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Abstract

Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large
deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin
finite element spatial discretization and an explicit central-difference stepping method in time. The goal of
this report is to describe in detail the characteristics of this algorithm, including the conservation and stability
properties. The details provided should help both researchers and analysts understand the underlying theory and
numerical implementation of the Alegra continuum hydrodynamics algorithm.
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Lagrangian Continuum Dynamics in ALEGRA

List of Notation and Symbols

(·) • (·) dot product in any finite dimensional real vector space, see equation (20), page 14.

(·) ◦ (·) operator composition, see equation (7), page 12.

< ·, · > L2 inner product, see equation (20), page 14.

α, β time integration parameters ∈ [0, 1].

(̄·) mean value of (·), see equation (62), page 20.

a spatial material acceleration, see equation (8), page 13.

b body force density per unit mass, see equation (22), page 14.

C right Cauchy-Green strain tensor, see equation (6), page 12.

D material rate of deformation tensor, see equation (11), page 13.

d rate of deformation tensor, see equation (10), page 13.

F deformation gradient, see equation (4), page 12.

g spatial metric tensor, see equation (102), page 30.

I rank-two identity tensor, see equation (102), page 30.

l velocity gradient, see equation (9), page 13.

P first Piola-Kirchhoff stress, see equation (16), page 13.

Q arbitrary rotation tensor.

q spatial (Cauchy) heat flux, see equation (92), page 27.

R polar decomposition rotation, see equation (4), page 12.

S second (symmetric) Piola-Kirchhoff stress, see equation (15), page 13.

t surface traction, see equation (22), page 14.

u incremental displacement field, see equation (30), page 15.

V left stretch tensor, see equation (4), page 12.

v spatial material velocity, see equation (7), page 12.

w skew part of velocity gradient, see equation (12), page 13.

X a point of the material domain, page 11.

x a point of the spatial domain, page 11.

Ω rate of change of polar decomposition rotation tensor, see equation (13), page 13.

Σ rotated Cauchy stress, see equation (17), page 13.

σ Cauchy stress, see equation (15), page 13.
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xi vector of nodal coordinates for component i, see equation (115), page 33.

σvisc artificial viscous stress, see equation (97), page 29.

τ Kirchhoff stress, see equation (18), page 13.

δϕ kinematically admissible virtual displacement field, see equation (22), page 14.

det(·) determinant of (·), see equation (5), page 12.

DEV(·) ϕ∗[dev ϕ∗(·)], see equation (144), page 44.

U total displacement field, see equation (35), page 16.

˙(·) material time derivative of (·), see equation (7), page 12.

η internal entropy density, see equation (88), page 27.

exp(·) exponential of (·), see equation (105), page 30.

Γ boundary of the domain, see equation (3), page 12.

grad(·) spatial gradient of (·), see equation (22), page 14.

φ incremental motion, see equation (29), page 15.

Lv[·] Lie derivative of [·], see equation (102), page 30.

log(·) logarithm of (·), see equation (107), page 31.

C rank-4 constitutive tensor, see equation (84), page 25.

H hourglass functions, see equation (112), page 33.

R external heat source, see equation (93), page 27.

ϕ motion of the body, see equation (1), page 12.

ϕ∗(·) pull-back of (·), see equation (100), page 30.

ϕ∗(·) push-forward of (·), see equation (100), page 30.

Ω spatial configuration of the body, see equation (3), page 12.

Ω0 material configuration of the body, see equation (1), page 12.

div(·) spatial divergence of (·), see equation (92), page 27.

Ψ Helmholtz free-energy density, see equation (86), page 26.

ρ spatial mass density, see equation (14), page 13.

ρ0 material mass density, see equation (14), page 13.

h time step, see equation (36), page 16.

p spatial (Cauchy) pressure, positive in compression, see equation (65), page 22.

t time.

skew(·) skew part of (·), see equation (12), page 13.

O

σ objective stress rate, see equation (19), page 13.

symm(·) symmetric part of (·), see equation (10), page 13.

Θ absolute temperature, see equation (86), page 26.
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trace(·) trace of (·), see equation (95), page 28.

ε internal energy density per unit mass, see equation (25), page 14.

ξ element natural coordinates, see equation (110), page 32.

cs material sound speed, see equation (98), page 29.

he element characteristic length scale, see equation (124), page 34.

J determinant of deformation gradient (volume element), see equation (5), page 12.

j determinant of incremental deformation gradient (incremental volume element), see equation (33),
page 15.

NA shape function for node A, see equation (57), page 19.

r external heat source per unit mass, see equation (25), page 14.

SO(3) special orthogonal group.

(·)pred
predicted value of (·), see equation (39), page 16.

(·)n+α quantity (·) at time tn+α, see equation (27), page 15.

(·)s symmetric part of (·), see equation (22), page 14.

ac contact induced acceleration, see equation (42), page 16.

bi nodal ’strain-displacement’ vector for component i, see equation (118), page 33.

FA
ext external force vector at node A, see equation (61), page 20.

FA
int internal force vector at node A, see equation (60), page 20.

Fhg
m nodal forces for hourglass mode m, see equation (133), page 36.

fhg
m hourglass resistance for mode m, see equation (123), page 34.

hj hourglass vector for mode j, see equation (115), page 33.

id the identity mapping, see equation (28), page 15.

N(ξ) vector of element shape functions, see equation (110), page 32.

rhg
m hourglass rate for mode m, see equation (123), page 34.

shg
m Pronto hourglass stiffness parameter for mode m, see equation (131), page 35.

tc contact induced traction, see equation (42), page 16.

T total kinetic energy, see equation (73), page 23.

V total internal energy, see equation (74), page 23.

f incremental deformation gradient, see equation (32), page 15.
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1 Introduction

Alegra [20, 99, 109] was originally developed as an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite
element code that emphasizes large deformations and strong shock physics. As an effort to combine the modeling
features of modern Eulerian shock codes with the improved numerical accuracy of modern Lagrangian finite element
codes, Alegra is based on and follows the approach of the Pronto transient dynamics code [62, 100] and contains
elements of the CTH family of shock wave codes [59, 74]. This capability permits a calculation to proceed in
Lagrangian fashion until portions of the finite element mesh become highly distorted, at which time the nodal points
in the most deformed portion of the mesh are moved to reduce the distortion to acceptable levels. This remeshing
prevents the mesh from distorting to the point where accuracy is lost. The remeshing is limited to only those regions
where severe distortions require mesh movement. In addition to mesh smoothing, the Alegra remesh algorithm
can also move nodes to better resolve mesh regions with specific values of selected variables or their gradients. The
Alegra remesh and remap capabilities are described in [36, 81].

Alegra has more recently become a general purpose multi-physics simulation software package, with a focus on
Z-pinch experiments [43, 66, 84] and Army Research Laboratory advanced armor simulations [65]. The performance
of Alegra on general multi-physics problems is in large part dependent upon the performance and characteristics
of the Lagrangian finite element algorithm. The goal of this report is to describe in detail the characteristics of this
algorithm, including the conservation and stability properties. The details provided should help both researchers and
analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics
algorithm. Although Alegra now has many multi-physics extensions [19, 89] (magnetics, two-temperature plasma
physics and radiation), attention here is specifically focused upon single-material continuum thermo-mechanical
problems.

The outline of the report is as follows. Section 2 provides a brief review of continuum mechanics. The presentation
in this section is very terse, and the reader with a working knowledge of continuum mechanics will much more easily
understand the material. In this regard the references noted provide invaluable background material. Section 3
describes the time-integration algorithm for the momentum balance equation. Alegra uses what is known as the
central-difference method. Section 4 describes some details of the spatial interpolation scheme. Section 5 reviews
the time-integration algorithm for the energy update equation, and also includes a discussion of conservation and
stability properties. Section 6 presents the time-discrete method for updating the stress response of the material
models being used. The discussion includes both hypo- and hyper- elastic material models. Section 7 reviews the
shock capturing algorithm used and Section 8 discusses the hourglass control algorithm. A shock capturing method
introduces artificial entropy production and is needed to correctly model the dissipation produced by the presence of
strong discontinuities. An hourglass control algorithm is designed to help ensure stability of the numerical formulation
in the presence of reduced, less accurate spatial quadrature rules. Finally, some brief concluding remarks are made
in Section 9. An appendix is included to present some additional specific details not directly needed in the main
report content.

2 Continuum Mechanics

For a comprehensive review of continuum (thermo)mechanics, the reader may consult [1, 28, 47, 71, 79, 104]. For a
more introductory presentation, oriented towards finite element analysis, the reader may consult [13, 27, 53].

2.1 Kinematics

Let Ω0 ( R3 denote the reference (material) configuration of a continuum body, with material points labeled X. The
set Ω0 is open, bounded meas(Ω0) <∞, and has a smooth boundary. Let the spatial (current) configuration of the
same body be Ωt ( R3, with points labeled x. Assume there exists a smooth mapping, the motion of the body,

ϕ : Ω0 × [0, T ] 7−→ R3 , (1)

11
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Figure 1. Kinematics of motion of a deforming body.

or equivalently,
ϕt : Ω0 7−→ R3 , (2)

such that
Ωt := ϕt(Ω0) , (3)

and x = ϕ(X, t) = ϕt(X), where [0, T ] is the time interval of interest. Figure 1 provides a visual representation of
these kinematic assumptions. The boundary of Ωt is defined as

Γt := Ωt

⋂
R3 \ Ωt .

This boundary is assumed to be partitioned into disjoint subsets such that

Γt = Γu

⋃
Γσ and Γu

⋂
Γσ = ∅ .

The traction t̄ : Γσ 7−→ R3 is prescribed on the Neumann boundary Γσ and velocity (or displacement) is prescribed
on the Dirichlet boundary Γu.

Consistent with this construction, define

Ft = Dϕt = GRADX[ϕ] = VtRt (4)

as the deformation gradient of the motion, with volume element

Jt = det[Ft] . (5)

The tensors V and R are the stretch and rotation, respectively, associated with the polar decomposition of F. Define

Ct = FT
t Ft (6)

as the right Cauchy-Green strain tensor.

The spatial material velocity is computed as

vt = ϕ̇t ◦ϕ−1
t , (7)

where the superimposed dot denotes the material time derivative (time derivative holding X fixed). The spatial
material acceleration is

at = ϕ̈t ◦ϕ−1
t . (8)

12



Some material models require deformation rate(s) to evaluate their stress response. Towards that end, define

lt = grad[vt] =
(
ḞtF

−1
t

)
◦ϕ−1

t , (9)

as the spatial velocity gradient and
dt = symm[lt] , (10)

as the spatial rate of deformation tensor. The spatial rate of deformation tensor d may be rotated back to the
material configuration via the transformation

Dt = RT
t (dt ◦ϕt) Rt , (11)

thus defining a material rate of deformation tensor. Materials typically undergo both stretch and rotation and
multiple rotation rates may be constructed. For the purposes of this report, define two rotation rates

wt = skew[lt] , (12)

and
Ωt =

(
ṘtR

T
t

)
◦ϕ−1

t ⇐⇒ Ṙt = (Ωt ◦ϕt)Rt . (13)

Note that these two rates are in general not the same for arbitrary motions.

2.2 Kinetics

The law of conservation of mass may be written quite simply as follows. Given a material mass density ρ0 : Ω0 7−→ R+,
the spatial mass density ρt : Ωt 7−→ R+ is given by

ρt = (J−1
t ρ0) ◦ϕ−1

t . (14)

Let σt : Ωt 7−→ R6 denote the symmetric Cauchy stress in the current configuration. Then define

St = JtF
−1
t (σt ◦ϕt)F

−T
t , (15)

as the second (symmetric) Piola-Kirchhoff stress,

Pt = FtSt , (16)

as the first, and generally unsymmetric, Piola-Kirchhoff stress and

Σt = RT
t (σt ◦ϕt)Rt , (17)

as the Cauchy stress rotated back to the material configuration. In many situations it proves convenient to work
with the Kirchhoff stress

τ t := Jtσt = FtStF
T
t . (18)

Many hypo-elastic material models in Alegra are based upon the use of the Green-McInnis-Naghdi [96] objective
stress rate

O

σ :=

(
Rt

[
d

dt
Σt

]
RT

t

)
◦ϕ−1

t . (19)

Remarks 2.1.

1. The Green-McInnis-Naghdi rate is simply one rate among many. All objective rates are essentially Lie deriva-
tives [71]. Hypo-elastic material models require the use of an objective stress rate. However, the choice of which
rate to use is a matter of personal preference or computational convenience. There are no formal mathematical
or rational thermodynamic reasons to prefer one rate over another.
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2. Reference [104], footnote, page 404: “Various stress rates have been used in the literature. Despite claims and
whole papers to the contrary, any advantage claimed for one such rate over another is pure illusion.”

It proves convenient at this juncture to introduce the L2 inner product(s) as

〈a,b〉t =

∫

Ωt

a • b dΩt , (20)

〈a,b〉Γ =

∫

Γ

a • b dΓ . (21)

With this notation in hand, the weak form of the balance of linear momentum may be written as: find ϕ satisfying
the boundary conditions on Γu such that for all δϕ

〈δϕ, ρtat〉t +
〈
grad(s) δϕ,σt

〉
t
− 〈δϕ, ρtb〉t − 〈δϕ, t̄〉Γσ = 0 , (22)

where b is the body-force density per unit mass and t̄ is the prescribed traction on the Neumann boundary Γσ. The
notation (·)s or (·)(s) indicates the symmetric part of (·). This is often referred to as the principle of virtual work
in the spatial configuration [28]. The virtual displacement field δϕ is required to be kinematically admissible in the
sense that δϕ vanishes on the Dirichlet boundary Γu. Equation (22) is equivalent to

〈δϕ, ρ0at〉0 + 〈GRADX δϕ,Pt〉0 − 〈δϕ, ρ0b〉0 −
〈
δϕ, T̄

〉
Γ0
σ

= 0 , (23)

where T̄ · dΓ0 := t̄ · dΓt, Γ0 := ϕ−1
t (Γt) and Γ0

σ := ϕ−1
t (Γσ). This is the principle of virtual work in the reference

(material) configuration [28].

Remarks 2.2. Nansen’s formula [28, 47, 71] states that

n · dΓt = JtF
−T
t N · dΓ0 , (24)

where n and N are the unit outward normals to the spatial and material configurations, respectively.

2.3 Balance of energy

Assume there exists an internal energy density function (per unit mass) ε : Ωt −→ R+. The spatial balance of energy
equation is ([104], equation 79.3)

ρtε̇ = (σt • dt)− div q + ρtr , (25)

where q : Ωt −→ R3 is the spatial (Cauchy) heat flux and r : Ωt −→ R is the external heat source per unit mass.

3 Discrete Time Integration

For a comprehensive overview of the time-stepping and stress update algorithms used in finite element hydrocodes
the reader is strongly encouraged to review [10]. The notation used in this section is almost exactly that of Section
8.1 of [96].

3.1 Incremental kinematics

The goal of this subsection is to describe the time-discrete kinematics used in Alegra . Define the midpoint
configuration of the body as the convex combination

ϕn+α = (1− α)ϕn + αϕn+1 for α ∈ [0, 1] . (26)
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Figure 2. Incremental kinematics of motion of a deforming body.

Consistent with this, the midpoint deformation gradient is the convex combination

Fn+α = (1− α)Fn + αFn+1 for α ∈ [0, 1] . (27)

The incremental motion relating the configurations Ωn and Ωn+1 is

φ = ϕn+1 ◦ϕ−1
n = id + un+1 , (28)

where id is the identity mapping. By this construction

φ : Ωn −→ Ωn+1 . (29)

The incremental displacement field is defined as

un+1 = (ϕn+1 −ϕn) ◦ϕ−1
n . (30)

The displacement field un+1 can be evaluated as a function of xn or as a function of xn+α using the operator
compositions

ũn+1 := un+1 ◦ϕn ◦ϕ−1
n+α = (ϕn+1 −ϕn) ◦ϕ−1

n+α . (31)

Figure 2 provides a visual representation of these incremental kinematics.

The incremental deformation gradient is defined as

fn+α = gradn[ϕn+α ◦ϕ−1
n ] = Fn+αF−1

n , (32)

with an incremental volume element
jn+α = det[fn+α] . (33)

To compute this deformation from the incremental displacement field, notice that

fn+α = (1− α)I + αfn+1 = I + α gradn[un+1] . (34)
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It is possible to accumulate the total displacement field, if desired. This field is simply the accumulated sum

Un+1 := ϕn+1 −ϕ0 =
n∑

i=0

(ϕi+1 −ϕi) =
n∑

i=0

ui+1 ◦ϕi (35)

There are at least two ways to compute the total deformation using the total displacement field:

1.
Fn+1 = I + GRADX[Un+1]

2.
F−1

n+1 = I− gradn+1[Un+1 ◦ϕ−1
n+1]

3.
Fn+α = GRADX[ϕn+α] = (1− α)Fn + αFn+1

3.2 Central-Difference Method

Alegra uses the central-difference method to integrate in time the continuum dynamics equation(s) of motion.
For more detailed information, the reader may consult [7, 62, 110]. Given data {Un,vn−1/2,σn, εn}, the goal is to
compute {un+1,Un+1,vn+1/2,σn+1, εn+1}. The time step(s) are defined as

hn+1 = tn+1 − tn;

hn = tn − tn−1;

h̄ =
1

2
(hn + hn+1)





. (36)

Algorithm Central-Difference. The central-difference method is implemented in eight(8) steps:

1. Solve for the accelerations:

〈δϕ, ρnan〉n +
〈
grad(s)

n [δϕ],σn

〉
n
− 〈δϕ, ρnb〉n − 〈δϕ, t̄〉Γσ = 0 ∀δϕ , (37)

or equivalently,

〈δϕ, ρ0an〉0 + 〈GRADX[δϕ],Pn〉0 − 〈δϕ, ρ0b〉0 −
〈
δϕ, T̄

〉
Γ̄σ

= 0 ∀δϕ . (38)

2. Modify the accelerations for contact:

(a) Predict the velocity field:

vpred
n+1/2 = vn−1/2 + h̄an . (39)

(b) Predict the displacement field(s):

upred
n+1 = hn+1v

pred
n+1/2 , (40)

U
pred
n+1 = Un + upred

n+1 . (41)

(c) Solve for the contact-induced accelerations: Compute a contact force based on gap-function calculations.
The contact force affects the accelerations in that

〈δϕ, ρnac〉n + 〈δϕ, tc〉Γc
= 0 ∀δϕ , (42)

where ac is the contact-inducted acceleration and tc is the contact traction on Γc ⊆ Γ \ (Γu

⋃
Γσ).
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(d) Correct the acceleration field: The computed accelerations are modified such that

an+= ac . (43)

3. Update the velocity field:
vn+1/2 = vn−1/2 + h̄an (44)

4. Correct the computed velocity field to account for Dirichlet boundary conditions. This essentially involves
resetting the values of vn+1/2 to correspond to known data on any Dirichlet boundaries Γu.

5. Compute the displacement field(s):
un+1 = hn+1vn+1/2, (45)

and/or set un+1 directly if the displacement is known on any Dirichlet boundaries Γu. Then simply compute

Un+1 = Un + un+1

ϕn+1 = ϕn + un+1

}
. (46)

6. Calculate the incremental work done and update the internal energy εn+1 of each material (see Section 5).

7. Given the (corrected) displacement field(s), compute the deformation Fn+1 and compute the stress σn+1. This
step is discussed in Section 6.

8. Data swap: {Un,vn−1/2,σn, εn} ⇐=\ {Un+1,vn+1/2,σn+1, εn+1} . Goto one(1).

(End Algorithm Central-Difference) ¨

Remarks 3.1.

1. Step one(1) is only correct assuming the use of a “lumped” mass matrix. If the mass matrix is “consistent”
step one(1) must be modified. Let ān : Ωn 7−→ R3 be an acceleration field such that ān(x) is known if x is
on a Dirichlet boundary Γu. (It is entirely possible that ān = 0.) Assume the virtual displacement field δϕ is
“admissible” in the sense that δϕ = 0 on any Dirichlet boundary Γu. In step one(1) solve

〈δϕ, ρn (ān + ãn)〉n +
〈
grad(s)

n δϕ,σn

〉
n
− 〈δϕ, ρb〉n − 〈δϕ, t̄〉Γσ

= 0 ∀δϕ ,

where ãn : Ωn 7−→ R3 is zero on all Dirichlet boundaries Γu. The total acceleration is then an = ān + ãn. This
modification essentially decomposes the acceleration field into two components, one known and one unknown.
In step four(4), the velocity correction must be algorithmically consistent with ān on Dirichlet boundaries.
Note that this of no particular concern since Alegra does in fact use only lumped mass matrices in the solid
dynamics algorithms.

2. For frictionless contact, an augmented Lagrangian [42] node-on-surface contact algorithm is used. The details
are omitted here, but the reader may consult [5, 17, 18, 50] for more information. For simulations without
contact step two(2) may be omitted.

3. For purely mechanical problems the central difference algorithm is second-order accurate in time.

4. Notice that the velocities are explicitly computed at times tn−1/2 and tn+1/2. If the velocity at time tn is
needed, it is evaluated as

vn :=
1

2

(
vn−1/2 + vn+1/2

)
. (47)

5. In many references [56, 60, 69], the central-difference method is written as1

〈δϕ, ρnan〉n +
〈
grad(s)

n δϕ,σn

〉
n

= 0 ∀δϕ

Un+1 = Un + hvn +
1

2
h2an

vn+1 = vn +
1

2
h(an + an+1)





, (48)

1For convenience, body forces and applied tractions are omitted.
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for a time step h > 0. This is equivalent to the form presented in Algorithm Central-Difference, at least for a
constant time step h := hn = hn+1 = h̄. First, rewrite equation (48)3 as

h2an = 2h(vn+1 − vn)− h2an+1 . (49)

The substitution of this into equation (48)2 produces

Un+1 −Un = hvn+1 −
1

2
h2an+1 . (50)

The time step index (n) is arbitrary here and thus

Un −Un−1 = hvn −
1

2
h2an . (51)

The subtraction of equation (51) from equation (48)2 yields

Un+1 − 2Un + Un−1 = h2an . (52)

However, equations (44) - (46) imply

h2an = h(vn+1/2 − vn−1/2)

= (Un+1 −Un)− (Un −Un−1)

= Un+1 − 2Un + Un−1





, (53)

which is the desired result. Both representations produce the same displacement difference stencil. This
demonstrates the equivalence of the two alternative representations of the central-difference method.

Remarks 3.2.

1. Many of the material models in Alegra require an approximation of the velocity gradient l = d+w to perform
constitutive updates and compute the stress. In Alegra these approximations are

ln+1/2 = gradn+1/2[vn+1/2] , (54)

dn+1/2 = symm[ln+1/2] , (55)

and
wn+1/2 = skew[ln+1/2] . (56)

2. Notice that
hn+1ln+1/2 = gradn+1/2[ũn+1]

= gradn[un+1] f
−1
n+1/2

= gradn[(ϕn+1 −ϕn) ◦ϕ−1
n ] f−1

n+1/2

= (fn+1 − I) f−1
n+1/2

= 2(fn+1 − I)(fn+1 + I)
−1

.

3. Under a superposed rigid body motion (SRBM), ϕn+1 = Qϕn for some Q ∈ SO(3). In this circumstance,
dn+1/2 = 0. To see this, notice that in this situation fn+1 = Q,

fn+1/2 =
1

2
(I + Q),

and thus
hn+1ln+1/2 = 2(Q− I)(Q + I)

−1
.

The reader may easily verify that

symm
[
(Q + I)

T
ln+1/2(Q + I)

]
= 0.

Thus ln+1/2 is skew. (See also Corollary 8.1 of [96].)
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Figure 3. Behavior of the average(midpoint) configuration as a function of rotation. This figure is similar
to figure one(1) of reference [57].

4. The immediately preceding analysis ensuring incremental objectivity of ln+1/2 requires that (Q + I) be non-
singular. This is equivalent to requiring that −1 not be an eigenvalue of Q. In that pathological case Q
represents a rotation of π radians and the “average configuration” collapses to a point; see figure 3. Thus
the algorithm for computing l is restricted to rotation increments strictly less than π radians. Fortunately,
such a large rotation increment is generally beyond the range of expected values for an explicit time-stepping
algorithm like the central-difference method. More details can be found in [57].

5. There are multiple possibilities for computing the polar decomposition Fn+1/2 = Vn+1/2Rn+1/2. Clearly, one
way is the “DG” method; just compute them directly [51, 52]. Another way is the “VR” method as suggested
by Dienes [35, 39, 62]. The Dienes algorithm is described in excellent detail by reference [41], which includes
a flowchart outlining its implementation in an explicit time-stepping scheme. In either case, it is now assumed
that Vn+1/2 and Rn+1/2 are available for use.

4 Spatial Approximation

In almost all regards Alegra uses a standard finite element spatial interpolations. Uniform strain isoparametric
tensor product elements transformed from the parent domain [−1, 1]

Ndim are used [7, 8, 40]. These correspond to four-
node quadrilateral elements in two dimensions are eight-node hexahedral elements in three dimensions. These are the
simplest (non-locking) elements available for general purpose finite element analysis. Standard nodal shape functions
are used to interpolate continuous fields such as position, velocity and acceleration. Shape function gradients are
calculated by appropriate transformation of natural coordinate gradients [56, 112]. Any needed kinematic tensor
fields are computed using the shape function gradients.

For standard finite element analysis,

ϕ =

Nnodes−1∑

A=0

NAϕA =⇒ grad[ϕ] =

Nnodes−1∑

A=0

ϕA ⊗ grad[NA] , (57)

where ϕA is the value of ϕ at node A and the shape function for node A is denoted by NA. The same spatial
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interpolation is applied to δϕ. Thus equation (37) can be written for node A in matrix form as

Nnodes−1∑

B=0

MABaB + FA
int − FA

ext = 0, (58)

where

MAB =

∫

Ωn

ρnNANB dΩn , (59)

is the mass matrix,

FA
int :=

∫

Ωn

σn gradn[NA] dΩn , (60)

is the internal force vector at node A and

FA
ext :=

∫

Ωn

NAρnbn dΩn +

∫

Γn

NAt̄dΓn , (61)

is the external force vector at node A. If the mass matrix is lumped then

M̄A :=

Nnodes−1∑

B=0

[∫

Ωn

ρnNANB dΩn

]
=

[∫

Ωn

ρnNA dΩn

]
,

and MAB = M̄AδAB (no sum on A).

All force integrals in Alegra are evaluated using a “mean quadrature” approach [40]. For example, equation (60)
is numerically evaluated using the approximation

FA
int ≈ σ̄n

∫

Ωn

gradn[NA] dΩn ,

where σ̄ is the (spatially constant) stress in the element. This stress is calculated using the mean volumetric
deformation, the mean deformation gradient and/or the mean rate of deformation tensor for the element. The mean
value of a kinematic field (·) in an element Ωe is calculated as

(̄·) :=
1

meas(Ωe)

∫

Ωe

(·) dΩe . (62)

All relevant (thermodynamic) fields, which include but are not limited to, deformation rate, stress, pressure,
density and internal energy, are assumed spatially constant in each element. Thus position and velocity are C0(Ω) ⊂
H1(Ω) fields defined by nodal values and thermodynamic quantities are L2(Ω) fields defined by piecewise constant
element values. This is often referred to as a staggered grid spatial interpolation [23, 25]. Note also that a given
kinematic field can be non-zero pointwise but may still have a zero mean value. In particular, there exist deformation
modes for four-node planar and eight-node brick elements which have zero mean deformation. To avoid propagation
of these zero-energy spurious modes hourglass control (section 8) is required.

Remarks 4.1. Using the divergence theorem, some volume integrals can be converted to surface integrals. For
example, ∫

Ω

grad[NA] dΩ =

∫

Γ

NAndΓ ,

where Γ is the boundary of Ω and n is the outward normal. This approach to integral evaluation can reduce the
total number of floating point computations, especially for elements such as the four-node quadrilateral, which has
straight sides.

5 Energy Calculations

Step six(6) of algorithm central-difference requires a computation of the updated internal energy for each material.
This section discusses the method Alegra uses for this update.
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5.1 Existing Alegra Algorithm

Assuming no external heat sources and adiabatic conditions, equation (25) reduces to

ρtε̇ = (σt • dt) . (63)

One simple way to integrate this numerically is the generalized midpoint rule

ρn+β · (εn+1 − εn) = h̄(σn+β • dn+β) for β ∈ [0, 1] . (64)

Remarks 5.1.

1. Example material models.

• Ideal gas.
σ = −(γ − 1)ρtεI ,

where γ > 1 is the ratio of the specific heats.

• Viscous fluid.
σ = 2µdev dt ,

where µ > 0 is the dynamic shear viscosity.

• Hyper-elasticity. See section 6.2.

2. For an element e with domain Ωe ⊆ Ωt,

〈σt,dt〉t = 〈σt, lt〉t

=

〈
σt,

Nnodes−1∑

A=0

vA ⊗ grad[NA]

〉

t

=

Nnodes−1∑

A=0

〈
vA,σt grad[NA]

〉
t

=

Nnodes−1∑

A=0

vA •
[∫

Ωe

σt grad[NA] dΩe

]

=

Nnodes−1∑

A=0

FA
int • vA

3. The method above is implicit for β > 0. Alegra currently uses β = 0. Actually, what Alegra really does
(for each element) is

εn+1 = εn + h̄

[∫

Ωn

ρn dΩn

]−1

〈σn,dn〉n

= εn + h̄

[∫

Ωn

ρn dΩn

]−1
[

Nnodes−1∑

A=0

FA
int • vA

]

n

= εn + h̄M−1
e

[
Nnodes−1∑

A=0

FA
int • vA

]

n





.

The total mass of an element e is denoted by Me. (Recall that all stress/strain/energy/density fields are
constant within each cell.) The stress power is computed in UnsDynamics::Calculate_Work() and the energy
is updated in UnsDynamics::Update_Density_and_Energy(). Notice that for β = 0 this is an explicit energy
update, and does not depend on the state of the material at time tn+1, only the state at time tn.

4. Given that Alegra uses β = 0, the algorithm, as implemented, is only first-order accurate. Only the choice
β = 1/2 is second-order accurate.
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5.2 Equation(s) of State

For this class of materials assume the stress is simply σ = −pI, where p is the (thermodynamic) pressure. Consistent
with fluid dynamics convention the pressure is assumed positive in compression. Assume there exists an equation of

state such that

p = p̂(ρ, ε) =⇒ σ = −p̂I , (65)

for a (smooth) function p̂ : R+ × R+ 7−→ R. For this class of materials, assuming the internal energy density εn+β

(see section 5.1) and the density ρn+β have been computed, the pressure may be updated by a function evaluation

pn+β = p̂(ρn+β , εn+β) ∀β ∈ [0, 1] . (66)

The update of more complex material models is discussed in Section 6.

Remarks 5.2.

1. The density update is purely kinematic:

ρn+β = det(fn+β)
−1

ρn ∀β ∈ [0, 1] .

The density is updated in UnsDynamics::Update_Density_and_Energy().

2. It may be possible to couple equations (65) - (66) with equation (64) for β > 0. This creates a (generally)
implicit coupled system of equations for the pressure and the energy. The equations are non-linear and must be
solved in some simultaneous iterative fashion [21]. With β = 0 the equations are uncoupled. Again, Alegra

currently uses β = 0.

3. See Ideal_Gas::Update_State(...). In this function it is assumed that εn+1 has already been determined.
Thus only the pressure is computed. All equation of state models in Alegra are implemented in this fashion
(energy first, pressure second; an explicit, staggered, de-coupled update). See remark (5.1)3.

4. All Alegra material model “updates” (hypo-elastic, hyper-elastic, equation of state, ideal gas...) are driven
by UnsEnergetics::Material_State_Update(). This function is called after density and energy have been
updated.

5. The reader may find it helpful to review the Alegra equations (for an ideal gas) in one(1) space dimension
using a finite difference rather than a finite element notation. The one-dimensional stencils can be used for
stability analysis, if desired, and are given in Appendix C.

5.3 Conservation Properties

The goal of this section is to discuss the global conservation properties of the Alegra algorithm. Only the case
β = 0 is considered.

5.3.1 Angular Momentum

In absence of external tractions and body forces, the Alegra algorithm can be written in Lagrangian weak form as

〈
δϕ, ρ0(vn+1/2 − vn−1/2)

〉
0

+ h̄ 〈GRADX[δϕ],FnSn〉0 = 0 ∀ δϕ. (67)

Under suitable (pure Neumann) boundary conditions, an admissible choice for δϕ is δϕ = w×ϕn for some w ∈ R3.
A simple substitution yields

〈
w ×ϕn, ρ0(vn+1/2 − vn−1/2)

〉
0

+ h̄ 〈GRADX[w ×ϕn],FnSn〉0 = 0 . (68)
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Given any vector w ∈ R3, there exists a unique 3 × 3 skew-symmetric tensor ŵ such that w × a = ŵa ∀a ∈ R3.
Using this property, the above equation can be written as

〈
w ×ϕn, ρ0(vn+1/2 − vn−1/2)

〉
0

+ h̄ 〈GRADX[ŵϕn],FnSn〉0 = 0 . (69)

Consider the second term on the left hand side:

〈GRADX[ŵϕn],FnSn〉0 = 〈ŵFn,FnSn〉0
=
〈
ŵ,FnSnF

T
n ,
〉
0

= 0





(70)

since the tensor FSFT is symmetric and ŵ is skew. This leaves only the first term, which by manipulating the cross
product can be written as 〈

w,ϕn × ρ0(vn+1/2 − vn−1/2)
〉
0

= 0 . (71)

Since the vector w is arbitrary, this yields the conservation statement

∫

Ω0

ϕn × ρ0(vn+1/2 − vn−1/2) dΩ0 =

∫

Ωn

ϕn × ρn(vn+1/2 − vn−1/2) dΩn = 0 . (72)

Remarks 5.3. This conservation statement may seem somewhat odd to the reader. However, it is not inconsistent
with the variational structure of the central difference method [60]. The variational structure of a time integration
scheme guarantees that some momentum-like quantity (a momentum map [72]) is conserved [60, 69]. The conserved
quantity is not necessarily intuitive or obvious, but is rather the consequence of a discrete version of Noether’s
Theorem [4].

5.3.2 Energy

Definition 5.1. The total kinetic energy is defined as

Tn+α =
1

2

∫

Ω0

ρ0‖vn+α‖2 dΩ0. (73)

Definition 5.2. The total internal energy is defined as

Vn+α =

∫

Ω0

ρ0εn+α dΩ0. (74)

In absence of external tractions and body forces, the Alegra algorithm can be written in Lagrangian weak form
as 〈

δϕ, ρ0(vn+1/2 − vn−1/2)
〉
0

+ h̄ 〈GRADX[δϕ],Pn〉0 = 0 ∀ δϕ, (75a)

〈ζ, ρ0(εn+1 − εn)〉0 − h̄〈ζ,Pn •GRADX[vn]〉0 = 0 ∀ ζ, (75b)

with

vn :=
1

2
(vn−1/2 + vn+1/2) . (76)

Under suitable (pure Neumann) boundary conditions, an admissible choice for δϕ is δϕ = vn. An admissible choice
for ζ is ζ = 1. With these substitutions, the above equations become

Tn+1/2 − Tn−1/2 + ∆W = 0, (77a)

Vn+1 − Vn −∆W = 0, (77b)

with the incremental work done defined as

∆W := h̄

∫

Ω0

Pn •GRADX[vn] dΩ0 . (78)

Clearly this yields the total energy conservation statement

(
Tn+1/2 + Vn+1

)
−

(
Tn−1/2 + Vn

)
= 0. (79)
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Remarks 5.4.

1. Numerical simulations using Alegra have suggested that the central difference method is mildly unstable
for rapid adiabatic (isentropic) expansion(s) of ideal gases [29, 85]. Please see the continuing remarks which
immediately follow and also Appendix D.

2. Notice that the energy update equation uses the time step h̄ rather than hn+1. This is necessary to ensure
that a statement of total energy conservation exists. However, the use of the time step h̄ does seem to be
inconsistent with the time-centering of the internal energy.

3. One might argue that the above conservation statement is somewhat disconcerting. Notice that the time-
centering of the kinetic energy is shifted by a half-step from the time centering of the internal energy. This
does not imply that the conservation statement is invalid or incorrect. Nevertheless, it does bring into question
the validity of the central difference method for strongly coupled thermo-mechanical continuum problems.

4. The central difference method is a very commonly used time integrator for continuum and structural dynamics.
For purely mechanical problems the algorithmic properties are well understood and the method continues to be
reliable and effective. However, for strongly coupled thermodynamic problems, the stability and conservation
properties of the algorithm can be brought into question. These issues arise only for thermally (energetically)
coupled problems, and not for the purely mechanical case [29, 85].

5. The reason that the choice β = 1/2 is not studied here is because the use of β 6= 0 generally leads to a non-
conservative algorithm. The lack of a conserved energy may result in incorrect shock speeds (and thus shock
locations) and a loss of convergence (to weak solutions) for hydrodynamic simulations (see paper [63] and book
[101], section 9.6). Convergence to incorrect solutions is also possible [54].

6. An alternative second-order accurate energy update algorithm is proposed in Appendix A. Unfortunately, a
conserved total energy quantity does not generally exist for that approach. More significantly, the current Ale-

gra central-difference based algorithm cannot in general achieve linear stability, global second-order accuracy

and conservation of total energy simultaneously [85].

5.3.3 Incremental Objectivity

The goal here is to determine the incremental objectivity properties of the Alegra energy update.

Proposition 5.1. Assume ϕn = Q1ϕn−1 and ϕn+1 = Q2ϕn for some Q1,Q2 ∈ SO(3). Then the energy update is
incrementally objective if hn = hn+1 and Q1 = Q2.

Proof. Using the update equations of section 3.2,

ϕn = ϕn−1 + hnvn−1/2

ϕn+1 = ϕn + hn+1vn+1/2

}
, (80)

under the kinematic assumptions of the proposition gives

vn−1/2 = h−1
n (ϕn −ϕn−1) = h−1

n (I−Q1)ϕn−1 = h−1
n (I−Q1)Q

T
1 ϕn = h−1

n (QT
1 − I)ϕn

vn+1/2 = h−1
n+1(ϕn+1 −ϕn) = h−1

n+1(I−Q2)ϕn

vn =
1

2
(vn−1/2 + vn+1/2) =

1

2

[
h−1

n (QT
1 − I) + h−1

n+1(I−Q2)
]
ϕn





. (81)

Taking the material gradient of the velocity at time tn results in

GRADX[vn] =
1

2

[
h−1

n (QT
1 − I) + h−1

n+1(I−Q2)
]
Fn . (82)

Now recall the incremental work done (78)

∆W := h̄

∫

Ω0

Pn •GRADX[vn] dΩ0 = h̄

∫

Ω0

Sn • FT
n GRADX[vn] dΩ0 . (83)
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Since S is symmetric, a sufficient condition for ∆W = 0 is that FT
n GRADX[vn] be skew. This is satisfied if and only

if the quantity
h−1

n (QT
1 − I) + h−1

n+1(I−Q2) ,

is skew. This is satisfied in general only when hn = hn+1 and Q1 = Q2.

Remarks 5.5.

1. The energy update is guaranteed incrementally objective only when hn = hn+1 and Q1 = Q2. Unfortunately,
these are rather restrictive requirements and in general the energy update is not objective. In particular, a rigid
body motion which occurs in a single time step does not generally produce zero incremental work done.

2. Incremental objectivity is not required for consistency, stability or convergence. However, it is a desirable
property. Consider a continuum body rotating rigidly. If the energy update is not incrementally objective the
internal energy of the material will change as the body rotates. Consequently, for an equation of state model
the thermodynamic pressure will also change. The result in this case is spurious pressure variations when the
pressure should remain constant in time.

Remarks 5.6.

1. Notice that time centering of the data Z := {v,x,σ, ε} is staggered in a “leap-frog” fashion for the central-
difference method. The velocity v and momentum are time located at the mid-points of a time interval, while
the position x and energy ε are located at the end-points of a time interval. This makes the definition of
algorithmic quantities such as total energy and total momentum somewhat difficult.

2. The resolution of the energy consistency issues discussed in this report may necessitate the use of an entirely
different conservative time integration algorithm. A mid-point based predictor multi-corrector integrator has
shown promise in this regard [93, 94]. That algorithm conserves total angular momentum and an algorithmically
consistent and well defined total energy, and is incrementally objective in both stress and energy updates.

3. All data for the mid-point time integrator is centered at the end-points of a time interval. The integrator is
implicitly a map from Zn 7→ Zn+1. In fact, the algorithm can be written abstractly as

Zn+1 = Zn + hn+1 · F(Zn+1/2,hn+1) ,

for an appropriately defined function F. Algorithmic quantities such as total energy and total momentum are
easily defined. The details are in references [93, 94].

6 Stress Update Algorithm

Step seven(7) of algorithm central-difference requires a computation of the updated stress response of the material.
The method for performing the constitutive update depends upon the type of material being used.

6.1 Hypo-Elasticity

The concept of hypo-elasticity was originally introduced by Truesdell [103]. More details can be found in [11, 98,
104]. Assume a constitutive model of the form

Σ̇t = CDt , (84)

where the rank-four tensor C is positive-definite (coercive) in the sense that

∃κ > 0 such that ∀v,w ∈ R3 (v ⊗w) • C (v ⊗w) > κ‖v‖2‖w‖2 . (85)

Let β ∈ [0, 1]. The algorithm is as follows [96]:
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1. Compute the material rate of deformation:

Dn+β = RT
n+βdn+βRn+β

2. Compute the material stress:

Σn = RT
nσnRn

3. Update the material stress:

Σn+1 = Σn + hn+1CDn+β

4. Rotate forward to get Cauchy stress:

σn+1 = Rn+1Σn+1R
T
n+1

Remarks 6.1.

1. Assume that dn+β is incrementally objective. Then the algorithm above is incrementally objective. Given the
way Alegra computes the rate of deformation tensor, only the choice β = 1/2 is incrementally objective.

2. Even with the choice β = 1/2, under a SRBM fn+1 = Q ∈ SO(3), the Cauchy stresses will transform exactly
as σn+1 = QσnQT if and only if Rn+1R

T
n = Q. The Dienes algorithm [35, 41, 62] only approximates this

condition and does not exactly reproduce Q as the incremental rotation.

3. Residual stresses may remain at the end of a closed strain path for hypo-elastic materials [61, 90].

4. General models of hypo-elasticity are incompatible with the notion of hyper-elasticity [11, 98, 104]. More pre-
cisely, given a hypo-elastic material model, there does not generally exist a corresponding Helmholtz free energy
function for that model. Thus the model lacks a solid mathematical basis relative to rational thermodynam-
ics [1, 30, 31, 102] and quantities such as internal energy and heat production are ill-defined. The extension of
this class of material models to the full thermo-elastic regime remains unclear.

5. Hypo-elastic models remain in common use in many commercial and government computational software ap-
plications [49, 62]. However, most if not all academic researchers in computational mechanics have long since
abandoned hypo-elasticity in favor of thermodynamically consistent models of material behavior.

6. The use of a hypo-elastic material model does not guarantee that the continuum evolution equations define an
(infinite-dimensional) Hamiltonian system. A Lagrangian action integral is not well defined and as such the
variational structure of the central-difference method is undetermined in this case.

6.2 Hyper-Elasticity

Given the thermodynamic issues associated with hypo-elasticity, one might want to consider alternative models of
material behavior. From a rigorous thermodynamic perspective, hyper-elasticity is more correct; hypo-elasticity has
proven useful, but remains problematic thermodynamically. For a comprehensive overview of continuum thermody-
namics the reader may consult [34, 71, 104].

Let Θ > 0 be the absolute temperature field. Given a Helmholtz free energy density Ψ(C,Θ) (per unit mass) [1,
30, 31, 71, 104]

Sn+α = 2ρ0

[
∂Ψ

∂C

]

{C,Θ}={Cn+α,Θn+α}

. (86)

Then simply

σn+α = J−1
n+αFn+αSn+αFT

n+α . (87)

This holds ∀α ∈ [0, 1].

Remarks 6.2.
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1. There is essentially no need for objective stress rates relative to hyper-elasticity. The material model is purely
“strain-driven,” and stresses can be computed and updated directly from the total deformation Fn+1 (or the
incremental deformation fn+1) and the time step hn+1 > 0. This is true even with visco-elastic, visco-plastic
and damage extensions.

2. The use of a hyper-elastic material model (under the assumption of constant temperature, or alternatively
constant entropy [104]) ensures that the continuum evolution equations define an (infinite-dimensional) Hamil-
tonian system. In this situation, the central-difference method is a variational time integrator [60, 69]. The
time-discrete equations of the method can be derived as the Euler-Lagrange equations of a time-discrete La-
grangian action integral. Subject to time step restrictions, the method possesses rather remarkable stability
and conservation properties.

3. Thermo-Elasticity [1, 2, 32, 46, 71, 76, 97]:

Internal Entropy Density (per unit mass) :

η = −∂ΘΨ(C,Θ) (88)

Internal Energy Density (per unit mass) :

ε = ε̂(C,Θ) = Ψ(C,Θ) + η(C,Θ) ·Θ . (89)

ThermoElastic Heating:

H = −1

2
Θ · ∂Θ(S • Ċ) = −Θ ·

[
ρ0(∂ΘCΨ) • Ċ

]
(90)

Specific Heat (per unit mass):
c := −Θ · ∂2

ΘΘΨ (91)

Heat Conduction:

(a) Entropy form:
ρ0Θη̇ = [−J div q + ρ0R] (92)

(b) Temperature form:
ρ0cΘ̇ = −H + [−J div q + ρ0R], (93)

where q is the spatial (Cauchy) heat flux and R is the external heat source per unit mass. In general the
specific heat c > 0 is not constant.

4. Note that an equation-of-state model may be considered a special case of thermo-elasticity. Once the updated
density and internal energy are calculated, the (thermodynamic) pressure is computed by a function evaluation
(see Section 5.2). More abstractly, for an equation-of-state model the free energy is assumed to be function of
volume and temperature Ψ(detC,Θ).

5. Ideal gas. Consistent with the immediately preceding remark, an ideal gas is in fact a type of thermo-elastic
material. The internal energy of an ideal gas is given by

ε(ρ, η) = ε0

[
ρ

ρ0
exp

(
η − η0

R

)](γ−1)

, (94)

where R > 0 is the gas constant, γ > 1 is the adiabatic exponent and {ρ0, η0, ε0} is the reference state of the
gas [77]. A standard sequence of thermodynamic arguments yields (see chapter 2 of [33])

p = ρ2∂ρε =⇒ p = (γ − 1)ρε ,

and
Θ = ∂ηε =⇒ Θ = c−1

v ε ,
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where cv = (γ − 1)−1R is the constant volume specific heat capacity per unit mass. This equation may be
inverted in closed form as

η − η0 = R log

[
ρ0

ρ

(
cvΘ

ε0

) 1
γ−1

]
, (95)

and thus

Ψ(ρ,Θ) = ε (ρ, η(ρ,Θ)) − η(ρ,Θ) ·Θ .

Note also that ρ0/ρ = (detC)1/2.

6. As another example, consider a volumetric-deviatoric uncoupled thermoelastic material. In this case, a simple
form for the free energy is [97]

Ψ(C,Θ) = T̂ (Θ) + M̂(J,Θ)︸ ︷︷ ︸
thermal

+ Ŵ (C̃) + Û(J)︸ ︷︷ ︸
elastic

,

where C̃ := J−2/3C. For a neo-hookean model, these functions may take the form

T̂ (Θ) = c0

[
(Θ−Θ0)−Θ log

(
Θ

Θ0

)]

M̂(J,Θ) = −3β(Θ−Θ0)Û
′(J)

Ŵ (C) =
1

2
ρ−1
0 µ [trace(C)− 3]

Û(J) = ρ−1
0 κ

[
1

2
(J2 − 1)− log(J)

]





,

where Θ0 > 0 is the reference temperature, c0 > 0 is the reference heat capacity, β > 0 is the (linearized)
coefficient of thermal expansion, κ > 0 is the (linearized) bulk modulus and µ > 0 is the (linearized) shear
modulus.

7. For non-dissipative materials, which include ideal gas and other equation of state models, the use of equa-
tion (63), ignoring heat fluxes and heat sources (and artificial viscosity), implies an isentropic process. For
non-dissipative materials heat conduction

γcon := − 1

ρΘ2
(q • grad Θ) > 0 ,

is the only source of local entropy production [30, 32, 34, 104]. For hyper-elasticity, see remark (6.2)8.

8. For hyper-elastic materials assume that the internal energy density ε is a function of deformation and temper-
ature (see [104], section 82),

ε = ε̂(C,Θ) = Ψ(C,Θ) + η(C,Θ) ·Θ ,

where Ψ is the (Helmholtz) free energy density and η is the specific entropy, both per unit mass. Then it should
be possible, given εn+1, to solve for Θn+1 implicitly by solving

εn+1 − ε̂(Cn+1,Θn+1) = 0 .

This is equivalent to numerically approximating adiabatic (and thus isentropic) thermo-elasticity; see equa-
tion (92).

9. For general hypo-elastic (section 6.1) material models an internal energy function does not exist. A discussion
of dissipation and/or entropy production is meaningless.
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7 Shock Capturing

7.1 Background information

In shock physics calculations, physical viscosity2 is truly negligible and has space and time scales much smaller
than those resolved by the grid. The weak, or integral, Euler equations are inherently ill-posed (having an infinite
number of solutions). Computational solutions involving shocks, without some form of stability control, usually have
severe oscillations because of this. Mathematically, it is common practice to add a viscosity term to shock equations
and consider the unique solution arising in the limit as the viscosity vanishes. This approach is known as viscosity
solutions. Computationally, a similar effect can be achieved by use of an artificial viscosity to stabilize the computed
solution about a shock [64].

Like physical viscosity, artificial viscosity appears in both the fluid momentum and energy equations through the
stress tensor. In the momentum equation the artificial viscosity stress, σav, should act to reduce momentum at the
shock front, and hence also reduce the kinetic energy there. In the energy equation, the kinetic energy lost should be
dissipated (and entropy produced [32]) by raising the fluid internal energy (σav •d > 0). Thus, like physical viscosity,
artificial viscosity acts to convert kinetic energy into internal energy at the shock front. To form an artificial viscosity
stress tensor, one must construct artificial analogs of physical terms such as µ ∝ ρvthλ and d.

7.2 Standard Artificial Viscosity

The basic von Neumann-Richtmyer artificial viscosity [106] idea is to exchange the space and time scales from the
physical viscosity for ones applicable to the grid and fluid velocity. They replaced the term vthλ in µ with the product
of a term proportional to the spatial gradient of the velocity and a space-scale squared. The space-scale is selected
to be a grid length, resulting in a compact smearing of the shock. This basic idea,

σvisc,quad =
(
ρh2‖d‖

)
· ‖d‖ ←− (ρvthλ) ‖d‖ , (96)

results in a term quadratic in the velocity gradient. In multidimensional applications, the simplest approach is to
use a scalar coefficient and to compute ‖d‖ as trace[d], independent of shock direction (since evaluating the shock
direction robustly remains an open problem). This simplest application in multiple space dimensions is what Alegra

uses for its quadratic term,

σvisc,quad,ALEGRA = Qquad =
(
ρl2 |trace[d]|

)
· trace[d] · I , (97)

where l > 0 is what Nevada calls the aspect ratio (an element characteristic length scale).

This term is quadratic in d, whereas the physical viscous stress is only linear in d. The second d in the quadratic
term really serves only to help define the space and time scales over which the artificial viscosity acts. An alternative
is to use the sound speed cs > 0 to obtain those space/time scales. This results in the linear term used in Alegra

σvisc,lin,ALEGRA = Qlin = (ρlcs) trace[d] · I . (98)

Thus the final form for the standard artificial viscosity used in Alegra is

σvisc = ρ
(

c1lcs + c2l
2 |trace[d]|

)
trace[d] I , (99)

where c1 > 0 is the linear constant and c2 > 0 is the quadratic constant. This is the general linear plus quadratic
form most commonly used in shock hydrodynamics calculations [9, 22, 26, 37, 78, 108].

Remarks 7.1.

2The physical dynamic viscosity coefficient µ ∝ ρvthλ is proportional to the product of the density, the thermal speed (vth ∝
√

Θ)
and the molecular collision mean free path λ.
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1. For the compressible Euler equations, the standard Galerkin finite element solution conserves total entropy [55].
Without an additional numerical entropy production mechanism, the standard Galerkin method cannot cor-
rectly capture shocks and will not converge to an entropy satisfying solution of the Euler equations in the
presence of shocks.

2. Viscous stresses are a source of dissipation and entropy production [32, 104].

3. Based on the theory presented in [75], the artificial viscosity should be explicitly material dependent. Note that
the linear term of equation (99) depends on the sound speed of the material, but unfortunately the quadratic
term does not.

7.3 Calculation of the rate of deformation

In order to be consistent with the central-difference method, the artificial shock capturing viscous stresses should
be computed at time tn+1. This requires an approximation to dn+1, which has not been previously discussed. The
following definitions prove useful in this regard:

Definition 7.1. The pull-back [7] of a rank-two contravariant spatial tensor τ is

ϕ∗τ := F−1τ F−T . (100)

The corresponding push-forward of a contravariant material tensor S is denoted by ϕ∗S.

Definition 7.2. The pull-back [7] of a rank-two covariant spatial tensor g is

ϕ∗g := FT gF . (101)

The corresponding push-forward of a covariant material tensor G is denoted by ϕ∗G.

Definition 7.3. The rate of deformation tensor d is one-half the Lie derivative of the spatial metric g [7]. More
precisely, 2d = Lv[g], where

Lv[g] = ϕ∗

(
d

dt
ϕ∗g

)
. (102)

Without any significant loss of generality, the spatial metric is henceforward assumed to be the identity g = I.

Given these definitions, the rate of deformation d my be computed as

2d = Lv[ I ]

= F−T

[
d

dt
(FT IF)

]
F−1

= F−T ĊF−1





. (103)

Inverting this equation yields
Ċ = 2FT dF

= 2FT dF−T C

= 2
[
FT dF−T

]
C





. (104)

A backward-Euler exponential approximation in time of equation (104) produces

Cn+1 ≈ exp
[
2hn+1F

T
n+1dn+1F

−T
n+1

]
Cn

= FT
n+1 exp[2hn+1dn+1]F

−T
n+1Cn

}
. (105)

Inverting this equation yields

exp[2hn+1dn+1] = F−T
n+1Cn+1C

−1
n FT

n+1

= F−T
n+1F

T
n+1Fn+1F

−1
n F−T

n FT
n+1

= (Fn+1F
−1
n )(Fn+1F

−1
n )

T

= fn+1f
T
n+1





. (106)
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The end result is

dn+1 =
1

2hn+1
log[fn+1f

T
n+1] . (107)

Lemma 7.1. det[expA] = exp[traceA] for all n× n matrices A.

Proof. First, assume A is diagonalizable. Then there exists an invertible matrix S and a diagonal matrix D such
that A = SDS−1. In this case, expA = S[expD]S−1 and det[expA] = det[expD]. However, for a diagonal matrix
this determinant is simply the product of the exponential of the eigenvalues λk

det[expA] = det[expD]

=

n−1∏

k=0

exp(λk)

= exp

[
n−1∑

k=0

λk

]

= exp[traceD]

= exp[traceA] .

The proof is completed by noting that diagonalizable matrices are a dense subset of all matrices.

Proposition 7.2. The derived approximation for dn+1 is both incrementally objective and volume preserving.

Proof. Incremental objectivity is satisfied by construction. Alternatively, it follows from the fact that log I = 0. As
for volume preservation,

j2
n+1 = det[fn+1f

T
n+1]

= det(exp[2hn+1dn+1])

= exp[2hn+1 · tracedn+1] .

Thus jn+1 = 1 if and only if tracedn+1 = 0.

Remarks 7.2.

1. The Alegra shock capturing artificial viscosity can be turned on/off in tension (trace[d] > 0), if desired. The
viscosity is always on in compression (trace[d] < 0).

2. See PRONTO_Artificial_Viscosity::Update_Artificial_Viscosity(...).

3. The present default implementation of Alegra uses dn+1/2 rather than dn+1 to compute the artificial viscosity
pressure. This may not be consistent with the central-difference method.

4. This logarithmic option my be turned on by typing LOGARITHMIC = ON.

7.4 Tensor Artificial Viscosity

A tensor artificial viscosity can help stabilize mesh deformation in some circumstances [22, 80, 91, 93]. Based on the
results presented in [93], a tensor artificial viscosity may be computed as

σvisc := ρνd, (108)

where ν > 0 is the kinematic viscosity. The kinematic viscosity is computed as

ν := c1 cs l + c2 | trace(d)| l2, (109)

where c1 > 0 is the linear constant, c2 > 0 is the quadratic constant, l > 0 is a mesh-based characteristic length scale
and cs > 0 is the sound speed of the material.
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(a) Standard scalar artificial viscosity of equation (99) (b) Tensor artificial viscosity of Section (7.4)

Figure 4. Noh test, gamma-law ideal gas, on radial trisection mesh [93]. Radially convergent initial
velocity field. Deformed meshes colored by contours of density.

Remarks 7.3.

1. See figure (4) for example simulation results.

2. Notice that the tensor viscosity above is symmetric. Some researchers have considered non-symmetric artificial
viscosities [9, 24] in an attempt to stabilize spurious vorticity [38]. Unfortunately, angular momentum is
conserved in general if and only if the stress tensor is symmetric. In an effort not to disrupt angular momentum
conservation, which the authors consider to be an important and fundamental property of the continuum system,
only symmetric algorithmic stress tensors are considered in Alegra .

3. This option is invoked in the input file using the keyword TENSOR ARTIFICIAL VISCOSITY.

8 Hourglass Control

The goal of this section is to review the hourglass control algorithms currently implemented in Alegra .

8.1 Shape Function Representations

In what follows, attention is primarily focused upon the eight(8)-node isoparametric tri-linear brick element for which
Nnodes = 8. Following the presentation(s) in [8] [82] [95], let N(ξ) denote the 8 × 1 vector of shape functions such
that

N(ξ) = {N1, N2, . . . , N8}T with NA :=
1

8
(1 + ξ1ξ

A
1 )(1 + ξ2ξ

A
2 )(1 + ξ3ξ

A
3 ) , (110)

where ξA = {ξA
1 , ξA

2 , ξA
3 }

T
are the vertices of the bi-unit cube [−1, 1]

3
. These shape functions may be written as

N(ξ) = b0 +

3∑

i=1

xibi +
1

8

4∑

j=1

Hj(ξ)γj , (111)
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where H(ξ) are the hourglass functions defined as

H1(ξ) := ξ2ξ3 , H2(ξ) := ξ3ξ1 , H3(ξ) := ξ1ξ2 , H4(ξ) := ξ1ξ2ξ3 . (112)

The twelve(12)-dimensional hourglass deformation space of the eight-node brick is defined as

H12 := span{H1,H2,H3,H4} × R3 . (113)

This space may be viewed as consisting of four(4) hourglass modes, where each mode can act in any one of three(3)
coordinate directions.

The constant 8× 1 vectors b0, bi and γj can be determined in a relatively straight-forward manner. Evaluation

of equation (111) at the nodes of the bi-unit cube and use of the Kronecker property N A(ξB) = δAB yields the 8× 8
matrix expression

I8 = b0 ⊗ 18 +

3∑

i=1

bi ⊗ xi +
1

8

4∑

j=1

γj ⊗ hj . (114)

In this equation I8 is the 8 × 8 identity matrix, xi = {x1
i , x

2
i , . . . , x

8
i }

T
is the 8 × 1 vector of nodal coordinates for

component i and

18 := {1, 1, 1, 1, 1, 1, 1, 1}T

h1 := {1, 1,−1,−1,−1,−1, 1, 1}T

h2 := {1,−1,−1, 1,−1, 1, 1,−1}T

h3 := {1,−1, 1,−1, 1,−1, 1,−1}T

h4 := {−1, 1,−1, 1, 1,−1, 1,−1}T





. (115)

The reader may easily verify that 18 •hj = 0 and hj •hk = 8δjk. The multiplication of equation (114) by the vector
18 yields the equation

b0 =
1

8

[
18 −

3∑

i=1

(18 • xi)bi

]
. (116)

The multiplication of equation (114) by the vector hk yields the equation

γj =

[
hj −

3∑

i=1

(hj • xi)bi

]
. (117)

Taking the derivative of (111) with respect to xk (or, alternatively, ξk) and evaluation at the element center ξ = 0
yields

bi =
3∑

j=1

(
J−T

0

)
ij

∂N

∂ξj
(0) where J0 :=

∂x

∂ξ
(0) . (118)

Since bi are consistently computed ’strain-displacement’ operators, one can show that (see [56], chapter 3)

bi • 18 = 0 and bi • xj = δij . (119)

Given these properties, it must also hold from (117) that

γi • 18 = 0 and γi • xj = 0 , (120)

and thus the vectors γi are orthogonal to the homogeneous deformation modes of the tri-linear brick element. Finally,
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note that in nodal components

γj(A) = hj(A) −
3∑

i=1

(hj • xi)bi(A)

= hj(A) −
3∑

i=1

(
bi(A) ·

Nnodes∑

B=1

hj(B)xi(B)

)

=: hj(A) − bA •
Nnodes∑

B=1

hj(B)xB

=: hj(A) − bA • yj





, (121)

where

bA := J−T
0 GRADξ[N

A(0)] and yj :=

Nnodes∑

B=1

hj(B)xB . (122)

Remarks 8.1.

1. For a four node quadrilateral element there is only one(1) hourglass function H(ξ) := ξ1ξ2 and one(1) hourglass

vector h = {1,−1, 1,−1}T . All the other developments above remain essentially unchanged. The details are
omitted.

2. In actual numerical implementations of two(2)-dimensional problems in Alegra , the hourglass vector h is
normalized so that ‖h‖ = 1. In three(3)-dimensional simulations, this normalization is not performed and
‖hi‖ =

√
8.

8.2 Hourglass Rates

Let vh(A) for A ∈ {1, 2, . . . , Nnodes} denote the nodal velocity field of a finite element. Consistent with the develop-
ments in [7] [8] [40] [107], define the hourglass rate for mode m as

rhg
m :=

Nnodes∑

A=1

γm(A)vh(A) . (123)

8.3 Hourglass Resistance

The goal here is to compute, based on the hourglass rates rhg
m , a reasonable value of the hourglass resistance fhg

m .

8.3.1 Pisces

Based on the work in [44], the hourglass resistance for an element e is computed as

fhg
m :=

[(
2− 1

2
Ndim

)
· νhg · cs ·

ρ ·meas(Ωe)

he

]
· rhg

m , (124)

where Ndim ≥ 2 is the number of spatial problem dimensions, he > 0 is an element characteristic length scale, cs > 0
is the maximum material wave speed (ideally determined from an eigenvalue analysis of the acoustic tensor [104])
and νhg > 0 is a user defined parameter.

34



8.3.2 Pronto

The Pronto [62] hourglass viscosity coefficient is given by

µhg :=

{
νhg ·

√
128.0 ·G · ρ ·meas(Ωe) if 2-D

νhg ·
√

1.5 ·G · ρ · (meas(Ωe))
2
h−2

e if 3-D
, (125)

where G > 0 is the (linearized) shear modulus of the material and νhg > 0 is a user defined parameter. The Pronto
hourglass control also has the option to time integrate the hourglass ’rate’ to determine an hourglass “stiffness”. The
Pronto hourglass stiffness coefficient is given by

κhg :=

{
khg · 0.5 ·G ·meas(Ωe) · h−2

e if 2-D

khg · 0.125 ·G ·meas(Ωe) · h−2
e if 3-D

, (126)

where khg > 0 is a user defined parameter.

Definition 8.1. The pull-back of a spatial one-form (co-vector) ω is defined as

ϕ∗ω := FT ω , (127)

with corresponding push-forward operation ϕ∗ω (see section 1.2 of [71]).

Definition 8.2. The Lie derivative of a spatial one-form ω is defined as

Lv[ω] = ϕ∗

(
d

dt
ϕ∗ω

)
. (128)

Define a time-integrated “stiffness” parameter shg
m for mode m such that

Lv

[
shg
m

]
= F−T d

dt

(
FT shg

m

)
= khgr

hg
m . (129)

A simple approximation in time yields

Lv

[
shg
m

]
≈ F−T

n+1

[
FT

n+1s
hg
m (tn+1)− FT

n shg
m (tn)

]
h−1

n+1

= h−1
n+1

[
shg
m (tn+1)− F−T

n+1F
T
n shg

m (tn)
]

= h−1
n+1

[
shg
m (tn+1)− f−T

n+1s
hg
m (tn)

]





. (130)

This results in the discrete update equation

shg
m (tn+1) = f−T

n+1s
hg
m (tn) + hn+1khgr

hg
m . (131)

Finally, the hourglass resistance is computed as

fhg
m := µhgr

hg
m + shg

m . (132)

Remarks 8.2.

1. Clearly the Pronto hourglass control cannot be used for a frictionless material, in particular for frictionless
gases, since the shear modulus G = 0.

2. The Lie derivative is an objective rate and the Pronto stiffness update algorithm is by construction incrementally
objective.

3. The Pronto stiffness algorithm is implicitly equivalent to using a hypo-elastic material model for hourglass
stabilization. Consistent with that, residual hourglass forces may remain at the end of a closed strain path [58].
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8.4 Hourglass Nodal Forces

Let Fhg
m (A) for A ∈ {1, 2, . . . , Nnodes} denote the nodal hourglass force field for mode m of a tri-linear brick element.

Once the hourglass resistance has been determined, the nodal forces for hourglass mode m are simply computed as

Fhg
m (A) = γm(A) · fhg

m . (133)

8.5 Proposed alternative algorithm

There may be an alternative, albeit more computationally expensive, hourglass control algorithm. For an element e
with domain Ωe ⊆ Ω, define the mean value of the rate of deformation tensor as

d̄ :=
1

meas Ωe

∫

Ωe

d dΩe , (134)

and the fluctuation from this mean as
d̃ := d− d̄ . (135)

For hourglass control purposes, an artificial viscous stress of the form

σhg := ρνd̃ (136)

can be added to the physical (and shock capturing) stress. In this equation, ν > 0 is a kinematic viscosity, which
may be computed as

ν = chgcs he , (137)

with chg > 0 an hourglass control parameter. The nodal forces (for node A) associated with this stabilization are
computed as

Fhg(A) :=

∫

Ωe

σhg grad[NA] dΩe . (138)

Remarks 8.3.

1. This hourglass control algorithm passes the patch test by construction. For a homogeneous deformation, d̃ = 0.

2. This algorithm requires full quadrature to stabilize hourglass modes. The non-homogeneous component d̃ of
the deformation must be sampled at multiple points, not just at the element center, to fully detect hourglass
modes.

3. The scaling of the hourglass resistance in this approach is similar to that of the Pisces algorithm equation (124).

4. A variational multi-scale based hourglass control algorithm, similar in concept to the one proposed here, is
discussed in [93, 94].

9 Closure

This report has presented the algorithmic details of the Alegra continuum hydrodynamics package. The package
uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The
details of the algorithm have been presented, along with its strengths and weaknesses. Some suggestions for further
improvements and modifications have also been included. It is hoped that this report can help code developers and
physics analysts more easily understand and modify Alegra .

The development and refinement of Alegra is ongoing. Some suggestions for future research and development
include, but are not limited to, the following:
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• Implementation of a truly second-order, (linearly) stable, conservative predictor multi-corrector time-stepping
algorithm.

• The use of a limiter with the full tensor artificial viscosity to detect isentropic compression and reduce the
viscosity smoothly to zero(0) in the absence of shocks.

• Implementation and use of thermodynamically consistent hyperelastic-based solid models for plasticity and
failure.

• The coupling of X-FEM (see [105] and references therein) to the existing Lagrangian scheme to enable a better
treatment of multi-material problems.

• Investigation into alternative spatial discretizations for Lagrangian shock hydrodynamics, including continuous
pressure SUPG-stabilized formulations [92] and H(div) finite elements [3, 6, 12, 14, 15, 86, 87]. H(div) formu-
lations are not typically used for Lagrangian hydrodynamics, but recent research has shown promise in that
regard [83, 88].
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continuing support and encouragement. The authors thank Dr. Allen C. Robinson, Dr. William J. Rider and
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A Proposed alternative energy update algorithm

This goal of this subsection is to present an alternative to the Alegra algorithm currently used for incremental
energy updates. First, consider equation (63)

ρtε̇ = σt • dt .

By multiplying both side by Jt this equation may be written as

ρ0ε̇ = τ t • dt . (139)

The goal here is to write the above equation in a more convenient form for developing a consistent numerical
approximation.

To begin developments, decompose the energy evolution equation into volumetric and deviatoric parts such that

ρ0ε̇ = τ̄ · traced + dev τ • d , (140)

where (̄·) := 1
3 trace (·). Using the above developments and the fact that J̇ = J · traced one can write

ρ0ε̇ = σ̄ · J̇ +
1

2
ϕ∗(dev τ ) • Ċ . (141)
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Applying a generalized midpoint integrator to the equation yields

ρ0(εn+1 − εn) ∼= σ̄n+β · (Jn+1 − Jn) +
1

2
ϕ∗

n+β(dev τ n+β) • (Cn+1 −Cn) for β ∈ [0, 1] . (142)

One can use the developments in section 3.1 to expand this into

ρ0(εn+1 − εn) = σ̄n+β · (Jn+1 − Jn) +
1

2
ϕ∗

n+β(dev τ n+β) • (Cn+1 −Cn)

= σ̄n+β · (jn+1Jn − Jn) +
1

2
ϕ∗

n+β(dev τ n+β) • (FT
n fT

n+1fn+1Fn − FT
n Fn)

= σ̄n+β · (jn+1 − 1)Jn +
1

2
Fnϕ∗

n+β(dev τ n+β)FT
n • (fT

n+1fn+1 − I)





. (143)

Next, define DEV(S) := ϕ∗(dev τ ) and note that Fn+β = fn+βFn. The discrete energy evolution equation can then
be written as

ρ0(εn+1 − εn) = σ̄n+β · (jn+1 − 1)Jn +
1

2
Fnϕ∗

n+β(dev τ n+β)FT
n • (fT

n+1fn+1 − I)

= σ̄n+β · (jn+1 − 1)Jn +
1

2
Fn[DEV Sn+β ]FT

n • (fT
n+1fn+1 − I)

= σ̄n+β · (jn+1 − 1)Jn +
1

2
f−1
n+βFn+β [DEV Sn+β ]FT

n+βf−T
n+β • (fT

n+1fn+1 − I)

= σ̄n+β · (jn+1 − 1)Jn +
1

2
f−1
n+βϕn+β∗

[DEV Sn+β ]f−T
n+β • (fT

n+1fn+1 − I)

= σ̄n+β · (jn+1 − 1)j−1
n+βJn+β +

1

2
f−1
n+β(dev τ n+β)f−T

n+β • (fT
n+1fn+1 − I)

= σ̄n+β · (jn+1 − 1)j−1
n+βJn+β +

1

2
Jn+βf−1

n+β(dev σn+β)f−T
n+β • (fT

n+1fn+1 − I)





. (144)

Of course, conservation of mass requires that ρ0 = ρn+βJn+β so

ρn+β(εn+1 − εn) = j−1
n+βσ̄n+β · (jn+1 − 1) +

1

2
f−1
n+β(dev σn+β)f−T

n+β • (fT
n+1fn+1 − I) . (145)

Noting that ρn = ρn+βjn+β , the above equation may be multiplied through by jn+β , yielding

ρn(εn+1 − εn) = σ̄n+β · (jn+1 − 1) +
1

2
f−1
n+β(dev jn+βσn+β)f−T

n+β • (fT
n+1fn+1 − I) . (146)

Remarks A.1.

1. The above algorithm is second-order accurate if and only if β = 1/2. For all other choices of β the algorithm
is only first-order accurate.

2. For β > 0 the algorithm is implicit since typically the stress at time tn+β depends on the energy at both times
tn and tn+1.

3. The algorithm is, by construction, incrementally objective for any choice of the parameter β ∈ [0, 1].

4. For a purely deviatoric deformation (jn+1 = 1), no volume-work is done. This property is ensured a-priori by
the volumetric-deviatoric split.

5. With β = 0 the equation(s) are explicit. This very much simplifies the implementation as equation (146)
reduces to

ρn(εn+1 − εn) = σ̄n · (jn+1 − 1) +
1

2
dev σn • fT

n+1fn+1 . (147)

6. Unfortunately, when this energy update is used in conjunction with the central difference time stepping scheme,
a conserved total energy quantity does not generally exist.
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B Axisymmetric Formulations

B.1 Kinematics

Material cylindrical coordinates are generally denoted as {R,Z}, with R the radial coordinate and Z the axial
coordinate. The corresponding spatial coordinates are denoted as {r, z}.

B.1.1 Deformation Gradient

The deformation gradient may be written in orthogonal cylindrical coordinates as

F =




∂r
∂R

∂r
∂Z 0

∂z
∂R

∂z
∂Z 0

0 0 λθθ




, (148)

where λθθ = r/R is the hoop stretch.

B.1.2 Volume Form(s)

The volume form transforms as

r · dr ∧ dz = J ·R · dR ∧ dZ , (149)

where J = detF. The area form transforms as

dr ∧ dz = J · λ−1
θθ · dR ∧ dZ . (150)

B.1.3 Deformation Rate

The rate of deformation tensor is defined as d = sym(ḞF−1).

B.2 Kinetics

B.2.1 “Area Galerkin”

The balance of linear momentum (in weak form) can be written as

∫
δϕr

r

[
∂rσrr +

1

r
(σrr − σθθ) + ∂zσrz + ρbr − ρv̇r

]
r · dr ∧ dz = 0 ∀δϕr , (151a)

∫
δϕz

r

[
∂zσzz + ∂rσrz +

1

r
σrz + ρbr − ρv̇z

]
r · dr ∧ dz = 0 ∀δϕz . (151b)

This simplifies to ∫
δϕr

[
∂rσrr +

1

r
(σrr − σθθ) + ∂zσrz + ρbr − ρv̇r

]
dr ∧ dz = 0 ∀δϕr , (152a)

∫
δϕz

[
∂zσzz + ∂rσrz +

1

r
σrz + ρbr − ρv̇z

]
dr ∧ dz = 0 ∀δϕz . (152b)
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Integration by parts yields (omitting boundary terms)

∫
[∂rδϕr · σrr + ∂zδϕr · σrz] dr ∧ dz −

∫
δϕr

[
1

r
(σrr − σθθ) + ρbr − ρv̇r

]
dr ∧ dz = 0 ∀δϕr , (153a)

∫
[∂zδϕz · σzz + ∂rδϕz · σrz] dr ∧ dz −

∫
δϕz

[
1

r
σrz + ρbr − ρv̇z

]
dr ∧ dz = 0 ∀δϕz . (153b)

Remarks B.1.

1. This approach is advocated by [10, 44, 48].

2. Notice that the only difference between this formulation and a two-dimensional plane strain formulation is an
extra term of the form r−1σ in the area integrals. All other integrals, including body force and surface traction,
remain unchanged.

3. This is a Petrov-Galerkin [16, 45, 70] formulation since the weighting functions δϕ are scaled by the inverse
radius r−1, but the velocity (and position) interpolation functions are not.

4. Assume that the material model is a purely volumetric equation-of-state. In this situation σrz = 0 and
σrr = σθθ = σzz = p, where p is the thermodynamic pressure. The weak form(s) then simplify to

∫
∂rδϕr · p dr ∧ dz −

∫
δϕr [ρbr − ρv̇r] dr ∧ dz = 0 ∀δϕr ,

∫
∂zδϕz · p dr ∧ dz −

∫
δϕz [ρbr − ρv̇z] dr ∧ dz = 0 ∀δϕz .

Notice that there are no “singular” (proportional to r−1) terms in these integrals. This is the advantage of
the “area Galerkin” formulation; it more easily allows for accurate numerical integration (quadrature) and
thus produces (nearly) symmetric results for radially converging shocks [10]. Unfortunately, conservation and
convergence properties may be negatively affected. See the immediately continuing remarks (5) and (6).

5. The algorithmic mass matrix for this formulation is not constant in time. This is easily verified by evaluating
the integral ∫

ρ · dr ∧ dz =

∫
ρ0J

−1 · dr ∧ dz

=

∫
ρ0J

−1 · Jλ−1
θθ · dR ∧ dZ

=

∫
ρ0 λ−1

θθ · dR ∧ dZ .





(154)

6. Since the algorithmic mass matrix is not constant, an energy conservation statement for this spatial algorithm
is not readily available. One should not in general expect that total energy is discretely conserved. The lack of
a conserved energy violates the assumptions of the Lax-Wendroff theorem [63, 101] and may in fact result in
convergence to incorrect solutions [54].

7. This formulation is currently in Alegra .

B.2.2 Standard Galerkin

The balance of linear momentum (in weak form) can be written as

∫
δϕr

[
∂rσrr +

1

r
(σrr − σθθ) + ∂zσrz + ρbr − ρv̇r

]
r · dr ∧ dz = 0 ∀δϕr , (155a)

∫
δϕz

[
∂zσzz + ∂rσrz +

1

r
σrz + ρbr − ρv̇z

]
r · dr ∧ dz = 0 ∀δϕz . (155b)
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This may also be written as
∫

(rδϕr)

[
∂rσrr +

1

r
(σrr − σθθ) + ∂zσrz + ρbr − ρv̇r

]
dr ∧ dz = 0 ∀δϕr , (156a)

∫
(rδϕz)

[
∂zσzz + ∂rσrz +

1

r
σrz + ρbr − ρv̇z

]
dr ∧ dz = 0 ∀δϕz . (156b)

Integration by parts yields (omitting boundary terms)
∫

[∂r(rδϕr) · σrr + ∂z(rδϕr) · σrz] dr ∧ dz −
∫

rδϕr

[
1

r
(σrr − σθθ) + ρbr − ρv̇r

]
dr ∧ dz = 0 ∀δϕr , (157a)

∫
[∂z(rδϕz) · σzz + ∂r(rδϕz) · σrz] dr ∧ dz −

∫
rδϕz

[
1

r
σrz + ρbr − ρv̇z

]
dr ∧ dz = 0 ∀δϕz . (157b)

Expansion of the spatial derivatives and some algebraic manipulations results in

∫
[∂rδϕr · σrr + ∂zδϕr · σrz] r · dr ∧ dz −

∫
δϕr

[
−1

r
σθθ + ρbr − ρv̇r

]
r · dr ∧ dz = 0 ∀δϕr , (158a)

∫
[∂zδϕz · σzz + ∂rδϕz · σrz] r · dr ∧ dz −

∫
δϕz [ρbr − ρv̇z] r · dr ∧ dz = 0 ∀δϕz . (158b)

Remarks B.2.

1. This approach can be considered standard in the finite element literature [56, 73, 112].

2. In this formulation, all integrals are radius-weighted. Volume integrals use the volume form r · dr ∧ dz and
boundary traction integrals use the form r · ds, where ds is the standard arc length form on curves (smooth
sub-manifolds) in R2.

3. The (algorithmic) mass matrix for this formulation is constant in time. A conserved total energy quantity is
thus easily defined, and in fact is the same as in section 5.3.2.

4. The error in numerical integration (quadrature) for this spatial approximation is not a secondary consideration.
For example, elements closer to the z-axis (where r = 0) have less mass than elements farther from that
axis. This is due to the radial-weighting of the volume form in the integrals. Standard Gaussian quadrature,
optimized for polynomial integration, may not be optional in this situation due to multiple terms containing
the functions r and r−1. Obviously, the symmetry of radially converging shocks can be affected by integration
error.

5. For hyperelastic material models, this system of equations can be derived as the Euler-Lagrange equations of
the Lagrangian

L =
1

2

∫
ρ0‖v‖2R · dR ∧ dZ −

∫
W
(
FT F

)
R · dR ∧ dZ , (159)

for a suitably chosen (polyconvex) energy density function W .

C One-dimensional System of Equations

This appendix explicitly documents the Alegra system of equations in one(1) space dimension using a finite
difference notation. In that regard, the notation (·)n

j is meant as quantity (·) at time index n and space index
j. Note also that

(·)j+1/2 =
1

2

[
(·)j + (·)j+1

]
.

The (constant) time step is denoted as ∆t > 0 and an ideal gamma-law gas material model is assumed. The “element”
masses (constant in time) are notated as mj > 0. Also, x is position, u is velocity, e is internal energy and p is
pressure.
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C.1 Position

xn+1
j+1/2 = xn

j+1/2 + ∆tu
n+1/2
j+1/2 (160)

hn
j := xn

j+1/2 − xn
j−1/2 (161)

C.2 Momentum

1

∆t
mj+1/2(u

n+1/2
j+1/2 − u

n−1/2
j+1/2 ) + (pn

j+1 − pn
j ) = 0 (162)

C.3 Energy

1

∆t
mj(e

n+1
j − en

j ) +
1

2

[
(u

n+1/2
j+1/2 + u

n−1/2
j+1/2 )− (u

n+1/2
j−1/2 + u

n−1/2
j−1/2 )

]
pn

j = 0 (163)

C.4 Equation of State

pn
j = (γ − 1)

mj

hn
j

en
j (164)

C.5 Conservation

There are N elements numbered {0, 1, · · · , N − 1}. There are (N + 1) nodes numbered {−1/2, 1/2, · · · , N − 1/2}.

1

2

N∑

j=0

mj−1/2

∥∥∥un+1/2
j−1/2

∥∥∥
2

+
N−1∑

j=0

mje
n+1
j =

1

2

N∑

j=0

mj−1/2

∥∥∥un−1/2
j−1/2

∥∥∥
2

+
N−1∑

j=0

mje
n
j (165)

D Adiabatic Expansion of an Ideal Gas

Consider an ideal gas with initial (reference) properties: density ρ0 = 3220.0, temperature Θ0 = 4730.0530, adiabatic
exponent γ = 5.0/3.0 and specific heat at constant volume Cv = 1000.0. The gas is initially at rest in the two-
dimensional domain [−0.005, 0.005]×5120−1[−0.5, 0.5]. The domain is meshed with 5120×1 four-node quadrilateral
elements. (This is one(1) row of square elements.) All the nodes of the mesh are constrained so that they cannot
move in the x2 direction. All the nodes, including those at the x1 coordinates ±0.005, are free to move in the x1

direction. Zero(0) tractions are applied on the boundaries at x1 = ±0.005. When released, the gas should undergo
a rapid adiabatic (isentropic) expansion, with a rarefaction wave propagating inward from the outer edges of the
domain [29].

The Alegra simulation results for this problem are shown in Figure D.1. Note the oscillations in the curve
of pressure versus position. Density and velocity plots exhibit similar oscillations. This represents an apparent
instability, since (entropy satisfying) rarefaction waves are (almost everywhere) smooth and non-oscillatory [67, 68,
111].

48



Figure D.1. pressure vs. position for adiabatic gas expansion
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