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ALEGRA is an arbitrary Lagrangian-Eulerian (multiphysics) computer code developed
at Sandia National Laboratories since 1990. The code contains a variety of physics op-
tions including magnetics, radiation, and multimaterial flow. The code has been developed
for nearly two decades, but recent work has dramatically improved the code’s accuracy
and robustness. These improvements include techniques applied to the basic Lagrangian
differencing, artificial viscosity and the remap step of the method including an important
improvement in the basic conservation of energy in the scheme. We will discuss the vari-
ous algorithmic improvements and their impact on the results for important applications.
Included in these applications are magnetic implosions, ceramic fracture modeling, and
electromagnetic launch.

Nomenclature

p̄ mean pressure
B magnetic induction
d incremental displacement field
n direction unit vector
xi vector of nodal coordinates for component i
D symmetric part of the velocity gradient tensor
U total displacement field
E electric field in laboratory frame
E′ electric field in co-moving frame
d
dt

∂
∂t + u · ∇

Fr radiative flux
H magnetic field
J electric current density
Ai,j Jacobian matrix of element i, corner j
Wi,j target Jacobian matrix of element i, corner j
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H hourglass functions
F mesh quality objective function
Pr radiation pressure tensor
T stress tensor
TM magnetic stress tensor
u fluid velocity
qi/e ion/electron heat flux
Ti/e ion/electron fluid stress tensor
W anti-symmetric part of the velocity gradient tensor
a coefficient for a parabolic interpolation at element edge
B bulk modulus
Bν Planckian radiation emission distribution, 2hν3/[c2(exp(hν/kTe)− 1)]
Bk bulk modulus of the kth material
c speed of light
c1 linear viscous coefficient
c2 quadratic viscous coefficient
ck sound speed of the kth material
cs sound speed
CV i/e ion/electron specific heat
e internal energy
e material internal energy
ek internal energy of the kth material
er radiation energy density
ei/e ion/electron fluid specific energy density
fk volume fraction of the kth material
h Planck’s constant
I radiation specific intensity
j determinant of incremental deformation gradient (incremental volume element)
K kinetic energy 1

2u
Tu

k Boltzmann’s constant
m element mass
q artificial viscosity
q heat conduction flux
r2 linear fit residual
s slope
Se energy source term
ss shock speed linear coefficient
t time
Ti/e ion/electron fluid temperature
u one dimensional velocity
V Volume
W Lagrangian shock speed
x one dimensional coordinate
(·)n+α quantity (·) at time tn+α

b body force
bi nodal ’strain-displacement’ vector for component i
hj hourglass vector for mode j
N(ξ) vector of element shape functions
rhg

m hourglass rate for mode m
f incremental deformation gradient

Subscripts
j one dimensional mesh index

Symbols
α modern viscosity limiter
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β kinetic energy remap limiter
Δjx one dimensional coordinate undivided difference
Δju one dimensional velocity undivided difference
Δt time step size
η artificial viscous coefficient
η electric resistivity
γ adiabatic coefficient
φ incremental motion
κ opacity
κi/e ion/electron thermal conductivity
μ0 permeability of free space
ν frequency
ν photon frequency
Ω direction of photon
Ψ integral of coordinate times variable
ψ general remapped variable
Π reconstructed local polynomial
ρ density
σa radiation absorption cross section
τ 1/ρ fluid specific volume
τp pressure relaxation time
τei collision time between electrons and ions
θ local coordinate for polynomial reconstruction
Σ artificial stress tensor
ξ element natural coordinates
ξ general coordinate, x, volume or mass
ζi,j quality metric for corner j of element i

Superscripts
n time index

I. Introduction

The use of arbitrary Lagrangian-Eulerian (ALE) computer codes has been an enabling technology for
many important defense-related applications. These computer codes are developed through combining

modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for
high-resolution Eulerian methods. ALE methods were introduced in 1974 by Hirt, Amsden, and Cook,1 but
needed the development and wide-spread use of high-resolution method such as FCT,2 or slope-limiters3 to
become accurate enough for practical application. This was due to the overly dissipative remap associated
with the use of upwind or donor-cell differencing. The upwind-type of differencing was necessary to produce
physically bounded quantities in the remap essential for challenging problems.

In addition, ALE methods have benefited from the development of modern Lagrangian methods in the
past 15 years. Two primary thrusts have shaped Lagrangian hydrodynamics during this period, one is
the form of the discrete difference equations, and the second is the form of the artificial viscosity used to
compute shocked solutions. The discrete difference equations have been improved radically through the use of
mimetic principles, symmetry and conservation.4–9 The second development has utilized the technology used
to develop high-resolution methods to limit the amount of dissipation in calculations.5, 10, 11 These methods
combined to improve the quality of Lagrangian integrators substantially over the classical methods.12–14

Finally, the meshing methods have improved, albeit to a lesser extent than the integration method. Thus,
meshing methods remain an active area of research with the promise of determining progress in achieving
higher quality with ALE simulations.

In order to reap the rewards of the advances in ALE methodology, the alegra project was initiated. The
origins of the alegra shock wave physics code project can be found in two internal Sandia memorandums
that were written in the spring of 1988. These called for the planning of a code development project to
develop a 3-D radiation hydrodynamics capability at Sandia. At this point, it is useful to describe some of
the main assumptions that entered into the formal proposal.15
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• The project was viewed as long term.

• The project was intended to be an advanced development project for computational shock wave physics
as well as for the ICF effort.

• The project was intended to start with an existing code.

• The new code would need to be capable of modeling large changes in length scales and turbulence to
as well as complicated coupling between the hydrodynamics and other physical phenomena important
to ICF. Complex 3-D geometries were expected to be of importance in the code applications.

• The code development strategy, as well as the software implementation, needed to be flexible and
open-ended. This ultimately was a major contributing factor to the decision to break new ground and
use C++ as the major development language for the project by 1992.

• The code was to be developed for massively parallel computing platforms, although the machine ar-
chitecture that this might include was not at all obvious in 1989.

• Pre- and post-processing tools were not to be developed under specific expenditures of this project,
because of scarcity of resources, as well as the existence of additional projects intended to provide
solutions in these areas.

Based on these assumptions, it was concluded that the best way to meet the prescribed objectives was to
write an arbitrary connectivity multi-material arbitrary Lagrangian Eulerian (MMALE) code. The chosen
development kernel with which to start was the PRONTO code,16, 17 a Lagrangian arbitrary (but fixed)
connectivity (finite element) 3-D code in existence at Sandia at the time of the planning culmination. The
Lagrangian mode would accommodate changes in length scale with a conforming mesh, while the Eulerian
mode (to be added) would accommodate the complex shearing and fluid distortion associated with turbulent
flows.

The proposal also regarded the new code as a potential and logical next-generation extension of the
CTH code,18 a production 3-D Eulerian code developed by Sandia and in wide use by the early 1990s.
Though generally highly successful, CTH proved inadequate for certain classes of problems, such as capsule
implosion simulations. Needless to say, a variety of new physics was required that was not implemented in
either CTH or PRONTO: radiation transport, electron-ion two-temperature fluid approximations to plasma
flows, electron thermal conduction, fusion burn physics, charged particle beam deposition, and potentially
MHD physics associated with fast Z-pinches.

The code project which was born during the two year period of 1988 and 1989 finally started formally
in March of 1990. An early 2D Fortran incarnation called RHALE was available later that same year.19

In the late fall of 1990, the decision was made to recast RHALE into an object-oriented structure using
the C++ programming language. The advantages of this change included: enhanced data structures and
memory management, object-oriented programming constructs, excellent debugging and code development
environments, and improved ability to use massively parallel computing hardware.

The remainder of the paper is organized into eight sections. In the next section we discuss the underlying
numerical scheme for the Lagrangian, remap and remesh steps. Next, we discuss the multimaterial aspects of
alegra , followed by the description of several important multi-physical processes: magneto-hydrodynamics,
heat conduction, and radiation transport. This is followed by a discussion of the software infrastructure used
to develop alegra. Finally we will present the use of alegra for several ALE applications spanning a broad
physical range.

II. Fundamentals

II.A. Governing Equations

The continuum evolution equations for multi-material single fluid radiation-magnetohydrodynamics with
thermal conduction and resistive magnetic diffusion in a two-temperature (ion-electron) approximation are:

1. Conservation of mass

∂fkρk

∂t
= −∇ · (fkρk (u− ug)) . (1)
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2. Conservation of momentum

∂ρu
∂t

= −∇ · (ρ (u− ug)u−T−TM + Pr

)
+ b. (2)

3. Conservation of total energy

∂ρ
(
e+ er + 1

2u
Tu + 1

2ρμ0
BTB

)
∂t

= − ∇ ·
(
ρ (u− ug)

(
e+ er +

1
2
uTu +

1
2ρμ0

BTB
))

− ∇ · (u (−T−TM + Pr

)− q
)

+ J · E′ + Se. (3)

For ion-electron temperatures the non-conservative form of the energy equation becomes

ρ
dee

dt
= Te : ∇u−∇ · qe + J · E′ + ρCV e

θi − θe

τei
−
∫

4π

∫ ∞

0

σa (Bν(Te)− I) dν dΩ , (4)

ρ
dei

dt
= Ti : ∇u−∇ · qi + ρCV e

θe − θi

τei
. (5)

4. Faraday’s Law in Moving Media

∂B
∂t

+∇× (B× (u− ug)) + (u− ug) (∇ ·B) +∇×E′ = 0. (6)

5. Involution constraint on magnetic flux density

∇ ·B = 0. (7)

6. Ampere’s Law (neglecting displacement current)

∇×H = J. (8)

7. The Boltzmann transport equation is used to describe the thermal radiation transport with he specific
intensity I(r,Ω, ν, t) = chνf as the primary variable, where f(x,Ω, ν, t) is a phase space density, ν is
the photon frequency, h is Planck’s constant, and c is the speed of light. The Boltzmann equation for
radiation transport is20–23

1
c

∂I

∂t
+ Ω · ∇I = σa (Bν(Te)− I) . (9)

It is important to note that we do not include the radiation pressure or photon scattering in the
evolution equations as it is assumed to be negligible for the circumstances modeled by alegra .

We must also specify the closure equations

T = Te(ρ, θe, θi) + Ti(ρ, θi),

TM = ν0

(
B⊗B− 1

2
B2I

)
,

E′ = ηJ = σ−1J

H = B/μ0 = ν0B,
qe = −κe∇θe,

qi = −κi∇θi,

er =
1
c

∫
4π

Iν dΩ ,

Fr =
∫

4π

ΩIν dΩ ,

Pr =
1
c

∫
4π

ΩΩIν dΩ .
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The equation for the material stress may not actually be given in functional form. We may also have a
hypoelastic stress rate equations for the stress in the material configuration S or dev(S) given by formally
by

Ṡ = f(c,S),
c = RTDR,
T = RSRT ,

where the stretch and rotation are computed via a rate equation

F = VR
V̇ = (D + W)V −VΩ,
Ṙ = Ω,
Z = DV −VD

ω = w + (Tr(V)I −V)−1z.

where D and W are the symmetric and anti-symmetric part of the velocity gradient tensor, L and z,w, ω
are the axial vectors corresponding to Z, W and Ω.

II.B. Operator Splitting Methodology

The full set of alegra equations are operator split in time. The three primary are the Lagrangian step in
which the equations are solved on a moving mesh, the remesh step in which the relative mesh velocity is
computed, and the remap step in which the degrees of freedom are computed on the new mesh. The spatial
operators should be considered as acting in the current frame of reference x. The involution constraint
∇ ·B = 0 is required to hold at the beginning of the computation and each step is required to preserve this
constraint.

1. Lagrangian Step

(a) Ideal magnetohydrodynamics (MHD) in a moving frame
The ideal magnetohydrodynamiic Lagrangian step moves the mesh with the material velocity, u,
according to the thermodynamic and magnetic stresses. The step does not include any explicit
physical dissipation mechanisms but does include artificial viscosity.

ẋ = u (10)

∂ρ

∂t
+∇ · (ρu) = 0 (11)

ρu̇ = ∇ · (T + TM ) + b (12)
ρė = T · ∇u + Se (13)

∂B
∂t

+∇× (B× u) + u(∇ ·B) = 0 (14)

It easier to understand the proper implementation of the above balance laws in the corresponding
integral form

d

dt

∫
Ωt

ρ dv = 0 (15)

d

dt

∫
Ωt

ρu̇ dv =
∫

Ωt

∇ · (T + TM ) dv (16)

d

dt

∫
Ωt

ρe dv =
∫

Ωt

T · ∇u dv (17)

d

dt

∫
Γt

B · n dA = 0. (18)
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where the integration regions are moving with the material.

(b) Magnetic diffusion in a fixed frame

∂B
∂t

+∇×E′ = 0 (19)

∇×H = J (20)

ρ
∂e

∂t
= J · E′. (21)

(c) Conduction in a fixed frame

ρ
∂e

∂t
= −∇ · q, (22)

or
ρ
∂ee

∂t
= −∇ · qe + ρCV e

θi − θe

τei
−
∫ ∞

0

(κ (4πBν − cEν)) dν,

ρ
∂ei

∂t
= −∇ · qi + ρCV e

θe − θi

τei
.

(d) Radiation energy is remapped in the Lagrangian step to place the degrees of freedom at the new
Lagrangian mesh location.

2. Remesh Step

Compute a new desired mesh which may be the original mesh at the beginning of the time step or a
smoothed version of the current mesh. This effectively defines a relative velocity ug for the remap.

3. Remap Step

A local remap operator associated with the pseudo relative velocity act on the degrees of freedom to
place them on the new mesh.

dx
dt

= ug − u (23)

∂fk

∂t
= − (u− ug)∇fk (24)

∂rfkρk

∂t
= −∇ · (fkρk (u− ug)) (25)

∂ρu
∂t

= −∇ · (ρu (u− ug)) (26)

∂ρe

∂t
= −∇ · (ρe (u− ug)) (27)

∂ρK

∂t
= −∇ · (ρK (u− ug)) (28)

and
∂B
∂t

= −∇× (B× (u− ug))− (u− ug) (∇ ·B). (29)

4. Radiation Step (computed in a fixed frame of reference)

1
c

∂I

∂t
+ Ω · ∇I = σa (Bν(Te)− I) .

∂ee

∂t
= −

∫
4π

∫ ∞

0

σa (Bν(Te)− I) dν dΩ .
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II.C. Lagrangian Step

Presently, alegra employs a classical time-staggered method. In this method the velocities are staggered
in time as well as space with respect to the thermodynamic variables (density, pressure, and energy). Note
that masses can be used to simplify the differencing, m = ρV or ρΔx, which is a Lagrangian invariant. It
is instructive to describe the method in the simplest setting of one-dimensional pure hydrodynamics before
discussing the finite element implementation used in alegra . Within this method, the concept of pushing
variables forward at second-order accuracy is conceptually simple (in one-dimension),

un+1/2
j+1/2 = un−1/2

j+1/2 −Δt
pn

j+1 − pn
j + q

n−1/2
j+1 − qn−1/2

j

mj +mj+1
(30)

xn+1
j+1/2 = xn

j+1/2 + Δtun+1/2. (31)

the density is then given by ρn+1 = ρnV n/V n+1 where the volume, V is computed using the coordinates,
x. For example in one dimension Vj = Δx = xj+1/2 − xj−1/2.

en+1
j = en

j −Δt
(
pn + q

n−1/2
j

) un
j+1/2 − un

j−1/2

mj
, (32)

where un
j+1/2 = 1/2

(
un−1/2

j+1/2 + un+1/2
j+1/2

)
is the time averaged velocity to consistently difference the energy

update in time. It is notable that the differencing of coordinates/mass and momentum is second-order in
time and space, but Equation 32 is first-order accurate in time.

In reality these equations are discretized in space using the finite element method (described in Section
II.E)using the above described time differencing. In two or three dimensions the velocities are defined at the
corners of the elements and other quantities (not true for magnetics) at element centers.

We also note that the numerical properties of the staggered integration scheme may have beneficial
properties for applications where material strength (and linear wave propagation) are especially important.
The numerical properties of the staggered integration scheme are neutral dissipation and excellent dispersion
properties. Conversely, for propagation of step functions, the staggered mesh integrators have extremely bad
properties. As such the optimal viscosity formulation should be different from forward-in-time methods.
Thus applications such as flyer plates and penetration may benefit greatly from this scheme.

II.D. Incremental kinematics

For solid mechanics the update of the material state is an essential detail. The goal of this subsection is to
describe the time-discrete kinematics used in alegra. Define the midpoint configuration of the body as the
convex combination

ϕn+α = (1− α)ϕn + αϕn+1 for α ∈ [0, 1] . (33)

Consistent with this, the midpoint deformation gradient is the convex combination

Fn+α = (1− α)Fn + αFn+1 for α ∈ [0, 1] . (34)

The incremental motion relating the configurations Ωn and Ωn+1 is

φ = ϕn+1 ◦ (ϕn)−1 = id + dn+1 , (35)

where id is the identity mapping. By this construction

φ : Ωn −→ Ωn+1 . (36)

The incremental displacement field is defined as

dn+1 = (ϕn+1 −ϕn) ◦ (ϕn)−1 . (37)

The displacement field dn+1 can be evaluated as a function of xn or as a function of xn+α using the operator
compositions

d̃n+1 := dn+1 ◦ϕn ◦ (ϕ−1)n+α = (ϕn+1 −ϕn) ◦ (ϕn+α)−1 . (38)

Figure 1 provides a visual representation of these incremental kinematics.
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n+α

n+α

n+α

n+α

n+α

n+α

n+α

F

ϕ

X

x

n

n

Ω n

xn+1

Ω 0

ϕn+1 Fn+1 x

F

f

Ω

ϕ

Ω n+1

ϕ ϕn

ϕ ϕ−1
n+1

n

−1

Figure 1. Incremental kinematics of motion of a deforming
body.

The incremental deformation gradient is defined
as

fn+α = gradn[ϕn+α◦(ϕn)−1] = Fn+α(Fn)−1 , (39)

with an incremental volume element

jn+α = det[fn+α] . (40)

To compute this deformation from the incremental
displacement field, notice that

fn+α = (1−α)I+αfn+1 = I+α gradn[dn+1] . (41)

It is possible to accumulate the total displacement
field, if desired. This field is simply the accumulated
sum

Un+1 := ϕn+1−ϕ0 =
n∑

i=0

(ϕi+1−ϕi) =
n∑

i=0

di+1◦ϕi

(42)
There are at least two ways to compute the total

deformation using the total displacement field:

1.
Fn+1 = I +∇X[Un+1]

2.
(Fn+1)−1 = I− gradn+1[U

n+1 ◦ (ϕn+1)−1]

3.
Fn+α = ∇X[ϕn+α] = (1 − α)Fn + αFn+1

II.E. Spatial Interpolations

In almost all regards alegra uses a standard finite element spatial interpolations. Uniform strain isopara-
metric tensor product elements transformed from the parent domain [−1, 1]Ndim are used. These correspond
to four-node quadrilateral elements in two dimensions are eight-node hexahedral elements in three dimen-
sions. These are the simplest (non-locking) elements available for general purpose finite element analysis.
Standard nodal shape functions are used to interpolate continuous fields such as position, velocity and ac-
celeration. Shape function gradients are calculated by appropriate transformation of natural coordinate
gradients Any needed kinematic tensor fields are computed using the shape function gradients.

Let the domain of the body be denoted by Ω ⊂ R
3, with boundary Γ. All relevant (thermodynamic)

fields, which include but are not limited to, deformation rate, stress, pressure, density and internal energy,
are assumed spatially constant in each element. Thus position and velocity are C0(Ω) ⊂ H1(Ω) fields defined
by nodal values and thermodynamic quantities are L2(Ω) fields defined by piecewise constant element values.
This is often referred to as a staggered grid spatial interpolation.

For standard finite element analysis,

x =
Nnodes−1∑

A=0

NAxA =⇒ grad[x] =
Nnodes−1∑

A=0

xA ⊗ grad[NA] , (43)

where xA is the value of the position x at node A and the shape function for node A is denoted by NA. The
balance of linear momentum in matrix form is

Nnodes−1∑
B=0

MABaB + FA,int − FA,ext = 0, (44)
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where
MAB =

∫
Ω

ρNANB dΩ , (45)

is the mass matrix,

FA,int :=
∫

Ω

T grad[NA] dΩ , (46)

is the internal force vector at node A and

FA,ext :=
∫

Ω

NAρb dΩ +
∫

Γ

NAt̄ dΓ , (47)

is the external force vector at node A.
If the mass matrix is lumped then

M̄A :=
Nnodes−1∑

B=0

[∫
Ω

ρNANB dΩ
]

=
[∫

Ω

ρNA dΩ
]
,

and MAB = M̄AδAB (no sum on A). The balance of energy equation, in matrix form, for an element with
domain Ωe is

Meε̇ =

[
Nnodes−1∑

A=0

FA,int • uA

]
, (48)

where Me is the mass of the element and u is the velocity field.

II.F. Central-Difference Method

The central difference algorithm is implemented as follows:

1. Compute acceleration at time tn

Nnodes−1∑
B=0

MAB(an)B + (Fn)A,int − (Fn)A,ext = 0 (49)

2. Compute velocity at time tn+1/2:

un+1/2 = un−1/2 + (tn+1/2 − tn−1/2)an (50)

3. Compute position at time tn+1:

xn+1 = xn + (tn+1 − tn)un+1/2 (51)

4. Compute velocity at time tn:

un =
1
2

[
un−1/2 + un+1/2

]
(52)

5. Compute energy at time tn+1:

Me(εn+1 − εn+1) = (tn+1/2 − tn−1/2)

[
Nnodes−1∑

A=0

FA,int
n • (un)A

]
(53)

6. Compute the stress at time tn+1.

This procedure is equivalent to the simpler description for simple 1-D hydrodynamics given by Equations 30–
32.
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II.F.1. Artificial viscosity

In shock physics calculations, physical viscosity is truly negligible and has space and time scales much
smaller than those resolved by the grid. The weak, or integral, Euler equations are inherently ill-posed
(having an infinite number of solutions). Computational solutions involving shocks, without some form of
stability control, usually have severe oscillations because of this. Mathematically, it is common practice
to add a viscosity term to shock equations and consider the unique solution arising in the limit as the
viscosity vanishes.24–26 This approach is known as viscosity solutions. Computationally, a similar effect can
be achieved by use of an artificial viscosity to stabilize the computed solution about a shock.

Like physical viscosity, artificial viscosity appears in both the fluid momentum and energy equations
through the stress tensor. In the momentum equation the artificial viscosity stress, Σav, should act to reduce
momentum at the shock front, and hence also reduce the kinetic energy there. In the energy equation,
the kinetic energy lost should be dissipated (and entropy produced) by raising the fluid internal energy
(Σav · ·∇v ≥ 0). Thus, like physical viscosity, artificial viscosity acts to convert kinetic energy into internal
energy at the shock front.

The basic Von Neumann-Richtmyer artificial viscosity idea is to exchange the space and time scales from
the physical viscosity for ones applicable to the grid and fluid velocity. They replaced the term vthλ in μ
with the product of a term proportional to the spatial gradient of the velocity and a space-scale squared.
The space-scale is selected to be a grid length, resulting in a compact smearing of the shock. This basic idea,

Σvisc,quad =
(
ρh2|∇u|) |∇u| ← (ρvthλ) |∇u|, (54)

results in a term quadratic in the velocity gradient. In multidimensional applications, the simplest approach
is to use a scalar coefficient and to compute |∇v| as∇·v, independent of shock direction (since evaluating the
shock direction robustly remains an open problem). This simplest application in multi-D is what alegra
uses for its quadratic term,

Σvisc,quad,alegra = Qquad =
(
ρl2∇ · u)∇ · u, (55)

where l is the aspect ratio. The differences between the two types of artificial viscosity are evident in the
solution to Noh’s shock reflection27 shown in Figure 2.

Figure 2. Note the difference in the quality of the mesh and solution for Noh’s shock reflection in cylindrical coordinates
between the original scalar (left) and tensor (right) artificial viscosity.

This term is quadratic in ∇v, whereas the physical viscous stress is only linear in ∇v. The second ∇v
in the quadratic term really serves only to help define the space and time scales over which the artificial
viscosity acts. An alternative is to use the sound speed, cs, to obtain those space/time scales. This results
in the linear term used in alegra ,

Σvisc,lin,alegra = Qlin = (ρlcs)∇ · u, (56)
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The standard viscosity formulation uses a linear plus quadratic term proportional to the velocity and is
specified to only operate when a zone is in compression.

qj = ρ
(
c1cj |Δju|+ c2 (Δju)2

)
(57)

where Δju = uj+1/2 − uj−1/2. The coefficients are often described as being arbitrary positive values,
although there is substantial reason to believe that their values should be clearly defined. The default values
in alegra are c1 = 0.15, and c2 = 2.0. Artificial viscosity is only applied if the fluid is in compression,
and not on expansion where the fluid should behave adiabatically. Based on this reasoning, the artificial
viscosity uses the following logic,

qj =

⎧⎪⎨
⎪⎩

0 if Δju ≥ 0

ρ
(
c1cj |Δju|+ c2 (Δju)2

)
if Δju < 0

(58)

In inviscid shock physics, the only mechanism for generating dissipation in the flow dynamics is during the
passage of a shock wave which requires the divergence of velocity to be negative (see more below).

II.F.2. Modern Artificial Viscosity

The starting point for this discussion comes from the analytical values of the linear and quadratic coefficients
of viscosity. The starting point are the Rankine-Hugoniot conditions at a shock,

W [u] = [p] , (59)

where [u] = u1 − u0 is the jump across the shock here the convention is that u1 is the post shock state and
u0 is the unshocked state. One can rearrange Equation 59 into the following useful form,

p1 = p0 +W (u0 − u1) , (60)

noting the reversed sign convention with the velocity difference. Now approximate the shock speed in the
following fashion, W = ρ0 (cs + ss (u0 − u1)). This form has been used to reduce flyer plate experimental
data, and (u0 − u1) is often referred to as the particle velocity (with u0 often being stationary). The form for
an ideal gas is more complex although it has very simple expressions for s in the limit where (u0 − u1) /cs → 0
with ss = 1/4 (γ + 1) and where (u0 − u1) /cs → ∞ with ss = 1/2 (γ + 1). The value of ss is well-defined
for many materials and is part of the basis of the Mie-Gruneisen equation of state. We can then see that
analytically, c1 = 1 and c2 = ss.

Christenson introduced a flux-limited artificial viscosity (as documented in the open literature by Ben-
son11) that incorporates detection of discontinuous or under-resolved flows developed for Eulerian hydrody-
namics with artificial viscosity. Effectively, the method allows more dissipation to be applied at a shock,
but less away from the shock. The mechanism to produce this effect was borrowed from TVD methods28, 29

with the label flux limiters although the use is more consistent with slope-limiting applied to Godunov-type
methods.3, 30 At each cell face (or more properly centering point for the velocity), the first-term in a Taylor
series is evaluated, and the velocity is extrapolated to the cell-centers. The difference in the extrapolated
velocities takes the place of the velocity jumps used in the classical viscosity. The term in the Taylor series
is “limited” so that it does not take unreasonable values when the velocities are discontinuous or under-
resolved. The conditions that define an under-resolved flow are intimately related to the conditions that
yield monotone (or high-resolution) advection methods.

We have developed a similar method especially adapted for use with our finite element framework. In a
one-dimensional implementation the method is defined as follows:

1. Compute a second-order accurate value for the gradient of the velocity at each cell face corresponding
to a linear least squares solution, (Δjx = xj+1/2 − xj−1/2, Δju = uj+1/2 − uj−1/2),

∂u

∂x j+1/2,C
=

(Δj+1x)
3 Δju+ (Δjx)

3 Δj+1u

(Δj+1x)
3 Δjx+ (Δjx)

3 Δj+1x
. (61)
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2. Determine the residual of the least square problem by computing the difference between the least
square fit and the data,

r2j+1/2 =
(
uj−1/2 − uj+1/2 + Δj − ∂u

∂x j+1/2,C

)2

+
(
uj+3/2 − uj+1/2 + Δj+1x+

∂u

∂x j+1/2,C

)2

, (62)

3. then compute the coefficient that will modify the velocity differences used in the artificial viscosity,

αj+1/2 =

√
r2(

uj−1/2 − uj+1/2

)2 +
(
uj+3/2 − uj+1/2

)2 . (63)

4. use this coefficient to modify the magnitude of the velocity jump in an element,

Δju = 1/2
(
αj−1/2 + αj+1/2

) (
uj+1/2 − uj−1/2

)
. (64)

The last item to consider is whether the viscosity should be turned off in the expansion. With a classical
artificial viscosity experience has shown this to be unacceptable. With a flux-limited viscosity this may be
worth considering because as the flow becomes resolved the viscosity shuts off, but is present when the flow
is grossly under-resolved and can help numerical stability.

II.G. Hourglass control

The goal of this section is to review the hourglass control algorithms currently implemented in alegra .

II.G.1. Shape Function Representations

In what follows, attention is primarily focused upon the eight(8)-node isoparametric tri-linear brick element
for which Nnodes = 8. Following the presentation(s) in,31–33 let N(ξ) denote the 8 × 1 vector of shape
functions such that

N(ξ) = {N1, N2, . . . , N8}T with NA :=
1
8
(1 + ξ1ξ

A
1 )(1 + ξ2ξ

A
2 )(1 + ξ3ξ

A
3 ) , (65)

where ξA = {ξA
1 , ξ

A
2 , ξ

A
3 }T are the vertices of the bi-unit cube [−1, 1]3. These shape functions may be

written as

N(ξ) = b0 +
3∑

i=1

xibi +
1
8

4∑
j=1

Hj(ξ)γj , (66)

where H(ξ) are the hourglass functions defined as

H1(ξ) := ξ2ξ3 , H2(ξ) := ξ3ξ1 , H3(ξ) := ξ1ξ2 , H4(ξ) := ξ1ξ2ξ3 . (67)

The twelve(12)-dimensional hourglass deformation space of the eight-node brick is defined as

H12 := span{H1,H2,H3,H4} ×R3 . (68)

This space may be viewed as consisting of four(4) hourglass modes, where each mode can act in any one of
three(3) coordinate directions.

The constant 8 × 1 vectors b0, bi and γj can be determined in a relatively straight-forward manner.
Evaluation of equation (66) at the nodes of the bi-unit cube and use of the Kronecker propertyNA(ξB) = δAB

yields the 8× 8 matrix expression

I8 = b0 ⊗ 18 +
3∑

i=1

bi ⊗ xi +
1
8

4∑
j=1

γj ⊗ hj . (69)
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In this equation I8 is the 8×8 identity matrix, xi = {x1
i , x

2
i , . . . , x

8
i }T is the 8×1 vector of nodal coordinates

for component i and

18 := {1, 1, 1, 1, 1, 1, 1, 1}T (70)

h1 := {1, 1,−1,−1,−1,−1, 1, 1}T
h2 := {1,−1,−1, 1,−1, 1, 1,−1}T
h3 := {1,−1, 1,−1, 1,−1, 1,−1}T
h4 := {−1, 1,−1, 1, 1,−1, 1,−1}T

The reader may easily verify that 18 • hj = 0 and hj • hk = 8δjk. The multiplication of equation (69) by
the vector 18 yields the equation

b0 =
1
8

[
18 −

3∑
i=1

(18 • xi)bi

]
. (71)

The multiplication of equation (69) by the vector hk yields the equation

γj =

[
hj −

3∑
i=1

(hj • xi)bi

]
. (72)

Taking the derivative of (66) with respect to xk (or, alternatively, ξk) and evaluation at the element center
ξ = 0 yields

bi =
3∑

j=1

(
J−T

0

)
ij

∂N
∂ξj

(0) where J0 :=
∂x
∂ξ

(0) . (73)

Since bi are consistently computed ’strain-displacement’ operators, one can show that (see,34 chapter 3)

bi • 18 = 0 and bi • xj = δij . (74)

Given these properties, it must also hold from (72) that

γi • 18 = 0 and γi • xj = 0 , (75)

and thus the vectors γi are orthogonal to the homogeneous deformation modes of the tri-linear brick element.

II.G.2. Hourglass Rates

Let uh(A) for A ∈ {1, 2, . . . , Nnodes} denote the nodal velocity field of a finite element. Consistent with the
developments in353136,37 define the hourglass rate for mode m as

rhg
m :=

Nnodes∑
A=1

γm(A)uh(A) . (76)

II.G.3. Hourglass Resistance

The goal here is to compute, based on the hourglass rates rhg
m , a reasonable value of the hourglass resistance

fhg
m .

II.G.4. Hourglass Nodal Forces

Let Fhg
m (A) for A ∈ {1, 2, . . . , Nnodes} denote the nodal hourglass force field for mode m of a tri-linear brick

element. Once the hourglass resistance has been determined, the nodal forces for hourglass mode m are
simply computed as

Fhg
m (A) = γm(A) · fhg

m . (77)
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II.H. Remesh

alegra remesh/mesh-enhancement algorithms include Discrete Optimization (DO) schemes (via the mesquite
library38, 39) and more standard equipotential methods (e.g. weighted and unweighted Tipton40). These al-
gorithms are implemented through an interface that supports development and testing of other remesh
algorithms (e.g. Prescriptive Laplace-Beltrami methods41 are currently being examined via this interface.)

(a) (b)

(c) (d)
Figure 3. Application of alegra’s remeshing algorithms to the initial mesh shown in (a). alegra’s Tipton, mesquite
initial mesh, and ideal mesh results are shown ((b)—(c) respectively).

The equipotential methods, as available in alegra, are well known and so will not be discussed here;
rather the reader is directed to the substantial literature on the subject.40, 41 However, DO techniques are
relatively new for this application space, and so some generalities are provided below. Again, details are
available elsewhere.38, 39

The mesquite-based mesh improvement strategies available in alegra are defined by two main aspects:
a scalar measure of mesh quality and the optimization method used to optimize the mesh (relative to that
measure). The following subsections describe the DO approach taken in alegra. Note that mesquite
provides a much richer set of mesh-optimization tools than described here. The methodologies chosen for
use in alegra are those that best fit its application space.

A measure of mesh quality is defined by the quality metric, ζi,j for corner j of element i. The ζ are
combined over appropriate elements and corners to produce an objective function,

F(x) =
Nel∑
i=1

⎛
⎝ 1
ki

ki∑
j=1

ζ̂i,j

⎞
⎠ (78)

where ki is the number of corners in element i, Nel is the number of ALE elements in the mesh and x
is a vector of node coordinates. F is minimized in the space of valid node locations and constrained by
boundary nodes that are either fixed or constrained to a specific geometry. Currently alegra supports fully
unconstrained, fully constrained or planar surface constrained node movement.

The ζi used in alegra are based on the Target Matrix paradigm.42 In this paradigm a Ndim × Ndim

Jacobian matrix, Ai,j , is calculated at the corners of each ALE element in mesh (Ndim is the dimension
of the element). Also defined at each corner is a target (or reference) matrix, Wi,j , providing a measure
of the “ideal” element corner. Finally, a measure of the distance between Wi,j and Ai,j is provided by
T = AW−1 (essentially a mapping from a target corner to the actual corner; element/corner subscripts have
been dropped).
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A key to the success of the DO method for alegra applications is appropriate choice of T for the problem
at hand. Through alegra, two classes of target matrices are available. The first method defines the element
corner T to be the Ndim×Ndim identity matrix. The effect of this target matrix is to force the mesh to tend
towards elements with orthogonal corners. The second method employs the initial mesh to calculate the T.
Specifically, this method evaluates the Jacobian matrices at the element corners for the original mesh, and
uses those matrices as the targets throughout the simulation.

When using the initial mesh method, the initial mesh minimizes the objective function because it was
used to calculate the target matrices. Therefore, the optimization will not modify the initial configuration
until mesh nodes have been moved by the physics. As the simulation progresses, the original mesh may no
longer be attainable due to changes in internal or external domain boundaries (e.g. internal nodes may be
marked as Lagrangian to define an interface between dissimilar materials). In this case, the optimization
will try to make the elements close to the original mesh in the sense of the element quality metric (Eq. (78)).
In contrast, when using the ideal weight T, the scheme will modify the initial mesh prior to the on-set of
physical motion (e.g. material velocities are still zero).

To this point we have not provided the functional form of ζ. Although a range of metrics are available
in mesquite the the Inverse Mean Ratio metric,

ζ =
1

Ndim

||T||2
det(T)

2
Ndim

(79)

provides rotational and size invariance as well as a barrier to prevent element tangling (cf.39). This quality
metric is minimized with a value of 1 when there is no distortion of shape between the target corner and the
actual corner.

To find the solution to the minimization problem, Jacobi iteration is used. This algorithm proceeds by
looping over each node in the mesh, calculating an improved location with other nodes assumed fixed. Once
improved locations are calculated for all nodes associated with ALE elements, the positions are updated, and
the algorithm begins another iteration or terminates depending on whether the termination criteria have
been met. To find the improved location locally for each node, a Feasible Newton solve is used.43

While the Jacobi iteration is not as efficient as some optimization algorithms available in mesquite it was
chosen because it met several important alegra requirements. Specifically, alegra requires the algorithm
to,

1. operate in parallel,

2. be invariant to the number of processors, and

3. maintain symmetries that exist in the mesh, when possible.

While the Jacobi-style iteration is inferior to the Gauss-Seidel-style iteration in several ways (specifically
convergence rate and resistance to tangling) unless converged, Gauss-Seidel iterations typically violate the
second and third requirements.

Finally, Fig. 3 illustrates application of alegra’s Tipton implementation (without weights), mesquite
with ideal mesh T and initial mesh T smoothers (Figs. (b)-(d) respectively). Fig. 3 (a) shows the initial
mesh/domain where an inner cylinder, which moves upward with a given velocity, is enclosed by a fixed
outer cylinder. The domain between the two cylinders is filled with a air. Clearly, the mesquite initial
mesh option preserves mesh features (c.f. the kink on bottom centerline of the domain in (a)) while the
alegra’s Tipton implementation modifies mesh grading near the inner cylinder while equilibrating element
volumes.

II.I. The Remap Step

The remap step is implemented in an operator split fashion dimension-by-dimension so that effective one-
dimensional differencing methods can be utilized. The remap is implemented in both volume and mass based
coordinates defined below. The volume based coordinate is used for mass, but all other conserved variables
are remapped in mass coordinates making use of the volume remap result. Staggered mesh variables (such
as velocity) are remapped using Benson’s half-index shift (HIS) algorithm44
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II.I.1. Accurate Differencing on Uneven Meshes

A rigorous approach to deriving the difference formula on uneven meshes uses a procedure known as the
primitive function. The primitive function produces a polynomial interpolant that naturally conserves the
quantity being remapped, thus achieving high quality in the sense of a simple, but essential constraint for
advection methods. The primitive function is the conservative integral across a local span of mesh cells that
is simple and straightforward due to the basic nature of control volume (conservation form) differencing.

One determines the primitive function by first noting the desired domain of dependence for the desired
stencil, for example three cells, j − 1, j and j + 1. The function begins at the leftmost boundary with an
arbitrary values (zero), and simply forms values at each cells right interface as

Ψ (xk + 1/2) =
k=j+1∑
k=j−1

Δξkψk. (80)

Here ξ is either the physical coordinate, the volume coordinate or the mass coordinate (density times volume).
One then computes a Lagrange interpolant of this function to use for deriving the approximations used for

advection. The desired approximations can be made by taking the derivative of the interpolant producing
the original function with the first derivative and the slopes with the second derivative.

Below we will describe the two basic methods that use the finite volume formalism and polynomial
reconstruction. Each method can produce high-resolution results and we outline how to improve the accuracy.
Other accuracy improvements can be made through relaxing the monotonicity constraints used to produce
results without oscillations.

II.I.2. Useful limiter functions

We use a median function to provide appropriately bounded values satisfying the conditions for monotonicity.
The median function can be defined using a minmod function, where

minmod (a, b) = 1/2 (sign (a) + sign (b))min (|a| , |b|) ,
and

median (a, b, c) = a+ minmod (b− a, c− a) .
An important property is that the median function’s result is independent of the order of the arguments,
median (a, b, c) = median (c, a, b) = median (b, c, a). The median function also produces order-preserving
choices through two of the arguments being at least a certain order, saymth, than the result of the application
of the median function will be mth order accurate.

II.I.3. Piece-wise Linear Godunov Method (PLM)

Begin Algorithm II.I.3: Piece-wise Linear Reconstruction

1. The polynomial is piece-wise linear, ψ (ξ)j = Πj (θ); Π (θ) = Π0 + Π1θ; Π0 = ψj ; Π1 = sj .

2. Choose the initial value for the slope. The slope can be found by determining the Lagrange interpolant
on the three points at taking the first derivative and evaluating at ξj ,

sj =
−Δξ2j+1ψj−1 +

(
Δξ2j+1 −Δξ2j−1

)
ψj + Δξ2j−1ψj+1

Δξj−1Δξj+1 (Δξj−1 −Δξj+1)
(81)

3. Choose a method to insure nonlinear stability: a monotonicity Algorithm II.I.3.

4. The piece-wise linear polynomial provides a time-centered value of ψn+1/2
j±1/2,∓ = Π0 + Π1 (±1/2− 1/2ν)

where ν = Δtu/Δx is the Courant number for the remap. The Courant number can also be defined in
terms of the volume or mass coordinate ν = ΔtuA/V or ν = ΔtρuA/m respectively.

End Algorithm II.I.3: Piece-wise Linear Reconstruction

Begin Algorithm II.I.3: Piece-wise Linear Monotonicity
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1. Define the base differences at first-order,

s− = ψj − ψj−1, s+ = ψj+1 − ψj .

2. Monotonicity is defined by
Q∗ = 2 median (0, s−, s+)

and
sj := median (0, sjΔξj , Q∗) /Δξj .

End Algorithm II.I.3: Piece-wise Linear Monotonicity

II.I.4. Piece-wise Parabolic Godunov Method (PPM)45

The same ideas can be used to construct a third-order piece-wise parabolic method. The parabola is deter-
mined by three values: ψj , the integral average of the variable ψ in cell j, and the edge values, ψj±1/2, which
are approximated by a linear combination of neighboring zone data. Like the PLM method, the parabolic
reconstruction can be described in a brief sequence of steps in which one can vary the order of accuracy for
the edge values and the method used for nonlinear stability.
Begin Algorithm II.I.4: Piece-wise Parabolic Reconstruction

1. The polynomial is piece-wise linear, ψ (ξ)j = Πj (θ); (θ) = Π0+Π1θ+Π2θ
2; Π0 = 3/2ψj−1/4

(
ψj−1/2 + ψj+1/2

)
;

Π1 = ψj+1/2 − ψj−1/2. Π2 = 3
(
ψj+1/2 − 2ψj + ψj−1/2

)
2. Choose the initial value for the edge values, ψj±1/2. The third-order values for the edge variables are

defined as being upwind to each edge with respect to the cell-center.

In order to define the edge values we will use a different nomenclature. This is to denote the use of
conservation form to define the methods and the width of each mesh cell. The mesh cell is defined by
its width Δξj for the jth zone (element). The third-order edge is defined simply as

ψj+1/2 = aj−1ψj−1 + ajψj + aj+1ψj+1, (82)

where
aj−1 = − ΔξjΔξj+1

(Δξj−1 + Δξj) (Δξj−1 + Δξj + Δξj+1)
,

aj =
Δξj+1 [3Δξj + Δξj−1 (Δξj−1 + Δξj+1) + Δξj (3Δξj−1 + 2Δξj+1)]

(Δξj−1 + Δξj) (Δξj + Δξj+1) (Δξj−1 + Δξj + Δξj+1)
,

aj+1 =
Δξj (Δξj + Δξj−1)

(Δξj + Δξj+1) (Δξj−1 + Δξj + Δξj+1)
.

3. Choose a method to insure nonlinear stability: a monotonicity Algorithm II.J.

4. The piece-wise linear polynomial provides a time-centered value of ψn+1/2
j±1/2,∓ = Π0+Π1 (±1/2− 1/2ν)+

Π2

(
1
4 ∓ 1/2ν + 1

3ν
2
)

where ν = ΔtuΔx is the Courant number for the characteristic being recon-
structed.

End Algorithm II.I.4 Piece-wise Parabolic Reconstruction
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II.J. PPM Limiter46

The algorithm used to define the monotonicity of a piece-wise parabolic reconstruction can be written
compactly. This algorithm is algebraically equivalent to the original PPM monotonicity conditions.45 For
PPM, monotonicity is assured if

ψj±1/2 ∈ [ψj , ψj±1]

and
ψj±1/2 ∈

[
ψj , 3ψj − 2ψj∓1/2

]
.

Begin Algorithm II.J: Piece-wise Parabolic Monotonicity

1. First, compute the following relations to bound edge values by adjacent data,

ψj±1/2 := median
(
ψj , ψj±1/2, ψj±1

)
.

2. Finish the algorithm through bounding the edge values accounting for transport effects,

ψj±1/2 := median
(
ψj , ψj±1/2, 3ψj − 2ψj∓1/2

)
.

End Algorithm II.J: Piece-wise Parabolic Monotonicity

This algorithm has the cost of four applications of the median function per zone.

II.K. Remapping Kinetic Energy

One considerable difficulty with ALE methods is the treatment of kinetic energy by the method. With the
Lagrangian method, the invariance of the Lagrangian mass tends to allow a non-conservative method to
produce very good results despite having no theoretical expectation to do so. Once the masses are allowed
to flow through a remap process solutions often begin to drift away from the good analytical results achieved
with the purely Lagrangian solver. One telltale sign of this drift is the failure to conserve energy which can be
explained through the problems with remapping kinetic energy, moreover the difference between the linear
momentum (or velocities) and their quadratic derived quantity, kinetic energy. In other words, remapping
the linear momentum and kinetic energy leads to a mismatch in the values on a grid. Of course the problem
exists because the code is using internal energy rather than total energy for a variable.

Fortunately, there is a way to fix this problem known as the DeBar fix.47 A more clear explanation of
this algorithm is given by Anderson and Pember.48 The method works as follows:

1. Compute the remap of density, nodal velocities and internal energy, en+1.

2. Also compute a remap of cell-centered definition of kinetic energy,

Ki,j,k =
1

nodes of i, j, k

∑
nodes of i,j,k

1/2
(
u2 + v2 + w2

)
. (83)

3. Compute a correction of the internal energy to account for the difference between the cell-centered and
nodal kinetic energies,

Δeremapped
i,j,k =

⎛
⎝Kremapped

i,j,k − 1
nodes of i, j, k

∑
nodes of i,j,k

1/2
(
u2 + v2 + w2

)remapped
⎞
⎠ . (84)

4. If the quantity qj/pj < 0.0001 set Δeremapped
i,j,k = 0.

5. If the magnitude of Δeremapped
i,j,k < −βeremapped

i,j,k , Δeremapped
i,j,k = −βeremapped

i,j,k .

6. Modify the remapped energy as

e
remapped
i,j,k := e

remapped
i,j,k + Δeremapped

i,j,k . (85)

It is important to emphasize the fact that when C < 1, the overall method will cease conserving total
energy (internal plus kinetic energy).
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III. Multimaterial Methods

A key aspect of the computational method for many application is the treatment of the dynamics of
multiple materials. In particular there are two key components to the treatment of multiple materials
are the numerical treatment of the transport of material interfaces, and their dynamics in the context of
general hydrodynamics. Below we describe these algorithms first the interface reconstruction method for
transporting material interfaces without inducing numerical diffusion. The second aspect is the dynamics of
multiple materials described through thermodynamics described in the following subsection.

In defining the evolution of interfaces volume of fluid methods49 are popular due to their conservation
properties and high resolution approximation of the interface. When the interface is not sufficiently resolved,
the method produces results that breakdown in a particular fashion. The interface becomes disjoint and
tends to create isolated blobs that appear to be associated with an intrinsic surface tension. This occurs
whenever the interface resolution drops below three zones in width. This character arises directly from the
conservative nature of the approximation. If the interface should not break apart, but remain continuous this
nature of the interface topology is limiting. Fortunately, there are alternative methods available to transport
interfaces without inducing too much numerical diffusion at the interface.

III.A. Interface Reconstruction

Figure 4. A comparison of the reconstruction of a planar interface before (left) and after (right) the smoothing step of
the algorithm.

In multimaterial simulation codes the majority of elements contain a single material. Fluxing material
from these clean elements is solely concerned with accurately determining the distribution of fluxed quantities
in each donor element. For the elements that contain two or more materials, the fluxing must determine
how much of each material is fluxed in addition to their fluxed quantities. alegra represents the interface
between the distinct materials in mixed elements with a second-order planar interface that is computed by the
Patterned Interface Reconstruction (PIR) algorithm.50 The algorithm is derived from the three-dimensional
Youngs reconstruction algorithm.51 PIR is adapted to the unstructured meshes in alegra and can function
on elements bounded by an arbitrary number of planar facets.

PIR starts with a Youngs like reconstruction step. The interface normal is approximated by the local
gradient of the material volume fraction. The interface is then positioned within each mixed element to
conservatively reproduce the material volumes. For a planar interface there are many orientations that are
exactly reproduced by the Youngs algorithm; however, not all are reproduced. Curved interfaces also are
approximated to visual satisfaction but not to second-order accuracy. Interface reconstruction accuracy is
defined as the rate of convergence of the volume between the reconstructed interface and the exact input
interface as the element size is reduced. To improve the accuracy of the reconstruction, a position for the
interface is determined and the local shape of the interface is determined. The position that is chosen is
called the stability point and is the areal centroid of the interface. The development of the stability point
concept is discussed in.52 For each mixed element a series of patterns are fitted to the neighboring stability
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Figure 5. A comparison of the reconstruction of a mixed element before (left) and after (right) the smoothing step of
the algorithm.

points. The patterns currently consist of a planar and a curved shape such as a sphere. The volume between
the neighboring interface and the extrapolated pattern interface determines which pattern produces the more
accurate approximation. The normal of the more accurate pattern is then used to update the normal for
the mixed element. This fitting is performed over all the mixed elements for a material in the mesh and the
process is repeated to convergence.

Figure 6. The reconstruction of a Cassini oval using the
algorithm described here.

To demonstrate the visual accuracy of the PIR,
a planar interface is shown before and after the
smoothing step in Figure 4. In Figure 5, a set of
planar, T shaped interfaces is presented before and
after smoothing. In Figure 6, the before and after
interfaces for a Cassini oval is shown.

III.B. Multimaterial treatment

III.B.1. Equal Volume Treatment

First, consider the effective differential equations for
multiple materials with the material index k in the
Lagrangian frame if an equal volume partitioning is
made,
(volume fraction)

dfk

dt
= 0, (86)

(mass)
dfkρk

dt
= −fkρk

∂u

∂x
, (87)

(momentum)

ρ
du

dt
= − ∂p̄

∂x
, (88)

(energy)

fkρk
dek

dt
= −fkp̄

∂u

∂x
. (89)

Here p̄ is the mean pressure typically computed as p̄ =
∑

k fkpk with pk = P (ρk, ek).
There are a set of consistency conditions associated with these equations that are essential to satisfy. One

key relation is the volume filling requirement,
∑

k fk = 1, which is trivially satisfied by Equation 86. The
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work in the energy equation should equal the work done on the total energy of the system, again trivially
satisfied by Equation 89.

As noted in many publications, this approximation can yield unphysically realistic results when the
materials have greatly different responses to compressible motion.

III.B.2. Bulk Modulus Weighted

When the volume changes are partitioned on the basis of the properties of the materials,
(volume fraction)

dfk

dt
= fk

(
B̄

Bk
− 1
)
∂u

∂x
, (90)

(energy)

fkρk
dek

dt
= −fk

B̄

Bk
p̄
∂u

∂x
. (91)

Equation 90 can be derived from the mass equations,

dfkρk

dt
= −ρkfk

∂u

∂x
,

with the following steps. Expand this equation using the chain rule to,

ρk
dfk

dt
+ fk

dρk

dt
= −ρkfk

∂u

∂x
.

Combine and simplify terms to yield
dfk

dt
= −fk

ρk

dρk

dt
− fk

∂u

∂x
.

Replace the time-derivative of density with pressure (the mean pressure!),

dfk

dt
= −fk

ρk

∂ρk

∂p̄

dp̄

dt
− fk

∂u

∂x
.

Realizing that the pressure equation on an adiabat evolves with the following equation,

dp̄

dt
= −ρc̄2∂u

∂x
,

and ∂p̄
∂ρk

= c2k. Substitute and rearranging this result provides the last step,

dfk

dt
= fk

ρc2

ρkc2k

∂u

∂x
− fk

∂u

∂x
,

and Equation 90 can be recovered by the definition B = ρc2 and Bk = ρkc
2
k.

The compatibility conditions can be met by choosing the definitions for B̄ and p̄. First, define B̄ as

B̄ =

(∑
k

fk

Bk

)−1

, (92)

then the mean pressure can be combined,

p̄ = B̄

(∑
k

fkpk

Bk

)
. (93)

These relationships can be derived in several ways.
These basic relations can be derived from fundamental thermodynamic relations. If the right hand side

of Equation 90 sums over the material to zero as required for volume conservation,

∑
k

fk

(
B̄

Bk
− 1
)
∂u

∂x
= 0, (94)
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this can be rearranged to give ∑
k

fk

(
B̄ −Bk

Bk

)
= 0

and expanding gives the necessary relation for B̄,

∑
k

fkB̄ − fkBk

Bk
= B̄

∑
k

fk

Bk
−
∑

k

fk = 0.

The equality is satisfied by B̄ = (
∑

k fk/Bk)−1. The derivation of p̄ is associated with the pressure relaxation
step discussed below in Section III.B.3. One can also derive this relation from the thermodynamic definition
of the bulk modulus (in this presentation V is the material specific volume, 1/ρ),

B = γp = −V ∂p

∂V

∣∣∣∣
S

≈ −V Δp
ΔV

, (95)

and the following discrete representation,

Bk =
Vk (pk − p̄)

ΔVk
,

using the identity ΔVk/Vk = Δfk/fk and summing over the available materials,

∑
k

Δfk =
∑

k

fkpk − fkp̄

Bk
= 0

and finding the final relation

p̄
∑

k

fk

Bk
=
∑

k

fkpk

Bk
,

through realizing that B̄ = (
∑

k fk/Bk)−1.
This entire approach was pioneered by James LeBlanc, and has been more recently applied by Bob

Tipton53 as well as documented in the open literature by Miller and Puckett.54

III.B.3. Pressure relaxation54,55

If the desired state for the fluid is to be consistent with a fluid in pressure equilibrium, the state of the fluid
should be modified. Pressure differences in the fluid should be removed by changing the volume fractions.
This evolution can be written as a differential equation,

dfk

dt
=
fk

τp

(
pk − p̄
Bk

)
, (96)

where τp is a relaxation time scale. The pressure relaxes due to the action of acoustic waves, so one might
surmise that τp = �/c where � is a characteristic length scale which may be on the order of the mesh scale Δx.
We will return to this model at the end of this section. These changes should also be applied to the energy
of the fluids by partitioning the work associated with the volume changes. The details of the algorithm are
slightly different depending on whether B or γ is used to weight the changes. Start with a set of volume
fractions, f0

k where the pressures are out of equilibrium. For the bulk modulus the changes can be defined
as follows:

Δfk = fk

(
pk − p̄
Bk

)
, (97)

f1
k = f0

k + Δfk; ρ1
k =

f0
kρ

0
k

f1
k

(98)

f1
kρ

1
ke

1
k = f0

kρ
0
ke

0
k − p̄Δfk. (99)
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When using the adiabatic coefficient to weight the changes the equation for Δfk changes to,

Δfk = fk

(
pk − p̄
γkp̄

)
. (100)

This procedure is designed to quickly drive the materials into pressure equilibrium. This can often be
an unphysically fast process to occur in a single time step. In addition, the changes in the equation of state
may be so large and nonlinear that the linearization used to derive these relations is invalid. Taking the
relaxation equation Equation 96 we can provide a reasonable way to limit the size of the volume changes.
If we simply assert that τp = Δx/c and then solve the differential equation with the right hand side held
constant as Dfk/Dt = λfk we find that the change in volume fraction can be expressed simply as

Δfk = exp
[
cΔt
Δx

(
pk − p̄
Bk

)]
, (101)

and similarly for the case of the γ based method. Unfortunately this method is not normalized and does not
lead to a consistent results,

∑
k Δfk = 0. The issue revolves around how the averaging for p̄ is done, which

much be constrained to assure that consistency conditions are met.
The same issue is present with an implicit integration of the equations where the explicit averaging

defined earlier will not insure consistency. This can only be done through an iterative procedure and the
sort of renormalization discussed in the next section.

III.B.4. Limiters and Renormalization

While we have tried to present these methods in a rigorous fashion for a robust implementation some more
ad hoc techniques are usually necessary to avoid changes that are unphysically large, introduce negative
volume fractions, or leave the sum of volume fractions not equal to one.

This renormalization should probably alway be completed to keep the volume fraction sum from deviating
from one simply due to roundoff error. This step is quite simple

fk :=
fk∑
k fk

. (102)

This renormalization should also be applied to modify the density and energy to be consistent with the new
volume fractions (just as the pressure relaxation algorithm). Actually Equation 102 should be computed in
two steps to facilitate the other updates carried out in the following order,

Δfk = fk

⎛
⎝(∑

k

fk

)−1

− 1

⎞
⎠ ,

ρk :=
fkρk

fk + Δfk

or by conveniently defining the mass of the kth material as mk = fkρk,

ρk =
mk

fk + Δfk

ek := ek − p̄Δfk

mk
,

and
fk := fk + Δfk

One may also want to limit changes so that volume fractions remain bounded between zero and one,

fk := max [0,min (fk, 1)] . (103)
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III.B.5. Void Treatment

we will try to suggest a structured manner to handle void. This will assume to some degree that this process
is decoupled from the process that introduces void (presumably either in initial conditions or when a material
is expanded below its zero pressure density).

If void is present, either γ̄ = 0 or B̄ = 0, and p̄ = 0. The void itself will have these same properties,
γvoid = 0 or Bvoid = 0 and pvoid = 0. Inserting these arrangements gives a clear view of what will happen,
in either case,

dfvoid
dt

= indeterminate, (104)

and for all k �= void
dfk

dt
= −fk

∂u

∂x
. (105)

Thus, if the flow is compressive, the volume fraction of the non-void materials will rise, and if the flow is
expansive the volume fraction of the non-void materials will drop. This is precisely what should happen
physically. For expansion the “missing” volume fraction should be added to the void and is not included in
the equation, so by the use of the consistency relations, Equation 104 becomes

dfvoid
dt

=
∂u

∂x

∑
k �=void

fk. (106)

For expansions this provides no difficulties, but for compression it is possible for the void to completely
disappear. we will describe how to treat this case next.

We can compute the state of the cell when the void is completely compressed out as follows,

f∗
k =

fk∑
k �=void fk

. (107)

The data needed at this point is how much additional compression is necessary to be applied to the cell,
again this can be easily defined, if the total compression of the cell is δf = −∂u

∂xΔt, then the remaining
compression is simply δf∗ = δf − fvoid. This compression should be partitioned based on the properties of
the materials in the cell and their volume fractions without void, f∗

k as

δf∗
k =

B̄∗ −Bk

Bk
δf∗, (108)

where B̄∗ = (
∑

k f
∗
k/Bk)−1. At this point pressure relaxation, renormalization and limiting may be applied.

IV. Multiphysics: Magnetohydrodynamics (MHD)

Magnetohydrodynamic in alegra-mhd implies a model which combines hydrodynamics and Maxwell’s
equations in moving media with displacement currents neglected. Most cases of interest to users do not fall
into the ideal magnetohydrodynamic regime. Generally, very significant magnetic diffusion across a wide
range of resistivities is expected. Therefore, depending on the time scales and material properties of interest
the flow could range from a near ideal MHD regime to a highly diffusive regime. Non-conducting regions
are treated as being highly resistive. MHD environments may require a wide range of physics phenomena to
be modeled in an environment which includes magneto-solid dynamic motion transitioning into melted and
vaporized material interacting with magnetic fields. Thermal transport modeling may be required and is one
means for smoothing the localized energy sources which can develop due to Joule heating. A simple radiation
emission model may also be used for purposes of removing excess energy. Applications which require true
radiation transport coupled to magnetics utilize the alegra-hedp code. Magnetic material modeling is not
supported at this time.

The 2D version of alegra-mhd supports both Cartesian (XY) and cylindrical (RZ) geometries. 2D (XY
or RZ) MHD modeling56, 57 the magnetic field B = (Bx,By) may be in the plane of the mesh and the current
density Jz is orthogonal to the plane, or else the magnetic field Bz may be orthogonal to the plane of the
mesh and the current density J = (Jx,Jy) is in the plane. The 2D code supports unstructured quadrilateral
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grids. When the magnetic field is in the plane a nodal magnetic vector potential formulation is implemented
and when the field is out of the plane a nodal magnetic flux density representation is implemented. This
historical choice imposes different requirements on the overall algorithms as well as different essential and
natural natural boundary conditions depending on the representation. Coupling for both in-plane and out-
of-plane fields at the same time is not supported.

The 3D version of alegra-mhd supports 3D Cartesian (XYZ) MHD modeling on unstructured grids.
Structurally the algorithm implements electric fields on edges and magnetic flux density on faces and thus
is algorithmically similar to the 2D in-plane field and out-of-plane vector potential formulation. The 3D
code implements a magnetic diffusion solution based on edge and face elements.58 A sophisticated H(curl)
magnetic field solver is required for robust parallel solution of the associated discrete matrix. A discrete,
divergence free property is maintained both in the magnetics solve and during a constrained transport
algorithm in the remap phase. The magnetic flux density is represented in terms of face elements with the
element magnetic flux on faces as degrees of freedom. The 3D code supports unstructured hexahedral grids.

Magnetohydrodynamic coupling can be thought of as occurring in two primary direct processes: First,
exchange of energy between the magnetic field and kinetic energy of the material through magnetic forces
and second deposition of thermal energy in the material due to Joule heating associated with magnetic
diffusion. The two processes will be described in some detail in the next two sections. Of course, changes to
material internal energy translate into thermal pressure which then translates into kinetic energy and thus
works against the magnetic field to cause a change in the magnetic energy but we shall consider these as
secondary exchange pathways since they do not enter directly into the operator split methodology for the
MHD Lagrangian step.

IV.A. Magnetic forces and the Ideal MHD step

In the context of alegra the best way to compute the Lorentz force, J×B, is to compute a Maxwell stress
tensor, TM , such that

TM =
1
μ0

(
B⊗B− 1

2
B2I

)
, (109)

or in component form,

TM
ij =

1
μ0

(
BiBj − 1

2
δijBkBk

)
. (110)

One can show that

J×B = ∇ ·TM −B(∇ ·B)/μ0 = ∇ ·TM (111)

since ∇ · B = 0. In alegra the magnetic stress tensor is approximated by evaluating TM at element
centers. This stress can then be fed to the mean stress finite element divergence operator discussed in the
hydrodynamic section to assemble the nodal forces. There is no intrinsic exact numerical correspondence with
the methodology between the magnetic forces and the magnetic energy. Recent efforts have investigated the
consequences of computing the magnetic forces discretization directly from variation of the discrete magnetic
energy metric with respect to nodal coordinates.59 This is more expensive but in some circumstances may
give a better energy conservation property and it is unclear at present what circumstances this more exact
alternative discrete force description may be preferable.

IV.B. Resistive Diffusion, Transient Magnetics or Eddy Current Modeling

Energy is transferred from the magnetic field to internal energy through resistive magnetic diffusion also
labels transient magnetics or eddy current approximation to Maxwell’s equations. In the operator split
approximation we have discussed we solve the transient magnetics equations coupled to a external magnetic
energy sources through boundary conditions on a fixed grid. We describe here only the basic 3D methodology.
alegra utilizes a compatible finite element technology to solve for transient magnetic or eddy current
diffusion equations in 3D.60, 61 Briefly, The transient equations are follows: First we have the reduced form
of Ampere’s Law and Faraday’s Law.

∇×H = J (112)
∂B
∂t

+∇×E = 0 (113)
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and the closure relations

H = ν0B (114)
J = σE (115)

where ν0 is the constant reluctivity and σ is the conductivity which relate the relating the magnetic field
to the flux density and the current density to the electric field respectively. We utilize a deRham complex
finite element sequence utilized low order edge and face elements. Ampere’s Law is imposed in weak from
and Faraday’s law is imposed using a backward Euler time integrator and the exact finite element sequence
in space. Thus ∫

Ω

σEn+1 · Ê− ν0Bn+1 · ∇ × ÊdΩ =
∫

Γ

n×Hn+1 · ÊdΓ,
Bn+1 = Bn −Δt∇×En+1 (116)

which by substitution leads to∫
Ω

σEn+1 · Ê + Δtν0∇×En+1 · ∇ × ÊdΩ =
∫

Ω

ν0Bn · ∇ × ÊdΩ

+
∫

Γ

n×Hn+1 · ÊdΓ. (117)

This is what is called an H(curl) system in the multigrid literature. The reason it is important to utilize
the edge and face element sequence is so that the stiffness matrix must contain a large exact null space
corresponding to the continuum operator. This discrete representation is crucial to avoid spurious transients
which can destroy the accuracy of the solution. In real problems the conductivity required can vary by
many orders of magnitude from highly resistive to highly conductive. Most real application problems will
have some sort of ”void” regions where the conductivity must be very small and this is added to a stiffness
matrix which is singular. The end result is that this combined matrix is a significant challenge to solve.
After the solution of En+1 then we can compute the flux density from Equation 113. Due to the relationship
between the degrees of freedom for the deRham sequence elements this operators amounts to adding up
edge circulation values associated with the edge elements utilized the proper sign convention to compute
the flux degrees of freedom associated with the face element representation of the flux density. The flux
density is allows exactly divergence free by construction. After the solution of En+1 then we can compute
the flux density from Equation 113. Due to the relationship between the degrees of freedom for the deRham
sequence elements this operators amounts to adding up edge circulation values associated with the edge
elements utilized the proper sign convention to compute the flux degrees of freedom associated with the face
element representation of the flux density. The flux density is exactly divergence free by construction. In 2D
nodal finite element discretizations have been developed to solve the magnetic diffusion matrices associated
with each supported representation.

alegra has historically utilized the Aztec iterative solver library62 to solve the discrete partial differential
equation that governs its physics. Aztec is an iterative solver library with many options for solving linear
systems of equations. Aztec includes a number of Krylov iterative methods such as conjugate gradient
(CG), generalized minimum residual (GMRES), and stabilized biconjugate gradient (BiCGSATB) as well
as associated algebraic multigrid (AMG) capabilities. Sophisticated algebraic multigrid options63 for the
edge element diffusion formulation in 3D and node-centered 2D formulations are available. In addition,
even parallel direct solvers can be implemented using the EPETRA coding interface in the Trilinos software
environment.

Critical to obtaining predictive answers in high energy MHD regimes is proper modeling of the high
temperature state transitions and in particular how the conductivity varies with density and temperature.
Significant progress has been made at Sandia with respect to conductivity modeling in the solid-liquid-vapor
transitions regions. The Lee-More Desjarlais (LMD) models provide the crucial first principles material
modeling input to be able to obtain predictive results.64, 65

If we choose Ê = En+1 in equation 117 we get an equation which gives a precise description of the energy
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partitioning associated with the finite element weak form with the backward Euler time discretization∫
Ω

σEn+1 · En+1 + ν0

((Bn+1)2 − (Bn)2

2Δt

)
+ ν0

((Bn+1 −Bn)2

2Δt

)
dΩ

=
∫

Γ

(
n×Hn+1

b

)
· En+1dΓ (118)

The first term is the Joule heating, the second term is the change in magnetic energy, the third term is a
time discretization energy error which can be tallied and the boundary term is the Poynting flux across the
boundary. The fundamental relations such as the above arising directly from the finite element weak form
allow for the development of a circuit equation coupling methodology. In mixed cells we define σ =

∑
m σmφm

and the material Joule heating in the first term in Equation 118 is partitioned accordingly. This gives the
correct Joule heating in mixed cells when the electric field is aligned with material boundary. This approach
has not always been sufficient however and an additional limiter on the heating in mixed cells has been
necessary. A highly robust and accurate methodology for the mixed cell diffusion problem for the full suite
of deRham complex elements is lacking.

In many practical cases there is significant feedback from the electrical system external to the alegra
mesh which typically only includes the primary “load” where most of the significant heating and material
motion is occurring. Self-consistent transfer of energy to and from external lumped element circuit equations
should be modeled and can be critical to a proper understanding of the physical mechanisms at work. Users
may connect the transient magnetic or MHD simulations to an external circuit set defined by a set of
differential-algebraic equations. This technology is critical for flyer plate modeling.66 The methodology used
in alegra is based on generating an explicit lumped element circuit representation for the mesh response by
computing particular and homogeneous solutions associated with boundary and conditions and then passing
this representation to the circuit solver to compute the expected state at the end of the time step. This
approach has the advantage of an explicit separation of the circuit solve from the finite element mesh solution
and a fixed number of required linear solves. lumped element circuit equations can be critical to a proper
understanding of the physical mechanisms at work. Users may connect the transient magnetic or MHD
simulations to an external circuit set defined by a set of differential-algebraic equations. This technology
is critical for flyer plate modeling.66 The methodology used in alegra is based on generating an explicit
lumped element circuit representation for the mesh response by computing particular and homogeneous
solutions associated with boundary and conditions and then passing this representation to the circuit solver
to compute the expected state at the end of the time step. This approach has the advantage of an explicit
separation of the circuit solve from the finite element mesh solution and a fixed number of required linear
solves.

Currently, there are aspects of some of the operator split methodology in 2D that blur a sharp distinction
between the ideal MHD step and the transient magnetics step resulting in velocity dependent terms in the
transient magnetics solve. This is unnecessary and a clean separation in 2D is planned. The transient
magnetic diffusion step currently occurs after the hydrodynamic motion. This has the advantage of ensuring
that the magnetic field is smoothed after the Lagrangian motion and is the current location of this algorithm
based on experience in the early days of development. The operator split order is fairly arbitrary and should
be the subject of continued investigation.

IV.C. Remap

After the Lagrangian ideal MHD step and the magnetic diffusion step, the mesh may be smoothed or moved
back to the original location and operators are required to remap the fundamental magnetic field quantities
to the new mesh. For the 2D Bz representation which degrees of freedom on nodes, standard alegra nodal
remap operators are utilized. For 2D vector potential representations and in 3D this is not sufficient. What
is required is a remap operator that is properly upwinded and limits on the flux density variable in some way
rather than a vector potential variable. This is because we desire monotonicity preservation in the gradients
of the flux density, i.e. the current. Furthermore we require ∇ · B be enforced exactly so we must either
store a vector potential on edges or store a flux density that has been defined and is always updated as a
signed sum of edge centered circulations.

The basic idea of a remap methodology which satisfies all these constraints was first introduced by
Evans and Hawley in the context of a structured meshes.67 Constrained transport provides a mechanism for
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advection of magnetic flux density which also preserves a discrete ∇ ·B = 0 property by always computing
an accurate update increment on edges which can then be used to update the face centered fluxes. The
∇ · B = 0 property is satisfied exactly by utilizing a staggered grid in which updates are always given as
circulations on edges. Constrained transport must intrinsically be implemented as a spatially unsplit method.
The flux increment through the face is then easily computed as an oriented sum of the edge circulations and
a discrete divergence free property is thus exactly maintained. The easiest way to visualize the algorithm for
an unstructured grid is to consider the set of edge and associated faces of any grid structured or unstructured.
The new grid is considered as an extrusion of the old grid to the new location. (No topological modification
are allowed.) This extrusion sweeps out small volumes which are bounded by the surfaces created by the
edge extrusion and the old and new faces. Apply the divergence theorem to each of these small volumes, V .
We obtain ∫

V

B · n dA =
∫

δVold

B · n dA+
Ne∑
e=1

∫
δVe

B · n dA+
∫

δVnew

B · n dA = 0 (119)

The first integral is the known flux, the last integral is the desired new flux quantity and the sum is a set of
integrals over the swept edges. The key is then to compute accurate values of these edge centered fluxes so
that the new flux can be computed. The edge centered flux values are computed once for each edge. The end
result after taking proper account of signed normals is that the new flux values must be discretely divergence
free by construction. Note that the updates are properly upwinded by construction but update values are
needed that do not introduce spurious oscillations and have minimal energy dissipation. For this purpose we
need a high order representation that that given by the low order face element. The methodology utilized
in alegra is based on reconstruction of the low order face element representation to what is essentially
a so-called ”BDM” element which provides cross face flux variations in addition to the average flux. The
cross face flux degrees of freedom are limited to avoid oscillations and the high order reconstructed element
values are utilized to compute a numerical quadrature of the swept edge fluxes.68 Note that an alternative
methodology has been proposed by Rieben, et. al. in which the high order edge updates themselves are
limited instead of the underlying magnetic field representation.69

V. Multiphysics: Thermal Conduction

alegra supports an implicit thermal conduction modeling in the operators split methodology. Thermal
conduction may become important when sharp thermal gradients are developed for example due to Joule
heating in rapid magnetic transients. Problems which run for longer time scales may also introduce important
effects due to thermal conduction. The HEDP version of the code also supports separate ion and electron
conduction. alegra implements two conduction numerical methods which both utilize an essentially similar
approach. In all cases the methodology solves for flux updates on faces and these fluxes are summed to
compute the change in the internal energy in the cell. The first methodology is based on the support
operator method70 and the second method is a finite element approach using deRham complex sequence.
The methods result in an H(div) type of matrix which must be solved. The thermal conduction packages
utilize the Aztec library to solve the resulting linear system. No H(div) multigrid capability is available
at present but in general this is not a major issue since these matrices are often mass matrix dominated.
The thermal conduction packages utilize the Aztec library to solve the resulting linear sytem. No H(div)
multigrid capability is available at present but in general this is not a major issue since these matrices are
often mass matrix dominated.

We describe the discretization approach in the language of mixed finite elements. In the operator split
formulation we need to solve on a fixed mesh the equations

ρcv
∂θ

∂t
+∇ · q = 0 (120)

q = −κ∇θ (121)

where cv is the heat capacity at constant volume. Since internal energy in alegra is element centered
it makes sense to consider energies and temperatures which lie at element centers and energy fluxes on
faces using a mixed finite element approach. We represent the temperature and the energy flux using basis
functions in L2 and H(div) from a low order deRham complex space.71 The first equation is satisfy exactly
in the deRham complex using a backward Euler time discretization and and the second equation is satisfied
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weakly. We have the exact discrete relationship

ρcv
θn+1 − θn

Δt
+∇ · qn+1 = 0 (122)

and the weak form for Equation 121 is∫
Ω

q̂ · κ−1qn+1 dΩ−
∫

Ω

θn+1∇ · q̂ dΩ = −
∫

Γ

θn+1
b q̂ · n dΓ (123)

which via substitution becomes∫
Ω

q̂ · κ−1qn+1 +
Δt
ρcv

(∇ · qn+1)(∇ · q̂)dΩ = −
∫

Γ

θn+1
b q̂ · ndΓ +

∫
Ω

θndiv q̂dΩ (124)

This is an H(div) matrix equation for the flux qn+1. It is clear that in this formulation normal flux boundary
conditions are essential conditions and temperature boundary conditions are natural conditions. Given qn+1

the change in energy in the cell is computed from Equation 122. This update amounts to a simple signed
addition of the flux degrees of freedom associated with the face element representation.

VI. Multiphysics: Radiation Transport and 3-T Physics

alegra has two different approximations to the Boltzmann Equation 9 for the thermal radiation trans-
port. The first, and most accurate, is a multigroup Implicit Monte Carlo (IMC)72 package shared with the
kull code.73–75 In this method, many pseudo-photons are simulated through physical events to build up a
statistical average of the photon behavior. This can be very accurate, but is also very time consuming.

A faster, but less accurate approximation supported in alegra The second approximation for the radi-
ation transport is a flux limited diffusion package. The multigroup diffusion approximation to Equation 9
can be written as

1
c

∂eg
r

∂t
−∇ · Fg
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Equation 4 is modified to use eg
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In the flux limited diffusion approximation, the radiative flux is approximated as

Fg
r ≈ −

χ(eg
r)

3σg
a
∇eg

r , (128)

where χ(eg
r) is a nonlinear function of the energy density chosen to maintain certain physical limits. The

solution of these equations is similar to the method presented by Morel.?

There are numerous applications, both in industrial production and in applied research, which use ionized
gases, or plasmas, to obtain a desired result. In particular, the Z-pinch program at Sandia works with high
energy, high density plasmas encompassing a wide range of materials from aluminum to tungsten to study
radiation source technology, weapons physics, and ICF-related issues. Under many conditions, the electron
and ion populations of such plasmas may not be in equilibrium; in other words, the electrons and ions
are not characterized by the same Maxwellian temperature. This can occur when external stimuli, such
as radiation, are introduced into the plasma, or when magnetic fields or spatial inhomogeneities reside in
the plasma, interacting differently with each species, or when the plasma undergoes rapid compression or
expansion. When the time scale of the processes which drive the non-equilibrium are shorter than the
electron-ion equilibration time, the plasma will not be in equilibrium. Since the electron-ion equilibration
time is proportional to the electron temperature to the 3/2 power and inversely proportional to the mass
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density, hot, rarefied plasmas tend to have separate electron and ion distributions. However, rapidly-shocked
high density plasmas also tend to exhibit this property over the dynamic time scale of the propagating shock
front. This is typical of z-pinch implosions.

To account for the possibility of separate electron and ion temperatures in a fluid code, the single
fluid energy equation is traditionally split into an electron energy equation and ion energy equationa. Each
equation contains the physics associated with that species, and can be derived from the Boltzmann equation.
For many situations the electron-ion equilibration time might be short compared to other physical processes
of interest, and the 3T physics equations remain unimportant. In addition, it is a goal of alegra to be able
to accurately simulate the all phases of Z pinch experiments starting with solid density, room temperature
wire arrays and ending with plasma stagnation on axis and x-ray radiation production.

VII. Software Infrastructure

The nevada project was spun off of the alegra finite element, coupled physics application around the
year 2000. The idea was to separate the physics specific parts of the code from the rest, which would contain
supporting services, such as the mesh topology, data storage, input deck parsing, mesh input and output,
h-type spatial adaptivity, MPI utilities, and others. At that time, the concept of a “framework”, in which
multiple applications plug into a core set of services, became popular both politically and in funding streams
as a way to increase the speed of developing application capabilities. The alegra code was written in
the C++ language because it was viewed as a superior mechanism to manage the complexity of large code
projects by using polymorphism and object oriented programming.

As is typical in software history, the early hype of frameworks using the C++ language may have fallen
short in practice. However, there is much to be said for both software reuse and the C++ language in an
integrated application development environment. Currently, most applications using nevada are integrated
in both source code and in testing, although a few are using nevada in more of a third party library manner.

The classic reason for applications to join an integrated framework is to leverage existing code to do
routine but difficult or tedious tasks. Less obvious and measurable, is the synergy obtained from the ability
of nevada developers to immediately verify code modifications against integrated application tests, and of
the applications to have their code updated to the latest nevada features, bug fixes, and platform ports.
Additionally, all applications can leverage the nightly build and testing activities of nevada , the build and
porting of third party libraries, and the tools for executing the applications on a variety of platforms.

The main drawback of full integrated development is a loss of flexibility by the applications. Software
quality practices may not be entirely compatible between application and framework, there are limitations
of the build, test, and execution tools, and maintaining successful tests on multiple platforms can be time
consuming. Alternative to full integration is to treat nevada as a third party library. However, nevada ’s
interface and implementation is still fast moving, which implies a high frequency of release and patch, and
increases the support burden for bugs and installation.

The direction and focus of nevada code development continually evolves as new application capabilities
are needed in an evolving strategy to optimize customer success and respond to application code team and
corporate pressures for increased levels of rigor in code project management. Customers and stakeholders
will continue to be the primary source of direction and focus for nevada development.

At a high level, the nevada project offers third party software management, software components for
use in applications, and the tools and processes for application software development. As such, high level
goals for nevada are as follows.

1. Provide software components that are hard to beat in performance and have the flexibility needed by
diverse applications and algorithms.

2. Provide an application development environment in which the overhead associated with necessary
activities is minor.

3. Provide third party software management tools that application developers would choose to use even
if they were not using the toolkit.

aWhen the material temperature and electron temperature are close, the physics is referred to as “2T”, for the one material
and one radiation temperature. When the electrons and ions are out of equilibrium, this is referred to as “3T”, since there is
an electron, ion, and radiation temperature.
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4. Provide packaging tools that will enable applications to deliver a positive out-of-box-experience for
their customers.

High performing software components are critical to supporting the needs of most applications. Flexibility
of the components is important for code reuse and in order to mitigate problems that arise from the difficulty
of predicting future application needs and use cases.

The current software development environment must provide for a moderate sized team (10 to 25 people,
local and remote), a medium level of rigor applied to software quality practices, many third party libraries,
multiple applications, a large number of platforms and compilers, internal and external customers, and
extensive test suites. In such an environment, the tools of software development have a huge impact on the
overhead of writing correct code and delivering it to application customers.

The packaging, porting, building, and installation of third party libraries and programs is a core capability
of nevada and could potentially be of great value to applications as a standalone capability.

Finally, from an application user’s perspective, the degree of success depends significantly on the ability
to obtain, build, and execute the application with little effort. This aspect can be addressed by providing
tools to the developer which enable the application to be packaged in a way that is convenient to the end
user.

VII.A. Meshing and Communication Services

As an example of key services provided by nevada to alegra we highlight the meshing and communication
infrastructure utilities.

Early on in the development of alegra all meshes were generated externally, spatially decomposed and
then read in parallel. This paradigm works well for small problems but starts to break down as very large
problems are desired. A relatively recent thrust, which has gained enthusiastic support from users, is the
concept of inline parallel mesh generation. In this approach the mesh is defined in the user input along
with a requested decomposition strategy and the mesh is generated and partitioned automatically when
the parallel run is launched. Simple meshed objects can currently be generated in parallel. Long term
the optimal strategy is seen to scalably connect more general geometry descriptions to automatic parallel
meshing strategies.

nevada provides a single layer of ”ghost” elements in the parallel infrastructure in order to facilitate
development of parallel algorithms based on the nevada mesh object. Parallel communications services for
updating date residing on the nodes,edges and faces residing on processor boundaries as well as data residing
in the ”ghost” region are available. This gives the code developer very precise and transparent control over
the parallel algorithm implementation. Although distributed memory MPI calls exists ”under the hood” in
nevada , applications developers have no need to interact directly with the lower MPI layers.

One key feature in nevada is support for translational and rotational periodic boundaries. The support
is built into the communication infrastructure in such a way that unique degrees of freedom and proper
rotational and translation updates can be effected within an algorithmic philosophy which views periodic
boundary conditions as a variant of a spatial parallel decomposition.76 Periodic boundary condition support
is useful for verification testing but more particularly can be extremely important from an application
perspective to reduce the constraints on a modeled system. For example, a periodic wedge can be used to
model a full 360 degree system while allowing for angular motions which are less constraining than a fixed
wedge which is constrained to have no normal displacement on the wedge faces.
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Figure 7. Internal energy profiles for the Einfeldt problem,
from simulations with different energy remap algorithms.
Straight-forward conservation of total energy often leads to
poor prediction of the internal energy in regimes where ki-
netic energy dominates. The DeBar algorithm performs well
in this regime.

VIII. Applications
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Figure 8. Density profiles for the Woodward-Colella blast
waves problem, fro simulations with different energy remap
algorithms. The DeBar algorithm predicts the same shock
locations as the method conserving total energy, but the
profile is more similar to the method with conserves internal
energy.

Below we will show several important applica-
tions of alegra . First, we show the performance of
alegra on verification problems. Next, the ability
of alegra to compute the dynamics of a wire array
implosion at Sandia’s Z-machine. Finally, we will
demonstrate the performance of alegra on difficult
ceramic impact simulations with an advanced frac-
ture model designed to provide mesh-independent
results.

VIII.A. Verification

Of the range of different techniques to assess various
types of error in numerical simulations, code verifi-
cation is the foundation on which they all rely. By
code verification, we refer to quantitative assessment
of alegra algorithms and their implementations
through test problems with known reference solu-
tions. As alegra is under continuous development,
code verification is an ongoing activity. Previously
developed test problems and their associated anal-
yses are maintained and rerun regularly, and this
raises the effectiveness of our efforts.

The goals of alegra code verification efforts are
to find coding mistakes (bugs) and to identify algorithmic weaknesses. This second goal makes our view
of code verification broader and more pragmatic than that in the AIAA V&V guide.77 Algorithmic weak-
nesses are defined in the context of particular applications, and as such, our choices for test problems are
weighted towards exact solutions from the literature, rather than manufactured solutions. With that said,
manufactured solutions may be the only options for rigorous testing in multiphysics regimes.

While improving our algorithm for remapping the energy, we developed two verification test problems to
measure our progress. These two problems illustrate that quantitative analyses are done when possible but
understanding how algorithms behave for important applications is also valuable.

A problem which highlights the treatment of the energy is the Einfeldt problem.78 This problem consists
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of two expansion waves traveling away from each other, leaving a near-vacuum state between. As a Riemann
problem the exact solution can be computed and the error is unambiguous. The internal energy is shown for
three remap approaches in Fig. 7. In the first approach, the internal energy and the momenta are remapped;
this does not conserve the total energy. In the second, the total energy and the momenta are remapped.
The internal energy is computed by subtracting the kinetic energy from the total energy, which are nearly
the same; any errors in these variables dominate the true value of the internal energy, as seen in Fig. 7. This
behavior is typical of methods which conserve total energy in a naive way, and in applications often leads to
a lack of robustness. The third approach is the DeBar fix described earlier.

The Woodward-Colella blast waves problem79 does not have a rigorously defined solution, but it is very
well known in the shock-capturing community. It consists of two strong shocks which reflect off opposite
ends of a shock tube. These shocks interact with a number of other waves before colliding. Figure 8 shows
typical alegra results for the same three approaches to the remap. Since total energy is not conserved
in the first approach, the resulting shock speeds are erroneous. In the second approach the total energy is
conserved, but spurious features are visible in the solution behind the strong shocks near x = 0.6, x = 0.65,
and x = 0.8. The third approach is the DeBar fix described earlier; the shock locations are the same as
when total energy is conserved, but the wave structure matches the profiles computed by conserving internal
energy.

VIII.B. Wire-array Implosion

Figure 10. An alegra calculation of the late stages of a wire array implosion. The wires ablate and drive material toward
the axis of symmetry, but leaves a substantial amount of mass behind.

Figure 9. A typical wire array
used in Sandia’s Z-machine
experiments. The wires are
made of tungsten and drive an
implosion on the axis of the
array.

One of the most challenging simulations to conduct with alegra is the implosion of a wire array driven
by Sandia’s Z-machine. A typical wire array is shown in Figure 9. A powerful electric current is applied
to the wires that comprise the wire array. This causes the wires to transition into a plasma and ablate
ultimately driving the resultant plasma towards the axis of symmetry of the wire array. The late stages of
this process are depicted in Figure 10 showing the complex flow. The implosion creates a strongly radiating
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plasma on top of the magnetohydrodynamic flow. In addition substantial mass trails the implosion further
complicating the situation by “shorting” the circuit defined by the plasma. The sum total of the physical
processes and their intricate interplay represent an enormous challenge to model.

Figure 11. A comparison of the radiated power from a wire
array implosion measured experimentally, computed with
alegra using the DeBar kinetic energy correction, and with-
out it.

A key product of the wire array implosion is an
intense radiation pulse. This radiation can be used
in a variety of manners, and the production of this
radiation is optimized using results from alegra.
The inclusion of the DeBar kinetic energy advection
has had a profound impact on the quality of the sim-
ulations of wire array implosions. The improvement
in the simulation is shown in Figure 11. Prior to
the DeBar kinetic energy advection, alegra could
not quantitatively or qualitatively reproduce the ra-
diated energy signature. After this algorithmic im-
provement, alegra could predict this quantity to
within the experimental measurement error in most
cases.

VIII.C. Advanced Material Modeling

The alegra ceramic model was developed to ad-
dress mesh dependency issues (which prevent mod-
els from being predictive) that ARL analysts were
having with existing models for ceramic armor. The

new capability is based on the notion that micro-flaws in the ceramic govern the failure processes and strength
of ceramics. These micro-flaws are incorporated in the model in a statistical fashion, at the finite element
level. An example of these micro-flaws is shown in Figure 12. The alegra ceramic model was developed to
address mesh dependency issues (which prevent models from being predictive) with conventional continuum
damage models for ceramics. The new capability is based on the notion that micro-flaws in the ceramic
govern the failure processes and strength of ceramics. These micro-flaws are incorporated in the model
in a statistical fashion, at the finite element level. An example of a statistically seeded mesh is shown in
Figure 12.
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Figure 12. A depiction of the impact of a
sphere onto a ceramic. The color coding in
the ceramic target denotes the distribution of
strengths (representing micro-flaws) in the ce-
ramic. These flaws are critical to the failure
process.

Figure 13. Here we show the difference between the old
model (left) for fracture and the new model (right) is shown
for the impact problem. The old model produces an unphys-
ical fracture and high mesh dependence while the new model
is physically meaningful and much more mesh independent.

Each finite element is assigned a strength that
is part of the size-dependent Weibull distribution of
strengths observed in experiments. Sandia Brazil-
ian experiments have shown that, on average, small
samples are stronger than large samples. The in-
terpretation is that larger samples are more likely
to contain critical flaws. Strength experiments have
always measured the weakest flaws in a sample, and
the alegra ceramic model takes this into account.
This is as opposed to assigning the strength mea-
sured in the laboratory to the entire mesh, which is
done conventionally and results in the bulk of the
material being too weak. Some results comparing
old and new models is shown in Figure 13 which
illustrates the dramatic improvement gained by sta-
tistically seeding the mesh.

Recent alegra simulations of have shown a dra-
matic reduction in mesh size dependency, which is
a necessary first step in enabling the model to be
predictive.

VIII.D. Magnetic Flyer Plate Launch

Magnetic fields can be used to quasi-isentropically launch flyer plates to extreme velocities for equation of
state purposes on the Sandia Z machine. This application has been a significant success for alegra modeling
because it drove development of an overall capability that can now be used for predictive design purposes in
this extreme environment.80
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IX. Conclusion

The alegra multiphysics hydrodynamics code has been developed by Sandia for more than 15 years.
During this development, substantial capability has been embedded in the code allowing a wide variety of
simulations to be conducted. A number of examples are provided above. These utilize the broad spectrum
of physical processes available in the code.
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