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Abstract. In this paper we present a two-level overlapping domain decomposition precondi-
tioner for the finite element discretization of elliptic problems in two and three dimensions. The
computational domain is partitioned into overlapping subdomains, and a coarse space correction,
based on aggregation techniques, is added. Our definition of the coarse space does not require the
introduction of a coarse grid. We consider a set of assumptions on the coarse basis functions to
bound the condition number of the resulting preconditioned system. These assumptions only in-
volve geometrical quantities associated with the aggregates and the subdomains. We prove that the
condition number using the two-level additive Schwarz preconditioner is O(H/d + Ho/d), where H
and Ho are the diameter of the subdomains and the aggregates, respectively, and ¢ is the overlap
among the subdomains and the aggregates. This extends the bounds presented in [10, 16, 17]. Nu-
merical experiments on a model problem are reported to illustrate the performance of the proposed
preconditioner.

1. Introduction. In this paper we consider the iterative solution of the linear
system arising from the discretization of the scalar Poisson problem

—Au = f inQ
{ u = 0 on 09, (.1)

where () is a bounded polyhedral domain in R% d € {2,3}. The finite element dis-
cretization leads to a large sparse linear system, which is typically solved using the
conjugate gradient method [7]. As the condition number of the associated matrix is
O(h~2), where h is the mesh size of the triangulation, a preconditioner needs to be
employed [15]. In this paper we explore preconditioners based on domain decomposi-
tion techniques. These methods share many features and are often competitors with
multigrid methods [2, 20]. A domain decomposition preconditioner is naturally suited
for parallel computations as the general principle is to divide the problem into sub-
problems or subdomains and assign each subdomain to a different processor. The key
idea associated with obtaining scalable convergence is the projection of the operator
onto an additional coarse space.

Here, we consider Schwarz procedures. In its simplest form, the Schwarz precon-
ditioner is defined by subdividing the computational domain 2 into M overlapping
subdomains €2;, then solving local Dirichlet-type problems on each €2;. It is well-known
that this procedure, referred to as the one-level Schwarz method, is non-scalable. In
fact, the information exchange among the subdomains is only through the overlapping
regions, while for elliptic problems the domain of dependence is global. A scalable
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method may be recovered by the addition of a suitable coarse operator, i.e. a projec-
tion of the original problem is solved on an additional coarse space. This auxiliary
problem furnishes a way to efficiently transfer information to all subdomains in each
step. As in a multigrid setting, the coarse problem is used to correct the “smooth”
(low frequency) part of the error, whereas the local preconditioner is used to relax the
“high-frequency” ones.

A typical approach to define the coarse operator is to resort to finite-element ap-
proximation on a coarse triangulation. For structured meshes of complex geometric
domain, it is a relatively easy task, while for unstructured meshes this may be prob-
lematic or computationally expensive, especially for 3D computations. A possible way
to overcome the difficulties induced by the definition of a coarse triangulation, without
losing the power of two-level methods, is to resort to aggregation procedures. This is
done as follows. First, the PDE problem is discretized on the fine grid. Then, the fine
grid nodes are grouped in contiguous sets, called aggregates. The basis functions of
the coarse space are formed by summing up the finite element basis functions of the
nodes in each aggregate.

Aggregation procedures have been presented in literature by various authors.
An aggregation technique was first introduced in 1951 by Leontief [12, Chapter 9]
and then extensively used in Economics; see [13] and the references therein. For
multigrid applications, smoothed aggregation techniques are used, for example, in [1,
22], where investigations of the smoothed aggregation properties have been reported.
In the framework of domain decomposition methods, the focus is mainly on two-
level methods. Results are presented in [14] for the shallow water equations and
2D potential flows, in [5] for 3D potential flow computations, in [§] for groundwater
flows, in [9] for multiphase flows, in [11] for discontinuous Galerkin approximation of
advection-diffusion problems, and in [18, 19] for the 3D compressible Euler Equations
on unstructured tetrahedral grids.

For symmetric coercive problems, it is possible to estimate the condition num-
ber of the preconditioned operator using the abstract Schwarz theory of Dryja and
Widlund [4]. The contribution of this paper is to present a convergence bound that
depends linearly on (H + Hy)/d, where H is the size of the subdomains, Hj is the
size of the aggregates, and § is the amount of overlap among the subdomains and
the aggregates. This extends the bound presented in [10], where the authors assume
H = Hy (or more precisely, that aggregates and subdomains coincide).

This paper is organized as follows. In Section 2 we outline the model problem
and its discretization. Section 3 presents the one level and two level Schwarz precon-
ditioners, and introduces the aggregation technique. Section 4 presents the improved
convergence bound for aggregation. Section 5 reports numerical results, for 2D and
3D domains. In Section 6 conclusions are presented.

2. Model Problem. Let us consider the weak form of the Poisson problem (1.1),
whose finite-element approximation reads

Find uj, € V}, such that

a(up,vp) = f(vn) Vup € Vi, (2.1)

with a(up,vp) = fQ Vup -V dQ, f(vn) = fQ fun dQ. By assumption, f € Ly(Q2), and
Vi, C H}(Q) is the space of linear finite element functions defined on a conforming,
2



quasi-uniform triangulation 7, of ). Existence of a unique solution of (2.1) is shown,
for instance, in [15].
The algebraic formulation of problem (2.1) reads

Au="f, (2.2)

where A € R"*" is a symmetric positive definite matrix, u € R™ the solution vector,
and f € R"™ the discretization of the force term f.

3. Schwarz Preconditioners. The one level Schwarz preconditioner for the
iterative solution of (2.2) can be defined as follows. First, the computational do-
main € is partitioned into M overlapping subdomains ;. On each ; we have, by
construction, diam(2;) = O(H). Then, the preconditioner reads

M

B' =) B, (3.1)

where B; = RITA7'R;, A; = R;ART, and R is the discrete representation of the
interpolation from the subspace V; (of functions of V};, whose support is contained in
Q;) to the space V.

Preconditioner (3.1) is not scalable and the resulting condition number can be

bounded by

1
B'A) < C— 3.2
W(BA) < O (32)
(see for instance [3]). Here and in the following, C' (with or without subscripts)
denotes a constant independent of H, h, the overlap among the subdomains §, and
Hp.

To avoid the term 1/H in (3.2), a further correction term Bj can be added. The

resulting preconditioner reads

M
B"=By+B' =Y B, (3.3)
1=0

where By = RY Ay 'Ry is a projection on a space Vj, which is “coarse” in the sense
that it contains a limited number of degrees of freedom, to make the “exact” inversion
of Ay computationally acceptable—that is, ny = dim(Vy) < n. Preconditioner (3.3)
is usually referred to as two-level additive Schwarz preconditioner.

The properties (and the parallel performance) of two-level Schwarz precondition-
ers will strongly depend on the definition of the coarse space V. When possible, the
coarse space Vy may be itself embedded into V},. Often, the coarse operator represents
the discretization of the continuous problem on a very coarse mesh. In this case, the
following result holds.

LEMMA 3.1. Consider the additive two-level overlapping Schwarz method, where
the overlap is uniform of width O(6), the coarse grid space Vi corresponds to the
finite-element functions on elements of O(H), and Vo C V. Then

K(B"A) < C (1 + %) , (3.4)

where C' is a constant independent of h, H and 9.
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Proof. See [20]. O

Alternatively, Vj can be defined be resorting to aggregation procedures. This is
done as follows. First, the differential problem is discretized on the fine grid, to form
the matrix A. Then, the fine grid nodes are grouped into non-overlapping sets of
contiguous nodes, called aggregates. This decomposition is usually obtained using a
graph partitioning algorithm. The number of aggregates ng represents the dimension
of the coarse space, since each aggregate will be given a unique coarse grid function.
Using these aggregates, a simple procedure can be followed to define a restriction
operator R} (we will report one possible strategy to define R} in Section 5). This
operator is usually referred to as tentative restriction. Then, a smoother is applied
to Ry, in order to reduce the energy of the basis functions and increase their overlap.
This defines the final restriction operator Ry. This second step consists of applying a
smoother S to produce the final operator Ry via Ry = SRj.

Possible choices for S are, for example, a simple Richardson smoother [11, 10],
or a recursive Richardson smoother [1, 23]. This construction of Ry is sometimes
referred to as smoothed aggregation (SA). If S = I (i.e. Ry = R}), the procedure is
usually referred to as non-smoothed aggregation. Both Rj and S are selected so that
Ry € Rnoxm,

The linear operator Ry defines the basis function of the coarse space as follows.
Let ¢; be a generic basis function of V},; then, a generic coarse space basis function
®; can be written as

0(z) = ZRo(z‘,jwj(z),

and the final aggregates are defined as ©; = supp(®;) (where supp(®;) refers to the
support of ®;). We define, Hy = max;j=1, ., diam(6;), and dy is the amount of
overlap among the aggregates.

REMARK 1. Vi C Vp,, since Vj is defined such that each element of Vy is actually
composed by a linear combination of elements of V},.

Once Ry is computed, the coarse matrix is defined as Ay = ROARg . More details
on two-level methods based on aggregation can be found in [16, 17] and the references
therein. We note that, although this paper focuses on two-level preconditioners,
similar ideas can be used to define multilevel preconditioners, see instance [22, 21]
and the references therein.

4. Convergence Estimate for Aggregation. Let {©;,i =1,...,n¢} be a set
of aggregates, defined as outlined in Section 3, and {®;,i = 1,...,n0} a set of basis
functions that satisfy supp(®;) = 6,.

In order to prove our theoretical estimates, we need to introduce aggregates cor-
responding to the boundary nodes. Those aggregates and their corresponding basis
functions are needed in the proof to define a partition of the unity over the entire
computation domain. These additional aggregates do not need to be implemented in
practice, since Dirichlet boundary nodes can be eliminated from linear system (2.2)
before its solution.

Let w be the set of aggregates corresponding to internal nodes, and 7 be the set of
aggregates constructed by aggregating boundary nodes. For each i € v, we introduce
an additional function ®; € V3, so that > ;(x) =1, Yo € Q.

The following properties will be used to characterize the aggregates and the basis
functions of the coarse space.

1EwUy



PROPERTY 1 (partition). There are three constants C1, Co and Cs so that, for

each aggregate ©;,i € w Uy, we have:

a. dl&m(@ﬂ S OlHo;

b. the Lebesque measure |©;| of ©, satisfies |0;] < C2HE if i € w, and |0, <
C3HE 150 if i € ;

c. the overlap among the aggregates is of order d.

Property 1 states that the aggregates have diameter of comparable size Hy and
are shape-regular. The following Property 2 requires a certain regularity on the coarse
space basis function ®;.

PROPERTY 2 (coarse space). There exists a constant C > 0 such that the basis
functions {®;},i € w U~y of the coarse space satisfy
a. ||q>i|\ioo(n) <C;

b. ||V(I)i||2L°°(Q) < C/d5;
€ Dicwusy ilz) =1, Vz el

Properties 2.a and 2.b require a certain point-wise regularity, while property 2.c
states that the {®;} forms a partition of the unity on the entire domain (verified by
construction).

From property 2 it easily follows that

d—1
HO

|q)i|§ql(9) <C (4.1)

93|72 () < CHE. (4.2)

REMARK 2. A non-negative function ®;, which is constant in the interior of
©; and decreases to zero with ||V®;| ) < 1/d0 in a layer of width do, satisfies
property 2. In particular, the non-smoothed case defined by equation (5.1), defines a
set of functions {®;} which satisfies property 2 with 5o = h.

Also, let us define the operator Qq : V}, — Vi by

Qou = D ey @i,
S ‘9—1| Jo, ux)d2 icw (4.3)
’ 0 i€y

LEMMA 4.1. If properties 1 and 2 are satisfied, then there exists a constant C > 0
independent of Hy, o and h such that Yu, € Vj,
a. |ju— Q0u||2L2(Q) = OHO2|U|§11(Q)’
b. 2oy < CF2ul, o -

|Qoul @ =%, |ul7y (®)

Proof. See [16, 17]. O

In the following we will use the following Lemma.

LEMMA 4.2. Let Q; C R% d = 2,3, be a rectangle of diameter H, and let T'5, be
a strip along its boundary of width 6 > 0. Then, for any function u € H'(£);),

H 1
Il < 08 | (14 5 ) by + g5l (@)

Proof. See, for instance, [4]. O

For completeness, we also report the convergence bounds presented in [10] and
in [17].



THEOREM 4.3. Let Properties 1 (with Hy = H and 6o = ¢) and 2 hold. Then,
there exists a constant C > 0 such that

k(B"A) < C (1 + %) .

Proof. See [10, Lemma 7]. O
THEOREM 4.4. Let the properties 1 and 2 hold. Then there exists C > 0 such

that
k(B"A) < C <1 + I;—OO) (1 + %) . (4.5)

Proof. See [17]. O

Theorem 4.4 states that, for a given decomposition into subdomains, the condi-
tion number can be reduced by increasing the number of the aggregates. However,
Theorem 4.4 is not-optimal, as in the case H = Hy, d = §p the bound in the condition
number reads

Kk(B"A) < C <1 + %)n (4.6)

with n = 2, while Theorem 4.3 states that (4.6) holds with n = 1. The following
Theorem, which is the main result of this paper, addresses this problem.

THEOREM 4.5 (aggregation coarse space). Let properties 1 and 2 hold. Then,
for the additive two-level overlapping Schwarz method, when the overlap is uniform
of width O(8), 0o = 0, each aggregate is completely contained in only one subdomain,
H > Hy, and Vy = span{®;}, there exist C > 0,Cy > 0 independent of h,d, H, Hy,
such that

H H
w(B"4) < O~ (1 + 00?0) . (4.7)

Proof. Define Z;, : V — V}, such that

n

Tn(u) =Y ulzi)ei,

=1

where @; is a generic basis function of the mesh, and the z;’s are the mesh nodal
points.

Let w; = {j € wU~ | supp(®;) CQ;}. Let V; = H}(Q) NV, i=1,...,M. A
function v € V}, can be decomposed as u = ug + sz\i1 u;, with

ug = Qou, ui:ZIh((I)j(U*aj)), i=1,...,M,

JEW;

with Qo defined as in (4.3), where

M
Ug = E (I)Z'Oéi = E E (I)jOéj + E (I)Z'Oéi,
iewUy i=1 jEw; 1St
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corresponding to the n aggregates plus the additional n. functions on the boundary.
This is a proper decomposition, since

M M
Zui = Z bia4 + Z Z Iy (Pju— D a)
i=0

JEWUy =1 jEw;
M
= Z Z {(I)jOéj + <I>ju — ®jaj}

1=1 jEw;

:Z@ju:u,
J

since Y, ®;(x) = 1, Va € (2, owing to property 2 and u; € V;. Define ¥; = 5 P,

JEW; :
(Note that ¥; defines a partition of unity.) Using the inverse inequality, we get, over
a generic element K C €,

|Uz‘|12r{1(K) = | Z In (Pju— ®ja;) |%11(K)

JEwW;
=D Tu®ju— > Tn®jal7n s
JEw; JEwW;
< | Wil gy + | Z @507 () - (4.8)

JEW;
Let ¥ K, indicate the average of ¥; over the element K. With this notation, and

using property 2 and the fact that § = O(h), the first term at the right-hand side of
(4.8) can be bounded as follows:

|\Ifiu|§{1(K) = ’@K,iu + (‘Ili - \IIK,Z') u‘i]l(K)

(4.9)
_ 2 — 2
<2 |\IIKviu‘H1(K) +2[(0; — Uk,) “|H1(K)
<2 |U|§11(K) + OO 2| Wi = Uil 7 oo iy |72 5 (4.10)

The second term of (4.10) has a non-zero contribution only near the boundaries of
Q;, given by summing over all the elements of (2; and using lemma 4.2,

2 2 — 2
Wil (q,) < Clulin g, + C6? Julpsr, )
H 2
=C |U|§{1(Qi) +C (1 + g) ul(a,)

H
<C <1 + §> luli o) -

By manipulating the second term at the right-hand side of (4.8), we obtain

2

M
Z Z Z Dja; <C |Q0U|§11(Q) :

i=1 K€Q; |jew; (K
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Finally, using Lemma 4.1.b and 6y = J, we obtain

M M

2 2 2
Z Wil 1.0y = ol () + Z il b (o)
i=0 i=1

H, H
< OOT |U|§11(Q) +C (1 + g) |U|§{1(Q)

Hy, _H
< (COT + Cf) |U|§11(Q) :

Inequality (4.7) follows from the standard theory for abstract Schwarz methods (see
for instance [20] and reference therein). O

Figure 4.1 shows an example of coarse basis functions that satisfy (on the left),
and do not satisfy (on the right) the hypothesis of Theorem 4.5.

(OF)

Q. Q.

Q- Q.

Fic. 4.1. Ezample of coarse basis functions that satisfy (left) and do not satisfy (right) the
hypothesis of Theorem 4.5.

REMARK 3. Theorem 4.5 states that, for a given decomposition into subdomains,
the condition number can be reduced by decreasing the diameter of the aggregates.
This is of particular advantage in situation where the decomposition into subdomains
(and henceforth H) is fized. This may occur, for instance, if the Schwarz precondi-
tioner is used in a parallel environment, and each subdomain is assigned to a different
processor.

5. Numerical Results. We report in this section some numerical results for
our model problem (2.1), with Q@ = (0,1) x (0,1) and © = (0,1) x (0,1) x (0,1). The
mesh is constructed by dividing Q into n? equal squares, subdivided into triangles, or
n3 cubes, subdivided into tetrahedra. Thus, we obtain a triangulation with h = %
As regards the decomposition into subdomains, we consider overlapping squares (or
cubes) €; of area H? d = 2,3. We use linear finite elements, and solve the linear
system (2.2) by the preconditioned conjugate gradient method.

As described in Section 3, the first step of aggregation requires a simple procedure
to define the restriction operator R, in such a way that each aggregate will eventually
correspond to a “degree of freedom” of the coarse operator. To define the aggregates,
we decompose the set of nodes into non-overlapping sets, J7,j = 1,...,n9. The
ng x n boolean matrix R} is constructed in such a way that each row corresponds to
an aggregate and each column to a node, as follows:

. 1 ifjevr

R} can be viewed as a simple grid transfer operator corresponding to piecewise con-
stant interpolation; see Remark 2.



REMARK 4. To define (5.1), we construct aggregates with minimal overlap 6o = h.
Alternatively, non-overlapping aggregates can be defined as non-overlapping partitions
of Q; see [10].

For non-smoothed aggregation, the aggregates (whose shape is approximately a
square for d = 2 and a cube for d = 3) are defined as described by Equation (5.1).
The corresponding preconditioner is indicated by B!/_,. For smoothed aggregation,
the following Richardson smoother is employed:

S = <1 - %A) , (5.2)

where Ay is the maximum eigenvalue of A (estimated using 10 steps of a conju-
gate gradient method), and w = 4/3 is the damping parameter. The corresponding
preconditioner is indicated by BZ,.

The tables report the estimated condition number for the preconditioned system;
see for instance [6]. The stopping criteria is 107! on the relative residual.

A comparison of the condition numbers obtained using a geometric coarse grid
and aggregation is reported in [17] where it is shown that, for the considered 2D
model problem, aggregation procedures result in condition numbers about four times
larger than using a geometric coarse grid. In this paper, we present results concerning
aggregation schemes only. Let x = Hy/H indicate the ratio between the diameter of
the aggregates and the diameter of the subdomains. x = 1 means that all the nodes in
each (minimal overlap) subdomains have been assigned to the same aggregate, while
larger values of y indicates that the coarse space has been enriched by using more
aggregates on each subdomain.

Tables 5.1 and 5.3 report the estimated condition number for non-smoothed ag-
gregation, using 6 = 09 = h (minimal overlap), for different values of y. From
Theorem 4.5, the condition number in this particular case has a linear dependency on
h~!. This is confirmed by the tables. For example, in two-dimensions with Y = 1 and
H = 1/10, the condition number increases from 110.35 to 220.01 when h decreases
from 1/240 to 1/480.

Tables 5.2 and 5.4 use 6 = h and 6y = 3h. Although the proof of Theorem 4.5
requires o = J, these results suggest that, at least for this problem, this condition
may be relaxed. Especially for small values of x, (B, A) is significantly smaller than
k(B A). (Should 6 = 9 = 3h, then x(B!, A) = k(B]l,,A) /3.) Therefore, it may
be convenient, in a parallel environment, to use smoothed aggregation even if the
subdomains share minimal overlap.

Theorem 4.5 also states that the quantity

K(B"A) 6

- (5.3)

depends linearly on x. Figure 5.1 displays graphically the quantity (5.3) for data in
Tables 5.1 (figure on the left) and 5.2 (figure on the right) with respect to x. The
figure also reports the least-square approximation of the considered data. The scatter
in the data is primarily due to the presence of the Dirichlet nodes which make the
linear system easier to solve for large values of h and small values of H. While there
is some scatter, the overall trend of the data closely matches the asymptotic behavior
predicted by the theory.

6. Conclusions. We have presented an improved convergence bound for two
level additive domain decomposition preconditioners based on aggregation. This
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| x=1 x=1/2 x=1/4 x=1/8]

H'=4 10394 70.08 38.64 -
h~1=120 H'=6 8188 50.31 33.28 -
H'= 66.41 40.32 27.62 -
H'=10 - - - -
H = 155.67  101.57 61.87 34.63
ht=180 H!'= 122.41  78.46 43.05 29.37
H1=8 99.69 59.39 37.66 24.95
H'=10 8295 45.92 25.35 -
H = 207.63  144.71 84.06 44.26
h1=240 H'= 163.01  99.71 58.09 39.90
H'= 132.15  82.65 45.76 30.24
H'=10 110.35 62.71 35.57 -
H = 311.11  195.71 135.98 70.37
h1=360 H!'= 244.24  162.47 90.01 46.74
H'= 197.94 118.94 69.23 36.60
H'=10 164.33 105.37 58.47 -
H1=4 - - — —
h™1=480 H'= 325.49  206.15 124.88 62.37
H'= 263.50 171.13 92.97 47.96
H-'=10 220.01 141.09 74.44 39.91

TaBLE 5.1
2D Laplace problem. Estimated condition number using Bl/,, (5§ =80 = h). x = Ho/H.

| x=1 x=1/2 x=1/4 x=1/8]

H'=4 7376 40.03 20.14 —
h~1=120 H-'=6 51.22 26.02 12.55 -
H!'= 38.63 19.52 11.70 -
H1=10 - - - -
H'=4 11124 58.62 32.03 14.55
h~1=180 H!'= 77.47 41.29 20.33 9.36
H 1= 59.68 30.52 14.65 10.09
H1=10 47.74 23.67 15.80 9.22
H 1= 150.60  85.59 44.78 21.10
h~'=240 H'=6 105.53 53.70 27.34 13.06
H 1= 80.18 43.26 20.79 9.84
H1=10 6431 31.96 - 8.80
H = 226.59 119.54 64.48 34.28
h~1=360 H'= 158.85  89.74 49.59 21.07
H-1=8 120.15 61.05 22.86 14.81
H'=10 9537 54.32 27.51 13.61
H 1= - — — —
h~l=480 H'= 213.22 115.59 65.38 29.60
H ' = 158.63  91.45 46.92 21.11
H1'=10 129.60 76.55 34.69 16.60

TABLE 5.2
2D Laplace problem. Estimated condition number using BY,. x = Ho/H.
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Fic. 5.1. Graphical representation of data contained in Table 5.1 (left) and Table 5.2 (right).
The z-azis reports the values of x = Ho/H; the y-azis reports k6/H. The dots represent the data
in the table, the line is the least-square approzimation.

| x=1 x=1/2 X:1/4|

H = 42.02 32.92 23.15

h1=36 H'=3 3951 26.82 19.89
H'= 35.34 22.68 16.63
H 1= - - -
H 1= 55.79 43.44 30.54

h1=48 H'=3 5243 36.21 23.18
H ' = 46.85 30.04 21.60
H 1= 41.25 27.36 17.61
H 1= - — —

h =72 H'=3 17838 54.61 35.36
H ' = 69.90 46.40 28.71
H ! = - - -
H1=2 - - -

h1=96 H'=3 10437 7531 47.37
H 1= 92.99 61.20 37.61
H1l=5 - - -

TABLE 5.3

3D Laplace problem. Estimated condition number using B!’ x = Ho/H.

nsa*

bound generalizes other results presented in literature. Numerical results are reported
to confirm the proposed estimate.
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