
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Networking R&D at Sandia:
To Red Storm and Beyond

Ron Brightwell
Scalable Computing Systems Department

Center for Computation, Computers, Information and Math
Sandia National Laboratories

Pacific Northwest National Lab
January 29, 2007

Outline

• Sandia massively parallel systems
• Evolution of Portals
• Networking requirements and Red Storm
• Petascale networking requirements
• Ongoing research and development activities
• Application network resource usage patterns

Sandia Systems

Paragon
• Tens of users
• First periods

processing MPP
• World record

performance
• Routine 3D

simulations
• SUNMOS lightweight

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black

partitions
• Improved

interconnect
• High-fidelity coupled

3-D physics
• Puma/Cougar

lightweight kernel

Cplant
• Commodity-based

supercomputer
• Hundreds of users
• Enhanced simulation

capacity
• Linux-based OS

licensed for
commercialization

Red Storm
• 41 Tflops
• Custom interconnect
• Purpose built RAS
• Highly balanced and

scalable
• Catamount

lightweight kernel

nCUBE2
• Sandia’s first large

MPP
• Achieved Gflops

performance on
applications

1990

1993

1997

1999
2004

2007 Red Storm - Upgraded

• 12,980 2.4 GHz dual-core
AMD Opteron CPUs
– 124.6 TF/s peak

• SeaStar 2.1 network
– 2.1 GB/s one-way

bandwidth
• 2 GB DDR 333 Memory
• #2 on November 2006

Top 500 list
• Catamount LWK with

virtual node mode support

Evolution of Portals

Portals 0

• SUNMOS (Sandia/UNM OS)
– Modeled on Vertex (the OS for the nCUBE)
– Dynamic allocation for incoming messages

• Experiments
– Multiple paths
– Pre-posted receives
– Use of a co-processor

• nCUBE 2 and Intel Paragon
– Direct access to network FIFO’s
– Message co-processor (Paragon)

Portals 1.0

• Moved all message reception structures to user
space

• Kinds of portals
– Kernel managed portals
– Single block portals

• Never implemented
• Published ☺

Portals 2.0

• Puma/Cougar lightweight kernel
• Separate matching from memory descriptors
• Variety of memory descriptors

– Kernel managed (dynamic)
– Single block
– Independent block
– Combined block

• Intel TeraFLOPS (ASCI Red)
– Direct access to message FIFO’s
– Message co-processor

Issues with Portals 2.0

• No API
– Data structures in user space
– Protection boundaries have to be crossed to

access data structures
– Data structures have to be copied, manipulated,

and copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit the Linux model of validating addresses

on a system call for the currently running process

Portals 3.x

• Operational API
• Unified memory descriptors
• Commodity processors and networks

– Alphas, IA-32, IA-64, etc.
– Linux OS with modules
– Myrinet, Quadrics, etc.
– DMA access to memory

• Fundamental change
– NIC doesn’t have logical address maps
– NIC access to memory needs to be carefully managed

Portals 3.3 Features

• Best effort, in-order delivery
• One-sided operations

– Put, Get, Atomic swap
• Supports zero-copy
• Supports OS-bypass
• Supports application offload

– No polling or threads to move data
– No host CPU overhead

• Well-defined transport failure semantics
• Unexpected operations are discarded
• Receive-side access control
• Runtime-system independent

What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space,
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and
scalable buffering of MPI “unexpected” messages

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a

message

Portals Characteristics
• Minimal library space

– Nothing depends on message size
– All objects can be confirmed when created

• Designed for library writers
– Not for application developers
– Low-level API

• We're happy to drop requests
• Structures are complicated
• Some functions (PtlMDUpdate()) are not obvious

• Designed to reflect underlying hardware
– NICs
– Packets and failure

• Provide the right amount of protection

What Portals Does
• Separates communication space from computation space

– Moderately dynamic
• During descriptor construction
• Any part of an application's memory can be used for

communication
– Simplifies coherence issues

• Important for PCI implementations as well
• Handles important protocol processing

– MPI long message strategy
• Force rendezvous at receiver
• Post and forget

– Supports parallel servers

What Portals Doesn't Do

• Dynamic integration of computation and
communication space
– May be needed for things like UPC
– Race conditions
– Memory consistency models

• Poor support for collectives
– Each process must actively participate in collective

operation
– Would prefer to have a “contribute and forget”

capability
– Reduce variance in time for collective operations

Networking Requirements and Red Storm

Scalable MPP Interconnect Requirements

• High Bandwidth
– Balance is the key to system scalability
– Red Storm required 1.5 GB/s per direction

• Reliability
– Uncorrected bit errors have to be extremely rare
– High bandwidth combined with a large system requires

at least 10-21 bit error rate
• High Message Rate

– at least 1 million MPI messages per second
• Connectionless

– A connection oriented model does not scale to 25,000
cores

Meeting the Requirements

• HyperTransport for bandwidth and integration
– Highest bandwidth interface available
– Lowest latency interface available
– Eliminates need for additional chipset

• Hardware support for reliability
– 16 bit link level CRC with link retries
– End-to-end CRC in DMA engines

• 500 MHz PPC 440 for message rate
– Still the fastest processor on a NIC today
– Responsible for all aspects of NIC management

• Portals for API
– Strong match to MPI semantics
– Enables independent progress and offload

RDMA is the Wrong Model for MPI at Scale

• Complexity of scalable connection management
• Lack of message matching ability leads to

– No progress without extra threads
– Receive CPU overhead on every transfer
– Severely limited ability to overlap computation with

communication
• Lack of scalable support for unexpected

messages leads to
– Extra flow control in MPI library to manage

unexpected message buffers
– Inefficient use of application memory

Portals Was Designed for MPI at Scale

• Connectionless
• Supports MPI matching semantics

– Allows for offloading MPI matching to NIC
– Very low CPU overhead for both small and large

messages
• Maximizes overlap of computation and

communication
• Provides scalable and efficient support for

buffering unexpected messages
– Does not require extra flow control in MPI

A NIC to Support Portals

SeaStar Network Interface

• Independent send/recv DMA engines between
Opteron memory and network
– No PIO capability

• Message-based
– DMA engines handle packetization
– Message is native interaction between nodes

• Attempts to minimize host overhead
– PPC drives DMA engines
– PPC can handle MPI matching

• Supports reception of multiple simultaneous
messages

SeaStar Embedded PowerPC

• Message transmission
– PPC keeps the transmit DMA engine filled

• Message demultiplexing
– MPI matching
– Native IP packets

• End-to-end reliability protocol (in Sandia
developed code)
– Transmit side: retransmit when we learn a message

has been dropped
– Receive side: send ACK or NACK

Delivering Reliability

• Error detection and correction on memory
– SECDED on scratch RAM with scrubbing
– SEC on routing lookup tables
– Parity protection on DMA tables

• CRC protection on the data
– Link protocol – 16-bit CRC with automatic retry
– DMA engines compute NIC-to-NIC 32-bit message

CRC
– Independent CRC on header and data

Integrated Router to Deliver Bandwidth

• Link to host uses HyperTransport
– 2 GB/s per direction
– 3.6 GB/s aggregate bidirectional because DMA

requests consume some bandwidth
• Six high-speed network links per ASIC

– Enable 3D torus to improve bisection bandwidth
• Requires additional virtual channels and buffering
• Requires support for longer cables

– Twelve 3.2 Gb/s SERDES in each dimension
• 3.84 GB/s of raw bandwidth
• Over 2.5 GB/s of sustainable bandwidth

• 500 MHz router operation to sustain full speed
crossbar

Red Storm is a Highly Balanced System

0.50004.89.6Cray Red Storm’07

0.0400122.4Thunder
0.02800.517.6Mare Nostrum
0.192012.364NEC Earth Simulator

1.20004.84Cray Red Storm’04
0.1300214.4Dell Thunderbird
0.27006.424SGI Columbia
0.1700848IBM Purple

0.06250.355.6IBM BG/L

RatioPeak BW
(GB/s)

Peak
Node

(GFLOPS)
Machine

Portals 3.3 for SeaStar

• Based on Sandia reference implementation
– Network Abstraction Layer (NAL) for portability

• Needed single version of SeaStar firmware to support
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray developed bridge layer to allow multiple simultaneous
NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications

Multiple SeaStar NALs

• Portals processing in kernel-space
– Interrupt-driven

• Kernel inspects every message header
• Programs DMA engines to deliver data

– Cray supported mode
– “Generic” mode

• Portals processing on SeaStar
– No interrupts

• SeaStar handles all message processing
– “Accelerated” mode
– Takes advantage of Catamount OS memory structure
– Sandia-developed mode
– Available in future Cray software release

PMB PingPong Latency

PMB PingPong Bandwidth

PMB Sendrecv Bandwidth

OSU Streaming Bandwidth

SS1 - CPU Availability – Send

SS1 - CPU Availability – Receive

Default rendezvous
mode for long MPI
messages significantly
decreases availibility

MPICH_PTLS_EAGER_LONG

SS2 - HPCC Baseline RandomAccess

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2500 5000

Number of Processes

G
UP

/s Generic
Accelerated

Accelerated mode
increases small
message throughput for
dual-core nodes

Short-Term Portals Activities

• “Accelerated” Portals evaluation
• Portals collective library

– Collective operations built on top of Portals
• Non-blocking collective functions

– Collective operations integrated into Portals
– SeaStar can support offloading collective operations
– Barrier proof-of-concept is done and working

• Portals 4.0
– Laundry list of issues with Portals 3.3 is too big
– Unnecessary symmetry (PTL_EVENT_SEND_START)
– Unneeded operations (arbitrary list insertion)
– Missing functionality

Next-Generation Network Requirements

• Performance
– 20 GB/s per direction
– 500 ns one-way nearest neighbor MPI latency
– 20 ns per hop of a 3D mesh
– 15 million MPI messages per second

• Reliability
– 10-23 bit error rate
– Link-level flow control is a must

• Functional
– MPI
– Non-coherent global load/store (PGAS)
– Network-level collective communication

Sandia Networking Research Projects

• Portals and MPI in hardware
– Associative list processing units (Underwood)

• Network simulation
– Structured Simulation Toolkit (Rodrigues)
– MPI network simulator (Riesen)

• Application network resource usage (Brightwell)

Application Network Resource Usage

Research Motivation

• Intelligent/programmable network interfaces have been
shown to be beneficial for
– Protocol offload (TOE, RTS/CTS, etc.)
– Application offload (MPI matching, collectives, etc.)

• Typical network interface resources
– Slower CPU relative to host CPU(s)
– Smaller memory relative to host

• Research questions:
– What level of resources is needed?
– What is the impact of limited resources?
– Are current resource management strategies are

appropriate?

Practical Motivation

• Red Storm Seastar NIC
– 500 MHz embedded PowerPC
– 384 KB on-board scratch RAM
– Other (possibly) scary things
– Portals 3.3 programming interface

• Practical questions:
– Will important Sandia applications work at scale?
– What demands do Sandia applications place on

network resources?
– Will applications need to adapt to Red Storm? If

so, how?

Goals

• Better understanding of how real applications use
network resources

• Explore whether this type of analysis can help
– Characterize performance/scalability of

applications
– Identify potential application

performance/scalability problems
– Determine the amount of required network

resources
– Evaluate different resource management strategies

MPI Queue Abstractions

• Posted receive queue
– List of pending receives that the user has

enqueued using MPI_Irecv() or MPI_Recv()
– An incoming message traverses the posted receive

queue looking for a matching posted receive
• Unexpected message queue

– Also called the early arrival queue
– List of received messages (or partial messages) for

which there is no matching posted receive
– Posting a receive involves atomically searching the

unexpected message queue

Network Resources Needed by MPI

• Processor
– Traversing posted receive queue

• Every time a message arrives
– Traversing unexpected message queue (possibly)

• Every time a receive is posted
• Memory

– Posted receive queue entries
– Unexpected message queue entries (possibly)

Approach

• Instrumented MPICH/GM to track
– Unexpected messages (short/long)
– Expected messages (short/long)
– Posted and unexpected queue data

• Number of times searched
• Number of entries searched
• Maximum number of queue entries
• Maximum number of queue entries search

• Implemented counters as global variables
• Used MPI profiling interface to write data
• Data averaged over four runs
• Two processes per node

Long Expected Messages

Long Unexpected Messages

Short Expected Messages

Short Unexpected Messages

Posted Queue - Max Length

All Ranks No Rank 0

Posted Queue - Max Search

All Ranks No Rank 0

Unexpected Queue - Max Length

All Ranks No Rank 0

Unexpected Queue - Max Search

All Ranks No Rank 0

Average Posted Queue Search

Average Unexpected Queue Search

Point-to-point Versus Collective

• Offloading of collective operations has strong
support in the community

• Need some idea whether resources significantly
different for collective operations

• Implemented separate queues for point-to-point
and collective operations

Long Expected

Point-to-Point Collective

Long Unexpected

Point-to-Point Collective

Short Expected

Point-to-Point Collective

Short Unexpected

Point-to-Point Collective

Max Posted Queue Length

Point-to-Point Collective

Max Posted Queue Searched

Point-to-Point Collective

Max Unexpected Queue Length

Point-to-Point Collective

Max Unexpected Queue Searched

Point-to-Point Collective

Average Posted Queue Searched

Point-to-Point Collective

Average Unexpected Queue Searched

Point-to-Point Collective

Summary

• Usage of network resources varies dramatically
across applications and NAS parallel benchmark
suite

• Significant variability in parameters for a single
application
– Rank 0 seems to always be a hog

• Linear growth of queues and queue traversals for
point-to-point and collectives is potentially bad
for scaling

• May require greater amount of NIC resources or
restructuring of applications

Ongoing Work

• Gather data on Red Storm for accelerated and
generic Portals

• Design better benchmarks that test network
parameters under more realistic workloads

• Understand the performance and scalability
implications of resource management policies
and implementations

• Better tools for data gathering and analysis

Acknowledgments

• Cray
– Bob Alverson
– Portals development team

• Sandia
– Sue Kelly, Sue Goudy, Jim Laros, Kevin Pedretti, Rolf

Riesen, Keith Underwood
– On-site Cray support team

• University of New Mexico
– Barney Maccabe

• OS Research
– Trammell Hudson

