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Sandia Systems

Paragon
• Tens of users
• First periods 

processing MPP
• World record 

performance
• Routine 3D 

simulations
• SUNMOS lightweight 

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black 

partitions
• Improved 

interconnect
• High-fidelity coupled 

3-D physics
• Puma/Cougar 

lightweight kernel

Cplant
• Commodity-based 

supercomputer
• Hundreds of users
• Enhanced simulation 

capacity
• Linux-based OS 

licensed for 
commercialization

Red Storm
• 41 Tflops
• Custom interconnect
• Purpose built RAS
• Highly balanced and 

scalable
• Catamount 

lightweight kernel

nCUBE2
• Sandia’s first large 

MPP
• Achieved Gflops

performance on 
applications

1990

1993

1997

1999
2004



2007 Red Storm - Upgraded

• 12,980 2.4 GHz dual-core 
AMD Opteron CPUs
– 124.6 TF/s peak

• SeaStar 2.1 network
– 2.1 GB/s one-way 

bandwidth
• 2 GB DDR 333 Memory
• #2 on November 2006   

Top 500 list
• Catamount LWK with 

virtual node mode support



Evolution of Portals



Portals 0

• SUNMOS (Sandia/UNM OS)
– Modeled on Vertex (the OS for the nCUBE)
– Dynamic allocation for incoming messages

• Experiments
– Multiple paths
– Pre-posted receives
– Use of a co-processor

• nCUBE 2 and Intel Paragon
– Direct access to network FIFO’s
– Message co-processor (Paragon)



Portals 1.0

• Moved all message reception structures to user 
space

• Kinds of portals
– Kernel managed portals
– Single block portals

• Never implemented
• Published ☺



Portals 2.0

• Puma/Cougar lightweight kernel
• Separate matching from memory descriptors
• Variety of memory descriptors

– Kernel managed (dynamic)
– Single block
– Independent block
– Combined block

• Intel TeraFLOPS (ASCI Red)
– Direct access to message FIFO’s
– Message co-processor



Issues with Portals 2.0

• No API
– Data structures in user space
– Protection boundaries have to be crossed to 

access data structures
– Data structures have to be copied, manipulated, 

and copied back
– Requires interrupts

• Address validation/translation on the fly
– Incoming messages trigger address validation
– Doesn’t fit the Linux model of validating addresses 

on a system call for the currently running process



Portals 3.x

• Operational API
• Unified memory descriptors
• Commodity processors and networks

– Alphas, IA-32, IA-64, etc.
– Linux OS with modules
– Myrinet, Quadrics, etc.
– DMA access to memory

• Fundamental change
– NIC doesn’t have logical address maps
– NIC access to memory needs to be carefully managed



Portals 3.3 Features

• Best effort, in-order delivery
• One-sided operations

– Put, Get, Atomic swap
• Supports zero-copy
• Supports OS-bypass
• Supports application offload

– No polling or threads to move data
– No host CPU overhead

• Well-defined transport failure semantics
• Unexpected operations are discarded
• Receive-side access control
• Runtime-system independent



What Makes Portals Different?

• Connectionless RDMA with matching
• Provides elementary building blocks for 

supporting higher-level protocols well
– MPI, RPC, Lustre, etc.

• Allows structures to be placed in user-space, 
kernel-space, or NIC-space

• Receiver-managed offset allows for efficient and 
scalable buffering of MPI “unexpected” messages 

• Supports multiple protocols within a process
– Needed for compute nodes where everything is a 

message



Portals Characteristics
• Minimal library space

– Nothing depends on message size
– All objects can be confirmed when created

• Designed for library writers
– Not for application developers
– Low-level API

• We're happy to drop requests
• Structures are complicated
• Some functions (PtlMDUpdate()) are not obvious

• Designed to reflect underlying hardware
– NICs
– Packets and failure

• Provide the right amount of protection



What Portals Does
• Separates communication space from computation space

– Moderately dynamic
• During descriptor construction
• Any part of an application's memory can be used for 

communication
– Simplifies coherence issues

• Important for PCI implementations as well
• Handles important protocol processing

– MPI long message strategy
• Force rendezvous at receiver
• Post and forget

– Supports parallel servers



What Portals Doesn't Do

• Dynamic integration of computation and 
communication space
– May be needed for things like UPC
– Race conditions
– Memory consistency models

• Poor support for collectives
– Each process must actively participate in collective 

operation
– Would prefer to have a “contribute and forget”

capability
– Reduce variance in time for collective operations



Networking Requirements and Red Storm



Scalable MPP Interconnect Requirements

• High Bandwidth
– Balance is the key to system scalability
– Red Storm required 1.5 GB/s per direction

• Reliability
– Uncorrected bit errors have to be extremely rare
– High bandwidth combined with a large system requires 

at least 10-21 bit error rate
• High Message Rate

– at least 1 million MPI messages per second
• Connectionless

– A connection oriented model does not scale to 25,000 
cores



Meeting the Requirements

• HyperTransport for bandwidth and integration
– Highest bandwidth interface available
– Lowest latency interface available
– Eliminates need for additional chipset

• Hardware support for reliability
– 16 bit link level CRC with link retries
– End-to-end CRC in DMA engines

• 500 MHz PPC 440 for message rate
– Still the fastest processor on a NIC today
– Responsible for all aspects of NIC management

• Portals for API
– Strong match to MPI semantics
– Enables independent progress and offload



RDMA is the Wrong Model for MPI at Scale

• Complexity of scalable connection management
• Lack of message matching ability leads to

– No progress without extra threads
– Receive CPU overhead on every transfer
– Severely limited ability to overlap computation with 

communication
• Lack of scalable support for unexpected 

messages leads to
– Extra flow control in MPI library to manage 

unexpected message buffers
– Inefficient use of application memory



Portals Was Designed for MPI at Scale

• Connectionless
• Supports MPI matching semantics

– Allows for offloading MPI matching to NIC
– Very low CPU overhead for both small and large 

messages
• Maximizes overlap of computation and 

communication
• Provides scalable and efficient support for 

buffering unexpected messages
– Does not require extra flow control in MPI



A NIC to Support Portals



SeaStar Network Interface

• Independent send/recv DMA engines between 
Opteron memory and network
– No PIO capability

• Message-based
– DMA engines handle packetization
– Message is native interaction between nodes

• Attempts to minimize host overhead
– PPC drives DMA engines
– PPC can handle MPI matching

• Supports reception of multiple simultaneous 
messages



SeaStar Embedded PowerPC

• Message transmission
– PPC keeps the transmit DMA engine filled

• Message demultiplexing
– MPI matching
– Native IP packets

• End-to-end reliability protocol  (in Sandia 
developed code)
– Transmit side: retransmit when we learn a message 

has been dropped
– Receive side: send ACK or NACK 



Delivering Reliability

• Error detection and correction on memory
– SECDED on scratch RAM with scrubbing
– SEC on routing lookup tables
– Parity protection on DMA tables

• CRC protection on the data
– Link protocol – 16-bit CRC with automatic retry
– DMA engines compute NIC-to-NIC 32-bit message 

CRC
– Independent CRC on header and data



Integrated Router to Deliver Bandwidth

• Link to host uses HyperTransport
– 2 GB/s per direction
– 3.6 GB/s aggregate bidirectional because DMA 

requests consume some bandwidth
• Six high-speed network links per ASIC

– Enable 3D torus to improve bisection bandwidth
• Requires additional virtual channels and buffering
• Requires support for longer cables

– Twelve 3.2 Gb/s SERDES in each dimension
• 3.84 GB/s of raw bandwidth
• Over 2.5 GB/s of sustainable bandwidth

• 500 MHz router operation to sustain full speed 
crossbar



Red Storm is a Highly Balanced System

0.50004.89.6Cray Red Storm’07

0.0400122.4Thunder
0.02800.517.6Mare Nostrum
0.192012.364NEC Earth Simulator

1.20004.84Cray Red Storm’04
0.1300214.4Dell Thunderbird
0.27006.424SGI Columbia
0.1700848IBM Purple

0.06250.355.6IBM BG/L

RatioPeak BW 
(GB/s)

Peak 
Node 

(GFLOPS)
Machine



Portals 3.3 for SeaStar

• Based on Sandia reference implementation
– Network Abstraction Layer (NAL) for portability

• Needed single version of SeaStar firmware to support
– User-level and kernel-level API
– NIC-space and kernel-space library

• Cray developed bridge layer to allow multiple simultaneous 
NALs
– qkbridge for Catamount applications
– ukbridge for Linux user-level applications
– kbridge for Linux kernel-level applications



Multiple SeaStar NALs

• Portals processing in kernel-space
– Interrupt-driven

• Kernel inspects every message header
• Programs DMA engines to deliver data

– Cray supported mode
– “Generic” mode

• Portals processing on SeaStar
– No interrupts

• SeaStar handles all message processing
– “Accelerated” mode
– Takes advantage of Catamount OS memory structure
– Sandia-developed mode
– Available in future Cray software release



PMB PingPong Latency



PMB PingPong Bandwidth



PMB Sendrecv Bandwidth



OSU Streaming Bandwidth



SS1 - CPU Availability – Send



SS1 - CPU Availability – Receive

Default rendezvous 
mode for long  MPI 
messages significantly 
decreases availibility

MPICH_PTLS_EAGER_LONG



SS2 - HPCC Baseline RandomAccess
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Short-Term Portals Activities

• “Accelerated” Portals evaluation
• Portals collective library

– Collective operations built on top of Portals
• Non-blocking collective functions

– Collective operations integrated into Portals
– SeaStar can support offloading collective operations
– Barrier proof-of-concept is done and working

• Portals 4.0
– Laundry list of issues with Portals 3.3 is too big
– Unnecessary symmetry (PTL_EVENT_SEND_START)
– Unneeded operations (arbitrary list insertion)
– Missing functionality



Next-Generation Network Requirements

• Performance
– 20 GB/s per direction
– 500 ns one-way nearest neighbor MPI latency
– 20 ns per hop of a 3D mesh
– 15 million MPI messages per second

• Reliability
– 10-23 bit error rate
– Link-level flow control is a must

• Functional
– MPI
– Non-coherent global load/store (PGAS)
– Network-level collective communication



Sandia Networking Research Projects

• Portals and MPI in hardware
– Associative list processing units (Underwood)

• Network simulation
– Structured Simulation Toolkit (Rodrigues)
– MPI network simulator (Riesen)

• Application network resource usage (Brightwell)



Application Network Resource Usage



Research Motivation

• Intelligent/programmable network interfaces have been 
shown to be beneficial for
– Protocol offload (TOE, RTS/CTS, etc.)
– Application offload (MPI matching, collectives, etc.)

• Typical network interface resources
– Slower CPU relative to host CPU(s)
– Smaller memory relative to host

• Research questions:
– What level of resources is needed?
– What is the impact of limited resources?
– Are current resource management strategies are 

appropriate?



Practical Motivation

• Red Storm Seastar NIC
– 500 MHz embedded PowerPC
– 384 KB on-board scratch RAM
– Other (possibly) scary things
– Portals 3.3 programming interface

• Practical questions:
– Will important Sandia applications work at scale?
– What demands do Sandia applications place on 

network resources?
– Will applications need to adapt to Red Storm?  If 

so, how?



Goals

• Better understanding of how real applications use 
network resources

• Explore whether this type of analysis can help
– Characterize performance/scalability of 

applications 
– Identify potential application 

performance/scalability problems
– Determine the amount of required network 

resources
– Evaluate different resource management strategies



MPI Queue Abstractions

• Posted receive queue
– List of pending receives that the user has 

enqueued using MPI_Irecv() or MPI_Recv()
– An incoming message traverses the posted receive 

queue looking for a matching posted receive
• Unexpected message queue

– Also called the early arrival queue
– List of received messages (or partial messages) for 

which there is no matching posted receive
– Posting a receive involves atomically searching the 

unexpected message queue



Network Resources Needed by MPI

• Processor
– Traversing posted receive queue

• Every time a message arrives
– Traversing unexpected message queue (possibly)

• Every time a receive is posted
• Memory

– Posted receive queue entries
– Unexpected message queue entries (possibly)



Approach

• Instrumented MPICH/GM to track
– Unexpected messages (short/long)
– Expected messages (short/long)
– Posted  and unexpected queue data

• Number of times searched
• Number of entries searched
• Maximum number of queue entries
• Maximum number of queue entries search

• Implemented counters as global variables
• Used MPI profiling interface to write data
• Data averaged over four runs
• Two processes per node



Long Expected Messages



Long Unexpected Messages



Short Expected Messages



Short Unexpected Messages



Posted Queue - Max Length

All Ranks No Rank 0



Posted Queue - Max Search

All Ranks No Rank 0



Unexpected Queue - Max Length

All Ranks No Rank 0



Unexpected Queue - Max Search

All Ranks No Rank 0



Average Posted Queue Search



Average Unexpected Queue Search



Point-to-point Versus Collective

• Offloading of collective operations has strong 
support in the community

• Need some idea whether resources significantly 
different for collective operations

• Implemented separate queues for point-to-point 
and collective operations



Long Expected

Point-to-Point Collective



Long Unexpected

Point-to-Point Collective



Short Expected

Point-to-Point Collective



Short Unexpected

Point-to-Point Collective



Max Posted Queue Length

Point-to-Point Collective



Max Posted Queue Searched

Point-to-Point Collective



Max Unexpected Queue Length

Point-to-Point Collective



Max Unexpected Queue Searched

Point-to-Point Collective



Average Posted Queue Searched

Point-to-Point Collective



Average Unexpected Queue Searched

Point-to-Point Collective



Summary

• Usage of network resources varies dramatically 
across applications and NAS parallel benchmark 
suite

• Significant variability in parameters for a single 
application
– Rank 0 seems to always be a hog

• Linear growth of queues and queue traversals for 
point-to-point and collectives is potentially bad 
for scaling

• May require greater amount of NIC resources or 
restructuring of applications



Ongoing Work

• Gather data on Red Storm for accelerated and 
generic Portals

• Design better benchmarks that test network 
parameters under more realistic workloads

• Understand the performance and scalability 
implications of resource management policies 
and implementations

• Better tools for data gathering and analysis
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