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SUMMARY

This study investigates algebraic multilevel domain decomposition preconditioners of the Schwarz type for solving
linear systems associated with Newton-Krylov methods. The key component of the preconditioner is a coarse
approximation based on algebraic multigrid ideas to approximate the global behavior of the linear system. The
algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the non-zero block
structure of the Jacobian matrix. The scalability of the preconditioner is presented as well as comparisons with
a two-level Schwarz preconditioner using a geometric coarse grid operator. These comparisons are obtained on
large-scale distributed-memory parallel machines for systems arising from incompressible flow and transport using
a stabilized finite element formulation. The results demonstrate the influence of the smoothers and coarse level
solvers for a set of 3D example problems. For preconditioners with more than one level, careful attention needs
to be given to the balance of robustness and convergence rate for the smoothers and the cost of applying these
methods. For properly chosen parameters, the two- and three-level preconditioners are demonstrated to be scalable
to 1024 processors. Copyright © 192004 John Wiley & Sons, Ltd.

KEY WORDS: multilevel preconditioners, multigrid, finite element methods, Newton-Krylov, Schwarz domain
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1. INTRODUCTION

Computational fluid dynamic simulations often require the solution of strongly-coupled interacting
physics on high resolution unstructured meshes. The discretization and linearization of the equations
produce large linear systems of equations, for which robust and efficient parallel iterative solution
methods are necessary. Preconditioned Krylov iterative methods are among the most robust and fastest
iterative solvers over a wide variety of CFD applications [1]. The key factor influencing the robustness
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and efficiency of these solution methods is the choice of preconditioners. Multilevel Schwarz domain
decomposition based preconditioners [2] will be considered in this study. The additive Schwarz
approach partitions the original domain into overlapping subdomains and approximately solves the
discrete problem corresponding to the individual subdomains in parallel. A known disadvantage is
that this method (referred to as a one-level Schwarz preconditioner) does not scale as the number of
subdomains increases. That is, the number of iterations rises as the number of subdomains increases.
To remedy this situation, multigrid ideas can be employed. The general multigrid philosophy is to use
a sequence of meshes to damp errors at different frequencies thereby accelerating the convergence
to the solution on the finest mesh. In a typical multigrid method, many coarse meshes are used in
conjunction with fairly lightweight smoothers. The coarsening rate to define the next mesh is normally
fairly modest (e.g. the next coarser mesh contains one tenth as many grid points as the previous finer
mesh). In a domain decomposition setting, only one coarse mesh is usually employed and this mesh
is significantly coarser than the finest mesh. The one-level Schwarz preconditioner can be viewed as a
heavyweight somewhat expensive smoother from a multigrid perspective. This expensive smoother is
natural when the coarse grid is much coarser than the fine mesh.

Multigrid methods come in two varieties. Geometric multigrid methods use grid coordinate type
information (and perhaps finite element information) to define grid transfers. While these methods can
work well, they typically require users to define a sequence of meshes along with operators to transfer
solutions between them. The other variety of multigrid fall into the category of algebraic methods. In
this case, the coarse meshes as well as the grid transfers are defined using only information from the
fine grid linear system. While the generation of these operators is reasonably understood for Poisson-
like operators [3], optimal grid transfers for highly convective flows and chemical reactions is still not
well-understood in the context of algebraic methods.

In this paper we present a scalable multilevel preconditioner based on aggregation [4, 5]. This
work is an extension of previous work [6] where a two-level preconditioner with geometric coarse
operator was compared with the one-level counterpart. Here, we extend this analysis by comparing
several multilevel domain decomposition preconditioners for accelerating the convergence of a parallel
Newton-Krylov solution method. Aggregation has been used to define two-level domain decomposition
preconditioners by several authors [7, 8, 9]. One important aspect is to evaluate whether a two-
level preconditioner with an algebraic coarse operator could perform (in terms of iterations and
parallel scalability) as well as a two-level preconditioner with a geometric coarse operator. In [10],
some results are reported that compare two-level preconditioners with geometric coarse grids with
smoothed and nonsmoothed aggregation techniques for a Laplacian problem, showing that both
methods share comparable behavior for symmetric coercive problems. Here, we numerically compare
the two approaches for nonsymmetric problems, namely the incompressible Navier-Stokes equations
with heat transfer and convection-diffusion equation with a given velocity field. We show that, even for
problems defined on simple geometries, the algebraic preconditioner is not worse than the geometric
one. To the best of our knowledge, these results are the first presented in the literature that compare
two-level preconditioners using algebraic coarse operators with those using geometric coarse operators
on massively parallel computers. We also present a scalable three-level algebraic method, and we
show that we can drastically reduce the CPU-time to solve fluid flow problems by using three-level
aggregation-based preconditioners.
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2. Governing Equations

The governing PDEs describing fluid flow, thermal energy transfer, and mass transfer for variable
density low-speed flow are as follows.
Total Mass Conservation:

Op
LLiv. =0
5 TV (P0)
Momentum Transport:
ou
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Energy Transport:
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Species Transport:
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Constitutive equation for Newtonian stress tensor:
2
T=—-PI— gp(v -u)I + p[Vu + Vu?]

In these equations the unknowns are the velocity vector u, the temperature 7', the hydrodynamic
pressure P, and the N, species mass fractions Y. The transport properties, p, u, Cp, A, Dy, are
respectively, the density, dynamic viscosity, specific heat capacity, heat conductivity, and diffusion
coefficient. These equations are approximated by a stabilized finite element formulation [11, 12, 13]
that allows for equal order interpolation of pressure and velocity (without spurious pressure solutions)
and for stabilization of highly convected flows.

The computer code used in this study is MPSalsa [13], a parallel finite element method on
unstructured meshes that solves incompressible reacting flow problems.

3. Preconditioned Newton-Krylov Method

The discretized equations are solved using a Newton-Krylov method [14, 15], which is an
implementation of Newton’s method in which a Krylov accelerator is used to solve the linear systems
that are generated at each step of Newton’s method. A Newton-Krylov method is usually implemented
as an inexact Newton method [16], meaning that the linear systems are solved only approximatively.

For the considered class of problems, convergence cannot be achieved without preconditioning [17].
One widely used preconditioner, well-suited for parallel computations, is the one-level Schwarz
preconditioner [2, 18]. The procedure is as follows: first, we decompose the computational domain
Q into M overlapping subdomains §2;, and we assign each subdomain to a different processor.
Then, the preconditioner is applied by solving, usually with a direct method, a Dirichlet problem on
each subdomain 2; (with homogeneous boundary conditions on 92;). Using a minimal overlap, the
resulting preconditioner can be seen as a block Jacobi preconditioner, where each block contains all the
nodes assigned to a given subdomain. Better performance can be obtained by increasing the overlap
between the subdomains.

Copyright © 192004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 192004; :1-10
Prepared using nmeauth.cls



4 P. LIN, M. SALA, J.N. SHADID, R. TUMINARO

Because of the large cost of direct factorization techniques, an approximate factorization technique
is employed for the solution of the local Dirichlet problems. For this work, ILUT [19] is used, typically
with a drop tolerance of zero and keeping the number of nonzeros in the ILUT factors approximately
equal to the number of nonzeros in the original discretization matrix. The Aztec library [20] is used
to implement the Krylov accelerator and the one-level Schwarz preconditioner. We note that the one-
level preconditioner is completely black-box, since Aztec automatically constructs the overlapping
submatrices. However, a drawback of this preconditioner is that as the number of subdomains increases,
the convergence rate deteriorates due to the lack of global coupling in the preconditioner [2]. To remedy
this situation, coarse operators can be added to approximate the global coupling in the linear system
[21, 6].

4. Multilevel Preconditioners

Our implementation of the presented multilevel preconditioners is based on the ML multilevel
preconditioning package [21, 22]. For the two-level Schwarz preconditioner with a geometric coarse
operator, ML expects the user to supply both the fine and coarse meshes as well as finite element basis
functions on the coarse mesh. Using this information, ML constructs the interpolation or prolongation
operator that corresponds to the coarse mesh basis functions. ML handles all of the bookkeeping (such
as determining the coarse mesh element that contains each fine grid point) and uses callback functions
to the application providing a data-structure neutral interface. The restriction operator is calculated as
the transpose of the projection operator. The coarse matrix A is defined by the Galerkin projection
A. =RA;P, where R = PT and A is the fine mesh matrix.

The use of a coarse mesh to accelerate the convergence of a one-level Schwarz preconditioner is
similar to multigrid methods that use a sequence of coarser meshes to accelerate the convergence of the
solution on a fine mesh. Typically, more than two levels are employed in a multigrid approach. One of
the disadvantages of a geometric multigrid approach is the need to generate a sequence of geometrical
grids. Alternatively, one can use algebraic multilevel preconditioners, which do not require a sequence
of coarser grids. First, a graph is built from the linear system. This graph contains an edge between
two vertices 4 and j, if A; ; # 0. For systems of PDEs, it is often natural to define this graph in a block
fashion. That is, one vertex is associated with each block of unknowns (e.g. velocities and pressure at
a particular grid point) and an edge between two vertices ¢ and j is added if there are any nonzeros
in the block matrix defined by the it* block row and jt* block column. The basic characteristic of all
algebraic multigrid methods is to coarsen the graph representation of the matrix. There are many ways
to define coarse meshes and grid transfers. Perhaps the most well-known is the classical AMG approach
of Ruge-Stiiben [23] where a subset of fine mesh vertices are used to define the next coarser mesh. In
this paper, an alternative scheme is employed where fine mesh vertices are grouped in aggregates.
Each aggregate effectively represents a coarse grid vertex. Once the coarse mesh is determined, a grid
transfer must be defined. The simplest possible grid transfer is to use piecewise constant interpolation.
In this case, the grid transfer, P, contains only zeros and ones. In the scalar PDE case, P(i, j) is equal
to one only if the i*? fine grid point has been assigned to the j** aggregate. Within a PDE system, the
grid transfer is a block system where a small identity matrix is inserted within the (i, j)** block if the
i* fine grid point has been assigned to the j** aggregate.

There are many ways to define aggregates. In a standard algebraic multigrid method the most
common way to create an aggregate is via some kind of greedy graph algorithm where an initial node
is chosen along with all of its nearest neighbors. The net affect of this type of procedure is to produce
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PERFORMANCE OF FULLY-COUPLED MULTILEVEL DOMAIN DECOMPOSITION PRECONDITIONERS 5

aggregates which are “sphere-like” with an approximate diameter of three nodes. Unfortunately, this
type of procedure leads to many aggregates and must be repeated several times in order to obtain
a coarse matrix that is small enough to be efficiently solved by a direct solver. Since our goal is to
mirror a domain decomposition method where only a couple of coarse meshes are used, we consider
a more aggressive coarsening scheme that produces larger aggregates and is better suited for parallel
computations. Specifically, the graph partitioning codes METIS and ParMETIS [24] are used to define
the aggregates. The algorithms within these packages split the fine matrix so that each partition has no
more nodes than a user supplied parameter. All the nodes in each partition are then combined to form a
single aggregate. METIS is a serial code and so can only be used to partition the graph corresponding
to the local matrix entries within a processor. This implies that no aggregate can span more than one
processor. ParMETIS is a parallel code and so it can be applied to the entire distributed global graph to
produce aggregates that span more than one processor.

The procedure we have outlined is sometimes referred to as non-smoothed aggregation. All the
results presented in this paper will refer to nonsmoothed aggregation. In fact, even if for elliptic
problems the so-called smoothed aggregation performs significantly better than nonsmoothed [5, 25],
the correct smoothing procedure for nonsymmetric operators is still an open problem. Often, non-
smoothed aggregation avoids stability problems that arise when smoothed aggregation is used. Further
analysis on this subject is reported in [26].

For all preconditioners presented in this paper, the ratio between the size of the matrices for two
consecutive levels is rather high, e.g. of order 500 for two-level methods and of order 100 for three-
level methods. Because of this, often more effective (and heavyweight) smoothers are required, as
lightweight smoothers, typically used in multigrid applications, may be ineffective.

The aggregation scheme and construction of restriction and prolongation operators is implemented
within the ML library [22]. Support for the coarse matrix direct solvers KLU [27] and distributed
version of SuperLU [28] are provided through the Amesos interface [27]. ML, Amesos, and Aztec are
available through the Trilinos framework [29].

5. Results and Discussion

Algorithmic scaling studies comparing the one-level additive Schwarz preconditioner and two-level
Schwarz preconditioner with geometric coarse operator were presented in a previous work [6].
These previous results demonstrated that the two-level Schwarz preconditioner with geometric coarse
operator provided a one to two order of magnitude reduction in solution time in two dimensions and
a factor of 5-8 reduction in solution time in three dimensions for a standard CFD benchmark problem
of thermal convection in a square or cube geometry. The present work considers algorithmic scaling
studies for the two- and three-level Schwarz preconditioner using an algebraic coarse grid applied to
the following problems:

e 3D thermal convection problem
e Navier-Stokes flow in a 3D building geometry
e convection-diffusion equation.

On a subset of these problems we also compare these algebraic multilevel preconditioners with the
one-level DD and the two-level geometric preconditioner.

For all the studies, two different example problems will be used. For the first example problem,
previously used in [6], a thermal convection (or buoyancy-driven) flow in a differentially heated 1x1x1
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cube in the presence of gravity is modeled. The momentum transport, energy transport and total
mass conservation equations are solved. No-slip boundary conditions are applied on all walls. The
temperature on the heated wall and other parameters are chosen so that the Rayleigh number is 1000.
Figure 1a shows isosurfaces for x-component of velocity for a typical steady-state solution. This simple
geometry facilitates the construction of regular-shaped subdomains as well as the coarse grid for the
two-level preconditioner with geometric coarse operator. The second example involves the calculation
of fluid flow, without thermal effects, in a simple prototype model of a building. This test case has
been selected because the geometry and boundary conditions are representative of actual large-scale
indoor structures. The dimensions of the 3D structure are 105 m x 24 m x 11 m. Inlets are located on
the 24m sidewalls of both floors, the 105m length faces, the ceiling of the lower level, and the floor
of the upper level. Outlets are located on the ceiling of the upper floor, with the main outlet collectors
located above the atria between the two floors. Figure 1b shows a typical laminar steady-state solution
for each problem. The centerline cutting plane shows the x-component of velocity. Unless otherwise
stated, both test cases employ hexahedral meshes with bilinear finite elements.

VX
z Y -0.0050 0.0000 0.0050
e ————]
\<X 00025 0.0025
(a) (b)

Figure 1. (a) Constant x-component of velocity isosurfaces with streamlines and temperature contours on slice
plane for thermal convection problem with Ra=1000; (b) Steady-state x-component of velocity on centerline
cutting plane for model 3D building

5.1. Comparison between the two-level Schwarz preconditioner with geometric coarse operator and
algebraic coarse operator

Table I presents the results for a scalability study that compares the two-level geometric coarse
operator preconditioner with a two-level algebraic coarse operator preconditioner with nonsmoothed
aggregation for the 3D thermal convection problem. The same fine mesh was used for both cases.
The number of fine mesh nodes per aggregate was chosen in an attempt to produce coarse matrices of
comparable sizes. The mesh for each successive row in the table is produced by a uniform refinement
of the mesh in the previous row by cutting each cube into eight cubes. This roughly increases the
number of unknowns by a factor of eight. The number of processors is also increased by a factor of
eight so that the number of unknowns per processor stays roughly constant. For an algorithm with
perfect scalability, both the number of iterations per Newton step and the CPU time should stay
roughly constant. For most of the subsequent scaling studies, the sequence of meshes is produced
in this fashion. “GS2/SuperLU” in columns 5-8 indicates that the fine mesh smoother employs two

Copyright © 192004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 192004; :1-10
Prepared using nmeauth.cls



PERFORMANCE OF FULLY-COUPLED MULTILEVEL DOMAIN DECOMPOSITION PRECONDITIONERS 7

proc | fine coarse 2-level: GS2/SuperLU 2-level: GS2/GMRES-ILU
grid unknowns geometric algebraic geometric algebraic

unks | geom | alge avg | time avg | time avg | time avg | time

iter (s) iter (s) iter (s) iter (s)

4 | 24.6K 135 120 | 33[5] 78 | 30 [4] 71 | 33[5] 94 | 30 [4] 69

32 | 180K 625 480 | 44 [4] 94 | 50[4] | 109 | 441[4] | 114 | 51[4] | 147
256 | 1.37M | 3645 | 2560 | 47[5] | 219 | 58 [4] | 152 | 47[5] | 238 | 58 [4] | 196
2048 | 10.7M | 24.6K | 20.5K ran out of memory 4714] | 598 | 59 [4] | 681

Table I. Comparison of geometric and algebraic two-level preconditioners for the 3D thermal convection problem.

sweeps of local Gauss-Seidel and the coarse mesh smoother uses the distributed SuperLU package
[30]. Local Gauss-Seidel is a domain decomposition hybrid where each processor performs standard
point Gauss-Seidel on its subdomain (as opposed to applying Gauss-Seidel to the entire global domain).
Distributed SuperLU is a parallel direct solver package. “GS2/GMRES-ILU” in columns 9-12 denotes
that the fine mesh smoother is two sweeps of local Gauss-Seidel and the coarse mesh smoother employs
GMRES with an ILU preconditioner. The coarse grid GMRES is iterated to convergence upon each
invocation of the preconditioner. This variant is needed to tackle the relatively large coarse mesh in
the 2048 processor case. This coarse mesh is essentially the smallest size that is possible with our
geometric coarse mesh software. Unfortunately, the parallel machine does not have sufficient memory
for the direct solver to function. The column “avg iter” denotes the average number of iterations per
Newton step; the second number in brackets following the average number of iterations is the number
of Newton steps. The “time” column reports the CPU time for the steady-state solve. From these
results, the two-level preconditioner with an algebraic coarse operator seems competitive with the
two-level preconditioner with a geometric coarse operator. As a point of comparison, the one-level
solver using a DD ILU preconditioner took 650 iterations per Newton step and 2915 seconds for the
10.7 million unknown 2048-processor case [6]. From Table I it is clear that the preconditioner with
an algebraic coarse operator also maintains the optimal iteration count per Newton step, although
the average iterations per Newton step tended to be slightly higher than with the geometric coarse
operator. A possible explanation is that while the fine mesh has the same number of unknowns for the
both cases, the two-level preconditioner with algebraic coarse operator has a coarse level with fewer
unknowns than the preconditioner with geometric coarse operator. The number of iterations is the same
when using either SuperLU or GMRES-ILU as the coarse iterative solve is iterated to convergence.
However, the run time is noticeably longer using the coarse iterative solver. This is partially due to
the direct solver’s reuse of the matrix factorization (that need only be computed once for each Newton
step). It may be possible to improve the reuse capability within the iterative coarse solver (e.g. save
and reuse Krylov vectors from the previous coarse solve) to make the times closer to that of the direct
solver. These results were obtained on the ASCI-Red Tflop computer at Sandia National Laboratories,
each node containing 256 MB RAM and 333 MHz Pentium II Xeon processors.

5.2. Algorithmic scaling studies for three-level Schwarz preconditioner with algebraic coarse
operators for the 3D thermal convection problem

Scalability studies were performed for the 3D thermal convection cube problem for the three-level

preconditioner for both the laminar steady-state and transient cases. Unless otherwise stated, for the
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nodes proc unknowns avgits/ | time
per fine medium | coarse Newt | (sec)
aggregate step

2 | 180K 3590 15 49 [4] | 488
50,200 16 | 1.37M | 27440 135 93[4] | 835

128 | 10.7M | 214K 1070 | 111[4] | 1191
1024 | 849M | 1.69M 8470 | 109 [4] | 2050
2 | 180K 1790 15 52[5] | 615
100,100 16 | 1.37M | 13680 135 93[4] | 812
128 | 10.7M 107K 1065 | 104[4] | 1101
1024 | 849M | 845K 8445 | 109 [4] | 2117
2 | 180K 890 15 64[4] | 574
200,50 16 | 1.37M 6800 135 951[4] | 844
128 | 10.7M | 53120 1060 | 111[4] | 1149
1024 | 84.9M | 420K 8395 | 119[4] | 2428

Table II. Scalability study of three-level preconditioner (GS 1/ILU/SuperLU) for the steady 3D thermal convection
problem (aggregation: METIS; ParMETIS); Cplant machine.

three-level preconditioner, the fine and medium mesh smoothers are one sweep of Gauss-Seidel and
ILU respectively, and the coarse solver is the distributed version of SuperLU. These calculations, as
well as the remaining calculations in the paper (with the exception of the calculations in Table V),
were performed on the Sandia Cplant machine which is composed of 1024 nodes, each with 500 MHz
Dec Alpha processor and 1 GB of RAM, connected together by Myrinet. The performance of each
processor is very roughly comparable to a 1-GHz Intel Pentium III processor.

The first group of scalability studies concern the steady-state solution for the thermal convection
problem with Rayleigh number of 1000. Table II shows an algorithmic scaling study for different
numbers of nodes per aggregate. In the first column, the first and second number are the nodes per
aggregate when constructing the medium level and coarse level respectively. “Avg its/Newt step”
denotes the average number of iterations per Newton step, and the number of Newton steps is denoted
by the number in brackets. The final column is the time for the steady-state solve. Within each group
with the same number of nodes per aggregate, the smallest calculation is with a starting mesh that
is run on two processors. As in the previous scaling study, the mesh is then uniformly refined three
times, each level of uniform refinement increasing the number of hexahedra by a factor of eight, which
increases the number of unknowns by a factor of roughly eight. The number of processors is also
increased by a factor of eight so that the number of unknowns per processor stays roughly constant.
After each level of uniform refinement, the fine mesh is load-balanced using Recursive Coordinate
Bisection (RCB) through the Zoltan data management services for parallel applications package [31].
Aggregates are generated by resorting to local graph partitioning algorithms for the fine level (METIS)
and a global graph partitioning algorithm (ParMETIS). Note that for the “50,200” nodes per aggregate
case, the optimal convergence property is obtained (number of iterations per Newton step asymptotes
to a fixed value), while the number of iterations per Newton step for the “100,100” and “200,50” nodes
per aggregate case are clearly asymptoting to a fixed value. However, the CPU time shows a modest
increase.
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PERFORMANCE OF FULLY-COUPLED MULTILEVEL DOMAIN DECOMPOSITION PRECONDITIONERS 9

time | approx | proc unknowns avgits/ | time
step max fine medium | coarse Newt | (sec)
CFL step

2 | 180K 1790 15 30 | 223

0.01 1 16 | 1.37M | 13680 135 48 | 330
128 | 10.7M 107K 1065 59 | 527

2 | 180K 1790 15 44 |1 296

0.1 10 16 | 1.37M | 13680 135 76 | 490
128 | 10.7M 107K 1065 87 | 730

2 | 180K 1790 15 51| 324

1.0 100 16 | 1.37M | 13680 135 90 | 568
128 | 10.7M 107K 1065 103 | 852

Table III. Scalability study of three-level preconditioner (GS1/ILU/SuperLU) for the transient 3D thermal
convection problem. METIS (ParMETIS) aggregation used on the fine (middle) mesh with 100 nodes per
aggregate; Cplant machine.

The next group of algorithmic scaling studies concern transient flow for the 3D thermal convection
problem. Table III shows the algorithmic scaling study. In this table, “avg its/Newt step” denotes the
average number of iterations per Newton step and “time” denotes the average time per time step with
both quantities calculated by averaging the first ten time steps. 100 nodes per aggregate with METIS
and ParMETIS schemes for the first and second levels of aggregation respectively was used. Note
that for each size of time step, the average iterations per Newton step is asymptoting to a fixed value.
Although one further level of uniform refinement (which would be run on 1024 processors) would
probably be needed to demonstrate the optimal convergence property, the trend is still clear.

5.3. Algorithmic scaling studies for three-level Schwarz preconditioner with algebraic coarse
operators for Navier-Stokes flow in a 3D building geometry

As can be seen from the previous results, when the problem is scaled in size and proper number
of processors to roughly maintain the same number of unknowns per processor, the three-level
preconditioner obtains the optimal convergence property for a simple cube geometry. The next group
of studies will investigate whether this optimal iteration convergence property can be maintained for a
more realistic computational domain. Scalability studies were performed for the model 3D building for
the three-level preconditioner for both steady-state and transient cases. Many of the same scalability
studies performed with the 3D thermal convection problem are repeated for the 3D building, including
the effect of varying the number of nodes per aggregate. As before, unless otherwise stated, the
smoothers and solvers chosen for the three-level preconditioner are one sweep of Gauss-Seidel on
the fine level, ILU on the medium level, and the distributed version of SuperLU for the coarse level.

For the steady-state calculations, the Reynolds number is restricted to two orders of magnitude lower
than normal operating conditions based on an inlet duct reference length and velocity to provide a
laminar flow. The low Reynolds number allows quick direct-to-steady-state solution and simplifies
the presentation of the results. The transient turbulent large eddy simulation (LES) calculations are
performed at the standard operating conditions of the ventilation systems. The 3D hexahedral meshes
and tetrahedral meshes were generated by the Sandia Cubit mesh generation software [32].
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Table IV shows an algorithmic scaling study for different numbers of nodes per aggregate for the
steady-state calculations on hexahedral meshes. The larger meshes are generated by uniform refinement
of previous meshes, with the number of processors being increased to maintain a roughly constant
number of unknowns per processor. In contrast to the 3D thermal convection problem, after each level
of uniform refinement of the building geometry, the fine mesh is load-balanced using the ParMetis
graph partitioner through Zoltan. Note that in contrast to the thermal convection problem, the optimal
iteration count is not obtained for the 3D building problem. This is most likely due to the fact that
the combination of the aggregation scheme and the smoother is not handling hexahedral elements
with medium or high aspect ratios properly. This is a well-known problem with multigrid methods
where the performance of the smoother deteriorates in the “long” direction of elements with high
aspect ratios. Remedies have been extensively studied in the context of structured meshes. These are
primarily based on block relaxation techniques to improve smoothing in the long direction or semi-
coarsening to coarsen less in the direction where smoothing is poor. This subject has been studied
(though to a lesser extent) for algebraic methods and we are exploring possible enhancements to both
our aggregation and smoothing methods to address this. For this particular problem, the hexahedral
elements vary in aspect ratio with the worst aspect ratio elements having a longest dimension that is
a factor of 5.3 larger than the shortest dimension. The hexahedral meshes used are actually structured
meshes. Previous experience has shown that when the elements are close to squares and cubes for two
and three dimensions respectively, then the optimal convergence property is obtained. Reference [33]
notes the effect of the aspect ratio of the elements on algebraic methods and suggests a promising
alternative approach.

Further insight into the problem can be gained by considering a 2D thermal convection problem
with differentially heated walls (2D version of Figure 1a) in a rectangular domain that is sixteen times
longer than it is high. The two-level preconditioner with geometric coarse mesh is used, with ILU
smoother on the fine mesh and KLU [27] solver on the coarse mesh. The top half of Table V considers
the discretization of the domain with square-shaped finite elements, so there are 16 times as many
elements in the lengthwise direction. For each successive row, the mesh is refined by splitting a square
element into four squares. Note that the optimal convergence property is obtained as the problem is
scaled from 4 to 64 processors. The bottom half of the table considers the discretization of the domain
with rectangular-shaped finite elements that are four times longer than they are high. The number of
unknowns per processor is roughly the same as the corresponding row in the top half of the table. Note
that the optimal iteration count is not obtained. This shows that even the preconditioner with geometric
coarse mesh (where aggregation is not used) does not properly handle the medium aspect ratio finite
elements. This is most likely an indication that the smoother does not sufficiently smooth error in the
stretched direction. It also illustrates the difficulties in applying black-box solvers to a wide range of
problems.

To further demonstrate that the issue of failure to obtain the optimal convergence property is with
the aspect ratio of the finite elements and not the geometry, a scalability study was performed on
a tetrahedral mesh of the 3D building where the tetrahedra are of relatively low aspect ratio. This
tetrahedral mesh was generated from a triangular surface mesh by using Cubit’s volume mesh generator
rather than taking the previous hexahedral mesh and cutting a hexahedron into six tetrahedra. In
contrast to the hexahedral mesh case, the finer tetrahedral meshes were not created from uniform
refinement of coarser tetrahedral meshes. They were created by initially reducing the interval size
between nodes on the surface triangulation by half, with further reduction of interval size in order
to give an increase in the number of nodes by a factor of 7-8. Table VI shows this algorithmic
scaling study. It also shows a comparison between the one-level ILU preconditioner and the three-level
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nodes proc unknowns avgits/ | time
per fine medium | coarse Newt | (sec)
aggregate step

2 | 227K 4544 20 38 [5]1 | 458
50,200 16 | 1.70M | 33988 168 52[5] | 638

128 | 13.1IM | 263K 1312 67 [5] | 1142
1024 | 103M | 2.06M | 10316 | 121[5] | 2656
2 | 227K 2272 20 40 [5] | 466
100,100 16 | 1.70M | 16976 168 53[5]1 | 629
128 | 13.1M 131K 1308 76 [5] | 1160
1024 | 103M | 1.03M | 10304 | 136 [5] | 2924
2| 227K 1136 20 43 [5] | 482
200,50 16 | 1.70M 8480 168 60[5] | 689
128 | 13.1IM | 65460 1308 89 [5] | 1344
1024 | 103M 514K 10284 | 160 [5] | 3479

Table IV. Scalability study of three-level preconditioner (GS1/ILU/SuperLU) for the steady 3D building problem
with hexahedral mesh (aggregation: METIS, ParMETIS); Cplant machine.

element || proc fine coarse | avg its/ time

aspect mesh mesh Newt (sec)
ratio step

41 257x17 | 33x3 29 15

1:1 16 | 513 x33 | 656 x5 31 22

64 | 1025 x 65 | 129 x 9 32 48

41 129x33 | 17x5 55 23

4:1 16 | 257 x65 | 33x9 135 65

64 | 513 x 129 | 65 x 17 | convergence failed

Table V. Scalability study of two-level preconditioner (ILU/KLU) with geometric coarse mesh for the steady 2D
thermal convection problem; ASCI Red machine.

preconditioner. Note that the three-level preconditioner provided a factor of four reduction in time over
the one-level preconditioner for the 128 processor case. The number of iterations per Newton step
for the one-level preconditioner scales as roughly the number of unknowns to the power of % while
for the three-level preconditioner seems to be asymptoting to a constant value. This demonstrates that
the optimal convergence property is obtained when good aspect ratio finite elements are used. We are
currently working on a fix to this problem so that the optimal convergence property will be obtained
for both medium and high aspect ratio finite elements.

The next group of algorithmic scaling studies concern transient flow in the 3D building. The large
eddy simulation (LES) model used was the LES-k model [34]. Table VII shows the algorithmic scaling
study. Two different time steps were used: At = 0.1 seconds and At = 1.0 seconds. In this table,
“avg its/Newt step” denotes the average number of iterations per Newton step and “time” denotes the
average time per time step with both quantities calculated by averaging the first ten time steps. 100
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1-level 3-level
proc | fine | medium | coarse | avgits/ | time | avgits/ | time
Newt | (sec) Newt | (sec)
step step
2| 227K 2272 20 83[51| 910 | 35[5] | 454
16 | 1.68M | 16832 168 148 [6] | 1571 | 56[5] | 605
128 | 13.1M | 131K 1308 | 302 [6] | 4099 | 511[6] | 1000

Table VI. Scalability study of 1-level (ILU) and three-level preconditioner (GS1/ILU/KLU) for the steady 3D
building problem with tetrahedral mesh (aggregation: METIS, ParMETIS); Cplant machine.

time | approx | proc unknowns avgits/ | time

step max fine medium | coarse Newt | (sec)
CFL step

2 | 224K 2230 20 71 | 530

0.1 0.03 16 | 1.67TM | 16670 165 72 | 501

128 | 12.9M 129K 1285 75 | 619

2 | 224K 2230 20 46 | 322

1.0 0.3 16 | 1.67TM | 16670 165 52 | 371

128 | 12.9M 129K 1285 58 | 574

Table VII. Scalability study of three-level preconditioner (GS1/ILU/SuperLU) for the transient 3D building
problem (LES-k) with hexahedral mesh. METIS (ParMETIS) aggregation used on the fine (middle) mesh with
100 nodes per aggregate; Cplant machine.

nodes per aggregate with METIS and ParMETIS schemes for the first and second levels of aggregation
respectively was used. The scaling in Table VII is much better than that exhibited in the steady-state
study even though similar quality hexahedral meshes were used. Though further analysis is needed, we
conjecture that the lumped mass matrix term may offset the suboptimal behavior observed for medium
aspect ratio hexahedral mesh steady-state problems.

5.4. Comparisons between one-level, two-level, and three-level preconditioners for fluid flow in a 3D
building geometry

Table VIII compares various one-level, two-level, and three-level preconditioners for steady laminar
flow in the 3D model building with Reynolds number two orders of magnitude lower than actual
conditions. This geometry has 2.6 million grid points (10.3 million unknowns) and 2.5 million
hexahedral elements. These cases were run on 128 nodes of the Sandia Cplant machine. For this test
case, the two-level preconditioner with geometric coarse operator performed marginally better than the
one-level preconditioner. This is mainly due to the substantial cost of the direct solve on the coarse
mesh. The better CPU time of the algebraic two-level preconditioner compared with the geometric
preconditioner is likely due to the smaller coarse matrix. The algebraic three-level preconditioner
performed well due to the fact that an inexpensive smoother such as Gauss-Seidel could be used on the
fine mesh.

Table IX presents a comparison between various one-level, two-level, and three-level preconditioners
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method smoothers/ nodes per unknowns avg its/ time

solver aggregate | medium | coarse Newt (sec)

step

I-level DD | ILU 188[5] | 3074
2-L geom | ILU/SuperLU 25520 | 38[5] | 2694
2-L geom | GS2/SuperLU 25520 | did not converge
2-L alge ILU/SuperLU 512 19948 | 37[5] | 2104
2-L alge GS2/SuperLU 512 19948 | 237 [5] 5918
3-L alge GS2/ILU/SuperLU 64 201K 1256 85 [5] 1419
3-L alge GS2/GS2/SuperLU 64 201K 1256 | 103 [5] 1604

Table VIII. Comparison of different preconditioners for the 3D model building; steady-state; fine mesh with 10.3
million unknowns; 128 processors on Cplant machine.

for a transient LES simulation in the 3D model building with realistic Reynolds number based on inlet
dimensions and inlet velocity. This geometry has 3.3 million nodes (13.1 million unknowns) and 3.2
million hexahedral elements. The size of the time step is At = 0.1 seconds and the approximate
maximum CFL on the fine grid is 0.01. These cases were run on 1000 nodes of the Sandia Cplant
machine. Because of limited access to 1000 nodes of the machine, only the first four Newton steps
of the first time step were run for comparison. Note that the two-level preconditioner with geometric
coarse operator did worse than the one-level preconditioner. This is likely due to the expensive coarse
grid solve and the relatively good convergence obtained by the one-level preconditioner when a well-
conditioned transient system is solved. The algebraic three-level preconditioner did substantially better
than the one-level or two-level preconditioners because the use of three levels allowed an inexpensive
smoother such as Gauss-Seidel to be used on the large fine mesh. This becomes a significant advantage
as the size of the fine mesh increases, especially when a two-level preconditioner will not converge
with an inexpensive smoother on the fine mesh and an expensive smoother such as ILU is required.
This was very apparent when a steady-state laminar calculation (with Reynolds number two orders of
magnitude too low) was performed for the 3D model building with 25.8 million nodes (103 million
unknowns) on 1000 nodes of the Cplant machine. Both the one-level and two-level methods require
an expensive fine mesh smoother (ILU), and after 3 hours, the solver was still computing the first ILU
factorization. The algebraic three-level preconditioner with Gauss-Seidel, ILU, and SuperLU on the
fine, medium, and coarse mesh respectively reached steady-state after 75 minutes. Note that in the
three-level preconditioner scaling studies, with a choice of 50 and 200 nodes per aggregate for first and
second levels of aggregation, a steady-state solution could be obtained in 45 minutes.

5.5. Algorithmic scaling studies for three-level Schwarz preconditioner with algebraic coarse
operators for the solution of the convection-diffusion equation

Scalability studies were performed for a single convection-diffusion equation, with the three-level
Schwarz preconditioner. For the three-level preconditioner, the fine and medium mesh smoothers are
one sweep of Gauss-Seidel and ILU respectively, and the coarse solver is the KLU direct solver. METIS
and ParMETIS were used for aggregation for the fine and middle mesh respectively. A flow field that
was obtained from a prior steady-state laminar Navier-Stokes calculation in the model 3D building
provides the velocity field for the transient convection-diffusion equation calculation. Table X shows a
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method smoothers/ nodes per unknowns avgits/ | time
solver aggregate | medium | coarse Newt | (sec)

step
1-level DD | ILU 113 | 150
2-L geom | ILU/GMRES-ILU 32336 24 | 255
3-L alge GS/ILU/SuperLU 100 129K 1292 31 38
3-L alge GS/ILU/SuperLU 512 20376 44 56 53

Table IX. Comparison of different preconditioners for 3D model building; transient LES; fine mesh with 13.1
million unknowns; 1000 processors on Cplant machine

time || proc unknowns 1-level 3-level
step fine medium | coarse GS/ILU/KLU | ILU/ILU/KLU
avgits/ | time | avgits/ | time | avgits/ | time
Newt | (sec) Newt | (sec) Newt | (sec)

step step step

2 | 45K 446 4 2 9 3 9 — —
0.1 16 | 334K 3334 33 2 15 3 15 2 15
128 | 2.58M 26K 257 2 21 4 20 — —
2 | 45K 446 4 2 9 4 10 — —
1.0 16 | 334K 3334 33 2 15 5 15 2 15
128 | 2.58M 26K 257 3 21 6 21 — —

Table X. Scalability study of three-level preconditioner (GS1/ILU/KLU and ILU/ILU/KLU) for solution of a
convection-diffusion equation in the 3D building. METIS (ParMETIS) aggregation used on the fine (middle) mesh
with 100 nodes per aggregate; Cplant machine.

comparison between the one-level Schwarz preconditioner and the three-level Schwarz preconditioner
for different sized time steps. The transient calculation was run for ten time steps. The reported “average
iterations per Newton step” and “time” is the averaged iterations per Newton step and time over
the ten time steps. Note that the one-level preconditioner required fewer iterations than the 3-level
preconditioner (when Gauss-Seidel is the smoother on the fine mesh). This is due to the fact that
this problem is very well-conditioned and therefore the one-level method performs extremely well. As
presented in the table for the 16 processor case, the use of ILU rather than one sweep of Gauss-Seidel as
the fine mesh smoother for the three-level preconditioner would yield the same iteration count as for the
one-level preconditioner. This demonstrates that for simple, well-conditioned problems, the one-level
ILU preconditioner performs well and there is no advantage to using the multilevel preconditioner.

6. Conclusions

This study compares, for low to medium Reynolds number Navier-Stokes flows, several
preconditioners based on domain decomposition and multilevel schemes, including one-level additive
Schwarz, a two-level Schwarz with geometric coarse operator, and two- and three-level Schwarz

Copyright © 192004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 192004; :1-10
Prepared using nmeauth.cls



PERFORMANCE OF FULLY-COUPLED MULTILEVEL DOMAIN DECOMPOSITION PRECONDITIONERS 15

based on aggregation. Except for trivial problems, as expected, the one-level preconditioner is not
scalable. The two-level preconditioners, one based on a geometric coarse operator and the other
based on a algebraic coarse operator, are scalable for medium-size problems, and have comparable
performance. For large-size problems the CPU-time required to solve the coarse level problem becomes
predominant, and the preconditioner fails to be scalable. By resorting to three-level preconditioners
based on aggregation, the optimal iteration count for a 3D benchmark thermal convection problem
hexahedral meshes was obtained as well as for the 3D model building problem with tetrahedral meshes.
Results demonstrate that often the use of more than two levels for the algebraic preconditioner resulted
in faster CPU times. Work is currently in progress to allow the optimal convergence property to be
obtained for medium and high aspect ratio finite elements. Further study is needed to compare how the
preconditioners perform for highly convective flows and for reactive flows.
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