect
• Purpose built RAS
• Highly balanced and

scalable
• Catamount

lightweight kernel

nCUBE2
• Sandia’s first large

MPP
• Achieved Gflops

performance on
applications

1990

1993

1997

1999
2004

2005 - Thunderbird

• 60 TF peak
• Compute nodes

– 4512 Dell Servers
– Dual 3.6 GHz EM64T
– 6 GB RAM

• Network
– InfiniBand (Cisco (Topspin))
– 50% Blocking Ratio
– 8 TS-740s
– 256 TS-120s

• Node count
– Largest PC cluster for parallel

in the world
– #6 on November 2005 Top500

list
– Open Fabrics software (Linux)

8x SFS TS740
288 ports each

Edge

Core
Fabric

256x TS120
24-ports each

Compute
Nodes

Compute
Nodes

8192 Processors

2048 uplinks
(7m/10m/15m/20m)

2007 – Upgraded Red Storm

• 12,980 2.4 GHz dual-core
AMD Opteron CPUs
– 124.6 TF/s peak

• SeaStar 2.1 network
– 2.1 GB/s one-way

bandwidth
• 2 GB DDR 333 Memory
• #2 on November 2006

Top 500 list
• Catamount LWK with

virtual node mode support

Red Storm is a Highly Balanced System

0.50004.89.6Cray Red Storm’07

0.0400122.4Thunder
0.02800.517.6Mare Nostrum
0.192012.364NEC Earth Simulator

1.20004.84Cray Red Storm’04
0.1300214.4Dell Thunderbird
0.27006.424SGI Columbia
0.1700848IBM Purple

0.06250.355.6IBM BG/L

RatioPeak BW
(GB/s)

Peak Node
(GFLOPS)Machine

Net I/O

Service

Users

File I/OCompute

/home

Conceptual Partition Model

Sandia System Software

• Lightweight kernel (LWK) compute node
operating and runtime system
– Several instances of custom LWKs for several

machines
• Portals high-performance network stack

– Several generations and implementations for
various custom and commodity networks

LWK Design Goals

• Targeted at massively parallel environments comprised of
thousands of processors with distributed memory and a
tightly coupled network.

• Provide necessary support for scalable, performance-
oriented scientific applications

• Offer a suitable development environment for parallel
applications and libraries.

• Emphasize efficiency over functionality.
• Maximize the amount of resources (e.g. CPU, memory, and

network bandwidth) allocated to the application.
• Seek to minimize time to completion for the application.
• Deterministic performance

LWK Approach

• Separate policy decision from policy enforcement
• Move resource management as close to

application as possible
• Protect applications from each other
• Let user processes manage resources
• Get out of the way

LWK General Structure

QK

App. 1

libmpi.a

libc.a

PCT App. 3

libmpi.a

libc.a

App. 2

libmpi.a

libc.a

Typical Usage

QK

App. 1

libmpi.a

libc.a

PCT

Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Non-blocking
• Small number of well-defined entry points

Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker

– Process loading (with yod)
– Process scheduling
– Virtual address space management
– Fault handling
– Signals

PCT (cont’d)

• Customizable
– Singletasking or multitasking
– Round robin or priority scheduling
– High performance, debugging, or profiling version

• Changes behavior of OS without changing the
kernel

Yod

• Parallel job launcher
• Runs in the service partition
• Communicates via Portals
• Command line arguments for

– Size of job
– Processor mode
– Stack size
– Heap size
– Sharing

• Services I/O and system call requests from compute node
processes once job is running

LWK Processor Modes

• Chosen at job launch time
• Heater mode (proc 0)

– QK/PCT and application process on system CPU
• Message co-processor mode (proc 1)

– QK/PCT on system CPU
– Application process on second CPU

• Compute co-processor mode (proc 2)
– QK/PCT and application process on system CPU
– Application co-routines on on second CPU

• Virtual node (VN) mode (proc 3)
– QK/PCT and application process on system CPU
– Second application process on second CPU

LWK Key Ideas

• Protection
– Levels of trust

• Kernel is small
– Very reliable

• Kernel is static
– No structures depend on how many processes are

running
• Resource management pushed out to application

processes and runtime system
• Services pushed out of kernel to PCT and runtime

system

Red Storm/XT3 Node

Catamount LWK Physical Memory layout

QK
text

Network
buffer

(qk heap)

Portals
memory

PCT
text

PCT
data

User
program
text &
data

User
heap

S
t
a
c
k

QK
data

S
t
a
c
k

S
t
a
c
k

P
e P
r C
s T
i
s h
t e
e a
n p
t

PCT heap

Up to 4
instances

Note: not to scale

Catamount Dual Core Design

• Virtual node mode
• Application perspective

– Twice as many nodes
– Half the memory
– No changes to existing applications

• System perspective
– One copy of QK
– One PCT
– Network access done by CPU-0 QK only
– Network requests from CPU-1 are proxied to CPU-0

• Network perspective
– One Node Identifier
– Two process Indices

Dual Core CPU Responsibility Assignments

QK
PCT

APP-0

QK
subset

APP-1

Dual Core Opteron

CPU-0 CPU-1

Seastar
Network
Interface

Chip

Portals

Portals 0.0

• SUNMOS (Sandia/UNM OS)
– Modeled on Vertex (the OS for the nCUBE)
– Dynamic allocation for incoming messages

• Experiments
– Multiple paths
– Pre-posted receives
– Use of a co-processor

• nCUBE 2 and Intel Paragon
– Direct access to network FIFO’s
– Message co-processor (Paragon)

Portals 1.0

• Moved all message reception structures to user
space

• Kinds of portals
– Kernel managed portals
– Single block portals

• Never implemented
• Published ☺

Portals 2.0

• Puma/Cougar lightweight kernel
• Separate matching from memory descriptors
• Variety of memory descriptors

– Kernel managed (dynamic)
– Single block
– Independent block
– Combined block

• Intel TeraFLOPS (ASCI Red)
– Direct access to message FIFO’s
– Message co-processor

Issues with Portals 2.0

• No API
– Data structures in user space
– Protection boundaries have to be crossed to

access data structures
– Data structures have to be copied, manipulated,

and copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit the Linux model of validating addresses

on a system call for the currently running process

Portals 3.x

• Operational API
• Unified memory descriptors
• Commodity processors and networks

– Alphas, IA-32, IA-64, etc.
– Linux OS with modules
– Myrinet, Quadrics, etc.
– DMA access to memory

• Fundamental change
– NIC doesn’t have logical address maps
– NIC access to memory needs to be carefully managed

Portals 3.3 Features

• Best effort, in-order delivery
• One-sided operations

– Put, Get, Atomic swap
• Supports zero-copy
• Supports OS-bypass
• Supports application offload

– No polling or threads to move data
– No host CPU overhead

• Well-defined transport failure semantics
• Unexpected operations are discarded
• Receive-side access control
• Runtime-system independent

What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of MPI “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a

message

Portals Characteristics
• Minimal library space

– Nothing depends on message size
– All objects can be confirmed when created

• Designed for library writers
– Not for application developers
– Low-level API

• We're happy to drop requests
• Structures are complicated
• Some functions (PtlMDUpdate()) are not obvious

• Designed to reflect underlying hardware
– NICs
– Packets and failure

• Provide the right amount of protection

RDMA is the Wrong Model for MPI at Scale

• Complexity of scalable connection management
• Lack of message matching ability leads to

– No progress without extra threads
– Receive CPU overhead on every transfer
– Severely limited ability to overlap computation with

communication
• Lack of scalable support for unexpected

messages leads to
– Extra flow control in MPI library to manage

unexpected message buffers
– Inefficient use of application memory

Portals Was Designed for MPI at Scale

• Connectionless
• Supports MPI matching semantics

– Allows for offloading MPI matching to NIC
– Very low CPU overhead for both small and large

messages
• Maximizes overlap of computation and

communication
• Provides scalable and efficient support for

buffering unexpected messages
– Does not require extra flow control in MPI

Top Three Problems for Sandia

Top Three Problems For Sandia

• Large multi-core processors
– Maintaining system balance

• Memory bandwidth
• Network bandwidth

– Programming model
• MPI for intra-node communication won’t work
• Mixing MPI and OpenMP/threads has not worked well

• Parallel I/O and filesystems
– Lustre works
– Nothing seems to work well enough

System Software R&D Projects

• Short-term
– Enhancements to the LWK architecture to support

large-scale multi-core processors
– In-depth study of the impact of OS interference on

applications
– Explore and understand role of virtualization

• Long-term
– Composable operating systems project

N-Way Lightweight Kernel Project

• Catamount support for multi-core processors and
multi-processor nodes

• Exploring enhancements to LWK to better
support non-MPI programming models

• Identified candidate network stack architectures
• Created prototype NIC-based network stack for

Red Storm and evaluated its performance
• Developed prototype LWK platform to examine

commodity PC bootstrap requirements

Two Tough Questions

• What is the programming model?
– Must support traditional MPI model
– Other shared address space based models

• What is the architecture of the network stack?
– Host-based vs. NIC-based
– Intra-node communication path

• Both questions are interrelated

Today: Virtual Node Mode with a
Asymmetric Host-based Network Stack

NIC (SeaStar)

Core 1

App 1

Slave LWK

Core 2

App 2

Slave LWK

Core 3

App 3

Slave LWK

Core 0

App 0

Master LWK
MemoryMemory

Controller

Message
Data

1) System Call
2) Write Command

1) System Call
2) Interrupt Master
3) Write Command

Processor

Virtual Node Mode with a
Symmetric Host-based Network Stack

Core 0

App 0

LWK

Core 1

App 1

LWK

Core 2

App 2

LWK

Core 3

App 3

LWK

Mailbox 0

Processor

FirmwareNIC1) System Call
2) Write Command

Mailbox 1 Mailbox 2 Mailbox 3

Virtual Node Mode with a
NIC-based Network Stack

Core 0

App 0

Master LWK

Core 1

App 1

Slave LWK

Core 2

App 2

Slave LWK

Core 3

App 3

Slave LWK

Mailbox 0

Processor

Mailbox 1 Mailbox 2 Mailbox 3

FirmwareNIC1) Write
Command

Prototype NIC-based Network Stack

• Allowed characterization of
– Impact of interrupts on latency
– Impact on throughput (Messages/second)
– NIC vs. host CPU matching speed
– Penalty of having multiple NIC mailboxes
– NIC resource requirements of each CPU core

•4 cores/SeaStar probably upper bound
• IEEE Micro paper accepted:

– “Cray’s SeaStar Interconnect: Balanced Bandwidth for
Scalable Performance”, Ron Brightwell, Trammell Hudson,
Kevin Pedretti, Keith Underwood, May/June 2006.

Upcoming Challenges

• Support for non-MPI programming models
– OpenMP + MPI
– User managed threads
– Global Arrays
– SHMEM

• Current thinking is two new LWK capabilities are
needed:
– Support for shared address spaces
– Support for dynamic process creation

Quantifying the Impact of OS Interference

• Still many unanswered questions in the HPC OS research
community

• Popularity of the XT3 platform has increased the debate on
the impact of OS “noise”

• Important question is the sensitivity of Sandia applications
to interference rather than amount of interference in the OS
– Currently pursuing a strategy that will allow for injecting

interference into Catamount in a controlled fashion
– Also plan to artificially degrade network performance to

understand the impact of interference on unbalanced
systems

Selfish Benchmark

The Role of Virtualization

• Exploring the Xen virtualization technology
– Ported OpenCatamount to Xen
– Ported Xen to XT3 hardware
– Quantifying the impact of Xen on performance

• Evaluating the possibility of augmenting Catamount to
support virtualization
– Current design of Catamount is very similar to a

virtualization layer
– Virtualization would support running native Catamount

applications as well as Linux applications on XT3
compute nodes without rebooting

QK is Really a HAL

Hardware Abstraction Layer

ApplicationOS

Catamount Xen Xen-like Catamount

Catamount Already Looks Like a VMM

• Xen hypervisor interface support in Catamount
– Catamount applications run without performance impact
– Linux applications run on XenoLinux guest OS

Where We Don’t Need Virtualization

• Processor
– Can’t leverage processor-specific features

• i860 bus locking
• Memory

– Linux already makes everything look like an x86
– We already have enough problems with tracking memory

usage
– Applications always know better how to do resource

allocation
• Network

– No good way to provide isolation with network
virtualization

Why We Might Need Virtualization

• OS development
– Use VMM as hardware abstraction layer

• No need to port to every new machine
– Debugging

• Easily capture entire state
– Testbeds

• OS comparison
– HAL makes direct OS performance comparison a little

easier
• Porting the OS isn’t the issue – it was the network

• Checkpoint/Restart/Migration
– For those who want this in the first place

Possible Benefits of Catamount Virtualization

• Supports the Red Storm requirement for running
a single job that spans both compute and service
partitions
– Dynamically sizable service partition

• May allow for running Accelerated Portals under
Linux
– Provide a hook for XenoLinux to acquire physically

contiguous memory
• Virtualizing network may help with fault tolerance

Composable OS Project

• Funded DOE/MICS FAST-OS program
• Collaboration with the University of New Mexico

(Barney Maccabe) and LSU (Thomas Sterling)

OS Issues

• General-purpose operating systems
– Generality comes at the cost of performance for all

applications
– Assume a generic architectural model

• Difficult to expose novel features
• Lightweight operating systems

– Limited functionality
– Difficult to add new features
– Designed to be used in the context of a specific usage

model
• Operating system is an impediment to new architectures

and programming models

LWK Influences

• Lightweight OS
– Small collection of apps

• Single programming
model

– Single architecture
– Single usage model
– Small set of shared

services
– No history

• Puma/Cougar
– MPI
– Distributed memory
– Space-shared
– Parallel file system
– Batch scheduler

Programming Models

Usage Models

Current and Future System Demands

• Architecture
– Modern ultrascale machines have widely varying system-level

and node-level architectures
– Future systems will have further hardware advances (e.g.,

multi-core chips, PIMs)
• Programming model

– MPI, Thread, OpenMP, PGAS, …
• External services

– Parallel file systems, dynamic libraries, checkpoint/restart, …
• Usage model

– Single, large, long-running simulation
– Parameter studies with thousands of single-processor, short-

running jobs

Project Goals

• Realize a new generation of scalable, efficient, reliable, easy
to use operating systems for a broad range of future
ultrascale high-end computing systems based on both
conventional and advanced hardware architectures and in
support of diverse, current and emerging parallel
programming models.

• Devise and implement a prototype system that provides a
framework for automatically configuring and building
lightweight operating and runtime system based on the
requirements presented by an application, system usage
model, system architecture, and the combined needs for
shared services.

Approach

• Define and build a collection of micro-services
– Small components with well-defined interfaces
– Implement an indivisible portion of service

semantics
– Fundamental elements of composition and re-use

• Combine micro-services specifically for an
application and a target platform

• Develop tools to facilitate the synthesis of
required micro-services

Building Custom Operating/Runtime Systems

THINK Framework

• THink Is Not a Kernel
• A component-based framework for operating systems

development
– Set of components (library) and tools (for compiling,

linking, etc)
• Allow for building complete OS by assembling software

components
– No predefined kernel structure (e.g.

monolithic/micro/exo kernels)
– No predefined component size

• Mutex as well as protocol stack are components
– No predefined core functionalities

• Scheduler, mmu, etc.

Motivation and Benefits of THINK

• Need to build OS a la carte
– Don’t want to pay the cost of unneeded functionalities

• Mastering complexity of OS building
– Provide homogeneous vision of OS topology
– Facilitate code reuse
– Insure correct assembly of components
– Facilitate integration of non-functional properties

• QoS, real-time, security, etc.

More THINK Details

• Uses low-level languages (ASM/C)
• Preliminary work targeted at embedded systems

– ARM/Lego, RCX/DSP
• Aimed at reducing component overhead

– Smaller components have higher overhead
– Trade-off between code reuse, level of dedication and

run-time overhead
– Average of 2% more memory in the actual

implementation
• Developed by France Telecom R&D

– Available at http://think.objectweb.org

Acknowledgments

• Sandia Scalable Computing Systems
– Kevin Pedretti, Rolf Riesen, Keith Underwood

• University of New Mexico
– Barney Maccabe, Patrick Bridges, Jean-Charles

Tournier
• Louisiana State University

– Thomas Sterling
• OS Research

– Trammell Hudson

