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Abstract. The mathematical model of the Z-pinch is comprised of many interacting components.
One of these components is magnetic diffusion in highly heterogeneous media. In this paper we discuss
finite element approximations and fast solution algorithms for this component, as represented by the
eddy current equations. Our emphasis is on discretizations that match the physics of the magnetic
diffusion process in heterogeneous media in order to enable reliable and robust simulations for even
relatively coarse grids. We present an approach based on the use of exact sequences of finite element
spaces defined with respect to unstructured hexahedral grids. This leads to algorithms that effectively
capture the physics of magnetic diffusion. For the efficient solution of the ensuing linear systems
we consider an algebraic multigrid method that appropriately handles the nullspace structure of the
discretization matrices.
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1. Introduction. The Z-pinch is a technique for generating large material com-
pressions and energies by generating a cylindrical implosion using focused magnetic
field energy. Wire array implosions for example are used to generate extremely large
X-ray power pulses [29]. Modeling requires a multiphysics approach which must in-
clude several interacting components. Components are coupled through interactions
of forces, exchange of energy and etc. Our immediate interest is in developing a
technology for Z-pinch modeling which falls within the constraints of an Arbitrary
Lagrangian-Eulerian (ALE) modeling approach inherent in the framework of the ALE-
GRA code [21, 19]. In this code various physics components are modeled and coupled
using operator splitting. Managing the complexity of the fully coupled model is made
more tractable by examining each component separately and ensuring its reliabil-
ity. In this report we focus on magnetic diffusion represented by a subset of the full
Maxwell’s equations referred to as the eddy current equations.

While finite element analysis of eddy currents is a relatively well-studied subject,
placing this problem in the context of Z-pinch simulations brings up some specific
modeling and computational issues. Most notably, conducting and non-conducting
regions are not separated by a well-defined static interface. As a result, implementa-
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tion of standard methods based on the use of different magnetic potentials in conduct-
ing/nonconducting regions; see [4, 3], becomes prohibitively expensive (and complex).
This forces consideration of the eddy current equations on a single, but highly het-
erogeneous, conductor as the only acceptable modeling choice.

For the finite element analysis of the ensuing problem with nodal spaces one can
still formally adopt a potential approach based on a vector magnetic potential A.
The difficulties that arise in this context stem from the need to gauge the resulting
boundary value problem, i.e., augment it by additional equations and boundary con-
ditions. The Coulomb gauge ∇ · A = 0 is hard to satisfy numerically and must be
added implicitly to the formulation which creates a cascading effect of adding more
and more equations; see [3]. Another choice is the Lorentz gauge; see [14, 12, 13].
For heterogeneous conductors this gauge leads to nonsymmetric weak equations and
is thus undesirable. Application of standard nodal spaces complicates imposition of
tangential and normal boundary conditions which are typical for the eddy current
equations.

An alternative to nodal approximations of gauged vector potential equations is to
discretize directly the eddy current equations using exact sequences of finite element
spaces. The rationale behind this approach is that such finite element spaces represent
approximations of a De Rham complex that describes the mathematical structure
of Maxwell’s equations; see [5, 6]. These spaces have the important advantage of
providing natural degrees of freedom for purposes of implementing tangential Dirichlet
boundary conditions.

In this paper we pursue two main objectives. The first one is to develop such finite
element spaces on unstructured hexahedral grids and test their use for finite element
analysis of the eddy current model relevant to the Z-pinch. Here, our main focus is
on the development of the discrete model and verifying its fidelity to the physics of
magnetic diffusion. The finite element spaces are considered in section 3 followed by
development of the fully discrete equations in section 4. The formulation is tested for
a model 2D problem in section 6.

The second objective is to develop fast, scalable solvers for the discrete eddy
current equations. These solvers must address the special structure of the linear
systems inherent in the use of the exact finite element sequences. They also must
work well for realistic values of the material modeling parameters which may vary
over many orders of magnitude in a highly heterogeneous way. Although a hierarchical
grid is available in the ALEGRA framework, restricting application modelers to such
grids is considered to be unacceptable. As a result, the main focus here is on the
development and implementation of a precisely designed algebraic multigrid method
which operates directly on the assembled discrete matrix.

Throughout the paper bold face is used to denote vector quantities. The symbols i,
j and k stand for the Cartesian coordinate vectors in RI 3, equipped with the Euclidean
norm ‖ · ‖, while n and t denote an outward unit normal field to a surface and a unit
tangent field (to a curve), respectively. The symbols L2(Ω) and L2(Ω) will denote the
spaces of all square integrable scalar and vector functions on Ω.

2. The model problem. The eddy current equations are obtained by neglecting
the displacement current in the full Maxwell equations. This amounts to neglecting
high frequency speed-of-light time scale electromagnetic waves in a conducting media.
The model problem considered in this paper is that of a single conducting region Ω in
RI 3 with non-constant conductivity σ and permeability µ. We assume that the bound-
ary Γ of this region consists of two disjoint parts denoted by Γ∗ and Γ, respectively.
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Furthermore, it is assumed that the conductivity σ and the permeability µ are single
valued bounded non vanishing functions depending only on the spatial position x.
No particular smoothness of the coefficients can be assumed. For the most pressing
application of interest, however, µ is constant. Furthermore, we assume that

0 < σmin ≤ σ(x) ≤ σmax ∀x ∈ Ω(2.1)

0 < µmin ≤ µ(x) ≤ µmax ∀x ∈ Ω.(2.2)

The governing equations for the electromagnetic field in Ω are given by

∇×H = J in Ω(2.3)

∇×E = −∂B
∂t

in Ω(2.4)

∇ ·B = 0 in Ω(2.5)
∇ · J = 0 in Ω.(2.6)

where H is the magnetic field, J is the current density, E is the electric field, and B is
the magnetic flux density. Initial values of the magnetic flux density B are required
to satisfy (2.5). These fields are connected by the constitutive relations

B = µH(2.7)
J = σE.(2.8)

Eq. (2.3) is the Ampere’s theorem and (2.4) is the Faraday’s law, while (2.8) is the
Ohm’s law. System (2.3)-(2.6) must be closed by choosing appropriate boundary
conditions. Here we consider Type I conditions

n×E = n×Eb and n ·B = n ·Bb on Γ∗(2.9)

and Type II conditions

n×H = n×Hb and n · J = n · Jb on Γ.(2.10)

To deliver robust, 3D fully integrated Z-pinch calculations, finite element simula-
tions of the eddy current equations (2.3)-(2.6), (2.7)-(2.8) and (2.9)-(2.10) must meet
certain requirements. From the modeling point of view the main requirement is to
obtain high fidelity simulation of the magnetic field diffusion in highly heterogeneous
media. This fidelity must be maintained both at the ideal MHD limit σ → ∞, as
well as at the highly diffusive limit σ → 0. Furthermore, it is desirable to advance
the magnetic flux density in a manner which maintains ∇ · B = 0 at all time steps.
From the computational point of view the demand is on scalability of the solvers of
the discrete linear system for realistic values of the modeling parameters. Scalability
implies approximately linear work in the number of unknowns to find a high quality
solution to the discrete linear eddy current system. Scalability will be discussed in §5
and §6.2.

3. Approximation of De Rham’s complex on hexahedra. In this section
we develop exact sequences of finite element spaces on unstructured hexahedral and
quadrilateral grids. This choice is dictated by the ALEGRA computing framework
which supports ALE hydrodynamics on arbitrary quadrilaterial and hexahedral grids
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[19]. An intuitive method for developing edge and face elements on arbitrary hexahe-
dra (isoparametric bricks) was first given by van Welij [28]. The van Welij elements
are defined directly in the computational domain using the coordinate functions of the
inverse mapping between a reference and computational elements. Here we develop a
general approach that follows this idea and includes the edge elements of van Welij as
a special case. For parallelepipeds or parallelograms these finite elements also include
the well-known spaces of Nedelec, Brezzi, Douglas, Fortin and Marini, among others;
see [10], [15], [17] and [18]. However, for general hexahedral grids the elements used
here are quite different because they do not form an affine family of finite element
spaces ([8, p.72]). We also show how to obtain proper restrictions of these spaces in
two dimensions and discuss specifics of the exactness relation in RI 2.

The notions of exactness and De Rham complex are closely related to the math-
ematical structure of Maxwell’s equations. The domains of the differential operators
gradient, curl and divergence, relative to Γ are

H0(Ω, grad) = {φ ∈ H(Ω, grad)|φ = 0 on Γ},(3.1)
H0(Ω, curl ) = {u ∈ H(Ω, curl )|u× n = 0 on Γ},(3.2)
H0(Ω,div ) = {u ∈ H(Ω,div )|u · n = 0 on Γ},(3.3)

where

H(Ω, grad) = {φ ∈ L2(Ω)|∇φ ∈ L2(Ω)},(3.4)
H(Ω, curl ) = {u ∈ L2(Ω)|∇ × u ∈ L2(Ω)},(3.5)
H(Ω,div ) = {u ∈ L2(Ω)|∇ · u ∈ L2(Ω)}.(3.6)

The four spaces H0(Ω, grad), H0(Ω, curl ), H0(Ω,div ), L2(Ω) and the three operators
∇, ∇× and ∇· form a De Rham complex relative to Γ.

The dual complex can be introduced by using the adjoint differential operators
∇∗, (∇×)∗ and (∇·)∗. A fundamental property of the De Rham complex is the
exactness of the sequence

H(Ω, grad) ∇7−→ H(Ω, curl ) ∇×7−→ H(Ω,div ) ∇·7−→ L2(Ω).(3.7)

Exactness means that each differential operator maps the space to its left into the
kernel of the next differential operator. Importance of this property stems from the
fact that Maxwell’s equations can be described in terms of a Tonti diagram built upon
this complex; see [6]:

Ampere Faraday

H0(Ω, grad) ψ 0 L2
0(Ω)

∇ ↓ ⇑ ∇·

H0(Ω, curl ) H ⇒ µH = B ⇒ B H∗
0 (Ω,div )

∇× ⇓ ⇑ ∇×

H0(Ω,div ) J ⇐ J = σE ⇐ E H∗
0 (Ω, curl )

∇· ⇓ ↑ ∇

L2
0(Ω) 0 φ H∗

0 (Ω, grad)

(3.8)
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Suppose now that Wi, i = 0, . . . , 3 are finite element subspaces of H0(Ω, grad),
H0(Ω, curl ), H0(Ω,div ), and L2(Ω) defined with respect to some triangulation Th

of Ω into finite elements. Furthermore, suppose that Wi form an exact sequence,
i.e., they approximate not only the individual spaces but the De Rham complex as
a whole. Then, a discretization of the Maxwell’s equations can be obtained by sub-
stituting the De Rham complex in (3.8) by the exact sequence Wi; see [7], [5]. This
approach will be pursued in 4.

3.1. Exact sequence on a generalized hexahedral. Consider RI 3 endowed
with a physical coordinate frame (x1, x2, x3) ≡ x and a parameter (or reference)
frame (ξ1, ξ2, ξ3) ≡ ξ. In what follows the indices α, β and γ take the values ±1
and the indices i, j, k form an even permutation of the numbers 1, 2, 3. Let K̂ denote
the open cube (−1, 1)3 in the reference space and let K denote its image under a
smooth deformation F : R̂I 3 7→ RI 3 of RI 3. We refer to K as generalized hexahedral.
Construction of an exact sequence on K will be carried for general F assuming only
that

• F = (F1, F2, F3) is invertible when restricted to K̂
• G = (G1, G2, G3) = F−1 is such that G(K) = K̂.

Restriction of F to a particular class of mappings will specialize further the exact
sequence to a desired class of hexahedral grids. Since here we will be ultimately
concerned with trilinear mappings F for simplicity we only consider unisolvency sets
consisting of the vertices, edges, and faces

ξαβγ = {ξi = α, ξj = β, ξk = γ}
ξαβ

ij = {ξi = α, ξj = β, −1 ≤ ξk ≤ 1}
ξα

i = {ξi = α, −1 ≤ ξj , ξk ≤ 1}.

and the hexahedral K = {x |x = F (ξ); ξ ∈ K̂} itself1. Restriction of F to the sets
above induces “vertices”, “edges”, and “faces” on K according to

xαβγ = F (ξαβγ); xαβ
ij = F (ξαβ

ij ); and xα
i = F (ξα

i ),

respectively. Note that

xα
i ∩ xβ

j = xαβ
ij and xα

i ∩ xβ
j ∩ xγ

k = xαβγ .

Next consider the Jacobians JF = (V1, V2, V3) and JG = (∇G1,∇G2,∇G3)T where
Vi = (∂F1/∂ξi, . . . , ∂F3/∂ξi)T . Clearly, det JF = Vi · (Vj × Vk) and det JG = ∇Gi ·
(∇Gj ×∇Gk). From the identity (F ◦G)(x) = x it follows that JFJG = JGJF = I.
This relation means that

Vi · ∇Gj = δij ,(3.9)

i.e., the columns Vi of JF and the rows ∇GT
j of JG are bi-orthogonal. Solving (3.9)

for Vi and ∇Gj gives

Vi = (∇Gj ×∇Gk)det JF and ∇Gi = (Vj × Vk)det JG(3.10)

1A unisolvency set for a given class of functions is a collection of data and data location pairs that
defines a unique function out of the class. For instance, the unisolvency set for linear polynomials in
one dimension consists of two distinct points with two prescribed values. For higher order polynomials
and/or higher space dimensions these sets have to be expanded by including more nodes, edges and
surfaces to the unisolvency sets.
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The unit normal to a face xα
i and the unit tangent to an edge xαβ

ij are given by

n =
∇Gi

‖∇Gi‖
and t =

(∇Gi ×∇Gj)
‖∇Gi ×∇Gj‖

(3.11)

respectively. Changing variables in (3.11) and using (3.10) shows that corresponding
vector fields on K̂ are

(n ◦ F ) =
Vj × Vk

‖(Vj × Vk)‖
and (t ◦ F ) =

Vk

‖Vk‖
,(3.12)

respectively. Let φα
i (x) = 1

2 (1 + αGi(x)). We consider four sets of functions defined
on K as follows:

Wαβγ
ijk = φα

i φ
β
j φ

γ
j(3.13)

Wαβ
ij = φα

i φ
β
j∇φ

γ
k(3.14)

Wα
i = φα

i (∇φβ
j ×∇φ

γ
k)(3.15)

W = ∇φα
i · (∇φ

β
j ×∇φ

γ
k).(3.16)

These sets span four spaces denoted by W0(K), W1(K), W2(K) and W3(K), re-
spectively. Fundamental properties of (3.13)–(3.16) are associated with the “nodes”,
“edges”, and “faces” of K. The “point” mass of the scalar functions in (3.13) is∫

K

Wαβγ
ijk (x) · δ(xκµν)dx =

{
1 if xκµν = xαβγ

0 at all other nodes
.

Thus, W0(K) is “nodal” space with basis {Wαβγ
ijk }. Circulations of the vector fields

in (3.14) are

∫
xκµ

st

Wαβ
ij (x) · tdl =

 1 if xκµ
st = xαβ

ij

0 along all other edges
.

so we call Wαβ
ij “edge” basis andW1(K) - edge space. The vector fields in (3.15) have

similar property with respect to their fluxes across the faces of K:∫
xκ

s

Wα
i (x) · ndS =

{
1 if xκ

s = xα
i

0 all other faces
.

Thus, Wα
i is “face” basis and W2(K) is a face space. Lastly,∫

K

W (x)dx = 1.

so W is a “volume” basis andW3(K) is volume space. Degrees of freedom (DOF) for
W 0(K) are “point masses”, or simply the nodal values of a scalar function. DOFs for
W 1(K) are circulations of a vector field along the edges of K, DOF’s for W 2(K) are
fluxes across the faces, and the DOF for W 3(K) is the total mass of K for a given
scalar density function.
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To show that Wi(K) form an exact sequence on K recall that

∇× (uV) = u∇×V +∇u×V,(3.17)

∇ · (uV) = ∇u ·V + u∇ ·V,(3.18)

∇ · (∇f ×∇g) = 0(3.19)

for smooth vectors fields U, V and scalar function u. Using the chain rule, (3.17)–
(3.19) and definitions of Wαβγ

ijk , Wαβ
ij , Wα

i and W gives

∇Wαβγ
ijk = σijW

αβ
ij + σjkW

βγ
jk + σkiW

γα
ki

∇×Wαβ
ij = σiW

α
i + σjW

β
j

∇ ·Wα
i = σW,

where σij , σi and σ take the values ±1. It follows that Wi(K) is exact sequence, i.e.,

W0(K) ∇7−→ W1(K) ∇×7−→ W2(K) ∇·7−→ W3(K).(3.20)

Using (3.10) in (3.13)-(3.16) yields explicit formulae for the basis functions on K̂:

Ŵαβγ
ijk =

1
8
(1 + αξi)(1 + βξj)(1 + γξk)

Ŵαβ
ij =

1
8
(1 + αξi)(1 + βξj)(Vi × Vj)/det JF

Ŵα
i =

1
8
(1 + αξi)Vi/det JF

Ŵ =
1
8
Vi · (Vj × Vk)/det JF

3.2. Exact sequence on hexahedral grids. For the magnetic diffusion appli-
cation we are mainly interested in standard isoparametric hexahedral grids. Such grids
consist of convex, nondegenerate hexahedrals K with vertices xαβγ , α, β, γ = ±1. In
this case

FK(ξ) =
∑

αβγ=±1

xαβγŴαβγ
ijk (ξ).(3.21)

is the unique mapping between K̂ and a given element K. Note that FK is a linear
combination of the nodal basis functions Ŵαβγ

ijk (ξ) on the reference element. There-
fore, FK is an incomplete cubic polynomial (a trilinear function), whose restrictions
to the faces and the edges are bilinear and linear polynomials, respectively.

Let N ,
→
E ,

→
F and K denote the sets of all nodes, oriented edges and faces, and

hexahedrals in the grid. Furthermore, for K ∈ K letW l(K) denote the exact sequence
induced by the mapping (3.21) on this element. To form an exact sequence W l(Ω)
on the hexahedral grid we introduce four sets of functions parametrized by N ,

→
E ,

→
F
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and K, and such that∫
Ω

WNi
(x) · δ(Nj)dx = δij ; WNi |K ∈ W

0(K)∫
→
E j

W→
E i

(x) · tdl = δij ; W→
E i |K

∈ W1(K)∫
→
F j

W→
F i

(x) · ndS = δij ; W→
F i |K

∈ W2(K)∫
Kj

WKi
(x)dx = δij ; WKi |K ∈ W

3(K)

The sets {WN }, {W→
E
}, {W→

F
}, and {WK} span the spaces Wi(Ω).

The space W0(Ω) is H(Ω, grad) conforming because it contains continuous func-
tions. Definition of W→

E
and Eq. (3.11) imply that W1(Ω) contains vector fields that

are tangentially continuous along the edges in
→
E . Therefore, this space is H(Ω, curl )

conforming. Likewise, W2(Ω) contains fields that are normally continuous across the
faces

→
F . This makes W2(Ω) H(Ω,div ) conforming. Clearly, W3(Ω) ⊂ L2(Ω). Exact-

ness of this sequence follows easily from the exactness of the element spaces Wi(K).

3.3. Exact sequence on quadrilateral grids in 2-D. It suffices to construct
an exact sequence for one generalized quadrilateral. Then, spaces on quadrilateral
grids can be formed as in the three-dimensional case.

We consider the open square K̂ = (−1, 1)2 in the reference frame ξ = (ξ1, ξ2)
and a smooth mapping F : RI 2 7→ RI 2. Next we imbed K into the virtual generalized
hexahedral

K̃ = {x | (x1, x2) ∈ K,−1 < x3 < 1}.

Let W̃i denote an exact sequence defined on K̃. Since the virtual hexahedral is image
of (−1, 1)3 under the mapping F̃ = (F, ξ3),

V3 = k and ∇G3 = k.

As a result, (3.10) specialize to

∇G1 = (V2 × k)/det JF

∇G2 = (k× V1)/det JF .

Inserting these expressions in (3.13)–(3.16) yields after some manipulation four pairs
of basis function sets on K and K̂:

Wαβ∗
ij∗ = φα

i φ
β
j ; Ŵαβ∗

ij∗ = 1
4 (1 + αξi)(1 + βξj)

Wα∗
ij = φα

i ∇φ
β
j ; Ŵα∗

ij = 1
4 (1 + αξi)(Vj × k)/det JF

Wα
i = φα

i (∇φβ
j × k); Ŵα

i = 1
4 (1 + αξi)Vi/det JF ;

W = ∇φα
i · (∇φ

β
j ×

k
2

); Ŵ = 1
4Vi · (Vj × Vk)/det JF = 1

4

The two-dimensional complex Wi(K) is defined by taking the spans of each basis set
in K. By the chain rule
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Fig. 3.1. Virtual (perpendicular) and parallel edges on K̃.

∇Wαβ∗
ij∗ = φα

i ∇φ
β
j + φβ

j∇φ
α
i

which is a sum of W1(K) basis functions, and

∇ ·Wα
i = φα

i (∇φβ
j × k)

which is aW3(K) function. Therefore ∇W0(K) ⊂ W1(K) and ∇·W2(K) ⊂ W3(K).
Showing the curl inclusion is somewhat more involved as it splits into two relations.
This corresponds to the two possibilities of restricting curls2 to a plane. The first way
is to apply the curl to vector fields perpendicular to the plane and set

∇× φ := ∇× (φk) = ∇φ× k = φyi− φxj.(3.22)

The virtual hehaxedral K̃ has four vertical edges; see Fig.3.1. The 3D edge basis
functions associated with these edges are

Wαβ
ij = φα

i φ
β
j

k
2

=
1
2
Wαβ∗

ij∗ k.

Therefore, ∇ × Wαβ
ij gives the two-dimensional curl of the two-dimensional nodal

function Wαβ∗
ij . On the other hand,

∇×Wαβ
ij =

1
2
∇×

(
Wαβ∗

ij∗ k
)

=
1
2

(
φα

i

(
∇φβ

j × k
)

+ φβ
j

(
∇φα

i × k
))

=
1
2
(Wα

i −W
β
j )

which establishes the inclusion ∇×W0(K) ⊂ W2(K).
The second way is to restrict the curl to planar vectors. The result is identified

with a scalar field according to

∇× u := ∇× (u1i + u2j) = (u2x − u1y)k.(3.23)

The virtual hexahedral has two pairs of edges parallel to K, see Fig.3.1. The 3D edge
basis functions for the edges on the top face (where φ+

3 = 1) are

Wα+
i3 = φα

i φ
+
3 ∇φ

β
j = φα

i ∇φ
β
j = Wα∗

ij .

2In the literature the operators engendered by the restriction procedure are sometimes denoted
by rot and curl, respectively. Here we employ the same symbol for both operators in order to
emphasize that they are merely restrictions of the same three-dimensional operator.
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Therefore, ∇×Wα+
i3 gives the two-dimensional curl of the two-dimensional edge basis

function Wα∗
ij . Since

∇×
[
Wα+

23

]
φ+

3 =1
= ∇×

(
φα

i ∇φ
β
j

)
= ∇φα

i ×∇φ
β
j .

this establishes the inclusionW1(K) ⊂ W3(K). The two-dimensional exactness struc-
ture is summarized in (3.24)

W1 ∇←− W0 ∇×7−→ W2 ∇·7−→ W3

W1 ∇×7−→ W3

(3.24)

4. Transient magnetics solution using the exact sequence. For the mag-
netic diffusion application considered here we are interested in divergence free approx-
imations of the magnetic induction B. To accomplish this H and J are eliminated
from the system by (2.7)-(2.8) and the exact sequence Wi is used on the Faraday’s
side of Tonti’s diagram (3.8)

Ampere Faraday

W2 1
µBh . . . Bh W2

∇×
... ⇑ ∇×

W1 σEh . . . Eh W1

(4.1)

The finite element model that corresponds to Diagram 4.1 is

∇× 1
µ
Bh = σEh in Ω(4.2)

∇×Eh = −∂Bh

∂t
in Ω(4.3)

where

Bh =
∑
→
F

Φ→
F

(t)W→
F

; Eh =
∑
→
E

C→
E
(t)W→

E
,

are expansions of Eh and Bh in terms of edge and face basis functions. The proper
boundary conditions for this formulation are

n×Eh = n×Eb on Type I; n× 1
µ
Bh = n×Hb on Type II.(4.4)

System (4.2)-(4.3) and (4.4) requires proper interpretation. The discrete Faraday law
(4.3) holds exactly thanks to the inclusion ∇ ×W1 ⊂ W2. The Ampere’s theorem
(4.2) and the boundary condition on Type II segments are, in contrast, interpreted
as a weak equation∫

Ω

1
µ
Bh · ∇ × ÊhdΩ +

∫
Γ

(n×Hb) · ÊhdΓ =
∫

Ω

σEh · ÊhdΩ ∀Êh ∈ W1(4.5)
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in which tangential magnetic field appears as natural boundary condition. The fully
discrete system is then derived by replacing the time derivative by a finite difference.
The ensuing algebraic system for En+1

h and Bn+1
h is∫

Ω

σEn+1
h · Êh −

1
µ
Bn+1

h · ∇ × ÊhdΩ =
∫

Γ

(n×Hb) · ÊhdΓ ∀Êh ∈ W1(4.6)

−
Bn+1

h −Bn
h

∆t
= ∇×En+1

h .(4.7)

The fully discrete equations combine conventional Galerkin formulation for (4.6) with
a finite-volume like form of the discrete Faraday’s law (4.7). However, (4.7) is not a
bona-fide finite volume scheme because it is based on functional representation of the
fields rather than a discrete set of values. Methods of this kind for exact sequences
on tetrahedral grids (Whitney elements) were introduced by Bossavit and Verite in
[7]. They considered formulation in H and J in which discrete Ampere’s theorem is
satisfied exactly, while the Faraday’s law holds weakly.

To solve (4.6)-(4.7) we proceed as follows. Because ∇×En+1
h is inW2 the second

equation can be solved exactly for Bn+1
h :

Bn+1
h = Bn

h −∆t∇×En+1
h .

This expression is substituted in (4.6) to obtain an equation in terms of En+1
h :∫

Ω

σEn+1
h · Êh +

∆t
µ

(
∇×En+1

h

)
·
(
∇× Êh

)
dΩ

=
∫

Ω

1
µ
Bn

h ·
(
∇× Êh

)
dΩ +

∫
Γ

(
n×Hb

)
· ÊhdΓ ∀Êh ∈ W1.(4.8)

This scheme has very attractive computational properties. First, it ensures that the
approximate magnetic flux density is divergenceless provided ∇ · B0

h = 0. This can
be accomplished by setting B0

h = ∇ ×A0
h for some potential A0

h ∈ W1. Second, it
allows imposition of Type I and Type II boundary conditions in a simple and efficient
manner. For the formulation considered here, tangential E are essential boundary
conditions and tangential H are natural boundary conditions. Because the degrees of
freedom for E are the circulations of the electric field along the edges, the essential
boundary condition is trivial to satisfy. For example, setting n × E = 0 on Type I
boundaries amounts to setting all coefficients associated with Type I edges to zero.
This situation sharply contrasts with the use of nodal elements where tangential and
normal boundary conditions pose a difficult problem.

5. Fast iterative solvers. Solution of the discrete linear system (4.8) is com-
plicated by the nontrivial discrete kernel corresponding to the curl operator (referred
to as ker(curl ) throughout the rest of the paper). When σ is large this curl operator
is less important and relaxation alone (i.e. without multigrid) is effective. In regions
where σ is small, however, the curl operator dominates and the ker(curl ) can cause
difficulties for iterative methods. Any efficient preconditioner or solution technique
must approximate all scales associated with the operator and so this discrete kernel
must be addressed. In this section, we consider the application of a multigrid method
to (4.8) and the proper treatment of the ker(curl ).

Multigrid methods approximate the partial differential equation (PDE) of interest
on a hierarchy of grids and use solution updates from coarse grids to accelerate the
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convergence on the finest grid. An example multilevel iteration is given in Figure 5.1
to solve

A1u = b.

In Figure 5.1, the Sk()’s are approximate solvers corresponding to pre and post

/* Solve Aku = b (k is current grid level) */
procedure multilevel(Ak, b, u, k)

u = Sk(Ak, b, u);
if ( k 6= Nlevel)

r̂ = PT
k (b−Aku) ;

Âk+1 =

 PT
k AkPk

or
discretized PDE on coarser mesh

v = 0;
multilevel(Âk+1, r̂, v, k + 1);
u = u+ Pkv;
u = Sk(Ak, b, u);

Fig. 5.1. High level multigrid V cycle consisting of ‘Nlevel’ grids to solve A1u = b.

smoothing. These are used to reduce high frequency errors. Once smoothed, errors
can be approximated well on a coarser grid and so the linear system of equations is
projected on to a coarser space via the grid transfer operator Pk. The coarse grid
equations are approximately solved by recursively applying the multigrid idea. The
resulting coarse grid solution is then interpolated and used to correct the fine grid
solution. The two primary multigrid components are the smoothers, Sk()’s, and the
grid transfers, Pk’s. See [11, 23] for more on multigrid methods. Standard multigrid
methods fall into two categories: geometric and algebraic. Geometric algorithms use
a hierarchy of meshes covering the same physical domain. Usually, the grid transfers
correspond to standard interpolation (e.g. linear) between the meshes and the Âk’s
are built by discretizing the PDE on each mesh. In contrast to geometric methods,
algebraic methods use only A1. Coarse grid meshes are constructed automatically by
coarsening the matrix graph associated with A1 and the Pk’s are determined alge-
braically. The primary advantage of algebraic multigrid techniques is that a hierarchy
of meshes and coarse grid discretizations need not be supplied.

When solving (4.8), both the smoother and the coarse grid correction must prop-
erly treat the ker(curl ). This is because ker(curl ) contains both high and low fre-
quency components. We want high frequency ker(curl ) error components reduced by
the smoother and low frequency ker(curl ) error components to be accurately repre-
sented on the next coarser grid (where they will be reduced). Within most geometric
schemes, the coarse grid interpolation correctly approximates the smooth ker(curl ).
Specifically, linear interpolation applied to the discrete coarse grid kernel of the curl
lies within the discrete fine grid kernel of the curl . Hence the primary multigrid task
is the development of a suitable smoother. It is important to notice that the discrete
ker(curl ) exists on all levels and so the smoother on all levels must appropriately ad-
dress these components. Smoothing error components that lie in the space orthogonal
to ker(curl ) operator is relatively straight-forward (e.g., standard Gauss-Seidel meth-
ods are suitable). However, high frequency error components lying in the subspace
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of the ker(curl ) are poorly reduced by standard smoothers when σ is small. This is
because the mass term (

∫
Ω
σEn+1

h · Êh) in (4.8) governs the error within ker(curl ).
Most smoothers, however, do not treat the two terms of Equation (4.8) separately
and thus focus only on the (curl , curl ) term that dominates when σ is small. Ge-
ometric multigrid techniques addressing the smoothing issue have been proposed by
Vassilevski/Wang [27], Hiptmair [16], and Arnold/Falk/Winter [1]. These methods
are discussed in §5.2.

In contrast to geometric multigrid methods, algebraic multigrid techniques must
also determine coarse grid spaces, and these coarse grid spaces must take into account
ker(curl ). For this reason, traditional AMG methods that have been designed for
H1 elliptic systems fail. Reitzinger and Schöberl [20] propose an algebraic method
that specifically addresses equations of the form (4.8). This approach is described in
§5.3. Here, the idea is to preserve the kernel of the discrete curl on coarser spaces.
In particular, when the discrete kernel subspace associated with a coarse grid curl is
interpolated to the fine grid, it lies within the discrete kernel subspace of the fine grid
curl . In this paper, we pursue the Reitzinger/Schöberl approach.

5.1. Discrete Gradient. In order to explain the multigrid method, we need to
discuss the discrete analog of the operator ‘∇×∇×’ (referred to as the (curl , curl )
operator) and its kernel. In continuous space it is well known that

∇× (∇φ) = 0 φ ∈ H0(Ω, curl ).(5.1)

In §3 the De Rham complex was introduced. Recall that the continuous gradient maps
H(Ω, grad) to ker(curl ) ⊂ H(Ω, curl ) and that the continuous gradient ofW0 exactly
corresponds to ker(curl ) inW1 whereW0 andW1 are the finite element subspaces of
H0(Ω, grad) and H0(Ω, curl ), respectively. This implies that a matrix spanning the
discrete ker(curl ) can be constructed one column at a time by taking the gradient
of each basis function in W0. The resulting matrix, T , is a discrete approximation
to the continuous gradient operator and T φ̂ (where φ̂ ∈ W0) is a discrete analogue
of ∇φ given in (5.1). When W0 corresponds to linear basis functions and Ω has
Neumann boundary conditions, T is Nedges × Nnodes where Nedges is the number of
mesh edges and Nnodes is the number of mesh nodes. Column (node) i has ‘+1’ and
‘−1’ entries for each edge (row) that has node i as an endpoint. The sign depends on
the direction imposed on the edge in the edge element discretization. The null space
of the discrete (curl , curl ) operator has dimension Nnodes − 1 and is spanned by T
3. It is important to note that T is developed via an algebraic (actually a matrix
graph) process using just nodal connectivity information. Hence the construction can
be repeated on coarser grids (see §5.4).

5.2. Smoothing. In the context of geometric multigrid, several smoothers have
been proposed for problems in H(Ω,div ) and H(Ω, curl ) [27, 1, 16, 2]. Each of
these smoothers is designed to damp both error components in ker(curl ) and in its
orthogonal complement. One such method is an overlapping Schwarz block smoother
by Arnold, Falk, and Winther [1]. The central idea is to break the grid into overlapping
patches of edges with one patch for each node. Patch i consists of all edges having node
i as an endpoint. Arnold et. al. use block Jacobi or Gauss-Seidel smoothers based on
this decomposition in conjunction with a geometric V cycle multigrid method. They

3When Dirichlet boundary conditions are present, the dimension of the discrete null space is
smaller and is related to the number of node groups (where a group consists of nodes that are
connected together via Dirichlet edges). Additionally, Dirichlet edges are omitted when forming T .
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1: Perform symmetric Gauss-Seidel on A(e)v(e) = f (e).
2: Calculate residual r(e) = f (e) −A(e)v(e).
3: Transfer edge residual to nodes: f (n) = TT r(e).
4: Perform symmetric Gauss-Seidel on TTA(e)Tv(n) = f (n) with zero initial guess.
5: Update edge-based solution: v(e) = v(e) + Tv(n).

Fig. 5.2. Distributed relaxation algorithm applied to A(e) (Vasselevski/Wang, Hiptmair).

prove that the convergence of the resulting algorithm is independent of the number of
mesh points and invariant with respect to the material properties such as conductivity
and permeability.

Another effective smoother can be viewed as a special case of distributed relax-
ation first proposed by Brandt [9]. This form of distributed relaxation was considered
for a divergence equation (arising from mixed finite elements) in 2D by Vassilevski
and Wang [27] and extended to 3D and for Maxwell’s equations by Hiptmair [16]. The
central idea is to explicitly smooth on both ker(curl ) and on its orthogonal comple-
ment. The smoothing algorithm proposed by Hiptmair is given in Figure 5.2. In the
first stage the smoother relaxes on the entire space. When σ is small, the smoother
effectively focuses on error components that are in ker(curl )⊥. In the second stage
the smoother relaxes error components that are in ker(curl ). This is done by us-
ing T and TT to project the system of equations into ker(curl ). In both stages the
distributed relaxation uses one step of symmetric Gauss-Seidel. Using this smoother
in conjunction with a geometric V cycle multigrid algorithm, Hiptmair also proves
convergence independent of the number of mesh points and invariance to material
properties.

5.3. Algebraic Coarsening. In order to address Z-pinch simulations within the
ALEGRA framework, a multigrid linear solver must function with highly irregular un-
structured meshes and highly heterogenous material properties. Schemes restricted
to either regular meshes or to meshes that are refinements of coarser grids are not
desirable. We pursue algebraic multigrid methods as they free application users from
grid hierarchy requirements and free finite element developers from constructing com-
plex operators as a prerequisite for applying multigrid. Unfortunately, however, the
proper handling of the low frequency ker(curl ) subspace is quite complicated within
algebraic methods. In particular, standard algebraic multigrid techniques will fail as
the coarse grid correction will not adequately damp low frequency error components in
ker(curl ). In contrast to algebraic methods, typical geometric schemes automatically
handle the coarse grid ker(curl ) properly.

The key idea to properly capturing the ker(curl ) on coarse grids is to work with
nodal basis functions. In particular, the De Rham complex tells us that the ker(curl )
can be obtained by taking the gradient of nodal basis functions. Thus, if we take
nodal basis functions corresponding to the fine grid mesh, coarsen them, and then
take their discrete gradient we can properly capture the low frequency ker(curl )
space. An overview of the multigrid hierarchy construction follows. A hierarchy of
nodal discretization matrices is created by doing unsmoothed aggregation on a closely
related nodal problem. Using meshes defined by the nodal hierarchy, an edge based
multigrid hierarchy is developed: inter-grid transfer operators, coarse grid discretiza-
tions, and coarse grid discrete gradients. The nodal discretization matrices are then
discarded, and the fine grid edge based problem is solved with CG preconditioned
by AMG using Hiptmair’s implementation of Brandt’s distributed relaxation as the
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smoother on all levels. The main idea is capturing the null space of the (curl , curl )
operator on each of the coarser levels. By choosing an appropriate interpolation op-
erator, Reitzinger and Schöberl [20] show that each coarse level gradient prolongates
to a fine level gradient, i.e., into the null space of the (curl , curl ) operator on the
fine grid. We now discuss the individual steps in more detail.

The first step is to build a multigrid hierarchy for a related PDE problem that is
discretized using nodal piecewise linear FE basis functions. Reitzinger and Schöberl
advocate using the related PDE problem:∫

∆t
µ
∇u · ∇v +

∫
σu · v.(5.2)

Note that the coefficients of this problem are the same as those in (4.8). Building
the multigrid hierarchy consists of two primary steps: coarsening the matrix graph
and building the interpolation operator. Specifically, an undirected graph, G, is con-
structed from the discrete matrix A

(n)
1 associated with (5.2). The number of graph

vertices is equal to the number of matrix equations and an undirected edge between
node i and j is added if and only if the upper triangular matrix entry A

(n)
1 (i, j) is

nonzero. This matrix graph can then be coarsened by any one of several aggregation
techniques. Typically, these schemes work incrementally by creating one new aggre-
gate at a time. A new aggregate is defined by taking an unaggregated root node and
grouping it with its immediate neighbors. To encourage aggregates to be approxi-
mately the same size, several heuristics are applied to ‘clean up’ aggregates and to
choose unaggregated root nodes wisely [26, 25, 24]. Additional heuristics are used
to ignore ‘weak’ matrix couplings (e.g. |a(i, j)| � max{|a(i, i)|, |a(j, j)|}) during the
coarsening phase. Thus, the inclusion of the coefficients σ and ∆t

µ in (5.2) gives the
aggregation scheme the opportunity to detect coefficient jumps when coarsening. The
aggregates can now be thought of as coarse mesh points.

Once the aggregates are created, a grid transfer operator P (n)
1 between the coarse

and fine mesh points is constructed. P (n)
1 corresponds to piecewise constant interpo-

lation and is given by

P
(n)
1 (i, j) =

{
1 if j is in aggregate i
0 otherwise.(5.3)

A “coarse” discretization matrix is then defined by a Galerkin approach:

A
(n)
2 = (P (n)

1 )TA(n)
1 P

(n)
1 .(5.4)

The matrix (5.4) can be thought of as an adjacency matrix and so defines a “coarse”
mesh. This process of unsmoothed aggregation can be applied recursively to build
a hierarchy of grid transfer matrices, P (n)

1 , . . . , P
(n)
k , and discretization matrices,

A
(n)
1 , . . . , A

(n)
k , corresponding to a non-nested mesh hierarchy.

After the nodal mesh hierarchy has been created, the next step is to define a
sequence of edge based interpolation operators, P (e)

1 , . . . , P
(e)
k , based on this hierarchy.

The hierarchy of edge based matrices is the one that is actually used in the multigrid
iterations. If defined properly, the prolongation operator P (e)

k should interpolate the
discrete gradient of coarse grid nodal basis functions into the ker(curl ) on fine grids.
When used with a Galerkin approach, this guarantees that the discrete gradient of
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W0,h ∇ - ker(curl h)

P
(n)
k

6 6

P
(e)
k

W0,H ∇ - ker(curl H)

Fig. 5.3. Commuting diagram for two levels.

coarse grid nodal functions are in the coarse grid approximation to ker(curl ). As
shown in [20], this is accomplished if

∇h(P (n)
k φH) = P

(e)
k (∇HφH).(5.5)

where φH is a coarse level nodal basis function and ∇h (∇H) is the discrete gradient
on the fine (coarse) grid. In effect, proper construction of P (e)

k ensures the diagram in
Figure 5.3 commutes where h and H are used to denote fine and coarse grid spaces.

To define the interpolation operator, we first consider the mapping agg : nodes→
aggregates by

agg(i) =
{
j if i belongs to aggregate j
0 otherwise.

P
(e)
k is a rectangular matrix that maps coarse grid edges, e2 = (i2, j2), to fine grid

edges, e1 = (i1, j1) where P (e)
k (e1, e2) is given by

P
(e)
k (e1, e2) =

 1 if (i2, j2) = (agg(i1),agg(j1))
−1 if (i2, j2) = (agg(j1),agg(i1))
0 otherwise.

(5.6)

Essentially, the prolongator P (e)
k is piecewise constant. A value is interpolated from

a coarse grid edge (i, j) to each fine grid edge that connects the two aggregates cor-
responding to coarse nodes i and j.No values are interpolated to fine edges whose
endpoints are in the same aggregate. The interpolation process is illustrated in Fig-
ure 5.4 for one coarse edge. The fine grid mesh is given by straight solid lines, and
nodal aggregates are denoted by dashed lines. A coarse grid edge that connects two
coarse grid nodes (aggregates) and that has value c is represented by a curving solid
line. Finally, the edge based coarse grid matrix is defined with a Galerkin approach:

A
(e)
k+1 = (P (e)

k )TA(e)
k P

(e)
k .

The key idea is to coarsen the nodal graph and then define nodal basis functions
that are piecewise constants. The discrete gradient of a piecewise constant function
defined over aggregate j is a function ψj that is nonzero only at the interface between
aggregate j and neighboring aggregates. The exact interpolation of ψj is then insured
by (5.6). Alternatively, we can view the algorithm as a way of coarsening the fine
grid null space. We can coarsen the null space by summing columns of T associated
with nodes in an aggregate. Recall that each edge in T contains a ‘+1’ and ‘−1’
entry associated with the edge’s endpoints. Thus, the resulting ‘summed’ null space
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c

c

c

c

Fig. 5.4. Example of edge based interpolation. Coarse grid edge values are interpolated only to
fine edges passing between aggregates.

vector for aggregate j is nonzero only at the interface between aggregate j and other
aggregates. Once coarsened, each null space vector, ψj , is defined as a sum of local
basis functions

ψj =
∑

i=1,...,N

φij

where φij has support only at the interface between aggregates i and j, and N is
the number of neighboring aggregates. These local basis functions essentially form
the columns of P (e)

k . This alternative view of the method is closely related to the
smoothed aggregation multigrid method[26, 25]. In this scheme, the operator’s null
space4 is partitioned over local basis functions associated with aggregates and these
local basis functions form an initial prolongation operator. A key improvement in
smoothed aggregation is that this initial prolongation is enhanced via a smoothing
step. Without this smoothing step it has been shown that the convergence is not
independent of the number of mesh points. Thus, we should not expect the use of
P

(e)
k to yield a multigrid method that converges independent of the number of mesh

points. We are currently experimenting with applying a smoothing step to improve
P

(e)
k . This modification follows standard smoothed aggregation and uses

P̃
(e)
k = (I − αD−1A

(e)
k )P (e)

k(5.7)

where α = 4
3λmax, D = diag(A(e)

k , and λmax is obtained by applying a couple of
eigenvalue iterations to D−1/2A

(e)
k D−1/2. This technique has not been fully imple-

mented and the idea will be pursued in detail in a future paper. More information on
smoothed aggregation can be found in [26, 25].

5.4. Implementation. The edge element algebraic multigrid preconditioner is
implemented in the ML package [22], an AMG package intended for distributed mem-
ory computers. This package requires users to furnish vectors and matrices. Matrices

4Smoothed aggregation is normally applied to problems with a small global null space (e.g. in
elasticity the null space corresponds to six rigid body modes: rotations and translations in three
dimensions). Thus, no coarsening of the null space is needed.
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are supplied by providing size information, a matrix-vector product, and a getrow
function (used to obtain nonzeros and column numbers within a single row). The ML
package runs on distributed memory machines. Parallelism is achieved by assigning
a subset of rows for each matrix to different processors. The ML package already
contains the smoothed aggregation multigrid method[26, 25] and many of the needed
kernels: parallel matrix-matrix multiply, a variety of parallel smoothers (damped
Jacobi, symmetric processor-block Gauss-Seidel 5, block symmetric processor-block
Gauss-Seidel, etc.) and a coarse direct solver. Additionally, the ML package is de-
signed to facilitate the use of other software packages. ML’s existing smoothed aggre-
gation multigrid method (with smoothing disabled) is used to generate the complete
nodal multigrid hierarchy: P

(n)
k ’s and A

(n)
k ’s. The fine grid nodal matrix, A(n)

1 , is
a discrete Laplace operator and is constructed by setting A(n)

1 (i, j) to ‘−1’ for each
(i, j) corresponding to a mesh edge. The matrix diagonal is then chosen so that the
sum of matrix entries within a row is zero. In the future, we will replace the discrete
Laplacian with an approximation to (5.2) so that our aggregation scheme can detect
coefficient jumps. The coarse grid A

(n)
k ’s are then used to generate the coarse grid

Tk’s. Specifically, on level k > 1 each undirected edge A(n)
k (i, j) is assigned a unique

number: 1 ≤ ẽ ≤ Nedges where Nedges is the total number of undirected edges. Then,

Tk(ẽ, i) = 1 (or − 1 if j > i)
Tk(ẽ, j) = −1 (or 1 if j > i).

Finally, the edge-element grid transfers, P (e)
k ’s, are obtained by performing a matrix

triple product

P̂
(e)
k = TkP

(n)
k TT

k+1(5.8)

and culling entries:

P
(e)
k (i, j) =


1 if P̂ (e)

k (i, j) = 2
−1 if P̂ (e)

k (i, j) = −2
0 otherwise

.(5.9)

This corresponds exactly to (5.6) and allowed us to implement the P (e)
k construction

quickly via existing ML kernels.
Most of the parallel issues are handled by ML’s existing parallel kernels. Two

exceptions are the formulation of the coarse grid discrete gradients and a matrix free
version of Hiptmair’s smoother. Both required new parallel code. The distributed re-
laxation algorithm (5.2) is implemented in two different ways. In one implementation,
the matrix products TT

k A
(e)
k Tk are calculated in a preprocessing step for each level.

This allows the use of ML’s fast parallel matrix kernels. In the other implementation,
the smoother application is matrix free [20]. The nodal space projection and update
to the edge based solution is done node by node, so that the triple matrix product is
never formed.

6. Numerical studies. To deliver usable computations for the Z-pinch sim-
ulations, the fidelity and scalability of the solvers must be tested for realistic test

5Processor-block means that each processor performs Gauss-Seidel locally and uses off-processor
information corresponding to the previous iteration.
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problems. In particular the conductivity may vary over many orders of magnitude
and it is important to understand how this will affect not only the representation of
the solution but also the requirements for iterative solution technology. The linear
system (4.8) can be represented in matrix form as[

σM +
∆t
µ
K

]
x = b.(6.1)

The scaling of the M and K matrices with respect to the element length scale, h,
goes as h3 and h respectively. Thus we obtain[

σh3M̂ +
∆t
µ
hK̂

]
x = b(6.2)

where M̂ and K̂ contain entries of O(1) size. Let c represent a typical sound speed
or velocity in the problem of interest. We expect in general for the time step to be
limited by the hydrodynamic Courant scales so that ∆t ∼ h/c. Thus we can define
the mesh magnetic Reynolds number

Rm = µσch(6.3)

If Rm is large then the linear system is mass matrix dominated and diffusion times
are slower than hydrodynamic propagation times. If Rm is small then we are in
a diffusion dominated region. It is possible to model regions containing no mass
using a very small pseudo conductivity in order to propagate the field within the
magnetoquasistatic approximation of magnetohydrodynamics which implies in MKS
units that ε � σ∆t where the permittivity of free space is ε ≈ 8.85 · 10−12. We
have µ ∼ 4π · 10−7 and we estimate roughly σ ∼ 1. → σ ∼ 106, c ∼ 104 and for
large problems h ∼ 10−4. This gives Rm ∼ 1 for regions with large conductivities.
However, σ may drop by several orders of magnitude in material state transitions
from solid through melt before returning to high values for high temperature plasma
states. Void conductivity values should be lower than any material state values and
we estimate values from 103 to 1. may be utilized. Thus the stiffness matrix will
dominate by factors of 103 to 106 respectively in these void regions. Such low Rm

states drive the requirement for an implicit magnetic diffusion solution methodology.

6.1. Physics fidelity studies. To validate the approach described above we
consider a two-dimensional model problem obtained from the eddy current equations
(2.3)-(2.6) by the ansatz

H = Hzk and E = Exi + Eyj.

The main objective is to verify correct initial transient phase and the steady state
limit. The region Ω is a rectangle that is 0.003mm wide and 0.004mm high. The low
conductivity region occupies a slot in the middle of the rectangle that is 0.003mm
deep and 0.001mm wide; see Fig.6.1. The material permeability is

µ = 4π × 10−7

in the whole region, while conductivity is a discontinuous function given by

σ =
{

1 if 0.001 < x < 0.002 and 0.001 < y < 0.004
63.3× 106 otherwise
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Fig. 6.1. Model problem in two-dimensions

The fields in the model problem are driven by a combination of Type I and Type II
boundary conditions. Type II boundary consists of the center slot on the top side,
the bottom side and the left and right sides of Ω. Type I boundary is the complement
of Type II and contains the two segments on the left and right of the center slot on
the top side; see Fig. 6.1. On Type I we prescribe homogeneous tangential E:

n×E = 0 on y = 0.004 and 0 < x < 0.001 or 0.002 < x < 0.003.

The boundary condition on Type II boundaries is natural for the weak equations.
The tangential magnetic field is set to one at the center slot and zero elsewhere:

n×H =
{

1 on 0.001 < x < 0.002, y = 0.004
0 all other parts of Type II boundary

The fully discrete magnetic diffusion problem in two-dimensions is developed accord-
ing to §4. The spatial discretization is effected using the 2D complex from §3.3. on
uniform grids. Specifically, we employ grids consisting of 30× 30 rectangles. Because
the goal of the experiments in this section is to validate the discretization qualitatively
the linear system (6.1) is fully assembled and solved “exactly” using banded Chlolesky
factorization routine.
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Fig. 6.2. Electric field and magnetic flux density: initial and steady states.

Numerical simulations were run for ∆t = 5 × 10−6sec. and ∆t = 2.5 × 10−6sec.
In both cases steady state was reached at t ≈ 50 × 10−6sec. This diffusion time
is consistent with the prescribed material parameters. Figure 6.2 shows the initial
electric field E and magnetic flux density B and their steady states obtained after 20
time steps with ∆t = 2.5× 10−6sec.

6.2. Scalability Studies. To demonstrate the performance of the edge-element
based algebraic multigrid method, two test problems are solved within the ALEGRA
framework. In all of our results, the notation V(k, k) (or W(k, k)) indicates a multigrid
V cycle (or W cycle) with k pre and post Hiptmair smoothing steps on each level. It is
important to note that one multigrid cycle is used as a preconditioner to a conjugate
gradient solver. Thus, the iteration counts correspond to conjugate gradient iterations.

The first test problem corresponds to a three-dimensional box on the unit cube
(i.e. Ω = [0, 1]3) with Neumann boundary conditions on the surface. Different exper-
iments are performed by varying the conductivity (which is constant throughout the
entire region) and by varying the mesh spacing. The conductivity is a weighting factor
on the mass term of Equation (4.8). Hence, decreasing the conductivity emphasizes
the (curl , curl ) term and makes the problem harder to solve.

Table 6.1 illustrates the results corresponding to the first linear solve for a 32 ×
32× 32 mesh. The initial guess is identically zero and the right hand side is random.
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iterations
conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 15 11 9 13 10 8
10 26 19 16 22 17 14
1 29 22 18 25 19 16

Table 6.1
Medium cube problem iterations.

Iterations
Conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 27 19 15 22 16 13
10 48 33 27 38 25 22
1 52 37 30 44 30 25

Table 6.2
Large cube problem iterations.

Convergence is declared when ||r||2/||b||2 ≤ 10−11. In Table 6.2, a cube problem
on a 64 × 64 × 64 mesh is solved using the same initial guess and right hand side.
¿From the tables, it is clear that while the number of iterations initially grows with
reduced conductivity, it does level off. That is, the convergence of the method can be
experimentally bounded independently of the conductivity. Unfortunately, however,
there is growth in the number of iterations as the grid is refined. (See Table 6.3.)
This is to be expected as discussed in §5. The growth observed in the W cycle
iterations is somewhat less than in the corresponding V cycle, especially for smaller
conductivity (stiffer problem). Note that the stopping tolerance is quite small, which
tends to emphasize this growth in iterations. For example, if we had required only
||r||2/||b||2 ≤ 10−6 the iteration counts for a V(2,2) cycle for the 32× 32× 32 and the
64× 64× 64 meshes would be 9 and 14, respectively, a growth of 1.55. While there is
growth, the symmetric Gauss-Seidel preconditioned method required 614 iterations as
compared to no more than 37 for the multigrid runs. We are currently experimenting
with techniques to improve the scalability of the multigrid technique by smoothing
the interpolation operator as discussed in §5. While preliminary, encouraging results
have been obtained for a model two dimensional problem:

∇×∇× u+ σu = f

on the unit square with Dirichlet boundary conditions. This problem is discretized
with edge elements on a regular mesh with σ = 1000 and f taken as a random vector.
Table 6.4 illustrate iteration counts required to reduce the initial residual by 1010

using a zero initial guess and defining the P̃ (e)
k ’s via (5.7). While growth persists, it is

much less significant for the smoothed interpolant which converges three times faster
than the standard interpolant. This ‘smoothing’ technique will be pursued in a future
paper.

Our second test problem corresponds to a more realistic model and is run in serial
with two different mesh sizes. Figure 6.3 illustrates the solution after a single time step
on a three dimensional domain consisting of a cylinder of highly conductive material
with a cylindrical slot modeled by a very low conductivity region. The first test prob-
lem is meshed with 44, 544 hexahedral elements resulting in 46, 761 nodes and 130, 008
edges. This mesh is approximately 8 times larger than the one shown in Figure 6.3.
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Growth in Iterations
Conductivity V(1,1) V(2,2) V(3,3) W(1,1) W(2,2) W(3,3)

100 1.80 1.72 1.66 1.69 1.60 1.62
10 1.85 1.73 1.68 1.73 1.47 1.57
1 1.79 1.68 1.66 1.76 1.57 1.56

Table 6.3
Growth in iteration count.

Grid Size P (e) P̃ (e)

25× 25 24 14
50× 50 42 19

100× 100 76 27
150× 150 93 30

Table 6.4
V(1,1) iteration counts using both the standard and ‘smoothed’ interpolation operators.

A sharp jump in the conductivity occurs between the slot and the material regions.
Specifically, the conductivity of the outer region is 6.33× 107 while the conductivity
of the inner “void” region is given the small value 1.0. Homogeneous electric Dirichlet
boundary conditions are applied on the center and outside top surfaces. Homogeneous
Neumann boundary conditions are applied to the outer and bottom surfaces and an
inhomogeneous azimuthal tangential field condition is applied on the top middle ring
surface. For the time step chosen, the field fills the slot immediately. This problem is
intended to be a first approximation to the Z-pinch apparatus described in §1. In the
second run the mesh contains 116, 473 nodes and 345, 768 edges. Table 6.5 illustrates
the results for the first linear solve for each problem size. The initial guess is the zero
vector, and the stopping criteria is ||r||2/||b||2 ≤ 10−8. Both the V(1,1) and W(2,2)
converge in a small number of iterations. Once again, there is modest growth in the
number of iterations. By comparision, a conjugate gradient with symmetric Gauss-
Seidel preconditioning requires 684 iterations for the smaller problem. Given that this
problem is still relatively small, it is unlikely that the Gauss-Seidel preconditioning
will lead to convergence on significantly larger problems.

At this time the parallel code is still being optimized. Given the promising serial
results, we expect that the parallel version should also perform reasonably well. The
major change is the use of processor-block Gauss-Seidel within the Hiptmair smoother.
(See the footnote in §5.4.)

7. Conclusions. We have described an edge and face finite element discretiza-
tion for the eddy current equations on arbitrary quadrilateral and hexahedral meshes
in heterogeneous media and described a particular implementation of an algebraic
multigrid technique appropriate to this discretization. Numerical results are given
indicating both the fidelity of the representation and the efficacy of the algebraic
multigrid methodology.

8. Acknowledgements. Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the United States Department of
Energy under contract DE-AC04-94AL85000.
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Fig. 6.3. Cutaway of axial slot showing Y component of magnetic flux density after one time
step and streamlines of current density (thin) and magnetic flux density (thick).

Iterations
Problem Size V(1,1) V(2,2) W(1,1) W(2,2)

130, 008 42 20 35 18
345, 768 54 28 42 22

Table 6.5
Slot problem iterations.
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