
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Catamount Software Architecture with Dual
Core Extensions

May 9, 2006
Ron Brightwell Sue Kelly John VanDyke

Sandia National Laboratories
rbbrigh@sandia.gov

mailto:smkelly@sandia.gov

SUNMOS, PUMA, Cougar,
Catamount Design Goals

• Targeted at massively parallel environments comprised of
thousands of processors with distributed memory and a
tightly coupled network.

• Provide necessary support for scalable, performance-
oriented scientific applications

• Offer a suitable development environment for parallel
applications and libraries.

• Emphasize efficiency over functionality.
• Maximize the amount of resources (e.g. CPU, memory, and

network bandwidth) allocated to the application.
• Seek to minimize time to completion for the application.

Catamount is designed for an MPP
environment with functional partitions

High
Speed

External
Network

High
Speed

External
Network

Service
Processors

(Linux)

Compute
Processors
(Catamount)

I/O processors (Linux)

Network I/O
Processors (Linux)

Catamount General Structure

Quintessential Kernel

Application Process
Process
Control
Thread

libc lib
portals

libc lib
catamount

lib
portalslib

sysio

Catamount Physical Memory layout

QK
text

Network
buffer

(qk heap)

Portals
memory

PCT
text

PCT
data

User
program
text &
data

User
heap

S
t
a
c
k

QK
data

S
t
a
c
k

S
t
a
c
k

P
e P
r C
s T
i
s h
t e
e a
n p
t

PCT heap

Up to 4
instances

Note: not to scale

Quintessential Kernel (QK)

• Policy enforcer
• Initializes hardware
• Handles interrupts and exceptions
• Maintains hardware virtual addressing
• No virtual memory support
• Static size
• Non-blocking
• Few, well-defined entry points

Process Control Thread (PCT)

• Runs in user space
• More privileged than user applications
• Policy maker

– Process loading (with yod)
– Process scheduling
– Virtual address space management
– Fault handling
– Signals

• Functions
– Controls the logarithmic launch of a parallel job
– Proxies standard I/O, plus other I/O, if necessary
– Manages the parallel job throughout its run

• Yod is an evolution of the xnc (eXecute Network
Computer) program used to launch jobs on the
nCube: (x+1)(n+1)(c+1) = yod

• yod [-Account project task] [-D option] [-help] [{ -
size | -sz | -np }{ n | all }] [-stack size] [-tlimit secs]
[-list processor-list] [-strace] [-target { catamount |
linux }] [-share] [-heap size] [-Priority priority] [-
Version] progname [progargs] | -F loadfile

YOD runs in the service partition

Dual Core Support for Catamount

• Motivation for Virtual Node (VN) on Catamount
– Virtual Node Mode was a very successful late

additional to Cougar on ASCI Red
– Doubles the number of available nodes
– Significantly increases compute power for many

applications
• AMD has a dual-core Opteron that simply plugs

into an XT3 node

Catamount Dual Core Design

• Follow Cougar and ASCI Red
• Application perspective

– Twice as many nodes
– Half the memory

• System perspective
– One copy of QK
– One PCT
– Network access done by CPU-0 QK only
– Network requests from CPU-1 are proxied to CPU-0

• Network perspective
– One Node Identifier
– Two process Indices

Dual Core CPU Responsibility Assignments

QK
PCT

APP-0

QK
subset

APP-1

Dual Core Opteron

CPU-0 CPU-1

Seastar
Network
Interface

Chip

Catamount’s libc is pruned version of glibc
• No threads support
• No off-node communication other than via Portals, such as pipes,

sockets, rpc's or Internet Protocols
• No dynamic process creation; for example: no exec(), fork(), popen(),

or system()
• No dynamic loading of executable code
• Limited signals support
• No /proc or ptrace
• No mmap. A skeleton function is supplied, but returns –1.
• No profil()
• Limited ioctl
• No getpwd family of calls
• No functions requirement any form of db (e.g. ndb). For example, there

is no support for the uid, gid family of queries that based on the ndb.
• No terminal control
• No functions that require UNIX-style daemons
• Custom catamount malloc is used by default

Libsysio routes I/O calls to the
appropriate file system handler

Catamount
Application

libsysio
lib

pvfs
lib

lustre
lib

catamount

iod

iod

.
,

,

mds

ost

ost

.
,

,

mds

Compute

Service

PVFS File System
Lustre File System

yod

stdio,
Syscall
offload

to
pvfs
to
lustre

UFS
NFS
DFS

Libcatamount

• RPC mechanism to communicate with yod for
stdio and system call offload

• Custom malloc tuned for large allocations
• Pre-main initialization
• Interface routines for PCT and QK services

Libportals

• Message passing API
• Separate software package
• Required by Catamount
• http://www.sourceforge.net/packages/sandiaportals

Multi-Partition Job Support
is new with Catamount

• Support for parallel applications that span
Catamount and Linux
– Yod using load file option (-F)
– Requires a PCT to run on Linux
– Requires different executables
– Creates one MPI_COMM_WORLD

Future Plans

• Studying whether catamount is viable for four-
core support

• Utilize a portals protocol offload engine in the
Network Interface Chip (NIC)

	Catamount Software Architecture with Dual Core Extensions
	SUNMOS, PUMA, Cougar,�Catamount Design Goals
	Catamount is designed for an MPP environment with functional partitions
	Catamount General Structure
	Catamount Physical Memory layout
	Quintessential Kernel (QK)
	Process Control Thread (PCT)
	YOD runs in the service partition
	Dual Core Support for Catamount
	Catamount Dual Core Design
	Dual Core CPU Responsibility Assignments
	Catamount’s libc is pruned version of glibc
	Libsysio routes I/O calls to the �appropriate file system handler
	Libcatamount
	Libportals
	Multi-Partition Job Support �is new with Catamount
	Future Plans

