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ABSTRACT

Motivation:Methods available for the inference of genetic regulatory

networks strive to produce a single network, usually by optimizing

some quantity to fit the experimental observations. In this article

we investigate the possibility that multiple networks can be inferred,

all resulting in similar dynamics. This idea is motivated by theore-

tical work which suggests that biological networks are robust

and adaptable to change, and that the overall behavior of a genetic

regulatory network might be captured in terms of dynamical basins

of attraction.

Results: We have developed and implemented a method for

inferring genetic regulatory networks for time series microarray

data. Our method first clusters and discretizes the gene expres-

sion data using k-means and support vector regression. We then

enumerate Boolean activation–inhibition networks to match the

discretized data. Finally, the dynamics of the Boolean networks

are examined. We have tested our method on two immunology

microarray datasets: an IL-2-stimulated T cell response dataset and

a LPS-stimulated macrophage response dataset. In both cases, we

discovered that many networks matched the data, and that most of

these networks had similar dynamics.

Contact: jfaulon@sandia.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Modeling and inferring genetic regulatory networks are impor-
tant problems in systems biology. Accordingly, there are numer-

ous computational approaches to these problems, including
partial differential equations, ordinary differential equations,
Bayesian networks and Boolean networks (de Jong, 2002;
Smolen et al., 2000). Less common approaches include Petri

nets (Goss and Peccoud, 1998) and matrix decomposition
methods (Alter and Golub, 2005; Liao et al., 2003).

Of these different approaches, one of the simplest methods is

the use of Boolean networks to infer genetic regulatory systems

from time series gene expression data. Modeling genetic

regulatory networks was first proposed in Kauffman (1969,

1993). Later Boolean networks were proposed to infer genetic

regulatory systems from time series gene expression data

(Akutsu et al., 2000; Liang et al., 1998). More recently,

probabilistic Boolean networks have been proposed to infer

genetic networks (Shmulevich et al., 2002a,b). Also related to

probabilistic Boolean networks are dynamic Bayesian networks

(Friedman et al., 2000; Lahdesmaki et al., 2006; Murphy and

Mian, 1999).
Once a network has been inferred, the next step is to con-

sider its dynamical properties. Huang (1999) suggests that

Boolean network dynamics can be used to understand cellular

states such as proliferation, differentiation and apoptosis.

By analyzing the attractor basins of a Boolean network,

it may be possible to determine its cellular functions under

different initial conditions. In this article, we propose a method

for the investigation of these claims using time series gene

expression data.

Although the probabilistic Boolean and dynamic Bayesian

methods are both well founded theoretically, they are also

computationally complex (Ching et al., 2005; Zou and Conzen,

2005). Furthermore, both methods produce a single most

probable network. This network is in reality one of many

possible representations. This fact makes the interpretation of

the network dynamics difficult. In the best case, Monte Carlo

approaches can be used with probabilistic Boolean networks to

approximate dynamics (Shmulevich et al., 2003). There are also

theoretical results (Brun et al., 2005).

In our investigation of network dynamics inferred from time

series gene expression data, we do not employ either proba-

bilistic Boolean networks or dynamic Bayesian networks.

Instead, we consider the use of dynamics in combination with

the simpler qualitative Boolean methods suggested in Akutsu

et al. (2000). Unlike Akutsu et al. (2000), we do not attempt to

obtain only a single network to match the data. We consider all

possible networks that match the data and group them by

attractor basin. We find that while a great many networks can*To whom correspondence should be addressed.
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match a given dataset, a very large percentage of these networks

fall into the same attractor basins, suggesting that many of

the networks are equally valid. Further, we find that many of

these networks have locally consistent substructures. These

results agree with the general intuition that biological systems

are modular, robust and can often function adequately despite

extreme change (Wagner, 2005).

In terms of Bayesian and dynamic Bayesian networks, our

approach is most similar to the work in Friedman and Koller

(2003) and Segal et al. (2005). In Segal et al. (2005), data points

are grouped as nodes in a Bayesian network in order to obtain

networks of modules and in Friedman and Koller (2003)

a Bayesian approach is used to discover multiple Bayesian

networks matching a given dataset. The work in Segal et al.

(2005) is also applied to microarray data. These methods differ

from our approach in that they do not take into account dyna-

mics and attractors, and that they model networks as directed

acyclic graphs, thus prohibiting feedback loops. Nevertheless, if

the two methods were combined with dynamic Bayesian

networks (Murphy and Mian, 1999; Zou and Conzen, 2005),

the result would be very similar to the approach we have taken.
In the following sections, we describe our method and the

results of the method applied to two time series gene expression

datasets. In Section 2, we describe the datasets and normal-

ization procedures, our method for clustering and discretizing

the datasets and our inference algorithms. In Section 3, we

apply our method to an interleukin (IL-2)-stimulated T cell

immune response dataset and a LPS-stimulated macrophage

response dataset. In the Section 4, we summarize the

advantages and disadvantages of using dynamics to select

Boolean models inferred from time series gene expression data.

2 METHODS

2.1 Datasets and normalization

We used two gene expression time series datasets to benchmark our

approach. The first dataset is a time series gene expression dataset taken

from an IL-2-stimulated immune response experiment performed at

Sandia National Laboratories using arrays hybridized by the Stanford

PAN Biotechnology Facility. The experiment was performed using

a murine T cell line called CTLL-2. Mouse CTLL-2 cells were cultured

without IL-2 (IL-2 starvation). Cells were then collected (0 h, no IL-2

stimulation) immediately before IL-2 was added (IL-2 stimulation).

Cells were further collected at 11 time points: 15, 30mins, 1, 2, 4, 6, 8,

10, 12, 16 and 24 h, all after IL-2 stimulation. Three replicates were

done for each time point.

Affymetrix GeneChip Mouse Genome 430 2.0 Arrays were used for

the gene expression experiments. This array provides complete coverage

of the transcribed mouse genome, with 45 000 probe sets to analyze

the expression level of over 39 000 transcripts from over 34 000

well-characterized mouse genes. Target hybridization was processed

following the manufacturer’s recommendation using the instrument

operated by Affymetrix GeneChip Operating Software (GCOS) version

1.3 and Microarray Suite version 5.1 (MAS 5.1). The fluorescent

intensity of each probe was quantified using MAS 5.1 and GCOS 1.3.

This software makes a detection call (present [P], marginal [M]

or absent [A]) for each gene or probe set. This call is based on

the consistency of the performance of the individual probe pairs,

the hybridization above background and the signal-to-noise ratio.

Two-way comparisons of the microarray data were also performed

using GCOS 1.3. Specifically, changes in gene expression between the

control cells (time point 0 h, no IL-2 stimulation) and IL-2 stimulated

cells were evaluated at each time point. These comparisons provided

data including the signal log ratio (fold change presented in logarithmic

form) and the ‘change call’ (increased [I], decreased [D], marginally

increased [MI], marginally decreased [MD] or no change [NC]) for each

gene being interrogated.

To identify genes that exhibited differences in expression between the

control cells and IL-2-stimulated cells, the datasets were trimmed using

the following inclusion criteria. For a probe set to be included in this

trimmed dataset, it had to display in all the three replicates: (1) a change

call other than no change (NC), (2) the same trend of change call

(I, increase, D, decrease), (3) a present call (P) and/or signal intensity

�100 and (4) at least a 1.5-fold difference in expression between the

two compared conditions. The trimmed dataset was log normalized and

mean subtracted.

The second dataset was a LPS-stimulated macrophage response

dataset downloaded from the cell signaling gateway at http://

www.signaling-gateway.org. In this dataset, RAW264.7 murine macro-

phage cell lines were stimulated by LPS. The response was measured

using microarrays. The measurements were made at six time points

(1, 2, 4, 8, 16, and 32 hs) with six replicates from each time point.

Normalization consisted of first removing all genes without names as

well as fiducials. Replicates were treated as new experiments, resulting

in additional virtual genes. We removed virtual genes with missing

data and screened out genes with expression 50.05 SD over time.

After clustering the resulting dataset (as described in the following

section), the virtual genes were mapped back to the original genes by

a voting method. In this method, each replicate ‘votes’ for the cluster

to which it belongs. The original gene then belongs to the cluster with

the most votes. Ties are broken by weighting votes according to the

distance of the replicates to their cluster centers.

2.2 Clustering and discretization

After normalization, we clustered the time series microarray data.

We clustered the data because many co-regulated genes are indis-

tinguishable when they are discretized. Clustering the microarray data

also simplified the task of network inference by reducing the problem

size. Finally, the clustering resulted in networks of gene groups, instead

of actual genes. The gene groups, which we call meta-genes, made

the biological analysis and interpretation of the inferred networks

more tractable.

There are a variety of algorithms available for clustering microarray

data, including k-means, hierarchical clustering (Eisen et al., 1998),

self-organizing maps (SOMs) (Tamayo et al., 1999), and biclustering

(Getz et al., 2000). We chose k-means because it was the simplest

method that provided a partition of our data into groups. We also

considered the use of hierarchical clustering and SOMs (as discussed

further in the online supplement), but avoided them because they are

both heavily oriented towards discovering relations between clusters for

visualization, unnecessary for our purposes. We did not use biclustering

because it partitions both rows and columns of a matrix and is therefore

inappropriate (without modification) for time series data (Zhang et al.,

2005). A comparison of k-means with hierarchical clustering and SOMs

using the IL-2 dataset can be found in the online supplement.

To decide how many clusters should be produced (the value of k), we

developed a measure of internal consistency. Our measure is defined for

a given partition of the dataset using the singular value decomposition

(SVD) (Trefethen and Bau, 1997). To define internal consistency,

suppose we are given k and we compute a k-means partition of our

m� n dataset X, where m is the number of time points and n is the

number of genes. For the jth cluster ( j¼ 1, . . . , k) we have a matrix Xj

of microarray measurements, where the rows are time points and the

columns are genes, so that Xj is a m� gj matrix, where gj is the number
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of genes in the jth cluster. Using the SVD, we decompose Xj ¼ UjSjV
T
j ,

where Uj and Vj are orthogonal matrices and Sj is a diagonal matrix

whose entries describe the importance of the columns of Uj and Vj. The

matrix SjV
T
j ¼ UT

j Xj contains the projections of the columns (time

courses) of Xj onto the basis Uj. The entries of Sj (singular values) give

the relative importance of the columns of Uj. If the first entry of Sj is

much larger than the second entry then we know that most of the

information in the columns of Xj is captured by a single dimension.

We thus define the internal consistency of the jth cluster to be the ratio

of the first and second singular values in Sj. This is a measure of

the correlation between all of the time courses in the jth cluster.

The internal consistency also provides a measure of how well a single

dimension can describe all the time courses. For the problem of

network inference, we want each of our clusters to have a high internal

consistency. We can decide how many clusters we should use by

comparing the average internal consistency of different partitions of the

dataset (different values of k) and choosing the clustering with the best

average internal consistency.

Given an appropriate set of meta-genes, we next discretized the meta-

gene expression levels. Such a discretization is necessary because we use

a Boolean network inference algorithm. Our discretization is accom-

plished in two steps. First, support vector regression (SVR) (Smola and

Scholkpof, 1998) is used to provide a continuous, smooth representa-

tion of the 10 genes closest to the cluster center in a given group. This

type of regression is performed by solving a quadratic programming

problem and has two parameters: an " width and a kernel function. The

" width is used to encapsulate the curves in a given meta-gene group

within an "-tube, and the kernel function is used to fit different types of

curves (e.g. linear or non-linear). The end result of SVR encapsulates

the time courses in a meta-gene group within an "-tube centered around

a smooth curve, where the curve is a linear combination of kernel

functions. For this work, we used Gaussian kernels with a width �¼ 1,

and we chose " to be one and a half times the average standard

deviation of the values at each time point.

The second step in our discretization consists of thresholding the

curve obtained by the SVR. Assuming that the meta-gene group is well

represented by the SVR curve, we can produce a discrete version of the

meta-gene by thresholding the curve against its average value: a higher

than average meta-gene expression is given a value of 1 (up-regulated),

while a lower than average meta-gene expression value is given a value

of 0 (down-regulated).

2.3 Boolean inference and network dynamics

After the data has been clustered and discretized, we then infer and

analyze the regulatory network. Our algorithms for network infer-

ence are similar to the algorithms presented in Akutsu et al. (2000).

We incorporate potential errors (mismatches), we limit the number

of possible inputs to a Boolean function and we restrict our output to

activation or inhibition Boolean functions. Our algorithms are different

from the algorithms in Akutsu et al. (2000) in that we do not place any

restrictions on the amount of data necessary to perform an inference.

Instead of requiring enough data to infer a unique network, we consider

all possible networks matching the data. Pseudo-code for our

algorithms (denoted using ALL_CAPS in this section), as well as

additional explanation, can be found in the online supplement.

Our algorithms count, sample, enumerate, identify attractors and

simulate the dynamics of all the possible networks matching a given set

of discretized expression profiles. Networks are counted, sampled and

enumerated at the node (meta-gene) level. For every node v, we deter-

mine all the possible sets of nodes that might control the expression

profile of v. Expression profiles are given over time and the

algorithms can accept several time courses corresponding to different

initial conditions. These initial conditions can be different stimuli,

or various knockout experiments.

The algorithms take as input a set of n nodes V¼ {v1, v2,. . .,vn} corres-

ponding to themeta-genes and a set of discretized expressionprofiles. For

any given profile in the set, the expression of every node is specified over

the time course, although different profiles are not required to have the

same time course length. To avoid constructing redundant networks,

we require that different nodes should have different profiles, but this

requirement is not necessary to run the algorithms.

The basic step used by the algorithms is INFER_FUNCTION,

a routine that determines if a set of nodes v1, v2,. . .,vq with q� n can

explain the expression profile of a given node vi. INFER_FUNCTION

returns the activation–inhibition Boolean function by which v1, v2,. . .,vq
control the expression of vi. An activation–inhibition function is a

Boolean function of the form v(t)¼ (v1(t) OR v2(t) OR . . .) AND NOT

(vj(t) OR vjþ1(t) OR . . .), where v1(t), v2(t), . . . are activators and vj(t),

vjþ1(t), . . . are inhibitors. As an example, suppose we are given a time

series with six time points for three genes v1, v2 and v3, as shown in

Table 1, where we write 1 when the gene is up-regulated and 0 when

down-regulated. The Boolean function for v3 in terms of v1 and v2 as

returned by INFER_FUNCTION is given by v3(tþ 1)¼ v1(t) AND NOT

v2(t). In other words, INFER_FUNCTION finds that v3 is activated by v1
and inhibited by v2.

Using INFER_FUNCTION, we infer Boolean networks by processing

each node in sequence. This is done using the INFER_NETWORKS

routine, which returns possible connections within a network and the

associated Boolean functions for each node vi. To count the number of

possible networks matching a given set of expression profiles we use

COUNT_NETWORKS. COUNT_ NETWORKS runs INFER_NETWORKS and

computes the product of the number of possible inputs for each node.

We have also coded SAMPLE_NETWORKS, which first runs

INFER_NETWORKS and then for each node selects at random one of its

possible inputs. Finally, to enumerate all networks, we use

ENUMERATE_NETWORKS. ENUMERATE_NETWORKS first runs

INFER_NETWORKS and then lists and prints all possible inputs for

each node.

Using INFER_NETWORKS, SAMPLE_NETWORKS and

ENUMERATE_NETWORKS, we can infer networks using sampling and

enumeration. In addition, we can explore the dynamics of the inferred

networks. The dynamics of these networks are used to (1) verify that the

expression profiles given as input can indeed be reproduced by these

inferred networks, (2) explore the dynamics beyond the times series

that were provided as input and (3) predict expression profiles under

different initial conditions. Of particular interest is computing the

steady state or equilibrium dynamics of the networks (Huang, 1999).

These steady states are called attractors (Kauffman, 1969). An attractor

is a cyclic pattern of expression that all networks will eventually exhibit

(due to the finite nature of Boolean networks).

We use two additional routines to locate attractors. First we use

RUN_NETWORK, which takes as input an inferred network along with

Table 1. An example of discrete time courses with three genes and six

time points. Zero (light grey) denotes down-regulation and 1 (dark

grey) denotes up-regulation. In this example, we see that v3(tþ 1) ¼ v1(t)

AND NOT v2(t). We say that v1 activates v3 and v2 inhibits v3

Time

1 2 3 4 5 6

Gene v1 0 0 1 1 0 0

v2 1 0 0 1 1 0

v3 1 0 0 1 0 0

S.Martin et al.
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initial conditions and returns the resulting expression of the genes up to

some time T. Then we use ATTRACTOR to find attractors. ATTRACTOR

takes as input expression profiles given up to time T, and identifies the

time step t1 that an attractor is found.

To finish this section, we briefly remark on the computational

complexity of our inference algorithms. Recall that n is the number of

nodes in the networks and q is the maximum number of inputs to a

node. While q is in theory unbounded and can be equal to n, we restrict

q to be no greater than 5. As justification for this choice, we note that

gene regulatory networks follow a power law with exponent greater

than 2 (Basso et al., 2005), so that q should not be greater than 5 for

5100 nodes. In addition, our experiences inferring parsimonious

networks (minimum number of edges) indicates that q never exceeds 3.

Let P be the number of expression profiles and T be the number of

time points. We assume that P and T are constant independent of n.

INFER_FUNCTION runs in O(PT) time steps. INFER_NETWORKS

runs in O(nPTnþ nPTn2þ nPTn3þ �þnPTnq)¼O(nqþ1) steps.

COUNT_NETWORKS and SAMPLE_NETWORKS both run in O(n) steps,

while ENUMERATE_NETWORKS runs in O(nI) where I is the number of

possible input vectors (i.e. the number of solutions). Note that this

number can be exponential in n, and thus ENUMERATE_NETWORKS can

run for an exponential time and can output an exponential number of

solutions. Both RUN_NETWORK and ATTRACTOR run in O(nT) steps.

Although some of these routines are computationally complex (most

notably INFER_ NETWORKS), the run time of the algorithms can be

controlled by using a smaller number k of meta-genes; using a smaller

number q of inputs for the Boolean functions; using

SAMPLE_NETWORKS instead of ENUMERATE_NETWORKS; and/or

using a shorter maximum time T when simulating the networks.

3 RESULTS

3.1 IL-2-stimulated T cell immune response

The T cell immune response dataset consisted of mouse micro-
arrays with 45 119 probes per array taken at 12 time points.

Normalization reduced the datasets to 5085 probes. After

normalization, we performed clustering and discretization.

We first computed the appropriate value of k to use in k-

means. In Figure 1, we show the value of the mean internal

consistency versus k for k¼ 2,. . .,40. The internal consistency

increases until k is �25 then flattens out. We chose a small local

peak at k¼ 23. Using k-means with k¼ 23, we obtained the

partition of the full dataset shown in Figure 2.

Using the 23 clusters obtained by k-means, we computed the

SVR representations of the meta-genes. The SVR representa-

tions were computed using the 10 time courses closest to the
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Fig. 2. Profiles of the 23 meta-genes used in our analysis.
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immune response dataset. Based on this curve we selected k¼ 23.
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cluster centers and were discretized by comparison with the
average expression value of the representations. An example
of the SVR representation for cluster 6 (Bcl3) is shown in
Figure 3.

The discretization resulted in 23 discrete profiles, which were
further reduced to 12 unique profiles. These 12 profiles are
shown in Table 2. We also performed a comparison of our final

discretization with discretizations that we would have obtained
using alternate clustering algorithms (hierarchical clustering
and SOMs). This comparison, which can be found in the online
supplement, revealed that for k¼ 23 there was480% agreement

between discretization regardless of clustering algorithm.
We used the discrete profiles shown in Table 2 as input

to the network inference algorithms. These profiles grouped

naturally into two distinct sets. The first set consisted of
measurements made prior to 1 h and represented the IL-2
starvation state. The second set consisted of measurements

made after 1 h and represented the IL-2-stimulated state. These
two groups (IL-2 starved and IL-2 stimulated) were separated
and used as input (simultaneously) to INFER_NETWORKS and

ENUMERATE_NETWORKS. The inference algorithms discovered
a total of 161 558 networks.
The dynamics of the 161 558 networks were analyzed using

the RUN_NETWORK and ATTRACTOR routines. Attractors were

determined for the two initial conditions corresponding to IL-2
starved and IL-2 stimulated. It was found that 160 657 (99.4%)
of these networks had a single fixed point steady-state dynamic

for the IL-2-stimulated initial conditions. In the case of IL-2
stimulation gene expression should fluctuate as IL-2 stimulated
T cells proliferate (Nelson and Willerford, 1998). We therefore

discarded these 160 657 networks, leaving 901 (0.6%) networks
to be interpreted. These 901 networks had the same steady-state
dynamic, that dynamic consisting of three time points, shown in
Table 3.

An example illustrating our model correctly describing the
steady-state fluctuation of genes due to IL-2 stimulation is
given by the cyclin-dependent kinase inhibitor p27 (AFFX ID

1419497_at). This inhibitor has been shown experimentally to
fluctuate during proliferation of endothelial cells (Huang and
Ingber, 2000). Consistent with these results, we found p27 to

fluctuate at steady state with cluster E-Stat5b (Table 3).
The 901 networks were analyzed for similarities, yielding the

consensus network shown in Figure 4. The viable networks
Table 2. Twelve unique discretized profiles from the 23 meta-genes in

Figure 2 (dark grey is up-regulated and light grey is down-regulated).

Each profile is labeled with a representative gene in the cluster

preceeded by E, I or L. E stands for early genes up-regulated after 1 h,

I stands for intermediate genes up-regulated after 2 hs and L stands for

late genes up-regulated after 8 hs. Further, the time series is divided into

two groups: IL-2 starved (before 1 h) and IL-2 stimulated (after 1 h)

IL-2 starved IL-2 stimulated

Time (h) Time (h)

Name 0 0.25 0.5 1 2 4 6 8 10 12 16 24

L-Mybl2

L-Mcmd

I-Rpo1-Hnr

I-Bcl3

I-Myc

L-Foxm1

L-Nsbp1

E-Cdkn2c

E-Stat5b

E-Stat1-6

E-Stat5a

E-Jun-Fos
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Fig. 3. Smoothing and discretization of expression profiles in cluster 6

(Bcl3) using SVR. The solid black curve was obtained using SVR, the

dotted curves show the "-tube, the blue line gives the mean value of the

SVR and the red curve gives the final discretization.

Table 3. Steady-state dynamics for 0.6% of the inferred networks (dark

grey up-regulated, light grey down-regulated). For the IL-2-stimulated

condition, the steady-state dynamic follows a three-step cycle (t1, t2, t3)

IL-2 stimulated Attractor

Time (h) Time

Name 1 2 4 6 8 10 12 16 24 t1 t2 t3 t1

L-Mybl2

L-Mcmd

I-Rpo1-Hnr

I-Bcl3

I-Myc

L-Foxm1

L-Nsbp1

E-Cdkn2c

E-Stat5b

E-Stat1-6

E-Stat5a

E-Jun-Fos
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inferred from the IL-2 time series data and depicted in Figure 4
reveal that (in general) early genes (E) activate other early genes
and late genes (L); intermediate genes (I) activate late genes and

inhibit early genes; early genes inhibited by intermediate genes
can be up-regulated when the intermediate genes are down-
regulated; late genes activate other late genes and inhibit early
and intermediate genes; and early and intermediate genes

inhibited by late genes can be up-regulated when late genes are
down-regulated.

3.2 LPS-stimulated macrophage response

The LPS-stimulated macrophage dataset consisted of 15 142
genes measured over six time steps. Using replicates we
obtained 90 852 virtual genes. Removing virtual genes with
missing values and50.05 SD in expression resulted in 60 831

virtual genes, corresponding to 14 779 actual genes, or 93.3% of
the original 15 142 genes. Using the 60 831 virtual genes, we
obtained 23 meta-genes (again by the internal consistency

measure). These 23 meta-genes were smoothed and discretized
to obtain 15 unique discrete expression profiles given in
Table 4. The virtual genes were mapped back to the actual

genes before they were assigned to the 15 profiles as described
in Section 2.1.
We verified the contents of the discretized clusters

against current knowledge of toll-like receptor signaling
networks (see for example, the toll-like receptor Kegg maps
at http://www.genome.jp). In the RANTES cluster, for
example, we found cytokines such as I-TAC, MIPS-1b, IP-10
and IL-1B. All of these are induced by NF-kB and should
therefore be co-expressed. Another example is the TNFa
cluster, including genes such as A20 and IKBa. These genes

are transcribed by NF-kB, but (unlike the previous cytokines)

are negative regulators that shutdown NF-kB activity.

As a final example, we found that genes such as P38, JNK,

IKK" and NIK cluster together. These kinases regulate

phosphorylation and ultimately activity in the transcription

factors NF-kB and AP-1.
Using COUNT_NETWORK we identified a total of 311 039 826

possible networks matching the 15 expression profiles. From

these possible networks, we sampled 100 000 networks and

computed their steady-state dynamics using the RUN_NETWORK

and ATTRACTOR routines. These 100 000 networks produced

only 16 steady-state dynamics, all of which were fixed points.

These attractors are shown in Table 4.
In addition to the fact that there were only 16 attractors from

100 000 networks, it is also interesting to note that most of these

attractors were very similar. In particular, the 16 attractors

discovered were all fixed points, meaning that the genes in the

sampled networks did not fluctuate at steady state. This may

indicate cell death, which would be consistent with previous

knowledge that LPS triggers an innate immunity response

through TLR4 (Beutler, 2004) eventually leading to apoptosis

in macrophage cells (Xaus et al., 2000).

To corroborate these findings, we searched the microarray

dataset for probes corresponding to activators of apoptosis

(GO ID¼ 43 065) and probes corresponding to inhibitors of

apoptosis (GO ID¼ 43 066). Out of 4188 annotated probes,

we found 25 positive regulators and 14 negative regulators.

For the 15 discrete expression profiles, the average number of

up-regulated genes was 48 with 5% SD. This average

percentage can be contrasted with the average percentages for

the 16 fixed-point attractors. For the attractors, an average
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Fig. 4. Activation and inhibition relationships between the 12 meta-genes in Table 2. Solid arrows indicate relationships occurring in all of the 901

networks, while the numbers associated with the dashed arrows indicate the fraction of networks having that relationship.
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of 58% apoptosis activators was up-regulated, while only 42%
of apoptosis inhibitors were up-regulated. In certain cases,
these contrasts were even more pronounced for particular

steady states (64 and 36% for attractors 7 and 15). The full set
of percentages can be found in Table 5.
To further quantify these results, we inferred a set of 100 000

networks using random expression profiles for the 15 meta-
genes in Table 4. These 100 000 networks produced 77 583
steady-state dynamics, 10 114 of which were fixed points.

Using the random networks, we computed for each of our 16

microarray attractors the fraction of random networks (with

steady-state dynamics) having more or less than the percentage

of apoptosis activators or inhibitors found using the microarray

data. These values are recorded in the fifth column of Table 5

and are empirical probabilities that a given pair of percentages

could be obtained at random. For instance, the probability that

attractor 16 would have468% apoptosis activators and543%

apoptosis inhibitors is 0.02. If we further restrict ourselves to

fixed-point steady states, we obtain the fractions recorded in

column 6 of Table 5. Thus the probability that attractor 16

would occur by random chance with a fixed-point steady state

having 468% apoptosis activators and 543% apoptosis

inhibitors is 0.003. In general, the numbers in column 6 of

Table 5 indicate that our results are significant.

4 DISCUSSION

There are typically many genetic regulatory networks that will

match a given time series dataset. Despite this fact, current

algorithms available for the inference of regulatory networks

produce only a single network. Depending on the method this

network might be chosen to be the most probable (Bayesian) or

have the lowest dimensional hidden representation (matrix

decomposition). In this article we consider all possible networks

matching a given time series dataset and group the networks

according to dynamics. This approach is appealing due to the

fact that we are considering networks which may be missed

using other approaches and that biological systems are thought

to be robust to variation (Wagner, 2005) so that different

networks with similar dynamics may very well be biologically

equivalent.
We first considered an IL-2-stimulated immune

response dataset. Using this dataset we discovered that

Table 4. The original times series (left) and 16 attractors (right) of the 15 discrete expression profiles (labeled with representative genes) for 100 000

networks inferred from the LPS dataset (dark gret—up-regulated, light grey—down-regulated)

Time (h) Attractor

Name 1 2 4 8 16 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

GNG10

TRAK1

P38

TLR1

CXCL1

RANTES

TLR2

MOG

RIP1

IFNB1

SGK2

NFKB1

TNFA

AP-1

IKKA

Table 5. Attractor distribution among 100 000 sampled networks

Attractor #

Networks

%

Activators

%

Inhibitors

Steady

state

Fixed

point

1 15 000 48 43 0.230 0.030

2 5000 52 50 0.266 0.035

3 3750 64 43 0.042 0.006

4 1250 68 50 0.029 0.004

5 15 000 48 36 0.123 0.016

6 5000 52 43 0.175 0.023

7 3750 64 36 0.023 0.003

8 1250 68 43 0.020 0.003

9 15 000 48 43 0.230 0.030

10 5000 52 50 0.266 0.035

11 3750 64 43 0.042 0.006

12 1250 68 50 0.029 0.004

13 15 000 48 36 0.123 0.016

14 5000 52 43 0.175 0.023

15 3750 64 36 0.023 0.003

16 1250 68 43 0.020 0.003

For each attractor, the percentage of up-regulated apoptosis activators and

inhibitors is shown. Columns 5 and 6 give the probability that an attractor would

occur in a set of randomly generated networks.
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dynamics could be used to eliminate 99.4% of 161 558 possible
matching networks. We then produced a composite network
using the remaining 0.6% of possible networks. This network

confirmed known biological results, namely the identification
of early-, intermediate- and late-responding genes to IL-2
stimulation.
Next, in the case of a LPS-stimulated macrophage

response dataset we reduced 100 000 sampled networks
to 16 fixed point dynamics. These dynamics identified
up- and down-regulated apoptosis activators and inhibitors

which again agreed with known results for the TLR4 apoptosis
pathway.
However, our direct use of dynamics raises additional

questions that have not been considered in previous algorithms.
These questions have been investigated abstractly in recent
work, and should be taken into account in a practical setting

such as ours. First, there is the issue of attractor scaling
with network size. It was originally thought (Kauffman, 1993)
that the number of attractors scaled with the square root of

the number of nodes in a network. Recent studies (Bilke
and Sjunnesson, 2001) and theoretical work (Samuelsson and
Troein, 2003) have shown this to be untrue. In fact, the number

of attractors scales superpolynomially with network size.
Second, there is the issue of computational artifact. In
particular, Boolean networks are typically modeled by simulta-

neous (synchronous) update of all nodes at each time step.
Such networks reduce both theoretical and practical compli-
cations. However, it has been discovered that many attractors

in synchronous Boolean networks disappear when using
asynchronous updates (Bagley and Glass, 1996). To further
complicate these issues, stable attractors may be immune to

both of these problems (Klemm and Bornholdt, 2005).
Our approach deals with the first issue (attractor scaling)

by limiting the number of nodes by using clusters and limiting

the network type by using activiation–inhibition functions only.
We also limit the number of attractors due to fixed initial
conditions. The second issue (attractor artifact) is much

more difficult to accommodate, since it implies that attractors
found by our method may be artifacts of computation with
no biological relevance. To address this issue, we compared the
results of our method with experimentally confirmed and/or

suspected behavior. A possible computational solution for
future study would be the use of some asynchronous update
and/or stability criterion, as suggested by the work in Klemm

and Bornholdt (2005).
We have shown that the use of dynamics can be an interest-

ing approach for analyzing different networks matching expres-

sion profiles for a time series gene expression dataset. Dynamics
can be useful when trying to understand the overall behavior of
a system and the consequences of this behavior on possible

pathways. Dynamics can be particularly useful for isolating
networks of interest that relate to a particular behavior under
investigation.
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