
High Performance Linux:
Dream or Reality?

Ron Brightwell
Sandia National Labs

Scalable Computing Systems Department
rbbrigh@sandia.gov



What is High Performance?

• A big Linpack number?
• The lowest ping-pong latency?
• The highest ping-pong bandwidth?
• How many jobs get through the system?
• How quickly *my* job gets through the system?

• Performance is application-specific



What is Linux?

• What you get from kernel.org?
• What you get from SUSE, RedHat, etc.?
• What you get from (pick a Linux vendor) and

– Apply patches for (pick your HPC network)
– Apply patches for (pick your disk vendor)
– Apply patches for (pick your parallel filesystem)

• Is Bproc still Linux?

• Or is it the just the development environment?
• Or the application binary interface?



Linux Hardware Support

• Linux is great for my desktop/laptop
• If you wait long enough, you’re hardware will 

eventually be supported
• Not a good model for HPC
• But how much hardware support is needed?



Deterministic Performance

• Avoid work unrelated to the computation
– Interrupts to keep time
– Daemons: init, inetd, ipciod
– Kernel threads: kswapd, kflushd, kupdate, kpiod
– Inappropriate resource management strategies
– “Rogue OS” effects



Linux Memory Management

• How much usable memory is there?
• Still issues with page pinning

– Linux wants to manage all of your pages for you
– RDMA is a great model for high-performance 

networking
• As long as a process’ address map stays consistent

– Linux memory management strategies are based 
on optimizing system performance by re-mapping 
memory pages frequently

– Linux kernel developers don’t like losing control of 
resources



Linux Social Issues

• Kernel development moves fast
– Significant resources needed to keep up

• Distributions and development environments also 
change frequently
– Tool vendors have trouble keeping up

• Server vs. multimedia desktop
– Not HPC



Lightweight Kernel Influences

• Lightweight OS
– Small collection of apps

• Single programming 
model

– Single architecture
– Single usage model
– Small set of shared 

services
– No history

• Puma/Cougar/Catamount
– MPI
– Distributed memory
– Space-shared
– Parallel file system
– Batch scheduler



Other Issues

• General-purpose operating systems
– Generality comes at the cost of performance for all 

applications
• POSIX

– Assume a generic architectural model
• Difficult to expose novel features

• Lightweight operating systems
– Limited functionality
– Difficult to add new features
– Designed to be used in the context of a specific usage 

model
• OS is an impediment to new architectures and 

programming models



Current and Future System Demands

• Architecture
– Modern ultrascale machines have widely varying 

system-level and node-level architectures
– Systems will have further hardware advances (e.g., multi-

core chips, PIMs)
• Programming model

– MPI, Threads, OpenMP, PGAS, …
• External services

– Parallel file systems, dynamic libraries, 
checkpoint/restart, …

• Usage model
– Single, large, long-running simulation
– Parameter studies with thousands of single-processor, 

short-running jobs



Configurable OS Research Project

• Realize a new generation of scalable, efficient, reliable, easy 
to use operating systems for a broad range of future 
ultrascale high-end computing systems based on both 
conventional and advanced hardware architectures and in 
support of diverse, current and emerging parallel 
programming models.

• Devise and implement a prototype system that provides a 
framework for automatically configuring and building 
lightweight operating and runtime system based on the 
requirements presented by an application, system usage 
model, system architecture, and the combined needs for 
shared services.



Approach

• Define and build a collection of micro-services
– Small components with well-defined interfaces
– Implement an indivisible portion of service 

semantics
– Fundamental elements of composition and re-use

• Combine micro-services specifically for an 
application and a target platform

• Develop tools to facilitate the synthesis of 
required micro-services



Building Custom Operating/Runtime Systems


