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Preface

The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national- and global-scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program were students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to
contribute a technical article to the CSRI Summer Proceedings of which this document is
the second installment. In many cases, the CSRI proceedings is the first opportunity that
students have to write a research article. Not only do these proceedings serve to document the
research conducted at CSRI but, as part of the research training goals of CSRI, it is the intent
that these articles serve as precursors-to or first-drafts-of articles that could be submitted to
peer-reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer-reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2007 CSRI Proceedings, research articles have been organized into the following
broad technical focus areas — computational mathematics and algorithms, discrete mathe-
matics and informatics, transformation, architecture and systems software, and applications
— which are well aligned with Sandia strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical
accomplishments of CSRI in 2007 as documented by the high quality articles in this proceed-
ings. The success of CSRI hinged on the hard work of 27 enthusiastic student collaborators
and their dedicated Sandia technical staff mentors. It is truly impressive that the research
described herein occurred primarily over a three month period of intensive collaboration.

CSRI benefited from the administrative help of Deanna Ceballos, Bernadette Watts, Mel
Loran, Dee Cadena, and Vonda Coleman. The success of CSRI is, in large part, due to
their dedication and care and it is much appreciated. We would also like to thank those that
reviewed articles for this proceedings — their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. We would
like to thank David Womble for his advice, guidance and overall CSRI management. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Michael L. Parks
S. Scott Collis

December 6, 2007
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Computational Mathematics and Algorithms

Scientific computation has reached the point where it is on a par with laboratory ex-
periment and mathematical theory as a tool for research in science and engineering and
simulation-based engineering science has been declared indispensable to the nation’s con-
tinued leadership in science and engineering. Indeed, a erudite quotation regarding algorithm
development states “I’d rather use today’s algorithms on yesterday’s computers than the other
way around.” The fundamental difficulties in modeling faced today are not the kind that can
be solved merely by building bigger and faster computers, but also require the development
of new computational mathematics.

To that end, the articles in this section focus on fundamental algorithms with broad appli-
cation. Bochev et al. consider an algebraic reformulation of the discrete second-order elliptic
equations along with a new algebraic multigrid technique for the fast solution of the reformu-
lated problem. Schroder et al. present a new strength of connection criteria for automatic con-
struction of a grid hierarchy in algebraic multigrid. In particular, their criteria is applicable for
situations where classical strength measures are ineffective. Nong and Thornquist investigate
model-order-reduction techniques in the context of large scale circuit simulation in Xyce.
Lieberman and van Bloemen Waanders utilize Hessian-based model reduction to achieve
real-time solution of the source inversion problem arising when identifying a contamination
source given only sparse sensor information. Karlin and Hu discuss the implementation and
profiling of a variable block-matrix multiply within the ML package of algebraic multigrid
preconditioners within Trilinos. Davis and Lehoucq explain the Craig-Bampton method for
component mode synthesis. Finally, Baker and Lehoucq propose an improved algorithm for
the numerical solution of symmetric eigenvalue problems with constraints.

M.L. Parks
S.S. Collis

December 6, 2007
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COMPATIBLE GAUGE APPROACHES FOR H(div) EQUATIONS

PAVEL B. BOCHEV*, CHRISTOPHER M. SIEFERT*, RAYMOND S. TUMINARO*, JINCHAO XU¥, AND
YUNRONG ZHU

Abstract. We are concerned with the compatible gauge reformulation for H(div) equations and the design of
fast solvers of the resulting linear algebraic systems as in [5]. We propose an algebraic reformulation of the discrete
H(div) equations along with an algebraic multigrid (AMG) technique for the reformulated problem. The reformu-
lation uses discrete Hodge decompositions on co-chains to replace the discrete H(div) equations by an equivalent
2 X 2 block linear system whose diagonal blocks are discrete Hodge Laplace operators acting on 2-cochains and 1-
cochains respectively. We illustrate the new technique, using the lowest order Raviart-Thomas elements on structured
tetrahedral mesh in three dimension and present computational results.

1. Introduction. In this paper, we consider general second order elliptic operators over
the Lipschitz polyhedral domain Q in 3D. Specifically, let Q be a bounded, simply connected,
and contractible domain in R? with Lipschitz boundary dQ. We are looking at the compatible
discretization of the following model equation:

-VV - u) + iu f inQ,
iu-n 0 onT, (1.1

AV-u = 0 on I7,

where 0Q =T UT™ andI'N I = 0. Here, we assume that A and u are positive throughout the
domain, but may possibly vary widely.

The variational formulation of problem (1.1) leads naturally to the Hilbert space H(div)
given by

H(div) := {u (@) 1V-ue LZ(Q)}.

This equation is ubiquitous in problems arising in fluid and solid mechanics [6, 10]. It occurs,
in particular, in the solution of second order elliptic partial differential equations (PDE) by
first order least-squares methods or by mixed methods with augmented Lagrangians, see [1,
11, 18, 19] and the references cited therein. The importance of H(div)-related problems has
prompted vigorous research into efficient multilevel schemes, see [1, 11, 12, 18, 19].

The method to be developed in the current paper follows closely the idea of the recent
work of Bochev, Hu, Siefert and Tuminaro [5] for Maxwell’s equations. Specifically, we
propose an algebraic reformulation of the discrete H(div) equations along with a new AMG
technique for this reformulated problem. The reformulation process takes advantage of a
discrete Hodge decomposition on co-chains to replace the discrete H(div) equations by an
equivalent 2 X 2 block linear system whose diagonal blocks are discrete Hodge Laplace op-
erators acting on 2-cochains and 1-cochains, respectively. The new AMG algorithm in this
paper makes use of the Hiptmair smoother [11] on the fine mesh, uses the canonical interpo-
lations Hg“’ and HZ“” on H(div) and H(curl) to construct the grid-transfer operators, and then
uses the standard AMG methods for Laplace-type problems on the coarse meshes.

The rest of the paper is organized as follows. Section 2 reviews basic facts about the
discretization framework used in the paper. In Section 3, we apply this framework to obtain
a compatible discretization for the H(div) equations and its equivalent reformulation. AMG
solvers for the reformulated system are developed in Section 4. In Section 5 we present

*Sandia National Laboratories, Computational Math & Algorithms, {pbboche, csiefer, rstumin} @sandia.gov
TPenn. State University for Department of Mathematics, {xu, zhu_y} @math.psu.edu



4 Compatible Gauge Approaches for H(div) Equations

computational results in three dimension that illustrate the new technique in the context of
smoothed aggregation AMG. In all experiments we use finite element discretizations based
on the lowest order Raviart-Thomas element and lowest order Nédélec element on structured
tetrahedral elements.

2. Compatible discretization framework. In this section, we give a short introduction
of a general framework for compatible discretizations developed in [3]. This framework is
based on algebraic topology and includes certain finite element [4, 17], finite volume [15], and
finite difference [16] schemes as particular cases. As a result, the AMG algorithm developed
in this paper is readily applicable to discrete problems generated by any of these schemes.
The presentation here is almost the same as [5, Section3]. We include this section just for the
sake of completeness.

2.1. Computational grid. We consider computational grids Q" consisting of 0-cells
(nodes), 1-cells (edges), 2-cells (faces), and 3-cells (volumes). Formal linear combinations
of k-cells are called k-chains [8]. The sets of k-chains forming Q" are denoted by Ci. We will
assume that Q" is such that the collection {C, C, Ca, C3} is a complex, i.e., for any ¢ € Cy,
orc € Cy-1, where 0y : Cy — Cy_; is the boundary operator on k-chains [7]. Together with
the identity 0;0+1 = O this gives rise to the exact sequence

0 0> [

0 Cyp«—C; «— Cr«—C3—0. 2.1
The dual of Cy is denoted by C* and its members are called k-cochains [8]. While C; and
C¥ are isomorphic, they have different meanings in our discretization framework. The sets
C represent the physical objects that form the grid, while C* are collections of real numbers
associated with the grid objects. For example, ¢; € C; is a formal sum of (oriented) grid
edges, while its isomorphic image ¢! € C! is a set of real numbers' assigned to the edges of
Ci.

Therefore, the elements of C° provide values associated with the O-cells (grid nodes);
the elements of C! are values associated with the 1-cells (grid edges); C? contains values
assigned to the 2-cells (grid faces) of the grid, and C? are the values assigned to the 3-cells
(grid volumes). We will use C° and C? to approximate scalar functions and C' and C? - to
approximate vector functions.

The symbols Cﬁ will denote the subspaces of C* constrained by zero on the Dirichlet
boundary I for k = 0, 1, 2. Such spaces are needed to approximate scalar and vector functions

subject to appropriate boundary conditions?.

2.2. Natural operators. Let (-, -) denote the duality pairing of C; and C*. The adjoint of
O, defined by (a, drc) = (dxa, c), induces an operator Jy, : C{E - Cl’i“ called the coboundary.
This operator satisfies dx+10r = 0 and gives rise to the exact sequence

R— 22l 22 2 0 0. 2.2)
It is not hard to see that the matrix representation Dy of J; is the signed incidence matrix
between C* and C¥*!. Following [14] we call Dy, Dy, and D, natural approximations of the
gradient, curl and divergence operators. Note that from 6,16, = 0 it follows that

Dk+1Dk = O; k = 0, la2a (2'3)

IClearly, C¥ are isomorphic to R¥, where k = dim C¥. For simplicity, the isomorphic image of the cochain
¢k € C* in R will be denoted by the same symbol.

2For example, CIQ approximates scalar functions such that ¢ = O on I'; Cll can be used to approximate vector
fields E such that n X E = 0 on I". The space CI% is appropriate for vector fields B that have a vanishing normal
component on I".
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and so our natural operators mimic the well-known vector calculus identities VXV = 0, and V-
Vx = 0. In [13], it is pointed out that natural operations are not enough to provide compatible
discretizations of the basic second order operators because their ranges and domains do not
match. For example, we cannot approximate V X VX by D;D; because D; is in general a
rectangular matrix. The number of its columns and rows equals the number of 1-cells and
2-cells in the grid, which are not the same.

2.3. Metric structures and derived operators. Let My : Cf — Cf k = 0,1,2,3
denote symmetric positive definite matrices. The matrix My endows C’li with an inner product
structure,

(d, B = (@)TM(BY). (2.4)

The matrices My and M3 approximate weighted L? inner products of scalar functions:
vy — [ yppaa: s — [ aebag.
while M and M, approximate the weighted L? inner products of vector functions
M; — anEEdQ; M, — ny“BBdQ.

We will also use the notation My(y), M, (o), Mz(y‘l) and M;3(2) to show the dependency of
the coefficients of these mass matrices explicitly.

We define the derived operator Dy : C’li+l - Cl’i as the adjoint of Dy with respect to the
inner product (2.4):

D;d*!, by = (@, Db uen (2.5)
From (2.5) it is easy to see that for k =0, 1,2
D = M;'Df My - (2.6)

The matrices D}, D} and Dy provide a second set of discrete differential operators. Specifi-
cally, they are approximations of scaled gradient, curl and divergence operators

D - —-uvVa; D] — o 'Vxut Dy — V.o,
augmented with the boundary conditions
Ap =0; n><,u"B=0; and n-cE=0 onI™,
respectively. Using (2.6) and (2.3)
D;Dj,; = My Dy Myt M| DY, Miso = My ' Dy Dy, My = 0,

and so, the basic vector calculus identities hold for the derived operators as well. The com-
muting diagram, and the relationships among the operators defined above can be summarized
in Figure 2.1. Here, the operators Hﬁmd, HZ“H, Hgiv, and H2 are the canonical interpolations
on H'(Q), H(curl), H(div), and L*(Q) to the corresponding finite element spaces V,(grad),
Vi(curl), Vi (div), and V},(0) respectively. The lower half of the commuting diagram above
presents the relationships among the operators. For example, from this diagram we can easily
find out that

D} = M, 'DI M.
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R — & HY(Q) —— H(curl) —2 H(div) —— I12(Q) 0
lnirad J/qur] lngiv lng
1 Do Dy . D,
R —— Vy(grad) —— Vj(curl) ——— V,(div) Vi (0) 0
DY DT DI
|10m [ |y [
1 Dy Dy . b
R «—— Vj(grad) «—— Vj(curl) «——— V;(div) Vi (0) 0

FiG. 2.1. De Rahm Complex and the lowest order finite element spaces

Because the range of Dy is contained in the domain of D} and vice versa we can use
the natural and the derived operators to define discrete versions of the basic second order
differential operators, including a discrete Hodge Laplace operator. Specifically, for k =
0, 1,2 we have the second order operators

DDy = M 'DI' My, Dy : Cf - Ck (2.7)

DD} = DyM; "D My : CFF' s CFH (2.8)
and the discrete Hodge Laplacian
Ly:Cf - Cf; Ly =DiDy + DD} 5 k=0,1,2,3 (2.9)

with the understanding that D; = 0 and D* | = 0.

The discrete operators in (2.7)-(2.9) approximate basic second order elliptic differential
operators. In §3.1 we will use these operators to motivate and explain our reformulation
strategy.

Similar to [5], we also introduce a second set of inner products defined by the matrices
Mk, (k=0,1,2,3) that uses a unit weight, i.e.,

Mk - f kdQ, uk Ve Cﬁ.
Q
These inner products can be used to define a second set of derived operators IFD'),*C : Cﬁ“ - ﬁz
given

D} = M;'DI My 1,k = 0,1,2

*

w+1 = 0. These operators give rise to the discrete Hodge

respectively, and such that ﬁ;ﬁ
Laplace operators

Li:Cks CFy Ly = D}Dx;
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that are different versions of L respectively.
The following general result from [3] provides the results needed for the reformulation
of the discrete H(div) equation.

Theorem 2.1 The size of the kernel of the analytic and discrete Hodge Laplacians is the
same.

Theorem 2.1 reveals that the null-space of the discrete Hodge Laplacian and, by ex-
tension the structure of the discrete Hodge decomposition of discrete functions in C¥, are
topological invariants that are independent of the particular choice of metric, i.e., the matri-
ces M. As a result, the assertion of this theorem is valid for both Ly, L;, L,, and ]Lo, Ll, Lz
The properties of these operators, relevant to the reformulation process, are summarized in
the following corollary, which is a generalization of [5, Corollary 3.2].

Corollary 2.2 Assume that Q is contractible. Then, every uk e C{i (k = 1,2) has the discrete
Hodge decomposition

b = Dy pFt 4 DEp! (2.10)
where p~1 € Cl’i‘l and b e Clli” solve the equations
D; Dy p ! =D u* and DDH! = Dk, (2.11)
respectively.

3. Compatible discretization of H(div) equation. Using the discrete operators defined
in the last section, a compatible discretization of the H(div) equation (1.1) is straightforward.
Specifically, we approximate u by a 2-cochain u? € C% that is associated with the 2-cells (the
faces) of the mesh that are not in I'. Then the compatible discrete version of the VV- operator
is provided by the second order discrete operator D;IDy. As a result, the compatible, fully
discrete equation of (1.1) is given by

(DIM3D; + Ma)u? = f2, 3.1)

with the matrix M3 containing the material parameter A and the matrix M, containing ="' and
fre Clz_ is a discrete version of f in (1.1). An equivalent “weak” form of (3.1) is given by the
variational equation: seek u* € Clz. such that

(1,2) . + (Do, Datt?) , = (f°,87) Vi € CF. (3.2)

3.1. Reformulation. Following [5] for Maxwell’s equations, we intend on forming the
Hodge Laplacian, which here corresponds to adding a V X VX term, namely

L, = DD, + D;D%. (3.3)

The following main theorem states an analogue of Theorem 4.2 in [5].
Theorem 3.1 Assume that u? is a solution of (3.1) and let

u* =Dje' + Djb° (3.4)

denote its discrete Hodge decomposition with respect to the inner product induced by M.
The pair (a2, e"), where a* = D;b3, solves the linear system

2

M, + DIM;3D;, + M,D\M;'DTM,  M,D; a

M, f2
} . 3.5)

DM,

el

D'M, D"M,D;
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Proof. Denoting a®> = ﬁ;b3, and applying the decomposition (3.4) to the weak form (3.2)
gives

1 2 A2 2 82\ (2 A2 A2 2
(Dle +a°,i )C§ +(D2a ,Doit )03 = (f i )Cf-’ Yi© € Cr.

In the above equality, we used the fact that D,[D; = 0. We note that the assumed Hodge
decomposition implies that D} 2 = 0 (since DD} = 0), thus
(Dja?, D7)

— a2 2
! = 0, Yir© € CF'
T

As a result, this term can be added to the last equation to obtain:
1, 2 a2 2 ™. n2 Tk 2 Tead) (2 a2 a2 2
(Dle +a’, i )C% +(D2a , Dot )C3 +(D1a ,Dii )C% = (f 7 )C%, Yir© € Cr.
It is easy to see that the above weak form is equivalent to the following linear system:
Maa? + (DI MsD; + MoD My 'Df My) + MyDye' = My f2

which is the first equation in (3.5).
Applying the decomposition (3.4) to (3.1), and then multiplying by D} on both sides
gives

Dia* + DiDje' = D} f2

Noticing that by definition D} = MIID{MZ, the second set of equations in the block system
follows by multiplying M, on both sides. This completes the proof. O

Here, we should notice that the (2,2) block D{D; is singular. A further decomposition
[5, Corollary 3.2] of

e =Dy’ + ﬁ“{bz :=Dpe’ + a'
yields the following block system

2

A]l Mle a

M, f?
} 3.6)

DITMZ f?

al

DIM, A
where A1 = M, + DIM3D, + MoDM;'DTM, and Az = DTM,D; + M;DoM; ' DoM; . In
the above formulation, we used the fact that DDy = 0 and 153]5*1‘ =0.
Remark 3.2 The reformulation (3.6) seems more complicated than the original equation
(3.1) that we are actually solving. The idea here is try to use the diagonal blocks A|| and Ay,
as preconditioner of (3.1), which is the main focus of the next section.

It is interesting to notice that during this reformulation procedure, the gauge term in the
A1 and Ay blocks seems to be indispensable. As was pointed out in [5], these terms play an
important role in avoiding the large null-space caused by VV- operator and V X VX operator
respectively. Forming MleMl’lDITMQ and M1D0M61D0M1 requires the inversion of M| and
My. Even if we can use mass lumping to simplify the computation, it makes the system more
complicated and ruins the sparsity pattern of the original system. The interesting fact is that
according to the numerical tests (see Section 5 for more details), it is not so clear now if these
gauge terms are necessary or not. We need a more rigorous investigation of the roles of these
gauge terms for more complex problems.
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4. Multigrid solvers. Now we are in position to combine the reformulation and pre-
conditioning to develop a linear solver for the compatible discretization (3.1) of the H(div)
equation (1.1). Similar to the algorithm in [5], we focus on developing the AMG block pre-
conditioners.

The approach considered in this paper focuses on developing AMG methods for the (1,1)
and (2,2) blocks in (3.6) separately. Note that these diagonal blocks are Laplace-like. Once
constructed, these AMG solvers are combined as a Jacobi-like preconditioner to precondition
(1.1).

We propose an AMG technique for the whole 2 X 2 system which employs a Hiptmair
smoother (see for example [11]) at the finest level, but allows subsequent levels and transfers
of the (1,1) and (2,2) blocks to be handled with the standard AMG method. To do this,
the face element of the (1,1) block and the edge element version of the (2,2) block must be
converted to a more standard nodal form on the coarse mesh. This is accomplished by two
special prolongators that not only transfer solutions from a coarse to a fine solution but also
transfer solutions from a nodal to a face or edge representation, respectively. The net effect
of these special prolongators is that the corresponding Galerkin projection of the (1,1) and
(2,2) block will, in fact, yield a coarse operator resembling a vector nodal Laplacian which is
amenable to any standard AMG method for further coarsening.

4.1. The specialized prolongators. As discussed earlier, in order to use the standard
AMBG solvers for the (1,1) and (2,2) block, we must convert the face element (for the (1,1)-
block) and the edge element (for the (2,2)-block) into the standard nodal form. To do this,
we define specialized prolongators Py and P;; to transfer solutions from a nodal to a face
and edge representation respectively. Instead of introducing the near null-space to define the
prolongators as was done in [5], here we make use of the interpolation Hgiv and qurl (see
Figure 2.1) as in [2] and [12].

There are many ways to obtain aggregates corresponding to nodes, see [5] for more
details. In this paper, for simplicity we use perfect aggregation. By “perfect”’, we mean
that the aggregates are formed manually. Note that we only need to form these aggregates
on the finest level. Once the aggregates are formed, IT!" and IT5"" must also be computed.
The detailed construction of the special prolongators for the (1,1) and (2,2) block is given in
Algorithm 1. Notice that the net effect of Py, is to interpolate coarse nodal quantities to fine
face-oriented quantities, and the effect of P, is to interpolate coarse nodal quantities to fine
edge-oriented quantities.

Algorithm 1: [P, P»]=Coarse_Node_Prolongators()

1 {A;} —Aggregate manually;
2 For each fine node n; and each aggregate A; define

_ 1, if n; € ﬂj
(Pup)ij = { 0, otherwise

3 Py =11VP,
4 Py =TI"P,

The Galerkin coarse discretizations are given by

A =Pl ALPy,, Al =PLALPy,
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where A;; and Ay, are the (1,1) and (2,2) block of (3.6), Aﬁ and Afz refer to their projections
on a coarse mesh, respectively.

4.2. Relaxation. As before, we consider the following hybrid scheme. Suppose that
the conjugate gradient iteration is actually applied to (3.1) and that (3.6) is only used within
the preconditioner. To do this, it is necessary to convert residuals of (3.1) to right hand
sides of (3.6) within the preconditioner. This is done by applying [[  D;]” to the residual.
Approximate solutions to (3.6) are then converted back to a form suitable for (3.1) via Dja' +
a.

Algorithm 2 illustrates such a smoother proposed by Hiptmair that combines standard
smoothing of the original equations with standard smoothing of the equations projected to
the null-space [11].

Algorithm 2: & = FineRelaxation(A, Dy, i, b)

1 it « StandardRelaxation(A, i, b) ;

2 ¢ « StandardRelaxation(D{ AD;,0, D] (b — Air) ;
3 i+Dc;

4 @it « StandardRelaxation(A, i, b) ;

The key is that the error is smooth after this initial relaxation. Since the error is smooth,
fine grid relaxation may be omitted from the AMG V-cycles in Solve(), as (3.1) and (1.1) are
equivalent.

It is important to realize that this special smoother is only needed on the finest level. A
standard smoother can be used on coarse levels within the AMG procedures for the (1,1) and
(2,2) blocks. Finally, an additive version of the Hiptmair smoother may also be considered
for FineRelaxation().

4.3. AMG algorithm preconditioner. We now give the entire AMG-based precon-
ditioner for the block Jacobi version in Algorithm 3. PreFineRelaxation() is identical to
Algorithm 2 except step one is omitted. This also avoids the residual calculation in step
two as the initial guess to a preconditioner is always zero. PostFineRelaxation() is identi-
cal to Algorithm 2 except step four is omitted to keep the preconditioner symmetric when
StandardRelaxation() employs a symmetric algorithm. Of course, residual calculations can
also be avoided using additive forms of this smoother.

The algorithm essentially involves two AMG solves for nodal vector Laplacians: Aﬁ
corresponding to the (1,1) block and Ag corresponding to the (2,2) block. In addition, some
relaxation must be performed on the original fine mesh system. Specifically, there are three
major components of the preconditioner.

(1) Hiptmair smoother for H(div) (see also Hiptmair [11]).

(2) AMG for P A1 Py within the (1,1)-block.

(3) AMG for P§2A22P22 within the (2,2)-block.

The detailed algorithm is listed as follows:

5. Numerical results. All the numerical experiments are conducted in a three-dimensional
unit cube domain Q = {(x,y,z) € R3:0 < x, v,z < 1} with homogeneous Neumann bound-
ary condition. The domain is meshed by uniform cubes, and each cube is divided into 6
tetrahedra.

The proposed solver was implemented using CG in MATLAB. The first level and the
first grid transfer of Algorithm 3 is also implemented in MATLAB. ML’s smoothed aggre-

gation solver is used for A{II and Afz, through the mlmex MATLAB interface [9]. A single



P.B. Bochev, C.M. Siefert, R.S. Tuminaro, J. Xu, and Y. Zhu 11

Algorithm 3: & =Block Preconditioner(r)

% Setup Phase

Form A, « Pl AP, efficiently;
Standard_AMG_Setup(A¥);
Form A% «— P A Py, efficiently;
Standard_AMG_Setup(A%));

% Solve Phase

it — PreFineRelaxation(D} M3D, + M, Dy, 0, r);
Fée—r— (DgMSDZ + Mz)ljl;

% Perform V-cycles on A and A%

a « Standard_AMG_Vcycle(A?,, 0, P1,7) ;

p « Standard AMG_Vcycle(A%,,0, P.,DI7) ;
i «— i+ Ppa+ D1P22p 5

it — PostFineRelaxation(DIM3D; + My, Dy, i1, r) ;

TaBLE 5.1
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with constant coefficients,
using Algorithm 3. The size of the problem and the number of SGS smoothing steps are varied.

Grid [ [12° [15° [18° [ 217 [ 24 [ 27 |
250 9% | NG gmge | 11| 13 | 13 | 13 | 14 | 14| 13
AR HHEE
4568 5 | \Simge | 8 110 | 10| 10| 11| 1|1

V-cycle of AMG is used for both the (1,1) and (2,2) block, using the efficient variant of Al-
gorithm 2 (smoother). Unless otherwise stated, we use two steps of symmetric Gauss-Seidel
sub-smoothing on both faces and edges. For all experiments the CG tolerance is 1 x 1071,

5.1. Constant coefficients. As the first experiment, we consider the constant coeffi-
cients case. We assume that 4 = u = 1 in Q. Table 5.1 reports the number of iterations with
different meshsize. We note that the number of iterations are almost identical whether we
include the gauge terms in the (1,1), and (2,2)-block or not. By this reason, we will omit the
gauge term in the following numerical experiments.

5.2. Variable pu. We experiment with jumps in ¢ by considering two regions with con-

stant values of . Specifically, define

1 2
Qo = {(X,y,Z) 3 <xy,z2< §} Q= Q\ Qp;

let u = 1 in Q; and choose u = y to be a constant inside €. A is fixed to be 1 throughout the
whole domain Q. Table 5.2 reports the number of iterations on different meshsize. Note that
the number of iterations are quite robust with respect to the variation of the coefficient u.
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TaBLE 5.2
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump coefficients,
using Algorithm 3. pg varies inside [1/3, 2/313, and 1 elsewhere, and A = 1.

-1

U

Grid || 10°% | 1077 [ 107 [ 105 [ 104 | 10° [ 1072 [ 107 | 1
O 11 [ 11 [ If | 11 [ 11 [ 11 ] 11 [ 11 |11

18° 15 15 15 15 16 16 15 15 | 14
27° 16 16 19 18 18 18 19 17 | 15

TaBLE 5.3
Number of iterations for CG-accelerated AMG on the 3D tetrahedral mesh problem with jump coefficients,
using Algorithm 3. A varies inside [1/3, 2/313, and 1 elsewhere, and pu = 1.

Ao

Grid || 107 | 10 | 1072 [ 107" | 1 | 10" | 10* | 10° | 10*
9 17 | 16 | 14 | 12 |11 [ 11 [ 11 [ 11 [ 9
189 21 [ 20 [ 18 [ 16 [14] 1414 ][ 12] 12
277 [ 22 [21 [ 21 | 17 [15[ 15[ 14 [ 13 [ 13

5.3. Variable . We now consider the jump on A. Same as before, we choose 4 = A to
be a constant which varies from 107 to 10* inside the domain Qg, and A = 1 elsewhere. This
time, we fix u to be 1 in the whole domain Q. Table 5.3 reports the number of iterations on
different meshsize. Again, the number of iterations remains fairly constant.

6. Conclusions. In this paper, we proposed an AMG based preconditioner for the H(div)
equation. We reformulated the equation by using the compatible gauge approaches, and
formed a 2 x 2 system which is equivalent to the original discrete linear equations. Then we
combined the AMG solvers for the (1,1) and (2,2) blocks of this system in certain way, and
used it as the preconditioner of the original linear system. We also presented some numerical
experiments to show the robustness of this algorithm. These experiments showed that the
algorithm is very robust even with the presence of large jump coefficients.
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GENERALIZED STRENGTH OF CONNECTION IN ALGEBRAIC MULTIGRID

JACOB SCHRODER#, RAYMOND S. TUMINARO¥, AND LUKE OLSON1

Abstract. Algebraic multigrid (AMG) solves sparse linear systems without knowledge of any underlying geo-
metric grid. The automatic construction of a multigrid hierarchy requires strength of connection information in order
to coarsen the matrix graph and determine sparsity patterns for each intergrid transfer operator. This paper focuses
on accessing strength of connection information, i.e. determining which degrees of freedom are strongly related to
each other when algebraically smooth error is transferred between grids. Unfortunately, classic strength measures
based on matrix stencils can be ineffective due to discretization errors and matrix inverses can be too global. We
present an ODE framework for interpreting previous measures and propose a new strength of connection criteria.
Some numerical results for the new criteria are also given.

1. Introduction. Algebraic multigrid (AMG) solves sparse linear systems without knowl-
edge of any underlying geometric grid. The automatic construction of a multigrid hierarchy
normally centers on three distinct tasks: coarse grid selection, determination of the sparsity
pattern for each intergrid transfer, and the specification of the actual coefficients within inter-
grid transfer matrices. This paper focuses on the first two tasks which in turn rely on accessing
strength of connection information, i.e. determining which degrees of freedom are strongly
related to each other when algebraically smooth error is transferred between grids. Specifi-
cally, strength of connection information is used to construct a graph, G, whose vertices are
the degrees of freedom present in the operator, A, and where i is connected by an edge to j
only if i is strongly connected to j. The coarse grid is then constructed by applying some
graph algorithm that coarsens G. Strength information is also used to construct the intergrid
transfer operator, where degree of freedom, i, is used to interpolate to degree of freedom, j,
only if 7 is strong connected to j.

The current state of strength of connection in AMG is primarily based on the seminal
work of the 1980’s that developed the classic strength of connection measure. The classic
strength of connection measure uses the matrix stencil to determine the strength of connection
between two degrees of freedom, i and j. For instance in [4], i is strongly connected to j with
respect to a matrix A only if

—A(i, j) = 8 max;i{—A(@, D)}, (1.1a)

for some drop tolerance, 0 < # < 1.0. Similarly, smoothed aggregation [5] sets degree of
freedom i to be strongly connected to degree of freedom j only if

IAG, )l =2 O AU, D) A, ))- (1.1b)

Unfortunately, the classic measure is most applicable to only M or near-M matrices.
A simple and common example of this measure’s limitations can be seen by considering
the use of bi-linear finite elements for

—Uyxy + —€lly, = f (1.2)

on a uniform mesh. The corresponding matrix stencil at an interior point is

1 —Le 1-2¢ -Ue
3 —2+€ 444 -2+€ |. (1.3a)
—Le 1-2¢ -Ue

#Department of Computer Science, University of Illinois at Urbana-Champaign, jschrod3 @uiuc.edu
§Sandia National Laboratories, rstumin @sandia.gov
IDepartment of Computer Science, University of Illinois at Urbana-Champaign, lukeo @uiuc.edu
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€ = 1.0 and € = 0.0 yield respectively,

T 1 -1 1 -
31 -1 8 -l and 3 2 4 2 (1.3b)
-1 -1 -1 -1 -4

When € is small, the coupling in the y-direction is weak. This means that a standard
point smoothing algorithm such as Gauss-Seidel will be ineffective at reducing errors which
are smooth in the x-direction but oscillatory in the y-direction. This is not a problem if the
multigrid coarse mesh is obtained by semi-coarsening, which coarsens only in the direc-
tions where the error after relaxation is smooth. Here, this implies coarsening only in the
x-direction. To semi-coarsen, however, the strength of connection measure should determine
that the coupling in the vertical direction is weak compared to the coupling in the horizontal
direction. Unfortunately, the classic strength of connection measure only indicates modestly
stronger coupling in the horizontal direction. Depending on the drop tolerance, the multi-
grid algorithm may or may not make the proper classification. The simple use of matrix
coefficients is not sufficient to reliably reveal connection strength.

Another motivating concept for determining strength of connection has been the matrix
inverse. The inverse can at first seem an attractive target for calculating strength of connection
because the inverse relates the residual to the error,

Alr=e. (1.4)

This relationship can appear useful for determining strength of connection in multigrid, be-
cause multigrid solves residual equations on coarse grids. However, the inverse does not
necessarily give useful local strength of connection information. The information in the in-
verse is too global and includes information about both low and high energy modes.

For example, consider a standard 1-D finite difference approximation of

—€(Xuxx = f (1.5)
with 20 points on [0, 1] and & = 1/19. Define a Neumann boundary condition at x = 0.0
and a Dirichlet boundary condition at x = 1.0. Let e(x) = 0.001 if x < 0.5 and €(x) = 1.0
otherwise. The 11th row of the matrix contains the stencil,
[-0.001 1.001 -1]
X = 10h 11h 12k ° (1.6)
However, the stencil of the matrix inverse for the two nearest neighbors of point 11 is
[10.0 10.0 9.0] a7

x= 10h 11k 12h°

This is incorrect from a strength standpoint. The strong connection for point 11, should be
to the right, in the direction of the large PDE coefficient. Instead, the strength information
is inconclusive, and even hints at a slightly stronger connection in the direction of the small
PDE coefficient. The reason for this can be explained by considering the Green’s function.
Since the finite difference stencil for the Neumann boundary condition sums to 0, the Green’s
function must be constant from point 11 to the Neumann condition on the left. On the other
hand, the finite difference stencil for the Dirichlet boundary condition forces the Green’s
function to be zero at the Dirichlet boundary on the right. The Green’s function corresponding
to the 11th point is shown in Figure 1.1. It essentially corresponds to two linear functions,
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FiG. 1.1. Column 11 of A™!

one to the left of point 11 and the other to the right of point 11, whose slopes are chosen to
satisfy the boundary conditions, but contain no information about €.

If we continue examining this example, we can find even more problems with the in-
verse. Columns of the inverse corresponding to points to the left and to the right of the
interface also give incorrect strength information. Even simpler examples can yield inverses
with misleading strength information. Standard finite differencing applied to 1-D isotropic
diffusion with both a Neumann and a Dirichlet boundary condition yields an inverse with
misleading strength of connection information near the boundary conditions.

One recent idea that has attracted attention is Compatible Relaxation (CR), which is used
to identify a subset of the original n degrees of freedom which will define a coarse mesh. CR
iteratively carries out a mock-AMG cycle on Ae = 0, where e is an initial random guess.
First, e is smoothed with the multigrid smoother but each point in the tentative set of coarse
points is made to be invariant and held to 0. The basic idea is that this models a perfect coarse
level operator which reduces the error at the coarse points to zero. Second, CR augments
the tentative set of coarse points with a maximal independent set of points that were not
sufficiently reduced in e by the mock-AMG cycle. The maximal independent set is chosen
using the graph of the matrix. This process is repeated for e until convergence is satisfactory.
Multiple initial random guesses are tried and the algorithm stops once a good balance has
been struck between the coarsening ratio and the convergence rate of the CR smoothing step.
While CR does not explicitly make strength of connection decisions, it does make strength
related decisions when choosing a coarse grid. However, choosing a coarse grid is essentially
an easier problem than calculating strength.

Another strength of connection avenue that has been explored is based on local approx-
imations to the matrix inverse [1, 2]. These methods follow the reasoning that strength of
connections within the matrix inverse are the most relevant when determining intergrid trans-
fers. While our examples illustrate that this is incorrect, local approximations to the inverse
can be much better than the actual inverse. This is because the local approximation may
not suffer from being too global. In this paper, the strength of connection measure in [1]
is examined and referred to as the -function inverse measure. This method uses relaxation
to calculate approximations to the matrix inverse with a O initial guess. An energy-based
post-processing step is then applied to each column of the approximate inverse to determine
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strength of connection.

Our central premise is that strength of connection information suitable for a multigrid
algorithm is best determined by examining the evolution of an initial Dirac 6-function during
the standard multigrid relaxation process. Based on a relationship between weighted-Jacobi
relaxation and the time marching of ordinary differential equations (ODEs), an ODE perspec-
tive is presented for understanding the o-function inverse measure and the evolution of delta
functions during relaxation. The ODE perspective is used to shed new light on limitations
associated with classical strength of connection measures as well as limitations associated
with matrix inverses. In particular, classical strength of connection measures can be viewed
as the initial evolution of a §-function within an ODE framework while matrix inverses are
more closely tied to steady-state behavior. It is shown that the initial evolution of a §-function
may be inaccurate due to high energy modes associated with discretization errors while the
steady-state solution can be too global in nature to properly mimic the behavior of relaxation.
A closely related modified measure to the one in [1] is then proposed based on the time evo-
Iution of a §-function until an intermediate time. A key issue in this proposed method is the
determination of an appropriate intermediate time from which to base strength of connection.

In Section 2, an ODE perspective related to CR is presented that mirrors a Jacobi-
relaxation type iteration. The ODE perspective provides an additional view on the limitations
of classic strength measures and leads into the topic of matrix inverses and the J-function
inverse measure. In Section 3, the o-function inverse measure is discussed from the ODE
perspective. In Section 4, a new method related to the 6-function inverse measure is proposed
and analyzed from the ODE perspective. Experimental results are also then given along with
a scale invariance proof.

2. ODE Perspective On Strength. An ordinary differential equation (ODE) perspec-
tive is presented. The perspective provides an additional view on the limitations of classical
strength measures and leads into the topic of local approximations to matrix inverses and the
delta-function inverse measure.

Consider the following ODE,

u; = —Au, with u(0) = 6; 2.1

where §; is a Dirac delta function centered at the location of the i-th grid point and A is a
symmetric positive definite matrix that is assumed to be diagonally scaled so that its diagonal
entries are one. The exact solution to this system is

u=e"s,. (2.2)

When A corresponds to a Laplacian, this ODE models the diffusion in time of an initial point
distribution, §;. Obviously, the steady state solution is just u = 0.

Numerically, equation (2.1) can be solved by the forward Euler method resulting in an
iteration of the form

u® = 5. (2.3a)
I/t(k+1) = u(k) — At Au(k).
or
u® = (I - At A6 (2.3b)

Strength of connection corresponds to how much a point i influences a point j. In the
context of (2.1), how does the d-function at point i spread to point j. At ¢ = 0, we have

u, = —A$;. 2.4
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A¢; is simply the matrix coefficients in the i-th row. That is, the growth of u at j for t = 0
is just given by the size of the coefficient A(7, j). This is in principle identical to standard
strength of connection measures. There is indeed a strong link between the matrix stencil and
the time evolution of §-functions at ¢ = 0.

As mentioned the steady state solution of equation (2.1) is just 0 and yields no useful
information. Instead, suppose we consider the following ODE:

u, = —Au + 6;, with u(0) = 0. 2.5)

When A corresponds to a Laplacian, this ODE models diffusion in time with a constant source
applied at i. This too might provide insight into how i influences a point j via the oper-
ator A. Attt = 0, we have u;, = §;. After one step of a forward Euler scheme, we have
u;(At) = —At Ao; + ;. Thus, once again we have the influence of i at the point j governed
primarily by the size of the matrix coefficients. The steady state solution is now given by
A~16;, i.e. a column of the inverse of A. However as already discussed, the matrix inverse can
be misleading as it is too global.
Now, consider the transient solution of (1.2) with € = 0 given by,

Uy = =gy + (X", ¥°), (2.6)

where f is taken as a d-function centered at some spatial location given by (x*,y*). The
solution of the associated PDE (2.6) properly indicates that there is no coupling in the y-
direction. The o-function only spreads in the x-direction as time increases. More precisely,
u(x,y) = 0 for x # x* and t > 0. The associated PDE should give accurate strength of
connection information at time t = 0. A problem can occur, however, when the spatial
term is discretized. For example while discretizing the spatial term with Q1 basis functions
on a uniform grid, one can intuitively see that the basis functions still interact in the weak
direction and will hence yield some discretization error in the weak direction where there is
no PDE coupling. This is reflected in the right-most expression of (1.3b) by the top three and
bottom three stencil coefficients. We spare the reader the details, but the overall stencil yields
O(h?) cross derivative truncation error terms, in the case of a sufficiently smooth function
u. Normally, this error contribution is small for smooth functions. However, the é-functions
are not smooth and so these error terms are significant during the initial time steps. Since
there is no PDE coupling in the y-direction, any error terms involving derivatives taken in that
direction are significant.

Thus in summary, solutions to equations (2.1) and (2.5) can be considered to generate
strength of connection information. The solutions at # = O for (2.1) and at r = At for equation
(2.5) are similar to standard AMG strength of connection measures because they reduce to
using the matrix stencil to make strength decisions. We know, however, that the use of the ma-
trix stencil is quite limited due to discretization errors in directions of weak coupling within
the PDE. Time evolution of the §-function can serve to damp the high frequency discretization
errors and result in more accurate strength of connection information.

On the other hand, the r — oo solutions give us either A~! or just 0. These solutions are
often too global and do not accurately represent the local influence of i on j. Instead, we will
try and consider an intermediate time where local discretization errors in the weak direction
have decayed sufficiently, but where the time is not too large to render the solution global.
This will be discussed in Section 3.

3. Matrix Inverses And The 6-Function Inverse Measure. As discussed, the matrix
inverse is often too global to adequately capture strength of connection information. However,
there has been some success in using approximate matrix inverses as a means of determin-
ing strength of connection in [1] and [2]. The success of these methods hinges on the fact
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that the matrix inverse is not actually computed, as this is too expensive. Instead, a local ap-
proximation to the matrix inverse is generated and this local approximation is actually better
for determining strength of connection than the true matrix inverse. The local nature of the
approximation indirectly accounts for the relaxation process used to compute it and ignores
distorting boundary effects.

If, for example, we recall (2.5):

u; = —Au+ 6;, withu(0) =0
and solve this system by a forward Euler method. This essentially solves
Au = 6; 3.1

by a Jacobi scheme. This idea was considered in [1] along with the use of other iterative
relaxation schemes.

The approximate column of the inverse was then combined with a particular strength for-
mula involving u# and the A-norm. This energy-based post-processing step calculates strength
of connection between i and j by taking the i-th approximate column of the inverse, z;, and
evaluating

lIZilla — llzill.a

3.2
D ©.2)

where Z; is z; zeroed out at entry j. This corresponds to calculating a normalized change in
energy for z;. Since z; is a locally smooth vector, it would make a good interpolation basis
function around i. Hence if one zeroed out an entry, j, in z;, i.e. interpolation from j is not
used, a large change in energy would be expected if j were important to the interpolation.
This indicates a strong connection.

In our experiments with the scheme, we found that it often worked well in practice but
produced less accurate strength of connection measures if the iteration was carried on too
long. The S-function inverse measure converges to y(f) = A~'; + e~4/5;. As the iterations
count is increased for this method, + — oo and all information about smooth modes in the
exponential is lost. However, for small numbers of iterations, the result should be dominated
by the locally smooth modes present in the matrix exponential.

The §-function inverse measure has a number of strengths and worked well in a num-
ber of our experiments. It worked as well as a distance-based strength measure on stretched
meshes. It avoids any dependence on random starting guesses. Calculation (3.2) experimen-
tally gave useful information, albeit at the cost of n A-norms.

However, this method is also not without its weaknesses. Iterating k times to generate the
approximate column of the inverse is equivalent to kn matrix-vector products. The method
converges to non-ideal strength information, i.e. A~'. The method does not indicate when
it is appropriate to stop and if one iterates too much, the quality of the strength information
degrades.

4. Proposed Method. In this section, a new method is proposed by integrating the
strengths of CR and the 6-function inverse measure while addressing their weaknesses. We
give a description for the method using the ODE perspective, show scale invariance and fi-
nally give experimental results.

4.1. Algorithm Description. The proposed method solves equation (2.1) with Euler’s
method and §; as the initial guess. The steady state solution is 0, but the method stops at a
“moderate” time, #7. The strength information for i is then in the resulting smoothed vector.
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This vector, (I — AtD'A)*6;, where D = diag(A) and we have modified (2.3b) to explicitly
account for scaling, can be examined directly to determine connection strength or it can be
post-processed as in expression (3.2). The only parameters that could be user-defined are
k and ¢, i.e. the number of time steps and the final time. Here is a simple algorithm that
describes our method.

Input: A: Matrix

tr: Stop time for evolution of §-function

k: Time steps for evolution of §-function

drop-tol: Drop tolerance for weak connections

energy: Boolean control for post-processing

b: Null Space vector that needs to be well approximated on

coarse meshes. b is often taken to be a vector of ones.

Output: S: S(,j) = i’s strength of connection to j

S has the same sparsity structure as A

for i = l:numRows
z= (- 1D'A)s;
cols = nonzero-pattern(A(,:))
for j = 1:length(cols)
if(energy)
%Energy-based Post-processing
=z
Z(cols(j)) =0
S, cols(j)) = ”Z”ﬁzﬂZHA
else
%No Post-processing
S(l, COlS(j)) — @(COIS(ZJ(g;ZE;‘)OlS(j))
end
Apply(S(i,:), drop-tol)
The calculation W serves two purposes. One, this calculation ensures scale
invariance. Two, the comparison of z to a null space vector, b, allows for this method to work
for nonconstant null spaces. This calculation measures how well a locally smooth function
around i approximates the null space vector at neighbor cols(j). This calculation should
accurately determine strength of connection, i.e. how well algebraically smooth error can be
interpolated from i to cols(j).

The choice of both #; and & is not entirely clear. k must at least be chosen so that the
iteration is stable. We have, however, found that large k rarely helps. k = 1 is similar to the
classic strength measure in that only matrix coefficients are used. We do find that k = 2 offers
significant improvement over k = 1 but that k > 2 does not offer much further improvement.
With respect to #y, a value too small will result in a measure close to the classic strength
measure and is hence undesirable. A value too large will result in information that is too
global in scope. Overall, we want a t just large enough to damp discretization error. Also,
tr and k should result in an Euler’s method whose action is commensurate with the smoother
used in the multigrid cycle. Such a choice that meets these constraints and that worked well

in our experiments, let 1y = p(D+‘A> and k = 2.

4.2. Scale Invariance. As with the 0-function inverse measure, our method is invariant
with respect to an arbitrary symmetric diagonal scaling.
Proof. Let A = D~'2AD~'/2, for an arbitrary nonsingular diagonal matrix D, D =diag(A)
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and D= diag(X). Note that D = D' D. We first smooth ¢0; an arbitrary number of times with
A in order to derive a relationship to smoothing with A.
(I — wD'AY5; =(I — D' A) DD~V (1 — D' A) D'2D7V2 . (4.1a)
(I - wD™'A) D'2D712 6,
=(D'? —wD'D'2A) DV? (DV? — wD'D'?A) D712 ..

(D2 — wD™ ' D'2A) D12, (4.1b)
=D'"*(I - wD ' A)I - wD™'A)...(I - wD'AD5;  (410)
=D\ DVX(1 - wD™ ' AYs,, (@.1d)

()}

where 15(:11)/2 is a scalar equal to the i-th diagonal entry. Let z; = (I — wD™'AY6;, Z; =

lA)&li)/2 DV2(I — wD ' AY*5;, and b = D'2b be the null space vector for A.
We first consider the case with no post-processing.

L . U

= A2 .- pavra

N 1Y L 0
SN T e T m @1

b(i) W b(i)

(i)

Now, consider the case of energy-based post-processing. Let Z = Z but with the entry
corresponding to neighbor j zeroed out.

lzlz - =l 1zl
S(, j) = = -1 (4.1f)
/ e B

A-1/2 A =
1D Dzl

TUA2 Pz (4.1g)
A71 2 A
”D(i,i)/ D'2zliz
A—1/2 A . .
DG 2DV 2AD 2D, (4.1h)
A2 A2 oA - )
|D(i’i§ | Z D'V2D-12AD 12Dy,
_zilla — llzilla @i
llzilla :

4.3. Experiments. We implemented our algorithm as part of the existing ML smoothed
aggregation framework and implemented the energy minimization algorithm of [3] for pro-
longator generation. In the below tables, “Energy-based Post-processing” and “No Post-
processing” refer to options in the algorithm of Section 4.1 and “Steps” refers to the number
of time steps used. #; = m, unless otherwise mentioned.

All of the below strength stencils are for the degree of freedom in the center of a 31 X 31
regular mesh. The data is presented as 3 X 3 arrays of values that represent the strength of
connection values between the degree of freedom in question and its geometric neighbors
above, below, to the left, to the right and diagonally offset. The degree of freedom in question
is represented as “***” as no strength of connection information is needed between a point
and itself.

First, we briefly examine the isotropic case with Q-1 elements on a uniform grid. As
expected, the strength stencils are isotropic. In Tables 4.1 and 4.2, we present the “No Post-
processing” and “Energy-based Post-processing” cases respectively.
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TaBLE 4.1

Generalized Strength of Connection in AMG

Isotropic — Strength of Connection Stencils — No Post-processing

Steps = 1 3
0.0836 0.0836 0.0836 0.0547 0.0583 0.0547
Stencils 0.0836 wkE 0.0836 0.0583 wkE 0.0583
0.0836 0.0836 0.0836 0.0547 0.0583 0.0547
TaBLE 4.2
Isotropic — Strength of Connection Stencils — Energy-based Post-processing
Steps = 1 3
0.0190 0.0381 0.0190 0.0141 0.0183 0.0141
Stencils 0.0381 ok 0.0381 0.0183 wkE 0.0183
0.0190 0.0381 0.0190 0.0141 0.0183 0.0141

Next, we again examine results for Q-1 elements on a uniform grid, but with anisotropy

that is rotated by 7 and vertically aligned anisotropy, corresponding to

—(c2 + €S2)uxx —2(1 —€)cs uy — (ec® + sz)uyy =f,

where € = 0.001, ¢ = cos(8), s = sin(f) and 0 is the angle of rotation.

In Table 4.3, we show the matrix stencils, which can be compared with the computed
strength measures. In Tables 4.4-4.7, we present strength stencils for the “No Post- process-
ing” and “Energy-based Post-processing” options for the vertically aligned anisotropy case
and then the rotated anisotropy case. For the vertically aligned case, t; = m.

TaBLE 4.3
Original Matrix Stencils

Problem Vertical Anisotropy Anisotropy Rot. By 7
-0.1668 -0.6663 -0.1668 0.0829 -0.1668 -0.4166
Stencils 0.3326 1.3346 0.3326 -0.1668 1.3346 -0.1668
-0.1668  -0.6663  -0.1668 | -0.4166  -0.1668 0.0829
TaBLE 4.4
Vertical Anisotropy — Strength of Connection Stencils — No Post-processing
Steps = 1 2
0.0838 0.3345 0.0838 0.0278 0.2085 0.0278
Stencils -0.1670 ok -0.1670 -0.0830 oo -0.0830
0.0838 0.3345 0.0838 0.0278 0.2085 0.0278
Steps = 3 4
0.0257 0.1951 0.0257 0.0245 0.1889 0.0245
Stencils -0.0772 o -0.0772 -0.0743 oo -0.0743
0.0257 0.1951 0.0257 0.0245 0.1889 0.0245

It is important that the range for appropriate drop tolerances is large. Weak connections
are defined to be less than the drop tolerance times the largest strength of connection value
for that degree of freedom. For instance in Table 4.7, the strong connections are along the
diagonal from the lower-left to the upper-right and these connections are a factor of 4 greater
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TaBLE 4.5
Vertical Anisotropy — Strength of Connection Stencils — Energy-Based Post-processing

Steps = 1 2
-0.0512  -0.1082  -0.0512 | -0.0065 0.2157  -0.0065
Stencils | -0.1057 o -0.1057 0.0084 o 0.0084
-0.0512  -0.1082  -0.0512 | -0.0065 0.2157  -0.0065
Steps = 3 4
-0.0037 0.2061 -0.0037 -0.0026  0.2002  -0.0026
Stencils 0.0146 oAk 0.0146 0.0166 ok 0.0166
-0.0037 0.2061 -0.0037 -0.0026  0.2002  -0.0026

TaBLE 4.6
Anisotropy Rotated by § — Strength of Connection Stencils — No Post-processing

Steps = 1 2
-0.0347 0.0698 0.1742 -0.0226 0.0552 0.1280
Stencils 0.0698 oAk 0.0698 0.0552 wAE 0.0552
0.1742 0.0698 -0.0347 0.1280 0.0552 -0.0226
Steps = 3 4
-0.0205 0.0520 0.1190 -0.0196 0.0506 0.1151
Stencils 0.0520 otk 0.0520 0.0506 otk 0.0506
0.1190 0.0520 -0.0205 0.1151 0.0506 -0.0196

TaBLE 4.7
Anisotropy Rotated by % — Strength of Connection Stencils — Energy-Based Post-processing

Steps = 1 2
-0.0019 0.0287 0.0861 0.0011 0.0181 0.0731
Stencils 0.0287 HAE 0.0287 0.0181 HAE 0.0181
0.0861 0.0287 -0.0019 0.0731 0.0181 0.0011
Steps = 3 4
0.0012 0.0161 0.0669 0.0012 0.0152 0.0642
Stencils 0.0161 otk 0.0161 0.0152 oAk 0.0152
0.0669 0.0161 0.0012 0.0642 0.0152 0.0012

than the next strongest connection. Hence a drop tolerance greater than 0.25 would be ap-
propriate. In Table 4.4, the strong connections are in the vertical direction and are a factor of
7-8 greater than the next strongest connections, which imply a drop tolerance greater than %
is appropriate.

It is not entirely clear how to interpret the negative entries, but they most likely imply a
weak connection. Also, it is important that the separation between weak and strong connec-
tions does not change much after 2 time steps. We therefore suggest using only 2 time steps
with this method.

As a means of comparison, strength of connection information from the §-function in-
verse measure is given in Tables 4.8 and 4.9. One of the inherent problems of the ¢-function
inverse measure appears in Table 4.9, where the strength of connection information begins
to degrade for higher degrees. This also happens in the vertically aligned anisotropy case,
but at higher degrees. It is important that this phenomenon was not observed in our method.
The separation between strong and weak connections in Tables 4.8 and 4.9 and is roughly the
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same as in our method.

TaBLE 4.8
Vertical Anisotropy — Strength of Connection Stencils — §-function inverse measure

Steps = 1 2
0.0020 0.0541 0.0020 0.0017 0.0977 0.0017
Stencils 0.0113 otk 0.0113 0.0161 oAk 0.0161
0.0020 0.0541 0.0020 0.0017 0.0977 0.0017
Steps = 3 4
0.0011 0.1359 0.0011 0.0006 0.1710 0.0006
Stencils 0.0187 otk 0.0187 0.0205 otk 0.0205
0.0011 0.1359 0.0011 0.0006 0.1710 0.0006
TasLE 4.9

Anisotropy Rotated by § — Strength of Connection Stencils — §-function inverse measure

Steps = 1 2
0.0011 0.0073 0.0378 0.0012 0.0151 0.0634
Stencils 0.0073 ok 0.0073 0.0151 oAk 0.0151
0.0378 0.0073 0.0011 0.0634 0.0151 0.0012
Steps = 3 4
0.0010 0.0230 0.0840 0.0008 0.0308 0.1021
Stencils 0.0230 o 0.0230 0.0308 ok 0.0308
0.0840 0.0230 0.0010 0.1021 0.0308 0.0008

If appropriate drop tolerance values are chosen, the above strength stencils will yield cor-
rect coarse grids. With correct coarse grids, AMG can be used as an effective preconditioner
as evidenced in Table 4.10, where an AMG method was used in conjunction with the strength
of connection measures computed here.

TaBLE 4.10
PCG Convergence Counts

Problem Vertical Ani. Rot. By 7 Ani. Rot. By § Ani.
31 x31 12 9 12
Mesh Size 63 x 63 16 10 16
127 x 127 17 14 20

5. Conclusions. The proposed method performs as well as the d-function inverse mea-
sure if the same number of iterations and energy-based postprocessing are both used. The
proposed method can also be computationally much cheaper than the 6-function inverse mea-
sure, especially if no energy-based post processing is used and the number of time steps is 2.
In this case, the proposed method only calculates the entries of (I — At A)?6; for the neighbors
of i in the matrix graph. The entire vector need not be calculated. However in the 6-function
inverse measure, the entire vector must be calculated so that the energy-based post-processing
step can be applied. While the strength information produced by only 2 time steps is infe-
rior to that produced by the d-function inverse measure using 2 time steps and energy-based
post-processing, it is much more computationally feasible and is an improvement over just
the matrix stencil.
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As the iterations of the §-function inverse measure increase, fy — oo, and the method
converges to the matrix inverse, which is problematic. On the other hand, as the iterations of
the proposed method increase, At — 0, and the method converges to e~4'r§;, which is a useful
combination of locally smooth modes for “moderate” 5.

The proposed method is similar to CR in that we relax an initial error for the homoge-
neous system of equations and our strength decisions are based directly on the action of the
smoother. However, we avoid the use of an undetermined number of random starting vectors
by choosing point-sources as our initial error.
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PRELIMINARY INFRASTRUCTURES FOR INTEGRATING MODEL ORDER
REDUCTION METHODS INTO XYCE™

RYAN NONG* AND HEIDI THORNQUIST

Abstract. While advances in manufacturing enable the fabrication of integrated circuits containing tens-to-
hundreds of millions of devices, the time-sensitive modeling and simulation necessary to design these circuits poses
a significant computational challenge. Model-order-reduction techniques attempt to alleviate the computational diffi-
culties by generating macromodels that capture the desired input-output behavior of larger dynamical systems. Even
though model order reduction is an active area of research in design automation, the techniques see limited use in
commercial circuit design tools and mostly for interconnect macromodeling. The Xyce circuit simulator is focused
on developing the capability to solve extremely large circuit problems that have tens-to-hundreds of millions of de-
vices, which motivates the research and integration of broadly-applicable model-order-reduction techniques. This
paper lays out the groundwork for the integration of two recent model-order-reduction techniques into Xyce.

1. Introduction. Advances in manufacturing enable the fabrication of integrated cir-
cuits containing tens-to-hundreds of millions of devices. However, the time-sensitive model-
ing and simulation necessary to design these circuits poses a significant computational chal-
lenge. When the integrated circuit has millions of devices, performing a full system sim-
ulation is practically infeasible. The principal reason for this is the time required for the
nonlinear solver to compute the solutions of large linearized systems during the simulation of
these circuits.

Model-order-reduction (MOR) techniques attempt to produce macromodels that capture
the desired characteristics, such as passivity or stability, of larger dynamical systems while
enabling substantial speedups in simulation time. The vast majority of current MOR tech-
niques are projection based, meaning that a macromodel of the large-scale dynamical system
is generated by projecting it onto some low-dimensional subspace. Projection based MOR
methods generate their subspace using either a moment matching based method (Krylov sub-
space method) or SVD based method (balanced realization, proper orthogonal decomposi-
tion). While model-order reduction is an active area of research, the techniques see limited
use in commercial Electrical Design Automation (EDA) tools and are mostly used for inter-
connect macromodeling.

In this paper, we present a preliminary study of the infrastructure required for the integra-
tion of current MOR methods into Xyce, a modern circuit simulation code. We will discuss
how Xyce and other modern circuit simulators formulate the circuit equations and the struc-
ture of the resulting set of differential algebraic equations (DAEs) in Section 2. Given this
knowledge, we then assess the direct applicability of current MOR methods to modern cir-
cuit simulation codes. To make this assessment more manageable we consider two passivity
preserving MOR methods: the Structure-Preserving Reduced-Order Interconnect Macromod-
eling (SPRIM) method by Freund [2], presented in Section 3.1, and the invariant subspace
method by Sorensen [7] and Nong [5], presented in Section 3.2. Implementing these methods
using C++ and Trilinos [3] is discussed in Section 4, where any modifications to either the
circuit simulator or MOR method that would be required for integration are also presented.
Numerical results from the application of both methods to an RLC ladder circuit are given in
Section 5. This preliminary study has provided insight into the interaction of modern circuit
simulators and MOR methods, but has illuminated a host of issues that need to be addressed
by both, which are briefly discussed in Section 6.

In this paper, except when specified otherwise, upper case bold letters (A, B, etc.) will

“*CAAM Department, Rice University, ryannong @caam.rice.edu
fSandia National Laboratories, hkthorn @sandia. gov
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denote matrices, lower case bold letters (x, y, etc.) will denote vectors, and non-bold or
Greek letters will denote scalars. Script letters (A, &, etc.) will denote special or structured
matrices. Conjugate transpose is denoted by A* and transpose by AT .

2. Xyce. Xyce is a massively parallel SPICE-style circuit simulator developed to sup-
port the needs of electrical designers at Sandia National Laboratories. To this end, Xyce
development is focused on improving capability over the current state-of-the-art in several
areas of circuit simulation. One such area is the capability to solve extremely large circuit
problems that have tens-to-hundreds of millions of devices. This certainly motivates an effi-
cient parallel implementation that can take advantage of the powerful computing resources at
Sandia National Laboratories. However, this also motivates the research on performance im-
provements for important numerical kernels, often requiring state-of-the-art algorithms and
novel solution techniques like model-order reduction.

Xyce and many other modern circuit simulators use modified nodal analysis (MNA) to
solve their circuit problems (see for instance Keiter et al. [4]). This formulation is based on
the three types of equations found in circuit theory:

¢ Kirchhoff’s voltage law (KVL), which specifies that the sum of the branch voltage
drops around a closed loop of a circuit should equal zero. This is expressed as
Zfz'o v; = 0, where B is the number of branches in a closed loop.

o Kirchhoff’s current law (KCL), which specifies that at any node in a circuit the
sum of the branch currents into/out of the node must equal zero. This is expressed
as Z;\’;o i; = 0, where N is the number of branch currents into/out of a circuit node.

e Branch constitutive equations/relationships (BCEs/BCRs), which describe the
physical behavior of the circuit elements. For resistors, capacitors, and inductors the
BCEs/BCRs are, respectively,

v dv di
z—Gv—R, l—Cdt, v—Ldt.
MNA is sometimes referred to as the “modified KCL formulation” because it satisfies one
KCL equation at every node, except the ground node, and adds on at least one equation that is
not a KCL equation. These equations correspond to non-Ohmic devices, like an independent
voltage source or inductor, and the variables added to satisfy these equations are generally
current variables. Once MNA has been performed on a circuit, the result is a state space
model in descriptor form

EZ = Ax(r) + Bu(?)

y() = Cx(¢) + Du(r) (2.1)

where E, A € R™" B € R™’, C € RP", D € RP*?, x(f) € R" is the state, u(¢) € R? is the
input, and y(7) € R? is the output. The order of the system is » and number of inputs (outputs)
is p.

3. Methods. In this section we present the two passivity preserving algorithms for
model-order reduction that are under consideration for integration into Xyce. First we discuss
the SPRIM method which was introduced by Freund [2] in Section 3.1. Then we discuss the

invariant subspace method which was proposed by Sorensen [7] and further studied by Nong
[5] in Section 3.2.

3.1. SPRIM. The SPRIM algorithm was proposed by Freund [2] in 2004 as an im-
provement of the Passive Reduced-Order Interconnect Macromodeling Algorithm (PRIMA)
by Odabasioglu et al. [6]. In addition to preserving passivity for linear time-invariant (LTT)
systems as assured in the PRIMA, the SPRIM algorithm preserves other structures such as
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reciprocity or the block structure of the circuit matrices inherent to RLC circuits. Moreover,
with respect to the original models, the reduced models resulting from the SPRIM algorithm
match twice as many moments as those resulting from the PRIMA with the same computa-
tional work. Since it is based on the PRIMA, the SPRIM algorithm also is concerned with
only symmetric positive definite (SPD) systems obtained from a time domain MNA formula-
tion.

We will now briefly present the formulation of the RLC circuit equations that is required
by the SPRIM algorithm; more detail can be found in [2]. First, let E be the adjacency
matrix of the directional graph which describes the connectivity of an RLC circuit. The rows
and columns of E correspond to the graph edges (circuit elements) and graph nodes (circuit
nodes), respectively. By convention, a row of E contains +1 in the column corresponding to
the source node, —1 in the column corresponding to the destination node, and O everywhere
else. In addition, the column corresponding to the ground node of the circuit is omitted in
order to remove redundancy.

Denote by v,, and i, the node voltages and branch currents of the circuit. The subscript
b can be further categorized into i, g, ¢ and [ which represent branches containing current
sources, resistors (conductors), capacitors and inductors, respectively. (Note that in the fol-
lowing derivation, only current sources are considered.) Using Kirchhoff’s laws, we arrive at
the following:

. T: _—
KCL: E'i, =0 3.0
KVL: Ev, =v,.
In addition to (3.1), partitioning E, v, and ij, as follows,
Ei Vi 1;
_| E | Ve Ig
E = Ec s Vb = Ve , I = i,
E, \zl i
and considering the corresponding BCRs
. . . d d,
i ==L, i, =GV, ic= Cd—th, vi = Ld_tll (3.2)
give the following MNA formulation of the circuit equations:
d
Gx + CEX = BI, (1), (3.3)
ETGE ET \A E'CE. 0 ElT .
where G = [ 0 ],x—[ i ,C = 0 L , B = 0 and I,(7) is the

vector of current source values, G, C SPD matrices and L. a symmetric positive semidefinite
matrix whose entries are the conductance, capacitance and inductance values of the elements,
respectively.

Laplace transforming (3.3) and assuming zero initial conditions give

(G + sO)X = BI(s)

V.- BTX (3.4)

where X, I,(s) and V; are the Laplace transforms of the state vector X, the vector of current
source values I,(f) and the vector of voltages across the excitation sources, respectively. Then
the transfer function of the circuit is as follows,

G(s) = B(G + sC)' 8. (3.5)
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The goal is to construct a projection matrix V,, whose columns span a Krylov subspace
of dimension r so that the reduced model of order n can be formed as the projection of the
original model on this Krylov subspace. The SPRIM algorithm is as follows,

Algorithm 1 SPRIM Algorithm
1. Obtain an expansion point sy and the following block matrices from a MNA formu-

lation
| Gy Gg G 0 | By
g_[—Gz o " o ol B |

where G| > 0, C; > 0 and C, > 0.
2. Formally set A = —(G + 50C)"'C and R = (G + 50C)”' 8.
3. Use a block Krylov subspace method to construct a projection matrix V,, such that

V. =1[vi vy ... v,], where span(V,) = K,(A, R).
4. Partition V,, in accordance with the block structure of G as follows

_|W
Vs | V]

5. Compute G] = V{G]V], (}2 = V2TG2V1, C] = V{C]V], Cz = V§C2V2, B] =
VlTBl and form

= | G GI s [ € o ~ | B
gn_|:_G2 0 :|9 Cn_|:0 62:|, Bn—|:0]'

6. The transfer function of the reduced-order model of order n is as follows,
Gu(s) = B, (G + sC) ™' By (3.6)

3.2. Invariant Subspace. The invariant subspace algorithm was proposed by Sorensen
[7] in 2005 and further studied by Nong [5] in 2007. In contrast to the PRIMA and SPRIM
methods, this algorithm does not restrict its application to SPD models. The algorithm as-
sumes a state space realization (A, B, C, D) of an LTI circuit resulting in the following linear
dynamical system of equations:

X = Ax + Bu

y = Cx + Du, 3.7

where A € R™", B € R, C € RP" and D € RP*? and x(¢) is the state, u(¢) the input
and y(7) the output of the system. In addition, » is the order of the system and p the number
of inputs (outputs). The invariant subspace algorithm assures passivity preservation. At the
current stage of the algorithm, only non-descriptor systems are considered.

The following is a brief description of the invariant subspace algorithm [7], which will
lead into a discussion of subspace selection criteria and the two-stage reduction algorithm [5].
Consider an LTI system Z of order n whose state space realization is (A, B, C, D) as specified
in (3.7) . The transfer function of X is

G(s) = C(sI-A)"'B+D. (3.8)

The goal is to construct a pair of projection matrices V and W whose columns span two
k-dimensional subspaces K and £ of R" such that the reduced model X of order k can be
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formed as the projection of the original £ on K and the resulting residual is orthogonal to
L. The invariant subspace method by Sorensen [7] transforms the model-order reduction
problem into a highly-structured generalized eigenvalue problem and is as follows,

Algorithm 2 Invariant Subspace Algorithm
1. Formally construct the generalized eigenvalue problem (A, E) using the state space
realization (A, B, C,D) of £, where D > 0 and

A B |
A= -AT  -CT |, &= I
Cc BT D+D7 0

2. Compute a k"-order partial real Schur decomposition AQ = EQR.
3. Partition Q in accordance with the block structure of ‘A as follows,

X
Q=|Y
Z

4. Compute the singular value decomposition of XY as follows,
XY = Q.$°Q].
5. Compute V=XQ,S™!, W = YQyS‘l and form
A=W’AV, B=W'B, C=CV.
6. The transfer function of the reduced-order model 3 of order k is as follows,
G(s) = C(sI-A)"'B+D. (3.9)

As mentioned above, the reduced-order model 3 is assured to be passive. However,
different choices of V and W result in different reduced-order models some of which are
not good approximations to the original system at all. Note that V and W result from Q,
the orthonormal matrix in the k™-order partial real Schur decomposition. Thus, different
invariant subspaces corresponding to different selections of k out of n finite stable generalized
eigenvalues of (A, &) result in different reduced-order models.

In order to assure the reduced-order models to be good approximations to the originals,
selection criteria for the finite stable generalized eigenvalues of (A, &) therefore must be
developed. Moreover, for the case of large-scale systems where the invariant subspaces
should be computed using iterative methods, not all selection criteria can be satisfied. To
meet these requirements, Nong [5] proposes an algorithm called the two-stage reduction
algorithm which works in large-scale setting and results in reduced-order models as good
approximations to the originals. Given X, an LTI system of order n, the algorithm is as
follows,

Algorithm 3 Two-Stage Reduction Algorithm
1. Formally construct the generalized eigenvalue problem (A,,&E;) using the state
space realization (A, B, C,D) of X, where D > 0 and

A B I
ﬂl = —AT —CT N 8] = I
C B" D+DT 0
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Compute an m™-order partial real Schur decomposition A,Q,; = & QR corre-
sponding to the subset of m finite stable generalized eigenvalues with smallest mod-
ulus of (A1, &Er).

Partition Qy in accordance with the block structure of (A, Ey) as follows,

Compute the singular value decomposition of XITYl as follows,
XY, = QxlS%Q)Tq-
Compute V| = XlQ,dSI], W, = YlQﬂSl‘1 and form
A=WIAV,, B=W'B, C=CV,

as part of the state space realization (A, B, C, D) of the intermediate reduced-order
model £ of order m.
Formally construct the generalized eigenvalue problem (A, E;) using the state
space realization (A, B,C, D) of S, where D > 0 and
I
I } _
0

Compute all the finite stable generalized eigenvalues of (A, E) and their residues.
Compute an k™-order partial real Schur decomposition A,Q, = E,Q:Ry corre-
sponding to the subset of k finite stable generalized eigenvalues with largest residue
of (Az, &)

A B
_AT _¢T
¢ B D+D7

Ay = , &=

Partition Q, in accordance with the block structure of Ay as follows,
X
Q=Y
7,

Compute the singular value decomposition of X2T Y, as follows,
XY, = QuS3Q),.
Compute V3 = X5Q 28] U'w, = Y2Q,28; " and form
A=WIAvV,, B=WIB, C=CV,

as part of the state space realization (A, B, C, D) of the final reduced-order model %
of order k.
The transfer function of the final reduced-order model X of order k is as follows,

G(s)=CsI-A)"'B+D.

Note that m, the order of the intermediate reduced-order model ¥ as introduced in Step 5,
should be chosen such that it is feasible to compute all the finite stable generalized eigenvalues
of (A, &) and their residues.
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4. Software Implementation. The two model-order-reduction algorithms have been
implemented in C++ using the following Trilinos packages [3]: Epetra, EpetraExt, Amesos,
Teuchos and Anasazi. In this section, for each of the methods, we first present necessary
modifications or additions to the algorithm which extend its application (as in the SPRIM
case) or make it suitable for the implementation (as in the case of the invariant subspace
method). The modifications and additions are then followed by a detailed implementation
description.

4.1. SPRIM.

4.1.1. Modifications. First, notice that the resulting MNA equations derived in the
SPRIM algorithm as presented in Section 3.1 are for circuits excited only by current sources.
Thus, for circuits excited by different types of sources other than only current ones, the block
matrices in (3.3) need be reformulated accordingly.

Second, the transfer functions of a circuit and of its reduced model appear as shown in
(3.5) and (3.6) because the outputs of the circuit are the node voltages observed at the same
locations/ports as its inputs. If this is not the case, then consider the following addition to the
algorithm:

Let D be a matrix of size p X g, where p and ¢ are the numbers of outputs and of states of
the circuit, respectively. Each row of D represents an output and contains +1 in the column
corresponding to the location of the interested output in the state vector x as in (3.3), and 0
everywhere else. As part of Step 1 in Algorithm 1, partition D such that D = [D; D] in
accordance with the block structure of G as in (3.3). In Step 5 of the same algorithm, also
compute D, =D, V,, D, = D, V; and form D, = [D; D,]. Then the transfer functions of the
circuit of interest and of its reduced model are respectively as follows,

G(s) = D(G + sC)' B, 41
Go(s) = DGy + 5Co) ' B, @D
4.1.2. Implementation. The following is a stepwise C++ implementation of Algorithm
1 using Trilinos packages [3]: In Step 1, Epetra and EpetraExt are used to read in matrices
from files in Matrix Market format [1] and to form the matrices and corresponding block
matrices accordingly. In Step 2, Amesos is used to perform two direct sparse linear solves.
In Step 3, Anasazi is used to construct the Krylov subspace of interest. The computations
and formations of the matrices in Steps 4 and 5 are performed via Epetra and EpetraExt with
an extensive help of Teuchos. Note that Teuchos is used throughout the implementation as
it provides convenient tools such as BLAS/LAPACK wrappers and smart pointers and that
during the implementation, we exercise all the modifications/additions presented above.

4.2. Invariant Subspace.

4.2.1. Modifications. Notice that the non-zero finite generalized eigenvalues of (A, &)
are the reciprocals of the non-zero finite eigenvalues of A~'E given that A is non-singular.
Thus, mathematically, generalized eigenvalues with smallest modulus of (A, ) are the same
as eigenvalues with largest modulus of A~'E.

With this observation, for Step 2 in Algorithm 3, in our implementation, we compute an
m'-order partial real Schur decomposition ?[;181 Q = QR corresponding to the subset of m
non-zero stable eigenvalues with largest modulus of ﬂfl& instead. Also, in Step 7 of the
same algorithm, we compute all the non-zero stable eigenvalues of ﬂ;lé]z instead and then
consider their reciprocals.
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4.2.2. Implementation. The following is a stepwise C++ implementation of Algorithm
3 using Trilinos packages [3]: In Step 1, Epetra and EpetraExt are used to read in matrices
from files in Matrix Market format [1] and to form the matrices and corresponding block
matrices accordingly. Prior to Step 2, Amesos is used to perform a direct sparse linear solve
as mentioned in Section 4.2.1. In Step 2, Anasazi is used to construct a partial real Schur
decomposition ﬂII&Q = QR. The computations and formations of the matrices in Steps
3 — 5 are performed via Epetra and EpetraExt with an extensive help of Teuchos. In Step 6,
Epetra and EpetraExt are used again to form the block matrices. Prior to Step 7, Epetra is used
to perform a matrix inversion as mentioned in Section 4.2.1. In Step 7, a few simple functions
are written to compute the reciprocals of the eigenvalues of A; 18, and their residues. Epetra
and EpetraExt with an extensive help of Teuchos are used for the remaining steps to compute
and form the matrices. Also, as mentioned in the SPRIM case, Teuchos is used extensively
throughout the implementation, and the modifications above are applied.

5. Experimental Results. In this section, we present numerical results from running
the two implemented passivity preserving MOR methods on an RLC circuit system. The
frequency responses of the original and reduced models are presented to demonstrate how
good approximations the reduced models are, compared to the original. For the performance
of the MOR methods with respect to the order of the reduced model, see the corresponding
works in Freund [2] and Nong [5].

At the current stage of the project, RLC systems are extracted from Xyce in the form
of data files in Matrix Market format [1]. These files will be the inputs to the C++ code for
the SPRIM method. For the invariant subspace method, since the algorithm only considers
non-descriptor systems for the time-being, these data files need to be further processed so that
the state space realizations of the systems are put in non-descriptor form. In other words, at
the moment, with any given model we are using two different generators to generate both a
descriptor and non-descriptor form of the dynamical system.

A%! R1 V2 LI V3 R2 \Z L2 V5 Rn V2n Ln V2n+l

Fic. 5.1. An RLC ladder circuit.

5.1. Test Model. We consider an RLC ladder circuit excited by a voltage source as
depicted in Figure 5.1. RLC ladder circuits of this type are very typically used to model the
interconnect between the devices on electronic chips. The circuit model we are working with
has 50 blocks of RLC cells, i.e., n = 50. Note from Figure 5.1 that in each block i, the node
voltage V,; between the resistor R; and inductor L; is a state. Therefore, for this circuit, an
MNA formulation results in an input LTI model of size 151 for the SPRIM algorithm. For
the invariant subspace method, further processing produces a non-descriptor input LTI model
with a state space realization of order 100. The numerical values for the resistor, inductor and
capacitor are R; = 0.2Q, L; = luH, C; = 0.5nF,fori=1,...,n.

5.2. Results. Given the RLC ladder circuit in Section 5.1, we are interested in construct-
ing reduced models of order 40 and 20 using the SPRIM and invariant subspace algorithms,
respectively. Note that, even though the descriptor and non-descriptor form of the dynam-
ical system constructed for the two MOR methods (SPRIM and invariant subspace) model
the same circuit, they are of different orders (151 and 100, respectively) due to different
generators. Thus, it is not quite obvious how to select the reduced orders so that the two
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corresponding reduced models of the two original systems are comparable. As it appears
reasonable, we choose 40 (with respect to 151) and 20 (with respect to 100) as the orders of
the corresponding reduced systems resulting from model reduction using the two associated
methods.

Since the Krylov subspace in the SPRIM algorithm depends on the expansion point as an
input parameter, we present here two cases for the SPRIM algorithm in which the expansion
points are chosen to be 1000 and 10°. Figures 5.2 and 5.3 present the frequency responses
of the original and reduced models resulting from applying the SPRIM method, while Figure
5.4 that from the invariant subspace method.

- - -original
10 —reduced 107

Singular Value
\

Singular Value
3

10° 10" 10 10° 10" 10
Frequency Frequency

(a) (b)

FiG. 5.2. Frequency responses of (a) the original model (as described in Section 5.1) of order 151 and its re-
duced model of order 40 and (b) their error system resulting from applying the SPRIM algorithm about an expansion
point at 1000.

—reduced

Singular Value
Singular Value

10° 10° 10" 10 10° 10° 10
Frequency Frequency

(a) (b)

Fic. 5.3. Frequency responses of (a) the original model (as described in Section 5.1) of order 151 and its re-
duced model of order 40 and (D) their error system resulting from applying the SPRIM algorithm about an expansion
point at 10°.

5.3. Observations. For the SPRIM algorithm, the expansion points need to be specified
a priori. The behavior of the reduced models appears local. In other words, given an original
model and an expansion point, the reduced model will capture the features of the original in
the frequency range about the pre-specified expansion point.

For the invariant subspace algorithm via the two-stage reduction method, the reduced
models appear to capture the features of the original in a global sense. This in fact agrees
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Fic. 5.4. Frequency responses of (a) the original model (as described in Section 5.1) of order 100 and its
reduced model of order 20 and (b) their error system resulting from applying the invariant subspace algorithm via
the two-stage reduction method.

with what Nong describes in [5]: Spectral zeros with largest residue are the most important in
terms of energy components. Thus, interpolation over these terms results in a reduced model
that captures most of the energy of the original dynamical system.

6. Conclusions & Future Work.

6.1. Conclusions. We present a preliminary study of the infrastructure required for the
integration of current MOR methods into Xyce. To this end, we implement two passivity
preserving MOR methods for LTI systems in C++ using Trilinos [3]. The two methods are the
SPRIM algorithm proposed by Freund [2] and the invariant subspace algorithm proposed by
Sorensen [7] and further studied by Nong [5]. In addition to the implementation, we conclude
through experimental results that, compared to the original model, the SPRIM algorithm
produces reduced models that are good approximations in a local sense while reduced models
resulting from the invariant subspace algorithm via the two-stage reduction method are good
approximations in a global sense.

6.2. Future Work. At the current stage of the project, the implementation remains a
separate entity with respect to Xyce ; inputs for the implemented codes are obtained via data
files that are extracted from Xyce . In addition, for the invariant subspace method that requires
inputs in non-descriptor form, the extracted information needs to be further processed. A few
observations based on this issue are that not all descriptor systems can be modified to put
in non-descriptor form and that when the modifications are possible, they are not universal,
i.e., the modifications are system-dependent. For the SPRIM algorithm, knowledge of ex-
pansion points is too subjective, and for a few cases, the frequency range for assuring a good
approximation does not always enclose the expansion point. Moreover, the circuit structure
that the SPRIM method preserves may not be known a priori in modern circuit simulators,
such as Xyce, since these simulators often use modern software design techniques resulting
in an abstract notion of devices. These limitations suggest the following future directions for
the project:

1. Examine if the invariant subspace method can be generalized for descriptor systems.
If it is possible, then work on providing a generalization.

2. For the SPRIM algorithm, study in detail the role of expansion points in the forma-
tion of reduced models and examine if it is possible to construct a reduced model
about multiple expansion points to better capture the behavior of the original system
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in a global sense. In addition, examine the structure preservation techniques and, if
it is possible, study how to abstract these structure preservation techniques.
3. Introduce criteria on what method is suitable for which LTI system and implement
the entire code as a black box embedded inside Xyce.
In addition, so far we have only considered MOR techniques for LTI circuits. Further

steps for the project would also include investigating the MOR techniques for nonlinear and
time variant circuits. The ultimate goal of this work is to enable intelligent integration of
MOR methods into Xyce and expedite the full system simulation of very highly integrated
circuits.

(1]
(2]

(3]

(5]
(6]
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HESSIAN-BASED MODEL REDUCTION APPROACH TO SOLVING
LARGE-SCALE SOURCE INVERSION PROBLEMS

CHAD E. LIEBERMAN* AND BART G. VAN BLOEMEN WAANDERS'

Abstract. The source inversion problem in the application of contamination requires methods for real-time
computation. Determination of the location and magnitude of the contaminant source given sparse sensor data
is formulated as an optimization problem constrained by the system dynamics. The computational complexity of
large-scale finite element discretizations precludes real-time inversion by any method. To effect real-time compu-
tation, we utilize Hessian-based model reduction to produce an optimal reduced-order model sensitive to all initial
conditions. Through an application to the convection-diffusion equation in a two-dimensional domain, we demon-
strate the success of our inversion algorithm. The improvement in computation time over the full-order inversion
is quantified. A high level abstraction toolkit is leveraged to efficiently implement the dynamics and extract linear
operators for components of the Hessian.

1. Introduction. The source of contamination events characterized by sparse sensor
information is obtained by minimizing the misfit between observations and numerical pre-
dictions. While chemical spills, gas leaks, and groundwater contamination are example ap-
plications where source inversion has been applied, chemical, biological, and radiological
terrorist attacks have emerged as significant threats. In principle, source inversions for any
contamination event share similar algorithmic characteristics —i.e. large number of inversion
parameters, use of observations, regularized objective function — but in the case of a terror-
ist attack scenario, not only are the location and magnitude unknown, the inversion needs
to be conducted in real time. This adds a significant challenge to algorithmic development.
Furthermore, the ability of the algorithms to accurately predict the character and location of
the original source is integral to the support of potential evacuation procedures as well as the
mitigation process of the hazardous effects.

Inverse problems of this form have been extensively studied. The literature encompasses
methods in stochastic estimation and deterministic optimization. In either case, research in
this field is dominated by inversion for a relatively small set of parameters. In contrast, we
are interested in inverse problems for which the number of inversion variables is equivalent
to the number of degrees of freedom in the computational domain. In addition, we are inter-
ested in algorithms capable of real time efficiency. In contamination applications the finite
element discretization of the domain often result in millions of degrees of freedom. Inverse
computation at full-order could require days of run time even if implemented in parallel on
today’s fastest supercomputers. With the advent of model reduction, we can reduce the com-
putation time by orders of magnitude and thereby approach real-time analysis. While some
researchers have recognized the need for reduced-order models in inverse problems [6, 9],
their model reduction approaches do not specifically target the inversion. Instead, reduced-
order models are used to decrease the computation time of forward solves required by each
iteration of the solution. Hessian-based model reduction produces an optimal reduced-order
model designed for a deterministic optimization formulation of the source inversion problem.

There are several approaches to solving source inversion problems. Probabilistic meth-
ods build uncertainty estimation directly into the model [3, 12, 14]. A use of the particle
method results in a set of probability distributions for initial conditions [3]. The inversion
leads to the most probable source and automatically provides quantification of the uncertainty
associated with the solution. Snodgrass et. al. combine Bayesian theory and geostatistical
techniques to invert for a time-dependent groundwater pollution source [14]. The Bayesian
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fSandia National Laboratories, bartv@sandia. gov
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approach leads directly to error quantification and provides information about the source of
uncertainty in the prediction. Geostatistical techniques utilize the information about uncer-
tainty to adaptively improve the model, thereby making the algorithm applicable to a general
set of release history problems. An extended Kalman filter was applied to the groundwa-
ter inverse problem in Ref. [12]. The Kalman filter builds up an estimate of the state at
each timestep as more information is collected by sensors. In addition to probabilistic ap-
proaches, deterministic optimization is also well represented in the inverse problem literature.
The formulations usually include a combination of misfit minimizations and regularization.
The research in this sector encompasses experiments in regularization and improvements in
computation of the resulting linear systems. Multigrid preconditioners were investigated in
Ref. [1]. A preconditioner is constructed to force the eigenvalues into clusters, thereby im-
proving the performance of an iterative solver. In Ref. [2], an improvement on the conjugate
gradients iteration by exploitation of the inverse operator’s spectral structure permitted faster
computation. In the present article, we formulate the inverse problem as an optimization con-
strained by system dynamics. To achieve real time efficiency, we incorporate a specialized
model reduction algorithm.

Model reduction and optimization have been united in two ways in the literature. Firstly,
the creation of a reduced-order model results from the minimization of differences in char-
acteristics between the reduced-order and full-order systems. Secondly, a reduced-order
model is used as one element in an optimization algorithm. In the former case, researchers
are concerned with matching the reduced-order and full-order outputs or transfer functions
[4,7,18, 11, 15]. While Refs. [4, 7, 18] use a goal-oriented approach to focus the optimization
around minimizing the L, error between full-order and reduced-order outputs, Ref. [15] con-
structs a reduced-order model based on a relaxation of the H,, norm. In Ref. [11], the reduced-
order model is focused on minimizing the deviations between the frequency responses of the
full-order and reduced-order systems over the range of interest. Researchers also use reduced-
order models to make tractable some large-scale optimization problems. In these cases, the
reduced-order models are substituted for full-order finite element solutions. For example,
optimal control problems are solved with reduced-order models [5, 13, 16]. Bergmann et. al.
use a modification of proper orthogonal decomposition to develop a reduced-order model to
decrease the run time for each computational fluid dynamics calculation involved in minimiz-
ing the drag on a rotating cylinder. A reduced-order model is created for optimizing the set of
power inputs for the lamp banks in a problem of rapid thermal chemical vapor deposition in
the field of semiconductor manufacturing [16]. The present work combines these applications
of model reduction and optimization by utilizing Hessian-based model reduction to solve the
source inversion problem.

The inverse problem is often posed as an optimization problem; therefore, a reduced-
order model may be effective in this context as well. Reduced-basis methods are utilized in
the inverse identification of thermal parameters of a microelectronics package [9]. A projec-
tion basis spanning a set of full-order finite element solutions is used to project the system
dynamics to reduced space. The computation time is reduced further by implementing a com-
bination of genetic algorithms and hillclimbing techniques to reduce the number of forward
solves required by the optimization. A Krylov subspace model reduction technique is applied
to the inverse problem of electromagnetic scattering [6]. The reduced-order model, based on
the shift invariance property, is developed as part of the Lanczos or Arnoldi algorithms used
to solve for the scatterer electric field. In this article we use an optimal reduced-order model
to minimize the L, error between the simulated time evolution of the initial condition and the
sparse sensor data.

This class of inverse problems may be addressed by a measure-invert-predict-control
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methodology. The first step is to measure the concentration of the contaminant in space and
time. Sensors placed in the domain collect readings of the local concentration of the contam-
inant. Next, the data from these sensors are used to solve an optimization problem whose
solution is the initial contaminant release. Information about the location and magnitude of
the source of the contaminant is integral to the emergency decision-making process. How-
ever, in many cases, knowledge of the source is not sufficient: prediction of the forward-time
propagation of the contaminant is required to conduct appropriate evacuations. If the con-
taminant can be controlled, then the predictions may be used to develop an optimal control
strategy. Control actuators depend on the nature of the contaminant release and the governing
equations. In some cases, contaminants can be neutralized by a chemical agent. One control
strategy would command judicious release of the neutralizing agent in regions of high con-
taminant concentration. If the contaminant is released indoors, the heating, ventilation, and
air-conditioning (HVAC) system may be used to evacuate the chemical. Vents may be used
to force the contaminant to a specified location while returns are used to expel it. The control
problem is not addressed here but it presents a challenge in future work.

This articles addresses the task of obtaining real-time solutions to large-scale source in-
version problems utilizing Hessian-based model reduction. It is structured as follows. In
Section 2 we consider the mathematical formulation of the optimization problem whose so-
lution is the contaminant initial condition. The algorithm is first derived at full-scale. Then,
in Section 3, we briefly discuss Hessian-based model reduction and how it is used to solve
the same problem in reduced space. Section 4 presents implementation details and highlights
our work with a rapid-development finite element toolkit. In Section 5 the full-order and
reduced-order inversion schemes are applied to a generic contaminant release governed by
the convection-diffusion equation. The results and analysis are presented in Section 6. A
qualitative, preliminary parameter study is found in Section 7. Finally, we present conclu-
sions in Section 8.

2. Formulation. The goal of source inversion is to predict initial conditions that, when
simulated forward in time, produce dynamics consistent with the sparse sensor data. There-
fore, we seek to minimize the difference between the actual and predicted concentrations
at the sensor locations. A regularization term is included in the objective function to avoid
illposedness.

Given sensor readings in space-time y* and Tikhonov regularization parameter S, the
inversion problem is written as a constrained optimization:

1
min J(x, x0) = 5y - Y'Y -y + 3%
subject to  Ax = Fuxy, 2.1
y = Cx, 2.2)

where Equations (2.1)-(2.2) are the general linear discrete space-time equations resulting
from stacking up the equations of the discrete-time system

x(k+ 1) = Ax(k), k=0,1,...,T -1, 2.3)
y(k) = Cx(k), k=0,1,...,T, 2.4)
x(0) = x, 2.5)

for k = 0,1,...,T. In Equations (2.3)-(2.5), x(k) € R" is the system state, xo is the initial
condition, and y(k) € R is the output. The matrices A € RV, B ¢ R¥¥, and C € R
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result from the choices of spatial and temporal discretization. In general, systems of this form
will arise from finite element discretizations of complex spatial domains. For backward Euler
temporal discretization, the matrices in Equations (2.1)-(2.2) contain the following structure:

o
x(0) ¥(0) 8
x(1) y(1)
X = : , y= . , F=| -1,
x(T) w(T) :
| 0 |
I 0 0 0 cC 0 0]
A I 0 : 0 C 0
A= 0 -A I . C= 0 C
0
o .- 0 -A I | Lo --- e 0 C |

Introducing the adjoint variable z € RN, we form the Lagrangian functional
L(x,x0,z) = J(X,x) — 2" (y — CA"'Fxp). Requiring stationarity of the first variations of
L with respect to the state variable x, the input xj, and the co-state z yield the adjoint equa-
tion, the optimality condition, and the constraint equation, respectively. Let g be the first
variation of £ with respect to the input x,. Stationarity of £ is then given by

g = (H+pDx) — (CA'F)Ty",

where H = (CA™'F)"(CA'F) is the Hessian and I is the identity matrix of dimension N.
Therefore, the initial condition that minimizes the objective function is the solution to the
linear problem

(H + D)xo = (CA™'F)Ty". (2.6)

Although this linear system of dimension N is already very large for finite element applica-
tions, the true computational complexity is disguised within the Hessian operator H. In a
large-scale application, the matrices composing H cannot be formed; instead, they must be
defined by their action on a vector. The reduction of order of these operators is the motivation
for implementing Hessian-based model reduction.

3. Hessian-based model reduction. Many model reduction techniques are methods to
find a reduced-space basis V € RV with n < N by which the general discrete-time system
(2.3)-(2.5) is projected to yield

xr(k"']):Arxr(k)y kzo,l,...,T—l,
(k) = Coxp(k), k=0,1,...,T,
x:(0) = V' xo,

where A, = VTAV, C, = CV, and x, = V7 % is the reduced state expansion in the basis.
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The Hessian-based model reduction strategy seeks a reduced-space basis that minimizes
the difference in outputs between the full-order and reduced-order systems. In Ref. [4], it is
shown that the optimal basis can be obtained by coupling proper orthogonal decomposition
(POD) with the greedy sampling approach originally proposed in Ref. [17]. Bashir et. al.
find that the dominant eigenvector of the error Hessian H* = (CA™'F — C,A;'F,)" (CA~'F -
C,A;lF,) is the initial condition that maximizes the L, error between reduced-order and full-
order outputs. One way to obtain an optimal reduced-order basis would be to initialize empty
reduced-order model matrices, sample the dominant eigenvector of H®, construct a reduced-
order model, sample the dominant eigenvector of H¢, etc. However, instead of repeatedly
sampling the dominant eigenvector of the error Hessian and constructing a new reduced-
order model at every iteration, an arbitrary initial condition may be rewritten in terms of
its components in the space of the reduced basis and those orthogonal to that basis. The
simplifying assumption that the reduced-order output exactly matches the full-order output
for initial conditions in the basis permits a one-shot method for snapshot collection. Once an
eigenvector cutoff criterion is selected, the dominant eigenvectors satisfying that criterion are
each used as seed initial conditions in a forward solve. This process can be parallelized by
running the forward solves over the number of available processors. Snapshots of the state
are taken from the resulting time evolution and POD is performed to obtain a reduced-order
basis. For a more complete discussion of the algorithm, please see Ref. [4].

Once the reduced-order basis is computed, the full-scale system may be projected onto
the reduced space. The fully discrete system (2.1)—(2.2) is rewritten as

Arxr = Frxo,
Y- = Crxra

where the reduced space-time matrices contain the appropriately projected submatrices. The
reduction to A, € R"™"" F, e R"™V and C, € RV results in a decrease of many orders
of magnitude in the number of floating point operations (flops) required by a solver iteration.
The only requirement of the Hessian-based model reduction technique is full knowledge of
the governing equations. If the equations are known, calculation of the reduced-order model,
the most computationally intensive aspect of our source inversion methodology, can be pre-
computed offline. The source inversion then boils down to solving the reduced linear problem

H, +BDxo = (CA;'F)'y’ 3.1)

where H, = (C,A;'F)"(C,A;'F). With the reduction in computation time, Equation (3.1)
may be solved in real-time on a laptop computer in the field.

4. Implementation. Algorithms that require access to the underlying linear algebra in-
frastructure of the target dynamics pose significant implementation challenges, especially for
complex physics, finite element discretizations, and parallelization. In this work we avoid de-
velopment costs associated with the low-level implementation of the forward simulation code
by leveraging high level abstraction methods. The general concept is to isolate implementa-
tion requirements from the end-user to allow exclusive focus on the physics formulation.
Sandia’s Sundance [10] is utilized in this context and provides the capability to write sets of
PDEs in the weak form for a finite element discretization. Differential and algebraic operators
can be specified with test and unknown functions within the computational domain along with
appropriate boundary conditions. The use of this tool merely requires a weak formulation for
the specification of the physics (in addition to some other details which is handled by boiler
plate code) through which a fully functional, 3D, parallel simulator is produced.
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Although the convection-diffusion physics can be implemented trivially, the implemen-
tation of the reduced Hessian is not quite as straightforward. In our formulation, the re-
sulting reduced Hessian is composed of multiple non-trivial linear operators. First, the A
matrix represents the complete time-stepping sequence of the dynamics, which in this case
is convection-diffusion. Then the mapping of initial conditions to time and space is required
through the matrix F, followed by a matrix C to identify the appropriate sensor locations. To
complete the Hessian construction, a transpose of CA~'F is also needed. Although, the trans-
pose is not a complicated computation to implement, in parallel this can be non-trivial and not
all linear algebra infrastructures have this capability. Finally, the Hessian is dense, large, and
cannot be formed for any reasonable size dataset. These operations have to be implemented
by defining the actions of matrices on vectors through linear operators and corresponding
apply methods. These requirements are not immediately accessible at the end-user level but
the underlying Sundance linear algebra infrastructure is based on matrix free solution proce-
dures. Therefore a special abstract base class was created to build operators related to reduced
order models (ROMs) for linear time-invariant (LTI) systems. An Abstract Factory Pattern
[8] provides the appropriate encapsulation for the LTI components and other ROM related
linear objects. The convection-diffusion main program creates a concrete implementation of
the abstract factory which creates the concrete objects from the interfaces, in this case all the
constituents of H.

A simple 2-D computational domain was used to demonstrate our algorithm and
was defined directly within Sundance using the BasicSimplicialMesher method. The
convection-diffusion equation was defined in the weak form using the Dirichlet boundary
condition on the left boundary. Using linear elements, Sundance constructs a mesh of N
nodes. The timestepping matrix A was then extracted from the linear problem setup by
the getOperator() method. The space-time A~! operator was implemented as a series
of matrix-vector products utilizing the number of time steps 7. After reading in the specified
sensor locations, the matrix C was defined using Thyra' multivectors. The Hessian operator
is composed of its constituents and passed to MarLaB. After completion of the eigenvec-
tor analysis, the seed initial conditions are loaded back into Sundance where a sequence of
forward solves generate the snapshot matrix.

The MatLa? eig function is utilized to generate the dominant eigenvectors of the Hes-
sian imported from Sundance. Eigenvectors are selected as initial conditions if their asso-
ciated eigenvalues satisfy 1;/4; > A for user specified A. After they are passed back to
Sundance and the snapshot matrix is generated, the svd command generates left singular
vectors for the projection basis. Singular vectors are included in the projection basis if their
normalized singular values satisfy Z{zl o; < POD.y. Thus, the projection basis captures
at least POD; X 100% of the energy of the snapshot matrix. After the model matrices are
projected and the reduced-order space-time system is generated, the initial condition is re-
covered by solving Equation (3.1) by Gaussian elimination. Eventually all of the Matlab
functionality will be transferred to Sundance, thereby encapsulating all the functionality in
one program. While the eigenvalue solver interface has been implemented, the projection and
reduced-order inversion is still forthcoming.

Extension of numerical algorithms to large-scale computational domains is of great inter-
est. Without a toolkit to rapidly test these algorithms for varying dynamics, parameters, and
domains, many years are spent developing finite element codes for one-time use. Sundance
provides the functionality to test these algorithms in parallel for different dynamics and com-
plex domains. We next demonstrate our formulation and implementation using convection-

1Thyra is a Trilinos package. For more information, visit http://trilinos.sandia.gov.
2The MathWorks, Inc., Natick, MA 01760
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diffusion dynamics but with relatively little effort our formulation can be tested on virtually
any linear dynamics.

5. Application to large scale inverse problem. The convection-diffusion equation is
solved on a simple 2-D rectangular domain to demonstrate the power of the Hessian-based
model reduction technique. Although we would like to extend our implementation to large-
scale 3-D problems in the future, the simple 2-D example here sufficiently demonstrates our
algorithm. The extension to three dimensions only requires greater computation power in
the construction of the reduced-order model. The formulation and the solution are directly
analogous to the 2-D case. The governing equations are

%-{-V-Vu—KVzu:O, ueQ, (5.1
u=0, uelp, 5.2)

Vu-n=0, uelly, (5.3)

u=uy, ucQx{tr=0}, 64

where u is the concentration of the contaminant with initial condition ug, v = (2,0) is the
flow velocity, « is the diffusivity defined by Pe = ||v||/« with Pe = 100, and n is normal to
the edge of the domain. There is a homogeneous Dirichlet boundary condition on the left of
the domain and Neumann boundary conditions on the remainder of the perimeter as seen in
Figure 5.1.

y
i
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Fic. 5.1. 2-D computational domain with Dirichlet boundary condition on the left and Neumann boundary
conditions on the remainder of the perimeter. The velocity field points uniformly in the x-direction throughout the
domain.

In order to test our inversion technique, we fabricate an initial condition and space-time
evolution, thereby extracting sensor data at predetermined nodes of the computational do-
main. The initial condition is chosen to be a Gaussian in the center of the domain as pictured
in Figure 5.2.

Forward-time simulations are achieved by backward Euler temporal discretization and
finite element spatial discretization of Equation (5.1) using linear elements. The state is
calculated at each time step of At = 0.04 for a total of 7 = 10 time steps. During this period,
the contaminant diffuses and convects to the right side of the domain. The sensor sparsity is
manifested within C, and the sensor locations are overlayed on the domain in Figure 5.3.

For comparison, the source inversion is solved using the full-order system and the
reduced-order model. Results and computational complexity are compared.



44 Hessian-Based Model Reduction for Large-Scale Source Inversion

FiG. 5.2. Actual initial condition. Gaussian placed in the center of the domain.
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Fic. 5.3. Sensor locations in the domain.

6. Results. In this section the success of our reduced order algorithms is demonstrated.
We find the initial condition that, when subject to regularization and simulated forward in
time, most closely matches the sensor measurements in a least squares sense. In the discrete
form, the optimization problem reduces to a linear problem, the solution of which requires
the application of large space-time operators at each iteration. Hessian-based model reduction
reduces the size of these operators while maintaining the integrity of the input-output relations
corresponding to the initial condition space and the sensor locations. While the full-order
system may be solved in parallel on supercomputers, the model reduction results in a system
solvable in serial on a laptop in the field in real time.

Figure 6.1 presents the full-order inversion side-by-side with the target initial condition.
The height and footprint of the actual initial condition are nearly replicated. The only blemish
is at the maximum concentration of the initial condition. In the full-order inversion, the con-
centration falls off somewhat more dramatically from the location of maximum concentration
than does the smooth Gaussian of the target.

The reduced-order model inversion is pictured in Figure 6.2 with the target initial con-
dition for comparison. Although this inversion was completed with orders of magnitude less
computational complexity, the initial condition is still recovered. There are some undulations
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04
X

(a) Target initial condition. (b) Full-order inversion.
Fig. 6.1. Target initial condition (a) and full-order inversion (D).
in the domain at the base of the Gaussian initial condition. These subtle inaccuracies are

likely a result of the model reduction parameter choices as they are not seen in the full-order
inversion above.
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(a) Target initial condition. (b) Reduced-order inversion.

FiG. 6.2. Target initial condition (a) and reduced-order inversion (b).

Table 6.1 contains the parameters used in the implementation. The most important point
to note is the reduction from N = 1071 nodes to n = 128 nodes by the reduced-order model.
Considering the application of the Hessian operator to a vector, if T > N/n, the number
of flops for the ROM inversion is O(n*NT). Compare that complexity with the full-order
inversion requiring O(N>T) flops. The Hessian-based model reduction produces a reduced-
order model used to successfully invert for initial conditions and reduces the number of flops
required by a factor on the order of (N/n)?. This massive decrease in computational expense
may allow these inversion problems to be solved in real-time.

TaBLE 6.1
Parameter values

number of sensors Ny 24
number of time steps T 10
number of nodes N 1071
reduced-order model size n 128
regularization parameter 3 0.001
eigenvalue cutoff A 0.1
singular value cutoff POD; | 0.9999
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Both inversions recover the initial condition within acceptable error bounds. The dif-
ferences between the full-order and reduced-order inversion arise due to the quality of the
reduced-order model. If the reduced-order model captures the dynamics of the system well
enough, the inversion quality will be adequate. In implementation, however, there is a tradeoff
between a more accurate solution and a faster computation time. The next section considers
further variations in the parameters required for source inversion.

7. Observations in parameter variation. This section discusses the outcome of a small
parameter study which was not meant to be exhaustive but rather qualitative in nature. Upon
the completion of additional functionality in Sundance, a comprehensive sensitivity study
will be conducted. At that time we can make more quantitative statements about the effects
of parameter variations. For now four important parameter variations are discussed, two
(number of sensors and regularization constant) in the context of inversion and two (1 and
PODi;) in the context of the reduced order modeling.

The number of sensors and their placement is a crucial parameter for importing the data
that drives the inversion. For the high fidelity inversion case, we conclude that an insufficient
number of sensors (N; < 0.01N) causes significant inversion errors. Also, the placement
of sensors is important to capture information along the convective streamlines, especially
if only a small number of sensors is available. Of course without convection the inversion
is not possible. Algorithmically, we would like to have sensor readings at every node in the
domain. While obviously not practical in a field implementation, this strategy also presents
some difficulty for the model reduction algorithm. There is no guarantee that the dominant
eigenvectors of the Hessian will satisfy the boundary conditions of the forward problem. For
example, in our application in Section 5, an eigenvector with nonzero component on the left
boundary does not satisfy the homogeneous Dirichlet condition. In fact, in the computation,
those elements would be treated as zeroes, which means the effective initial condition does
not satisfy the Hessian eigenvalue problem. This result detracts from the integrity of the
snapshots and the reduced-order model.

The regularization term directly affects the conditioning of the matrix H + SI appearing
in Equation (2.6) and in reduced-form in Equation (3.1). In implementation, a larger 8 will
produce a faster inverse solve, and likewise, a smaller 8 will cause convergence problems.
In formulation, the regularization term penalizes the L, norm of the initial condition in the
objective function, thereby transforming the optimization problem to one that is well-posed.
In theory and practice, 8 should be decreased as far as the implementation can handle to
achieve the highest quality result. However, small enough 8 will produce an operator so
ill-conditioned that the problem will be unsolvable.

Each of these parameters affects the inversion process regardless of the presence of
reduced-order modelling. Without enough sensors and appropriate regularization, even a
full-scale inversion will not yield adequate results. There are two parameters that affect the
quality of the reduced-order inversion: A and POD.;. The initial conditions used for the
snapshots are determined by A. Those eigenvectors corresponding to eigenvalues A; of the
Hessian satisfying 4;/4; > A are used as initial conditions in a sequence of forward prob-
lems. The state vectors resulting from those forward problems form the snapshot matrix from
which the basis is created. As A approaches zero, more and more eigenvector initial condi-
tions are utilized and the snapshot matrix grows. The increase in size results in longer run
times due to the solution of more forward problems as well as the need to obtain the singular
value decomposition of a larger matrix. In general, including more initial conditions from
which to obtain snapshots will better capture the complete dynamics of the system leading
to a more accurate and robust reduced-order model. Our selection of A = 0.1 reflects the
recommendation in [4].
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The second parameter to be adjusted in the reduced-order model is PODg;, a cutoff
parameter for singular values of the snapshot matrix determining how many basis vectors
are retained for the projection. Let w; represent the ith left singular vector of the snapshot
matrix and o7 its corresponding normalized singular value. One interpretation of the singular
value is that it represents the energy associated with the corresponding left singular vector
in reconstructing the dynamics of the snapshot matrix. It is well known that the error in
the L, norm of the basis projection is characterized by the largest singular value excluded by
PODy;;. This is the motivation for retaining basis vectors w; that satisfy Z{Zl o; < POD.. In
this form, POD,;; represents the percentage of energy to be retained by the basis projection.
Our implementation uses POD¢;; = 0.9999 thereby capturing at least 99.99% of the energy
in the first 128 basis vectors. For simple problems, often a very high POD,; leads to a small
reduced-order model, but still captures a large portion of the energy.

8. Conclusions and future work. We have demonstrated the implementation of
Hessian-based model reduction in a general source inversion problem. The model reduc-
tion procedure yields a set of reduced-order model matrices which significantly decreases the
computational requirements to converge the inversion while still maintaining a high level of
accuracy. Given sensor data, we can invert for initial conditions in real-time. To the best
of our knowledge, this work represents the first instance of a directed sampling approach
to model reduction for inversion. The Hessian-based model reduction specifically targets
the initial conditions leading to maximal error between reduced-order and full-order mod-
els. The adaptation to the greedy algorithm samples these initial conditions at one time to
form a basis, and subsequently generates a reduced-order model that is sensitive to the en-
tire initial condition space. With a set of governing equations, a reduced-order model can be
precomputed offline, leaving only a linear problem to solve for the inversion. In the future,
we would like to explore 3-D problems with millions of nodes in the computational domain
which requires the implementation of additional functionality within Sundance. Addition-
ally, the rapid-development toolkit will aid in a complete parameter study. We will be able
to test various sets of dynamics, types of initial conditions, and different parameter settings
to quantitatively analyze the effects on the inversion algorithm. Finally, we will explore the
control problem associated with a contaminant release. Depending on the application, our
control strategy could be used with available actuators to mitigate the negative effects of a
contamination event.
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IMPLEMENTING AND PROFILING OF A VARIABLE BLOCK MATRIX-MATRIX
MULTIPLY IN ML

IAN KARLIN* AND JONATHAN HU?Y

Abstract. This report discusses the implementation of a variable block matrix multiply within the multilevel
preconditioning package ML. In general, the matrix-matrix kernel dominates the multigrid setup time. We discuss
the advantages that a variable block multiply has over a point multiply. We then discuss refactoring key pieces of
the matrix matrix multiply, and show the benefits via numerical experiments. Finally, we discuss future directions
to make this fully available within a multigrid preconditioner. The resulting speedups from this work could prove
beneficial to any application that produces block matrices and uses multigrid preconditioning.

1. Introduction. The repeated numerical solution of large, sparse, linear systems is
central to many parallel simulations at Sandia. Within the linear solver, the choice of pre-
conditioning method can have a tremendous impact on the convergence and runtime of the
solver, and hence, the entire simulation.

For applications that give rise to symmetric positive definite linear systems, multigrid
methods are often a good choice of preconditioner. At Sandia, the main multigrid precondi-
tioning package is ML [4], part of the Trilinos solver framework [7]. ML provides a variety
of algebraic multigrid (AMG) methods, i.e., the entire multigrid method is built from a linear
system,

Ay = fi, (1.1)

that is provided by the application.

In AMG methods, the time to create the preconditioner can be considerable compared to
the time to apply the preconditioner. Within ML’s AMG setup, a major computational kernel
is the matrix-matrix multiply. It is used in the construction the grid transfer operators that
move information to and from coarser levels and in the coarse approximations to the operator
A; in 1.1. Additionally, it is used to form the coarse matrix A;,7 > 1, which is often referred
to as an RAP calculation because A; is the product of three matrices, R, A;_;, and P. Typically,
matrix matrix multiplication accounts for over 50% of the time used to create an ML AMG
preconditioner.

Applications that have more than one degree of freedom (DOF) per node often lead to
block structured matrices. These matrices can be stored in a special format called variable
block row, in which the DOFs associated with a node are stored in a dense submatrix. This
suggests that we may be able to capitalize on the block structure in the setup and execu-
tion of the matrix matrix multiply in order to significantly speedup the setup of the AMG
preconditioner.

In this paper, we report on a new implementation and initial profiling of a matrix matrix
multiply method for variable block matrices. In §2, we give a brief multigrid overview. In
§3, we motivate why a block matrix matrix multiply is important to ML. In §4, we give an
overview of ML’s existing point matrix matrix multiply. In §5, we discuss the design and
implementation of the block matrix matrix multiply. In §6, we provide some initial numerical
profiling results. In §7, we suggest future directions. Finally, in §8 we present the conclusions
we draw from our work.

2. Multigrid Overview. Multigrid methods (e.g., [6, 8, 1]) are among the most efficient
iterative algorithms for solving the linear system, Ax = f, associated with elliptic partial
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differential equations. The basic idea is to damp errors by utilizing multiple resolutions in the
iterative scheme. High-energy (or oscillatory) components are efficiently reduced through
a simple smoothing procedure, while the low-energy (or smooth) components are tackled
using an auxiliary lower resolution version of the problem (coarse grid). The idea is applied
recursively on the next coarser level. An example multigrid iteration is given in Algorithm
1 to solve (1.1). The two operators needed to specify the multigrid method fully are the

Algorithm 1 Multigrid V-cycle consisting of Nj,,.;s grids to solve Aju; = fj.
1: {Solve Ayuy = fi}
2: procedure multilevel(Ag, fi, ux, k)
3: if (kK # Nievers) then

multilevel(Az, 1, PZ}"]{, U1, k+ 1);
up = g + Prigy;
10:  ux = R(Ax, fio wi);

4w = R(Ag, frowi);
5 e = i — Ay

6 A1 = PLAPK
7w = 0;

8:

9:

11: else

12: U = A;lfk )

13: end if

relaxation (smoothing) procedures, Ry, k = 1,..., Njyer5, and the grid transfers, Py, k =
2,...,Njevers- Note that Py is an interpolation operator that transfers grid information from

level k + 1 to level k. The coarse grid discretization operator A, (k > 1) is specified by the
Galerkin product

Ags1 = P} APy Q.1

The key to fast convergence is the complementary nature of these two operators. That is,
errors not reduced by R, must be well interpolated by P;. While constructing multigrid
methods via algebraic concepts presents certain challenges, AMG can be used for several
problem classes without requiring a major effort for each application.

3. Motivation for having a block matrix-matrix multiply. Applications governed by
systems of PDEs often lead to block structured matrices. Examples of such applications
are linear elasticity, chemically reacting flow, and compressible flow calculations. These
problems have multiple degrees of freedom (DOFs) associated with each grid point (node)
in the problem mesh. The group of DOFs at a node comprise a block of coefficients in the
matrix. Matrices with block structure can be stored in a variable block row (VBR) structure
[2, 9]. The salient feature of this matrix structure is that individual blocks are stored as
dense matrices. Hence, accessing column indices require fewer indirect references, and tuned
numerical routines may be used for the dense computation.

Profiling of ML’s point matrix matrix multiply has shown that the majority of time to
calculate the matrix product AB is in the lookup of B’s column indices. More specifically,
suppose A and (more importantly) B can be stored as VBR matrices. The reduction in lookups
of B’s column indices is directly related to the block size in B. If B has d X d blocks, then
the number of column indices is reduced by a factor of d?, compared to storing B as a point
matrix. We note that d = 3 is the smallest typical block size. It is not unusual for applications
to have d = 5 or even larger block sizes. Hence, a reduction of these indirect lookups should
lead directly to improvements in the overall runtime.
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4. Overview of the current point matrix matrix multiply. We first give a high level
logical overview of how ML performs a matrix-matrix multiply, A X B. For simplicity, A;
denotes the subset of rows of A stored on processor i. First, rows of B are exchanged among
processors so that processor i has all the information that it needs to calculate A; X B. Second,
the column indices of B are stored in global numbering in a hash table for fast lookup. Third,
the local product A; X B is calculated. Fourth, the product is converted back to local number-
ing. Descriptions of the major ML functions used in setup and execution of matrix matrix
multiplies in ML are given in Table 4.1. As mentioned in §1, the matrix-matrix multiply is

TaBLE 4.1
Important functions in ML for calculating the matrix product A X B.

Function Description

Convert Convert matrix from point to VBR format
Exchange Rows Communicates rows of B for the product A; X B.
Matrix Matrix Multiply | Performs actual matrix-matrix multiply

Back to Local Converts matrix column indices from global to local
Getrow Access single point or block row of a block matrix

an important kernel in the setup of ML’s multigrid preconditioners. It is used in the creation
of the grid transfer operators, P;, from preliminary transfer operators, PE’). For more details
on how Pl@ is constructed, see [10]. Once Pl@ is available, the prolongator P; is formed via
the step

P; = P
P; — (I - wD;'ApP;, 4.1

L

where [ is an identity matrix, w; is a damping parameter, and D; is the diagonal of A;. We
note that in some cases it is desirable to used repeated applications of (4.1), each of which
involves a matrix matrix multiply.

The matrix matrix multiply is also used heavily in the creation of the coarse grid operators
A;, i > 1. Once P; and R; are available, then A; is formed as in (2.1). Multiplications are
performed from right to left. Proceeding in this manner reduces the memory requirements
and operation counts in the intermediate product matrices.

5. Design and Implementation of block matrix matrix multiply. In this section, we
discuss the design and implementation strategy of the block matrix matrix multiply. As men-
tioned in §3, when the matrix A arises from a system of PDE’s, a block matrix multiply
has the potential to speedup of the entire multigrid setup, compared to the same calculation
with point matrices. This is largely due to multiplication with VBR matrices requiring fewer
indirect references.

There are two logical approaches to implementing a block multiplication. In the first ap-
proach, every function required to complete the multiplication is refactored to operate natively
on block matrices. While this avenue should lead to the best speedups possible, it would also
require a large amount of human effort. In the second approach, only certain time-intensive
kernels are refactored to operate on block matrices, while the remaining functionality lever-
ages existing point-matrix capabilities.

To keep this project within the scope of a summer, we chose the second approach. Nu-
merical studies in §6 demonstrate that this decision still leads to acceptable overall speedups.
In the remainder of this section, we discuss the major phases of the multiplication, our
changes to key phases, and potential benefits to refactoring the remaining phases.
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The first major component that we implemented is a function that converts point matri-
ces to VBR. This function plays four important roles. First, it was very convenient for testing
purposes. It allowed us to use existing point matrices to produce VBR matrices. Second,
this method is essential for converting (portions of) a matrix from point to block form after
exchange rows has been called. Third, this method allows us to convert an existing P® to
VBR, rather than having to generate P\’ in VBR format initially. ! Fourth, this method con-
verts R back to VBR after it is created by transposing P. The convert function is sufficiently
flexible to be able convert a matrix both before and after rows of that matrix have been com-
municated. There are two different modes for the function: first, to convert matrices prior to
a call to exchange rows; second, to convert the data received by exchange rows. The convert
function performs a deep copy of data. An important feature of the convert before exchange
rows is called is to ensure that blocks are fully populated (dense) with any missing zeros. By
doing so, this speeds up the convert of any exchanged rows.

The second major component that we implemented was two getrow methods. One ex-
tracts from a VBR matrix a single point row, and the other extracts a single block row. The
capability to extract a point row from a VBR matrix allows us to use any existing ML matrix
function that requires point row access. In particular, this allowed us to reuse the exchange
row function (discussed below). The capability to extract a block row is critical for the core
matrix matrix multiply function.

The third major component that we implemented was the matrix matrix multiply kernel.
We began this summer project with an existing prototype block multiply. This prototype
was capable of squaring a square matrix with n X n blocks. However, it had several serious
limitations. It assumed a fixed block size and worked only in serial. From this prototype,
we produced a fully parallel matrix matrix multiply kernel that supports variable block sizes.
Tasks included defining a new VBR structure within ML, allowing for variable block sizes
for the left matrix and a fixed column width for the right matrix, and establishing correct
storage estimates for block matrices.

A function that we decided not to refactor is the exchange rows. As mentioned previously
in §4, exchange rows must be invoked to communicate rows of B before the product AB can
be calculated. Exchange rows accesses matrix data in point fashion (one row at a time).
Refactoring this function to access VBR matrices in block fashion could easily have required
the entire summer. Moreover, we would have had to ensure that the resulting function’s
efficiency and scalability were similar to that of the point version. However, because we
implemented a VBR matrix getrow that fetches one point row at a time, we were able to
reuse the point version of exchange rows.

Refactoring exchange rows may have longer term benefits, however, assuming that a
block version has similar performance characteristics to the point version. The cost of data
movement of the point version is over 95% of its total cost. A VBR version will still move
roughly the same amount of data. However, the data produced by a block exchange row would
already be in block format. In contrast, the data from the point version must be converted to
block format. The percentage of total time spent in the point exchange row and subsequent

IThe first phase in which the matrix matrix multiply is used in the creation of P from P®. (See (4.1).) From
initial performance runs it is unclear whether AP multiplication is faster in point or in block form. This is due to
the sparsity of the blocks in P, which have nonzero entries only on their main block diagonal. If P®) is in VBR
form, all zero entries within a block must be stored explicitly. This increases the effective number of nonzeros by
n? — n times for relatively small n X n blocks. This also increases the amount of data that needs to be exchanged in
parallel by a corresponding amount in the exchange rows function. Finally, the number of arithmetic operations is
increased a factor of 7, which is not be an important factor in the cost as mentioned in §3 due to the dominant cost
of indirect referencing in the matrix-matrix multiply. We estimate that the cost of converting the point matrix P to
VBR is 25% of the cost of creating P initially as a VBR matrix.
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convert varies with the amount of data on each processor. At 5000 DOFs per processor, the
cost is approximately 66% of the total multiply. At 40000 DOFs per processor, the cost is
approximately 25%. Regardless of work per processor, we have observed that the conversion
from point to block format requires approximately 25% of the time of the exchange row
routine. Based on this data, we expect that a block exchange row could decrease the runtime
of each multiply by 5-15%. One necessary component that we have not implemented, but that
must be, is back to local. In ML, the product of two matrices is a matrix with column indices
that are globally numbered. In order for the product to be used in subsequent calculations,
the column indices must be converted to local numbering. Because the underlying VBR data
structure is quite different than that of the ML point matrix, ML requires a new method
to convert VBR matrices from global to local column indices. Without this capability, the
conversion to local is possible but is computationally infeasible.

Finally, we decided not to refactor the point matrix transpose. While not a core piece
of the matrix matrix multiply, this function is necessary to the calculation (2.1). We expect
that the difference in cost between a block and point transpose operation will be similar to
that of exchange rows. This is because each is bound by data transfer, and each exchanges
approximately the same information between processors. However, the result of the point
transpose will be a fairly dense matrix and will therefore be costly to convert. For this reason,
we believe that a native block matrix transpose will be beneficial. The effort to write a block
transpose should be significantly less than writing a new exchange rows routine.’

6. Results. Testing and profiling of functions discussed in §5 were performed on the
Sandia CSRI machine QED. QED is a 32 node, 64 processor cluster with 2GB of memory per
node. Tests were run on three different size matrices, described in Table 6.1. These matrices
are typical of those used in elasticity problems and contain 3 X 3 subblocks. Processor counts
from 1 to 40 were used in tests. The larger matrices were not run on the smallest processor
counts due to memory limitations. Each calculation involved squaring the matrix. This was

TaBLE 6.1
Test matrices

Matrix | Degrees of Freedom | Number of non-zeros
I 26460 1928958
] 201720 15494286
K 403440 31311086

done since it is much easier to setup and run tests in this fashion. These tests should be
indicative of the potential performance gains from embedding the block multiply fully within
the setup of a multigrid cycle for two reasons. First, in the ML RAP process, the intermediate
matrices will be have fewer columns than A, and therefore require less time to convert and
exchange data than with A itself. Second, 3 X 3 blocks represent the smallest block size for
which the routine can be expected to be used. Other typical sizes such as 3 X 6, 5 X 5 and
6 x 6 will yield larger gains in performance due to less indirect addressing per calculation.

As shown by Figure 6.1(a) the new block multiply results in a 1.3 to 2.3 speedup in the
overall multiply calculation. This is due to the 2 to 4.5 speedup of the core multiply routine
itself, as shown in Figure 6.1(b). Figures 6.2(a) and 6.2(b) show the component breakdown
of the overall costs of the point and block routines for matrix J. The exchange rows function
in each routine takes approximately the same time for the same processor count. The main

2Note that this must be written from scratch, or after exchange rows is rewritten, as the current transpose routine
uses a multiplication by the identity in its operation which requires a call to exchange rows.
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Fic. 6.1. Performance gains from block multiply

Point Multiply Costs Block Matrix Costs
8 T T T T
I Exchange Rows [ Convert 1
I Multiply [ Exchange Rows
7 ] - [ Convert2 1
I Multiply

Runtime
Runtime

20 25
Processors

20 25
Processors

(a) Point Multiply (b) Block Multiply

FiG. 6.2. Component costs for multiplying the J matrix

advantage of the block routine is from the reduced cost of the multiply routine. The time spent
in the two conversions, however, offsets some of this reduction. The conversions account for
approximately 25% of the overall runtime, and are a potential spot for further optimization.

Note that the time for exchange rows in both routines increases when moving from 20 to
40 processors. As there was no attempt to load balance other than the equal distribution of
rows among processors this 3 fold increase could be due to a bad data exchange pattern or a
bad parallel distribution of matrix rows. In a real application load balancing would likely fix
this issue. Figures 6.3(a) and 6.3(b) show the scaling of the convert of the B matrix to VBR
and the block multiply. The results are normalized to the speed per nonzero of the I matrix
running in serial. Scaling of exchange rows is not shown as previous work has explored its
scaling properties, and no work was done on this function during this project. The scalability
of the second convert was not studied as its cost is approximately 25% of cost of exchange
TOWS.

What is shown in 6.3(a) is the convert becomes more efficient per nonzero converted as
the work per processor decreases up to a certain point, where the trend reverses. In addi-
tion for larger matrices the convert is less efficient than for smaller ones. For the multiply
6.3(b) shows that the scaling of the multiply is tied to the number of processors used for the
problem. With the exception of the 5 processor example for the J matrix, the efficiency of



I. Karlin and J. Hu 55

Speed per data element converted Speed per data element multiplied

—t—1
——J
—+—K

0.95

Relative Speed
o
©

Relative Speedup
o
&
2

\

\\
°
®

. | 0.75

0.4 0.7
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Processors Processors

(a) Convert Scaling (b) Multiply Scaling

Fic. 6.3. Relative speed of convert and multiply routines

the computation is nearly identical for each matrix when the number of processors is held
constant.

7. Future work. To fully integrate the block matrix-matrix multiply into the ML multi-
grid setup phase, a few functions need to be finished. More specifics are outlined in the ML
developers documentation [5]. A VBR version of back to local should be written. The writing
of a wrapper routine modeled after the current driver and ML_2matmult() would make the
routine much more accessible for a developer to call.

Within the current design approach, if one were looking for additional efficiency, the fol-
lowing are the best candidates for performance gains. By changing the convert to handle ma-
trices exchanged in point format, P’ could be more efficiently exchanged. This may increase
the convert time on the exchanged rows but would decrease the exchanged information to 1/n
of its current amount, where n X n is the block size. The convert routine has not been profiled,
and there is a chance it has inefficiencies that could eliminated. Also, while the multiply has
no obvious inefficiencies, it may benefit from calls to BLAS[3] routines, especially for larger
block sizes. Profiling of this routine might uncover other areas for improvements, though this
is unlikely as it was derived from an efficient point multiply. A VBR matrix vector multiply
could also lead to performance gains in the application of the multigrid preconditioner.

If full fledged VBR support were desired, we suggest the following order for the im-
plementation. First if a VBR transpose is easy to write, or if an EPETRA function can be
utilized, this would be the easiest function to write with potentially the largest performance
gains. If the transpose is not easy or requires a block exchange row function to work, then the
creation of a block P”'should be the first priority. A new exchange rows function should be
lowest priority, unless a block transpose requires it. This is because the expected reduction
in runtime of a new block exchange rows is small in comparison to the effort to refactor the
code.

8. Conclusions. This report summarizes a summer project to implement a block matrix-
matrix multiply within the multigrid preconditioning package ML. We have demonstrated
2-4.5 times speedups in the multiply kernel for linear systems with 3 X 3 blocks, and overall
speedups of 1.3-2.3, although these results are likely a lower bound on actual performance.
Development time was dramatically reduced through the use of a point-to-VBR converter
function and existing point matrix capabilities, while still allowing for significant speedups.
While we chose to refactor only portions of the multiply, we believe that the results from the
initial profiling show this decision was correct.
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MODEL REDUCTION BY COMPONENT MODE SYNTHESIS:
CRAIG-BAMPTON METHOD WITH LINEAR EXAMPLE

REGINA M. DAVIS* AND RICHARD B. LEHOUCQ$

Abstract. Component mode synthesis (CMS) is a model reduction technique in which the components of a
larger structure are condensed to reduced-order models and reassembled to produce a reduced-order model of the
entire system. In this document, a brief introduction of CMS will be given and then Craig-Bampton’s method for
CMS will be explained in more detail and used to model the linear response of a rod, spring at one end and free-ended
at the other, when a ping excitation occurs at its free end. The intent of this document is an elementary set of notes
based on a first time reading of CMS methods.

1. Introduction. In structural dynamics, the topic of model reduction surfaces upon
consideration of large multi-degree of freedom systems. Due to the complexity of such struc-
tures, solutions to the large system of equations become burdensome and costly. Finite ele-
ment models, (although widely used, highly favored, and perhaps the most powerful models
used for complex systems), are unfortunately expensive in these cases as they are difficult to
pull together, and untimely to produce. Model reduction is then the theory of approximating
higher order systems by lower order systems while preserving as much of the systems’ be-
havior as possible in an effort to increase the time efficiency and decrease the expense of the
analysis.

Component mode synthesis employs the idea of dividing a large structure into smaller
sub-structures, investing most of the analysis into these smaller components, and in turn
reaping a decent approximation of the complete system. Component mode synthesis has
several applications, primarily in coupling reduced-order models of components in a larger
system, test verification of finite element models, and to achieve an understanding of the
dynamics of multimillion-DOF models [1, ch.17 pp.532].

The underlying concept behind CMS is the notion that the components’ physical coor-
dinates can be represented in terms of a set of generalized coordinates from the following
transformation:

q = Cp. (1.1)

The transformation matrix, C, also called the component mode matrix, pre-multiplies the
generalized coordinates, p, that describe the motion of the system. The columns of the com-
ponent mode matrix, called component modes, are assumed modes describing the physical
displacements, ¢, of each coordinate.

There are several methods in CMS which can be used, depending on the components’ ge-
ometries and boundary conditions. While each method contributes to the collective strength
of CMS, discussion will be limited to the Craig-Bampton fixed-interface method. The intent
of this document is an elementary set of notes based on a first time reading of CMS meth-
ods. The reader is referred to [1, ch.17 pp.532] and the open literature for surveys and more
involved discussions.

2. Basics. Consider a clamped-free rod divided as shown in Figure 2.1(a).

The structure has been divided into three components, «, 8, and y. The @ component is
broken down into internal coordinates and interface coordinates (Figure 2.1(b)), where I rep-
resents the internal coordinates and E represents the interface coordinates[1, ch.17 pp.533].
An internal coordinate is any coordinate within the component not associated with any

#New Mexico State University, reginab@nmsu.edu
¥Sandia National Laboratories, rblehou @sandia. gov
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Fic. 2.1. (a)Clamped-free rod divided into «, 8, and y components (b)the @ component with internal and
interface coordinates shown (c)schematic of a typical component with n-DOF

boundary or constraint. An inferface coordinate is any coordinate within the component for
which another component is coupled. Interface coordinates between components are related
by a set of constraints. The @ component, as shown, has two internal coordinates and two
interface coordinates.

The component mode matrix for the @ component is composed of two types of assumed
modes: constraint modes and fixed interface modes. A constraint mode is a static solution
where all but one boundary' DOF is held zero, and the remaining one is set to one. A fixed-
interface mode is a static solution where all boundary DOF are held zero. Each system has a
set of fixed-interface modes equal to the number of interior nodes.

Similarly, the component mode matrix for the S component is also composed of con-
straint modes and fixed interface modes. Although the right boundary for the S component
is not an interface coordinate, the required constraints on the component allow for it to be
modeled as one.

Constraint modes and fixed-interface modes are the two component modes used in Craig-
Bampton’s method. There are other component modes included in CMS, such as rigid-body
modes as would appear in the component mode matrix for the y component due to the the
rigid-body coordinate on the left boundary, but these are not needed in Craig-Bampton’s
method nor will they appear in the example to follow. They will therefore not be discussed.

One final feature of the component, which may be obvious but will be presented anyhow,
is that it can be modeled with as many elements as desired. While only three elements of

lin these definitions, a component’s boundary is simply any coordinate lying on the geometric boundary of the
component; in the case of the @ component, the boundaries are represented by the interface coordinates.
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the @ component have been illustrated, it could potentially have n-DOF with the schematic
shown in Figure 2.1(c).

3. The Component Mode Matrix by Craig-Bampton Method. The component mode
matrix will be developed from Craig-Bampton’s fixed-interface transformation. The discus-
sion that follows and discussion in Section 4 resemble that in Craig and Kurdila[l, ch.17
pp-532-37,557-59].

For simplification and for clarity, the interface coordinates will be referred to as the
boundaries. Thus, E will be called B and the order I/ — B will always be used. It follows, the
stiffness matrix, K, for the component in Figure 2.1(c) has the form?

Ki Ka
K= .
[ Ky Kip }

Likewise, the mass matrix, M, is

M:[ M; M, }

M, My

The component mode matrix, C, will consist of constraint and fixed-interface modes as
described in Section 2. The physical coordinates can then be represented as a linear combi-
nation of the constraint modes and the fixed-interface modes as follows:

q = Oy +Yep,. (3.1

Where @, and ¥, represent the fixed-interface modes and the constraint modes respectively.
The subscript £ is used to denote the number of retained, or kept, fixed-interface modes and
p, refers to the generalized coordinates corresponding to the fixed-interface modes. The
subscript c is used to denote the number of constraint modes and likewise, p, refers to the
generalized coordinates corresponding to the constraint modes.

The modes can be divided into internal (i) and boundary (b) coordinates,

[ Dy [ i
o an ) v )

By their definition,

Dp = Opy,
‘Pbc = Ibc'
Thus,
Dy Y
D, = W, = . 3.2
k(obk) (Ibc) (3-2)

The number of constraint modes is equal to the number of boundaries on the component,
(c = D). Replacing ¢ with b in (3.2) and expanding ( 3.1) gives

%) Oy Vi P« 33
q= - 0 I > ( . )
q, bk Lbb Py
2If r and ¢ are the number of rows columns of a matrix respectively, then any matrix having the notation A, has

the condition A,. € R"™¢; and any vector a, is a column array with dimensions (r X 1). Also note some matrices are
only given one subscript. This does not denote a dimension; it only gives the matrix a label (see eqn 3.1).
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for which the component mode matrix is

Oy Wi
C= .
[ Opc  Lpp }

The internal partition of the fixed-interface modes, @y, is determined from the following
eigenproblem:

(Kii - (w?)k Mii) (¢ =0
or
(K — M; Q) @;; = 0.

where ®;; is composed of the first K modes of ®@;. The internal partition of the constraint
modes, ¥;,, however, are determined from the following static definition:

[ Ki Ki }( Wip ):( 0; )

K, K Iy Ly )’

for which I, are the reaction forces at each constraint. Solving:
Wi = ~K;' K

and

Ibc

Recall, n is the DOF, n = i + b, and k is the number of kept fixed-interface modes. For
clarity, observe the following dimensions for (3.3)

q; D Wi Px
. (i x 1) Gxk  Gxb) || Gkx1)
(nx D) w | | o I D,
(b x 1) bxk  Gxb) I\ bxD)

4. Reducing the Model. Model reduction in CMS occurs due to the transformation
matrix, C, in (1.1), by which the physical coordinates, q, are described by a reduced number
of generalized coordinates, p. Let m be the number of generalized coordinates, where m < n.
Equation 1.1 can be expressed with dimensions as

q = C p - “4.1n
—— —— ——
nx1 nxm  mx1

The equation of motion for the undamped system is:
Mg + Kq =f. “4.2)
Substitution of (4.1) into (4.2) gives

MCp + KCp = f.
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To ensure the orthogonality of all the component modes to the residuals, apply Galerkin’s
method. Require

yT (f-MCp + KCp) =0, Vye span{C}. 4.3)
Therefore,
C"MCp + C"KCp = C'f
or
M p+K,p=f1,
where

M, = C'MC, K,=CT’KC, f =CTt.

Note, Galerkin’s condition in (4.3) is also the principle of virtual work.

5. Understanding the Reduction. Now the question may arise, “How does this reduc-
tion work?” Or another to ask is “What effect will this reduction have on the solution to
the system’s dynamic behavior?” In an attempt to answer these questions, the reduction will
be broken down into finer detail by way of the the homogeneous solution to the equation of
motion,

Mx + Kx = 0. 5.1
Assume an exponential solution,
q = xe“. (5.2)
Consider substitution of (5.2) into (5.1). The result yields the eigenvalue problem
(K- (), M) =0 j=1.20n
or
(K-MQ,)X, =0, (5.3)

where the subscript o denotes the eigenvectors, modes, and eigenvalues, frequencies, of the
un-reduced n-DOF system. Now, let

p = ye. (5.4)
Substitution of (5.4) into (1.1) gives
q = Cye”. (5.5)
Given C is square, (n X n), the resulting eigenvalue problem is
(CTKC - (2),€'MC)3,), =0 j=1.2.+
or

K, +M,Q,)Y, =0, 5.6)
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Fic. 5.1. The first four modes of the original, 8 DOF system (in blue) are compared to the first four modes in
the unreduced, 8 DOF CMS problem (in red). The CMS modes cannot be seen because they are identical to the true
modes of the original system.

and by (5.2) and (5.5),
X, = CY,,. 5.7

Again, the subscript o denotes the un-reduced system. Here, Y, represents the transformed
eigenvectors of the un-reduced system. Equation 5.6 suggests that, for any (n X n) C, the
resulting modes, X,, and frequencies, Q, are identical to those in (5.3).

However, when m < n, the resulting modes and frequencies are similar to those of the
un-reduced system. In other words, for

K, +MQY=0,
then
X=X, (5.8)
and
Q= Q,. (5.9

The relationship in (5.7) is no longer true, it is only an approximation. The relationship
between X and Y can be determined from Galerkin’s condition in a least squares sense. This
results in?

X~CyY=c[c’c| X,
or
Y=[c’c| X (5.10)
Equations 5.8 and 5.9 give rise to the following:

K +MQ,)X, =
(K + MQ)X

|
e

3The columns of C are linearly independent and therefore the inverse of CT C exists.
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normal displacement
normal displacement

coordinate coordinate

(a) Modes 1-4 (b) Modes 5-7

FiG. 5.2. (a)The first four modes of the original, 8 DOF system (in blue) are compared to the first four modes
of the reduced, 7 DOF CMS problem (in red). (b)The remaining three modes of the reduced, 7 DOF CMS problem
are compared to modes 5-7 of the original unreduced system.

In an effort to compare the residuals for each reduction, consider:

el = V'K 'r (5.11)
For the case when m = n,
lIroll =0
In all other cases where m < n,
lirl >0

Let the residual vector for each reduction, r, be an (m X 1) array of the residuals for each
mode.

T
r=[ el el - el |

6. Linear Homogeneous Solutions. Perhaps the most straightforward representation
of how the reduced model compares to the original, full scale model, is the comparison of the
homogeneous solution each model predicts. Take, the linear, free-free ended, homogeneous
n-DOF system shown in the schematic in Figure 6.1 with the following conditions:

qn-2 qdn-1
E

FiG. 6.1. Free-free ended component with n-DOF, no bending

Mg + Kq =0,
q(0) = x;,
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where
(K—ij)sz() j=12,--- N,
The solution to this system is simply,
q = x; cos(w;t) 6.1)
Replacing q with Cp in this example gives, for C € R and m < n,

M,p+K,p=0,
p(o) = ij

where
(K-vM)y;=0 j=12- N,
Similarly, the solution to this system is,
p =y, cos(v;1). 6.2)

The solution for the generalized coordinates in (6.2) can be compared to the “true” solution
for the physical coordinates in (6.1) by the transformation matrix C:

q = Cy; cos(v;1). (6.3)

" 5DOF remaining

6DOF remaining

coe B
7DOF remaining

residual

g 1 | J
2 3 g s
remaining modes

FiG. 6.2. Residuals for the SDOF with 1, 2, ..,6 reductions; (a)one reduction, seven modes remaining, second
mode - Fig 6.3(a); (b)one reduction, seven modes remaining, fourth mode - Fig 6.3(b); (c)one reduction, seven modes
remaining, sixth mode - Fig 6.3(c); (d)three reductions, five modes remaining, third mode - Fig 6.3(d)

An 8DOF model with the geometry shown in Figure 6.1, has two constraint modes
and six fixed-interface modes. In reduction, the constraint modes and low-frequency fixed-
interface modes are retained. Figure 6.2 shows the residual progression as fixed-interface
modes are removed one at a time. Figure 6.3 shows the corresponding displacements for four
of the coordinates, q (6.1), compared to the corresponding CMS approximations, q (6.3),
labeled in Figure 6.2. Note the value of the residual suggests how much the approximated
CMS solution has strayed from the true solution.
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(a) Second mode oscillation after one reduction (b) Fourth mode oscillation after one reduction
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(c) Sixth mode oscillation after one reduction (d) Third oscillation after three reductions

Fic. 6.3. (a)The displacements for four coordinates in the fourth mode for the full, SDOF model. (b)The
displacements for four coordinates in the fourth mode after one reduction is made. Solid curves are the “true”
displacements and the dashed curves are displacements obtained from one reduction.

For simplicity, the above illustration was made by way of an 8DOF, free-free ended,
homogeneous system. Higher-ordered systems provide for better approximations by CMS.
Consider the residual plot for the 16DOF in Figure 6. The above process of comparing the
residuals to the true and approximated displacements was repeated for the 16DOF, 32DOF,
and 64DOF system and the following observations have been made: situations which lie on
the outside line of the residual plot have experienced a significant change in frequency and are
noticeably poor approximations to the true solution due to their large change in frequency, as
observed the CMS approximations in Figure 6.3(c) with 6.2; all other situations lying on the
n — 2 line or below are relatively good approximations to the true solution, (Figure 6.3(a,b,d)
with 6.2).

7. A Linear Application of CMS. In the previous example, the routines were formu-
lated so as to produce only one mode and frequency in the displacement solutions. Problems
of more interest contain a combination of all the modes in their solution. CMS will now
be applied to a practical example in order to gain a better understanding of the concept of a
reduced model and CMS capabilities.

Consider the spring-free rod in Figure 7.1. Let initial displacements and velocities for all
coordinates be equal to zero, and let the impulse be applied at ¢ = 0.

As an example, Figure 7 shows the accelerations at the right end of a 32DOF due to a
short impulse at time ¢ = 0 (cyan). The plot also shows the CMS acceleration approximations
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residual
T

0 0 0
remaining modes

Fic. 6.4. Residuals for the 16DOF, free-free ended, homogeneous systems

— . . . . . —
impulse

Fic. 7.1. Rod with linear spring on one end and free-ended at the other end. Short impulse applied at time t=0.

when only 8 component modes are used to estimate the same response (red). Note the absence
of higher frequency oscillation in the reduced-order model. This is due to the fact that the
8 modes retained in the reduction were those corresponding to the eight lowest frequencies
from the eigenvalue problem described in Section 5. In other words, the high frequencies that
appear in the real solution have been removed, or discarded to obtain the reduced solution.

05
True 32DOF
| | —— CMS with 8DOF

0.4

oal I f\ 1

021 ‘

[UW f\“”/] M\M\ ’

acceleration

I L L
0 50 100 150 200 250 300 350

Fic. 7.2. True acceleration response at the rod’s free end for 32DOF when short impulse is applied at t=0
(cyan) compared to CMS approximation for the same response modeled as 8DOF (red).

8. Summary. In short, Component Mode Synthesis and its applications in complex
structures has been explained. Craig-Bampton’s method of using constraint modes and fixed-
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interface modes to form the component mode matrix has also been explained and was used to
demonstrate CMS approximations in linear examples. Homogeneous displacement solutions
were used to emphasize the details of how CMS approximations compare to true solutions;
and finally CMS was applied to a practical linear example in order to illustrate the transfor-
mation that takes place under CMS. Figure 7 suggests, thus far, that CMS is an appropriate
model reduction method under the linear conditions described in this document. Further
investigation under additional conditions such as bending, non-linearities, 2-D models, mul-
tiple components are certainly other areas of interest in CMS, but are not discussed in this
document.
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CONSTRAINED EIGENVALUE PROBLEMS

CHRISTOPHER G. BAKERY AND RICHARD B. LEHOUCQ!

Abstract. This note proposes an improved algorithm for the numerical solution of symmetric eigenvalue prob-
lems with constraints in Salinas. We briefly review the current approach, explain its deficiencies, and then propose
a new algorithm. In addition to the algorithm’s improved stability, an inner iteration is not needed—an applica-
tion of the preconditioner is all that is required. Moreover, redundant constraints (characterized by a rank deficient
constraint matrix) are not problematic.

1. Introduction. The numerical solution of the constrained eigenvalue problem

K CTl][x M 0||x

I -
for the low energy modes is required by Salinas [2]. The matrices K, M € R™" are symmet-
ric/positive semi-definite. The matrix C is m X n, r = rank(C), r < m < n, and is not assumed
to be of full row rank.

The eigenvalue problem (1.1) is the optimality system for the following constrained
eigenvalue problem: Find (x, 1) so that

Kx = MxA subjectto Cx=0. (1.2)

The vector y represents the Lagrange multipliers.

2. Existing approach. The existing approach in Salinas is to directly attack the aug-
mented eigenvalue problem (1.1). This is done by using the ARPACK/PARPACK software in
a shift-invert mode [5, 6]. The shift-invert mode requires solving for w systems of the form

T
& S1[w al=[5 3l o
The reverse-communication interface of ARPACK requires only that Salinas provide methods
for applying the Krylov subspace operator, the shift-invert operator, and the augmented mass
matrix. Unfortunately, this approach is unstable and stems from using a preconditioned inner
iteration to approximate w even if the associated residual is small. Because the augmented
system (1.1) has infinite eigenvalues, small errors in the approximation to w computed can
be dramatically amplified. Moreover, rank deficiency in C compounds this amplification
because then the linear system (2.1) does not have a unique solution. Expecting the Krylov
based eigensolver in Anasazi to compute the same eigenpairs as ARPACK is a foolhardy task.
One drawback of a shift-invert approach such as above is the need to accurately solve
the linear system. By exploiting one of a member of the class of preconditioned iterative
eigensolvers (see, for example, [1]), this requirement on the exact solve can be relaxed for
use as a preconditioner. The benefit of this is that the accuracy of the linear solve affects
only the convergence of the eigensolver, not its solutions. This should be contrasted with a
shift-invert Krylov subspace method, where the solutions of eigensolver are defined by the
accuracy of the shift-invert solver.
The preconditioned iterative solvers, such as the Block Davidson solver [1] and the Lo-
cally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [4] solver present in

$Florida State University, School of Computational Science, cbaker@scs.fsu.edu
ISandia National Laboratories, rblehou @sandia. gov
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Anasazi, operate on a matrix pencil (A, B), where A is symmetric and B is symmetric positive-
definite. Note that neither of the augmented matrices in (1.1) are positive-definite. One ap-
proach to addressing this is to ensure that the eigensolver’s iteration sequence remains in a
subspace where one of the matrices is positive-definite. Consider the choices from (1.1):

c 0

K CT
A‘[ 0 0

] and B= M 0] .
The preconditioned eigensolvers currently operate in Salinas via the CLOP precondi-
tioner of Clark Dohrmann. This approach works as follows. The CLOP preconditioner re-

turns solutions of the form [x y]T, where Cx = 0 and y = 0. The nature of these two
eigensolvers is such that test subspaces generated in this manner will produce like test sub-
spaces. As a result, the iteration sequence is always in a subspace where B is positive definite
so that the application of the Block Davidson and LOBPCG is well-defined. Furthermore,
the x-component of the iterates satisfies the orthogonality constraint, so that minimizing the
Rayleigh quotient for the pencil (A, B) will solve the constrained eigenvalue problem (1.1).

This approach, using CLOP with the preconditioned eigensolvers, is not without its draw-
backs. By explicitly enforcing the constraint and substituting zeros for the Lagrange multipli-
ers in the iteration sequence, the method does not explicitly solve the optimality system (1.1).
Therefore, the satisfaction of the constraints in the solution is entirely dependent on the level
of constraint satisfaction provided by the solver. Also, because the Lagrange multipliers are
fixed to zero, the direct residuals for the eigenproblem (A, B) will never reach zero, because
the constraints generally prevent x from being an eigenvector of (K, M):

K CTl|x|_|M Offx|  _|Kx-Mxd
c 0]fo 0 offo|” 0 )
This requires that the stopping conditions for these methods require modification.

3. Optimality Characterization. This section considers the optimality characterization
for the solution of the constrained eigenvalue problem (1.2). We attempt to describe the
proposed approaches to this constrained eigenvalue problem in terms of classical constrained
optimization techniques (e.g., Lagrangian minimization, penalty methods). This allows us to
consider a wider number of approaches for solving this problem.

Consider the formulation of the problem as the minimization of the Rayleigh quotient
subject to the constraints:

. 1 xTMx
minimize f(x) = > T Kx
subjectto Cx=0.

Note the gradient of this function:

xTKx
xTMx "~

Vi) =

(Kx—Mx6,), 6,=

xT Mx
Consider the Lagrangian of this function:
L(x.y) = f(x) =y Cx

and its gradient:

VL(x,y) = [Vf () - CTy } .

Cx
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By considering stationary points of the Lagrangian, i.e., VL(x,y) = 0, we recover the familiar
saddle-point problem:

Cx 0

(o e e

A penalty method for this function could take the form

o e [

or

1 xTKx
2 xTMx

Clark Dohrmann proposed this in his note, suggesting the minimization of

1
Pp(x) = + 5p||cx||2 )

T
+pxICTCx.

1 x' Kx
9p(0) = 2 xTMx
A penalty method benefits by removing the constraint on the minimization. However, as
Clark noted, difficulties associated with a penalty method include the trade-off between ill-
conditioning associated with large penalty coefficient p and the need for a large p to ensure
that the minimizer satisfies the constraints.

Alternatively, consider the unconstrained minimization of the following function
(from (4.2)):

1 x"(PKPT + pC)x

f= 2 xT(PMPT + C)x

The analysis in Section 4 shows that the critical points of f satisfy one of the following:
1. Cx = 0 and f(x) = A, where A is an eigenvalue of the constrained eigenvalue prob-
lem (ie., (V] KV2, VI MV,)); or
2. Cx#0and f(x) =p.

If p is greater than the largest of the targeted eigenvalues of (1.2), then an unconstrained
minimization of f yields the desired solutions to the constrained eigenvalue problem (1.2).
In this way, the constrained problem can be transformed into an unconstrained problem. The
proposed unconstrained minimization can be solved via the eigenvalue problem (4.2).

4. Proposed approach. Our proposed approach reformulates the constrained eigen-
value problem (1.1) to avoid the instability of using a Krylov based eigensolver. We only
assume matrix-vector products with K, M, C and N~! (where N is some suitable approxima-
tion to K). Our solution does not store the Lagrange multipliers. We assume that it is not
feasible to compute a basis for the null space of C.

Multiply the eigenvalue problem (1.1) with the block diagonal matrix

S 0
0o I|°
For now, we will assume nothing about S except that it is symmetric/positive definite. Later

developments will explore the consequences of different choices of S. Application of this
block diagonal preconditioner to (1.1) results in

o dle SIREFE TN ol
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T
Note that for a solution ([x y] ,A), we have
ST'Kx+S7'CTy=S""Mxa.

We wish to solve for y so as to condense out the Lagrange multipliers. Pre-multiplying by C
and redistributing terms yields

cs'cTy=cS " (MA-K)x.

If C has full row-rank, then CS~'CT7 is invertible. In the case that C does not have full row-
rank, we must resort to its SVD-based pseudoinverse (C Ss-1c T)' [3]. In either case, it follows

that that (CS’lCT)J( C= (CS’ICT)_] C. Therefore, we can solve for y:

y=(cs™'c") es M- Kox.

We remark then that row rank deficiency in the constraint matrix C does not prevent us from
continuing, though it does mean that the Lagrange multipliers y corresponding to a solution
(x, A) are not unique.

Substituting this value of y into the original equation yields the equations

PKx = PMxA,
Cx=0,

where P=1-CS~'and C = CT (CS‘ICT)' C. Note that P’z = z for any z satisfying Cz = 0,
in particular our solution x. Then we may write

PKPTx = PMPTxA. “4.1)

This is a singular matrix pencil, e.g. both matrices share a null space. As a result, it defines
an ill-posed eigenvalue problem. However, the singularity is not prohibitive. We now ex-
plain how to generate a symmetric positive definite matrix pencil which defines a well-posed
eigenvalue problem that we can solve in a stable manner.

Note that for solutions (x, d) satisfying Cx = 0, we have Cx = 0. Then we note the
following progression:

(PKPT + pC)x = PKPTx = PMP'xA = (PMPT + C)xA . 4.2)

For a positive p, shifting in this manner produces a symmetric/positive definite eigenvalue
problem. The finite eigenvalues from (4.1) are eigenvalues of (4.2), and their associated
eigenvectors satisfy the problem constraint. The remaining eigenvalues of (4.2) take the value
p, which can be chosen larger than the eigenvalues of interest.

We now discuss approaches for solving the new eigenvalue problem:

(PKPT + pC)x = (PMPT + C)xA .

A Krylov subspace solver requires a spectral transformation, which requires that we solve
(for w) linear systems of the form

(PKPT + pCyw = (PMPT + O)z.

The solution to this system is not immediately apparent.
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Other alternatives include preconditioned residual-based solvers, such as Block Davidson
or LOBPCG (both available in Anasazi). These solvers as a fundamental step precondition
the eigenvector residual. Consider some preconditioner N ~ K. Then the preconditioned
residual for a Ritz pair (x, 4) is

N'r=N"'"P(K-MOP x+N'(p-1)Cx.

The result of this computation depends on the choice of S from above. One choice
immediately presents itself: S = N. In this case, we have two useful identities: P = [ —CN~!
and N™'P = PTN~!. This means that N~'r can be rewritten as

Nlr=PINY K - MV)P x+ (- 1T -P)x.

Note in particular that for x already satisfying PTx = x (i.e., Cx = 0), the second term in
this equation becomes zero and N~'» = PTN~!(K — MA)x, which also satisfies PTN~'r =
N~!r. This is a useful property for the Block Davidson solver. This is because the successive
subspaces (from which a solution is extracted) are expanded by N~'r. As a result, if the
search subspace is already orthogonal to C7, then it will remain so after the expansion by
N~'r. A similar recurrence applies to LOBPCG as well.
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Discrete Mathematics and Informatics

Discrete mathematics is the study of fundamentally discrete mathematical structures.
This particular branch of mathematics is strongly applicable to applications arising in the
computing sciences, due to the discrete nature of computation. Correspondingly, the field of
informatics includes processing and reasoning about collected information or data, and can
be considered as encompassing the whole of computer science and related fields. The articles
in this section make contributions in these broad areas.

Wolf and Boman explore new partitioning techniques to improve scalability of parallel,
sparse matrix-vector multiplication, a core computational kernel for large-scale simulations.
Selee et al. consider the problem of how to group information when multiple similarities are
known. To this end they develop a new tensor decomposition they call the Implicit Slice
Canonical Decomposition (IMSCAND) and demonstrate the applicability of IMSCAND on
a set of journal articles with multiple similarities. Finally, Benavides et al. introduce a new
Python package, Pyomo (Python Optimization Modeling Objects). Pyomo provides capabil-
ities similar to those of other algebraic modeling languages (AMLs), which are high-level
programming languages for describing and solving mathematical problems, particularly opti-
mization problems. Pyomo can be used to define abstract problems, create concrete problem
instances, and solve these instances with standard solvers.

M.L. Parks
S.S. Collis

December 6, 2007
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PARTITIONING FOR PARALLEL SPARSE MATRIX-VECTOR
MULTIPLICATION

MICHAEL M. WOLF* AND ERIK G. BOMANY

Abstract. Parallel sparse matrix-vector multiplication is ubiquitous throughout large-scale scientific simula-
tions. As simulations grow to tens of thousands of processors and higher, the communication volume will become
increasingly significant. In order to mitigate this growing communication volume, we must utilize more complicated
partitioning techniques than traditionally necessary. In this paper, we will outline previous partitioning methods and
introduce a new method we have developed.

1. Introduction.

1.1. Motivation. Parallel computing is essential to modern computational science. An
important motivating factor for parallel computing is large-scale scientific simulations. These
simulations are often too large to fit in memory on one computer and take too long to com-
pute in serial. Thus, the computation and often the data must be distributed across multiple
processors so that the computational scientist can have their simulation complete in a timely
manner. For matrix-vector multiplication, this means distributing both the matrices and the
vectors across the processors. Figure 1.1 shows a possible distribution of both vectors and
matrix nonzeros for the matrix-vector multiplication operation y = Ax with the different col-
ors representing different partitions. For this paper, we will assume that the input and output
vectors are distributed identically (generally a good assumption) and that the partition of each
vector entry (x; and y;) is the same as the partition of the corresponding diagonal entry in the
matrix, a;;. Figure 1.2 shows a different representation of the same parallel matrix-vector
product, which is useful in visualizing the communication volume for this operation. Since
for partitioning the actual value of a nonzero is not important (only the fact that the element is
a nonzero is important), we have replaced the nonzero values of the matrix with X’s. Again,
the color of the X’s corresponds to a particular partition. We have also replaced the vectors
with segmented bars where the entries are colored by partition. We align the y color bar to
the left of the matrix so that each entry in the y color bar is directly to the left of the ma-
trix row whose inner-product calculates this entry. We align each x color bar entry directly
above the matrix column entries with which they are multiplied in the matrix-vector product.
This alignment makes it easier to visualize the communication needed for the matrix-vector
product as described in subsection 1.2.

vil [te000000][x
vl [51905000[[x
vl [80170000 ||
vl _loo210007 ||
—loooo 00
0400 0
00060
v/ [o0o0o0000O xo

Fic. 1.1. Distribution of matrices and vectors for parallel sparse matrix-vector multiplication.
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Fic. 1.2. Alternative way of visualizing parallel sparse matrix-vector multiplication.

1.2. Parallel Matrix-Vector Multiplication. In general, there are four main stages of
parallel matrix-vector multiplication as shown in Figure 1.3 and summarized in the following
enumeration:

1. Expand: Send entries x; to processes with a nonzero a; ; for some row i.
2. Local Multiply-add: y; := y; + a; ;x;

3. Fold: Send partial inner-product (y values) to relevant processes.

4. Sum: Sum up the partial y values.

In the first stage, elements in vector X are communicated to remote processes. In particular,
x; is communicated to a remote process if that process owns a nonzero in the jth column
of matrix A as shown in Figure 1.3(a). From this diagram, we can easily determine that
communication is needed if there is a nonzero in a column of a different color than the color
of the x element for that column. For example, since x; is owned by the red process but
az, is a blue process nonzero, x; must be communicated to the blue process. After this first
communication stage, the processes perform local partial inner-product operations for the
nonzeros that they own (Figure 1.3(b)). Next, each process communicates the partial inner-
product results to the processes which own the corresponding y entry. From the diagram in
Figure 1.3(c), we can easily determine that communication is needed if a nonzero in row i is a
different color than y;. For example, since y, is owned by the blue process but a4 g is owned by
the green process, the local partial inner-product y, := a4 gxg must be communicated from the
green process to the blue process. Finally, the processes accumulate the partial inner-products
to form the vector entries of y (Figure 1.3(d)).

When partitioning for parallel matrix-vector multiplication, we are interested in reduc-
ing the actual run-time of the algorithm. We could write an objective function to minimize
the run-time, taking into consideration computation, communication latency, communication
volume, idle time, etc. However, this would would be a very difficult optimization prob-
lem with so many contributing variables to solve in a reasonable amount of time. Thus, in
practice, we settle for minimizing the total communication volume while keeping the com-
putation balanced across processes. When partitioning to minimize this objective, we can
use either one-dimensional partitioning (section 2) or two-dimensional partitioning (section
3). We can also model the communication in several different ways, using graphs, bipartite
graphs, or hypergraphs, for example. In the following sections, we discuss one-dimensional
and two-dimensional methods using graphs and hypergraphs.
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Fic. 1.3. Stages of parallel sparse matrix-vector multiplication.

2. One-Dimensional Partitioning. One-dimensional partitioning can either be one-
dimensional row partitioning or one-dimensional column partitioning. In one-dimensional
row partitioning, each process is assigned all the nonzeros for some set of rows (Figure
2.1(a)). Similarly, in one-dimensional column partitioning, each process is assigned all the
nonzeros for some set of columns (Figure 2.1(b)). A parallel matrix-vector multiplication
operation resulting from one-dimensional partitioning only has one communication stage. In
particular, for an operation resulting from one-dimensional row partitioning, the partial inner-
products need not be communicated since a process that owns a particular row also owns the
corresponding y vector entry. Likewise, for an operation resulting from one-dimensional
column partitioning, the x vector entries do not need to be communicated since a process
that owns a particular nonzero also owns the corresponding x entry by which it is multiplied
during the local inner-product stage.

2.1. One-Dimensional Graph Model. One frequently utilized model of communica-
tion is the one-dimensional graph model (as shown in Figure 2.2) [9, 10]. For this model, we
assume the matrix is symmetric. Each matrix row or column (depending on whether row or
column partitioning is requested) is represented by a vertex in the graph. The off-diagonal
nonzeros are represented by edges between the two vertices corresponding to the row and col-
umn of the nonzero. For instance, in Figure 2.2, element a, g is a nonzero, and thus vertices 1
and 8 are connected by an edge. After constructing the graph, we partition the vertices into &
equal sets (k = 2 for Figure 2.2) such that the number of cut edges is minimized. A cut edge
is an edge that connects two vertices of different partitions. The graph model estimates the
communication volume to be twice the number of cut edges. This partitioning of the graph
model is NP-hard to solve optimally. However, there are many heuristic algorithms that can
solve this problem close to optimally in polynomial time [9, 10].

However, there are a couple of drawbacks to using this traditional graph model. The
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(a) Row partitioning. (b) Column partitioning.

FiG. 2.1. One-dimensional partitioning.
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Fic. 2.2. One-dimensional graph partitioning.
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graph model requires the matrix to have a symmetric nonzero structure. A more severe prob-
lem is that using twice the edge cut as an metric for the communication volume is not accurate.
In particular, we see in the Figure 2.2 graph that the communication volume is over-counted.
For this partitioning, there are three cut edges (highlighted in magenta): {1,2}, {1,8}, and {7,8}.
Using the metric, we get a communication volume of 6. However, the cut edges involving
vertices 1 and 8 are over-counted by this metric since the vertices only should be commu-
nicated once, and the true communication volume for this matrix-vector product should be
4. The over-counting in the graph model can be remedied by counting boundary vertices in-
stead. However, most people that use graph partitioning do not use this more correct boundary
vertex version but use the traditional edge cut version. For some applications, e.g. structured
meshes, the difference between the edge cut and bounding vertices is small, and thus the error
is also small.

2.2. One-Dimensional Hypergraph Model. A model that addresses the shortcomings
of the one-dimensional graph model (using the edge cut metric) is the one-dimensional hyper-
graph model (shown in Figure 2.3 for row partitioning). Unlike the graph model, the hyper-
graph model allows for matrices with unsymmetric nonzero patterns. For the one-dimensional
row hypergraph partitioning, the rows are represented by vertices in the hypergraph (for one-
dimensional column partitioning, columns are represented by vertices). Each column is rep-
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resented by a hyperedge in the hypergraph. For instance, in Figure 2.3, the third column of
the matrix has nonzeros in rows 2, 3, and 4. Thus, the corresponding hyperedge in the hyper-
graph contains vertices 2, 3, and 4. A typical representation of the hypergraph model is shown
in the right diagram of Figure 2.3. However, we can also visualize the hypergraph directly on
the matrix stencil (left diagram of Figure 2.3), with the hyperedges drawn on the matrix rows
or columns (columns for the row partitioning shown in the figure). For the one-dimensional
row partitioning, each nonzero in a row corresponds to the same vertex in the hypergraph,
and thus we can obtain the right diagram by superimposing the matrix columns for the left
diagram and rearranging the X’s into the same positions as the vertices on the right. After
constructing the hypergraph, we partition the vertices into k equal sets (k = 2 for Figure 2.3)
such that a hyperedge cut metric is minimized. The cut metric is obtained by summing over
all hyperedges the number of different remote processes (those that do not own the diagonal
entry) owning vertices for a given hyperedge. Aykanat and Catalyurek proved that this hy-
peredge cut metric is equivalent to the total communication volume [2]. For the hypergraph
shown in Figure 2.3, there are two cut hyperedges (the column 3 blue and column 5 cyan
shaded hyperedges) and thus a communication volume of two for the resulting matrix-vector
product, which is accurate for this partitioning of the matrix. As with the graph model, parti-
tioning of the hypergraph is NP-hard to solve optimally but there are heuristic algorithms that
can solve this problem close to optimally in polynomial time [2, 7].

h1 h3 h4

—

vi

@ @
vzl XX o~
L 6 J{B
v5 X X ‘ '

FiG. 2.3. One-dimensional hypergraph partitioning.

2.3. Inadequacy of One-Dimensional Partitioning. One-dimensional sparse matrix
partitioning is sufficient for many problems, and most applications use matrices distributed
in a one-dimensional manner. However, for some problems one-dimensional partitioning is
potentially disastrous in terms of the communication volume. The “arrowhead” matrix shown
in Figure 2.4 is an example for which one-dimensional partitioning is inadequate. For the
bisection (k = 2) case shown in the figure, any load-balanced one-dimensional partitioning
will yield a communication volume of approximately %n for the matrix-vector product. As we
will see in the following sections, this is far from a minimum communication volume for this
problem and it is unacceptable for the communication volume to scale as n for this matrix.
Thus, we need more flexible partitioning than traditional one-dimensional partitioning.

3. Two-Dimensional Partitioning. Two-dimensional partitioning is a more flexible al-
ternative to one-dimensional partitioning, in which there is no specific partition assigned to a
given row or column. Thus, we have to specify the partition for particular sets of nonzeros.
Two-dimensional Cartesian partitioning is a simple method of two-dimensional partitioning
in which a partition is assigned to the nonzeros which lie in both a particular set of rows and
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FiG. 2.4. Arrowhead matrix partitioned for two processes.

a particular set of columns. This partitioning is obtained by partitioning the matrix into Vk
processes in one dimension, say row-wise, and then partitioning each of the row partitions
into Vk column partitions for a total of k partitions. Figure 3.1 shows a block version of this
method where the partitions consist of nonzeros in a set of continuous rows and columns.
Although Cartesian block partitioning is a good method for dense matrices, it suffers from
potential poor load-balancing for most sparse matrices. Although slight improvements can
be made by using one-dimensional hypergraph partitioning in both directions to obtain a
more scattered Cartesian partitioning [4], the method still in general suffers from poor load-
balancing.

Fic. 3.1. Two-dimensional Cartesian partitioning.

3.1. Mondriaan. A slightly more general and flexible two-dimensional partitioning
method is the Mondriaan method [11]. Mondriaan uses recursive bisection such that at each
level of the algorithm the partitions from the previous level can be partitioned by either rows
or columns. As shown in Figure 3.2, this yields a rectangular tiled partitioning where each
partition tile can have varied dimensions. In Figure 3.2, we see that the first level partitioning
was made row-wise (division shown by the cyan line). The second level partitioning was
made column-wise for the top portion but row-wise for the lower partition (orange lines). As
with the Cartesian method, the partitions need not consist of consecutive rows/columns but
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were shown this way for easier illustration.
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XXX

X XX
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FiG. 3.2. Two-dimensional Mondriaan partitioning.

3.2. Fine-grain hypergraph. The most flexible partitioning method is the fine-grain
hypergraph partitioning method in which each nonzero can be partitioned separately from the
others [3]. In the fine-grain hypergraph model, each nonzero is assigned a partition separately
and thus is represented by a vertex in the hypergraph. Each row is represented by a hyperedge
in the hypergraph (magenta hyperedges in Figure 3.3). Likewise, each column is represented
by a hyperedge in the hypergraph (orange hyperedges in Figure 3.3). Thus, for a n X n matrix,
the fine-graph hypergraph model has 2n hyperedges.

h16

[ X

2] X

(e X

(e X
[ X
[h6 X >q
[h7 Xx
(18 XX XXX XXX

Fic. 3.3. Fine-grain hypegraph partitioning of arrowhead matrix with k = 2 partitions. Cut hyperedges are
shaded. The hyperedge cut and thus the communication volume are 3.

XXXXX

As with the one-dimensional hypergraph model, we partition the vertices into k equal
sets (k = 2 in Figure 3.3) such that the hypergraph cut metric described in subsection 2.2
is minimized. Again, the communication volume is equivalent to this hyperedge cut metric.
Catalyurek and Aykanat proved that this fine-grain hypergraph model yields a minimum vol-
ume partitioning when optimally solved [3]. In Figure 3.3, we see the fine-graph hypergraph
partitioning of the 8 x 8 arrowhead matrix. The resulting communication volume is shown to
be 3, which is a significant improvement over the communication volume of 6 from the op-
timal one-dimensional partitioning. As with the one-dimensional hypergraph model, solving
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the fine-grain hypergraph model optimally is NP-hard but there are heuristics that can solve
it close to optimally in polynomial time. Unfortunately, the resulting fine-grain hypergraph
problem is a larger NP-hard problem and thus, may be too expensive to solve quickly for
large matrices.

4. Two-Dimensional Corner Partitioning.

4.1. Motivation. Loosening the load-balancing restriction slightly so that the number of
nonzeros are allowed to differ slightly between partitions, we obtain the fine-grain hypergraph
partitioning (k = 2) shown in Figure 4.1 for the 8 X 8 arrowhead matrix. This partitioning
will result in a communication volume of 2, which is the minimum cut/volume possible for
any non-trivial partitioning. An examination of this minimum cut partitioning suggests a
new partitioning method. We see that each partition consists of a set of ”“‘corners” (more
easily seen in Figure 4.2), which are basically one-dimensional partitions reflected across the
diagonal. Using these ”“‘corners”, the hope is that we could reproduce an optimal fine-grain
partitioning using a less costly one-dimensional partitioning method for certain matrices.

N —

h9 [[h10][(h11]|h12[|h13||h14([(h15]||h16

h3 X

h6 X
= X

XIXXX

FiG. 4.1. Fine-grain hypergraph partitioning (k = 2) with slight imbalance yielding minimum hyperedge cut
for non-trivial partitioning.
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Fic. 4.2. “Corners” in Figure 4.1 partitioning.
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4.2. Method. We show an illustration of the corner partitioning method in Figure 4.3
for the previously partitioned 8 X 8 arrowhead matrix. As shown in the diagrams of Figure
4.3(a,b), we start with a one-dimensional column partitioning of the lower triangular part of
the matrix. We then reflect this one-dimensional partitioning across the diagonal such that
row i in the upper triangular part of the matrix is assigned to the same partition as column i in
the lower triangular part of the matrix (Figure 4.3(c)). For this arrowhead matrix, we see in
Figure 4.3(d) that this corner partitioning method has produced the same optimal partitioning
as obtained by the fine-grain hypergraph method (Figure 4.1) at a reduced computational
cost. This indicates that the corner method can be an effective two-dimensional partitioning
method for some matrices.
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Fic. 4.3. Corner partitioning method.

5. Results. We implemented one-dimensional column, two-dimensional corner, and
two-dimensional fine-grain partitioning by using the hypergraph partitioning algorithm from
the Zoltan library [1, 6, 7]. We studied the partitioning of three different matrices: an ar-
rowhead matrix and two “real world” matrices from the literature. We also obtain results for
two-dimensional Mondriaan partitioning method from the literature [11] and by running the
Mondriaan code [12]. We compare the resulting communication volumes obtained by these
four methods for the three test matrices.

The arrowhead matrix we studied had n = 40000 rows and columns. We summarize
the resulting communication volumes for the methods in Table 5.1. As expected, the one-
dimensional column method does a very poor job of partitioning the arrowhead matrix. The
resulting communication volume is approximately %n for the bisection case and approxi-
mately n for the larger number of partitions. The two-dimensional Mondriaan method also
partitioned the arrowhead matrix poorly. This is not too surprising when we consider that
the first cut of this multi-level algorithm is one-dimensional bisection. After this first cut, the
communication will only increase with additional cuts. Thus, although Mondriaan is slightly
better than one-dimensional column partitioning for the larger numbers of partitions, the first
cut has doomed this method to yield a high communication volume partitioning. The corner
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method and fine-grain hypergraph method both yield significant better results than the other
two methods. They yield partitionings with minimum communication volume (for non-trivial
partitioning), 2(p— 1), which is much improved over the order n volumes of the other methods
since usually p < n. Thus, the corner method performed well for this matrix, yielding the
same quality partitioning as the fine-grain hypergraph model at a cheaper cost.

TaBLE 5.1
Fartitioning results for 40000 x 40000 arrowhead matrix for four methods: one-dimensional column, two-
dimensional Mondriaan, two-dimensional corner, and fine-grain hypergraph partitioning. Each entry gives the
communication volume resulting from for a method’s partitioning for k = 2,4, 16,64 partitions. The starred entries
designate a minimum volume for a non-trivial partitioning.

| k [| 1-D Column | Mondriaan | Corner | Fine-grain

2 29101 29102 2% 2%
4 40001 29778 6* 6*
16 40012 37459 30* 30*
64 40048 39424 126* 126*

Since we possessed Mondriaan results from the literature [11] for finan512 and be-
sstk30, we used these matrices to compare the partitioning methods. The finan512 matrix,
which we obtained from the University of Florida sparse matrix collection [5], resulted from
portfolio optimization. The nonzero structure is shown in Figure 5.1(a). The besstk30 ma-
trix is from the Harwell-Boeing collection and arose from a structural engineering eigenvalue
problem [8]. The nonzero structure for besstk30 is shown in Figure 5.1(b).

(a) finan512 matrix. (b) besstk30 matrix.

Fic. 5.1. Nonzero patterns of test matrices.

As with the arrowhead matrix, we partitioned these two matrices using the one-
dimensional, two-dimensional corner, and two-dimensional fine-grain hypergraph methods
for 2, 4, 16, and 64 partitions. We obtained results for the two-dimensional Mondriaan
method from the literature [11]. Figure 5.2 shows the results for the finan512 matrix. Similar
to the arrowhead matrix, the fine-grain and corner methods yield significantly more opti-
mal partitionings than the one-dimensional and Mondriaan methods for the higher number of
partitions. The corner method actually produce slightly lower communication volume parti-
tionings than the fine-grain hypergraph method at a reduced cost. Figure 5.3 plots the com-
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munication volume resulting from the partitioning methods for the besstk30 matrix. Again,
we see that the corner method yields the partitioning of the lowest communication volume
for this problem, especially for the higher number of partitions. Interestingly, the fine-grain
hypergraph method yields the highest communication volume partitioning. This may be due
to the heuristic partitioning algorithms having difficulty optimizing this larger hypergraph
problem.
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=== 2-D Corner
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FiG. 5.2. finan512 matrix: communication volume for four partitioning methods for k = 2,4, 16, 64 partitions.
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FiG. 5.3. besstk30: communication volume for four partitioning methods for k = 2,4, 16, 64 partitions.

6. Summary/Conclusions. We have outlined several methods of partitioning matri-
ces for matrix-vector multiplication, including both one-dimensional and two-dimensional
partitioning methods. In subsection 2.3, we described a particular matrix for which one-
dimensional partitioning yielded poor partitioning results and argued that a more flexible
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two-dimensional partitioning scheme was necessary. We introduced a new method of two-
dimensional matrix partitioning, the corner method. As hoped, we showed that this corner
method could produce partitionings of similar quality (better for some matrices) to the fine-
grain hypergraph method at a reduced cost.

In the future, we wish to gain a better intuition for the corner partitioning method. It is
clear that it produces an optimal (non-trivial) partitioning for the arrowhead matrix and that it
produces very good partitionings for both the finan512 and the besstk30 matrices. However,
we would like to have a better intuition of for what matrices the corner method produces
good partitionings. In more recent work, we have been studying symmetric reordering of the
matrix rows and columns for the corner partitioning method. Reordering is unnecessary for
one-dimensional partitioning schemes since it yields the same graph and hypergraph models
(although in practice these may differ when the problem is solved less than optimally using
heuristics). However, the corner symmetric partitioning method is very dependent on the
row/column ordering. Thus, reordering can potentially greatly decrease the communication
volume for a corner partitioning. We would like to be able to find the optimal ordering/parti-
tioning for the corner method and hope that this will extend the utility of the method so that
it will be useful for partitioning a wider variety of matrices.
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EXTRACTING CLUSTERS FROM LARGE DATASETS WITH MULTIPLE
SIMILARITY MEASURES USING IMSCAND

TERESA M. SELEE*, TAMARA G. KOLDA', W. PHILIP KEGELMEYER¥, AND JOSHUA D. GRIFFIN®

Abstract. We consider the problem of how to group information when multiple similarities are known. For
a group of people, we may know their education, geographic location and family connections and want to cluster
the people by treating all three of these similarities simultaneously. Our approach is to store each similarity as a
slice in a tensor. The similarity measures are generated by comparing features. Generally, the object similarity
matrix is dense. However it can be stored implicitly as the product of a sparse matrix, representing the object-feature
matrix, and its transpose. For this new type of tensor where dense slices are stored implicitly, we have created a new
decomposition called Implicit Slice Canonical Decomposition (IMSCAND). Our decomposition is equivalent to the
tensor CANDECOMP/PARAFAC decomposition, which is a higher-order analogue of the matrix Singular Value
decomposition (SVD) and Principal Component Analysis (PCA). From IMSCAND we obtain compilation feature
vectors which are clustered using k-means. We demonstrate the applicability of IMSCAND on a set of journal
articles with multiple similarities.

1. Introduction. Datasets naturally have mulitple similarities. For a group of people,
we might know their age, education, geographic location, and social and family connections.
For a set of published papers, we know the authors, citations, and terms in the abstract, title,
and keywords. Even for a computer hard drive, we know the names of the files, their saved
location, their time stamp, and their contents. For each of these examples, if we wanted to
find a way to cluster the people, documents, or computer files, our approach is to treat all the
similarities concurrently.

For each similarity, a similarity matrix is formed, with objects (people, documents, files,
etc.) as both the rows and columns. Each of the similarity matrices is a slice in a tensor,
and a tensor decomposition is used to assemble the multiple adjacency matrices into a set of
compilation feature vectors. These feature vectors can then be clustered using the k-means
clustering algorithm. This approach was used by Dunlavy et al. [6].

Our approach to this problem is special because of how we form the similarity matrices.
In general, similarity matrices are dense, limiting the number of objects and features because
of the large amount of work required to compute a decomposition for a dense tensor. We
form the dense similarity matrices implicitly by storing only sparse object-feature matrices.
For example, an article-author matrix is a sparse object-feature matrix with documents as
rows and authors as columns of the matrix. Since most articles have just a few authors, we
can see how this is a sparse matrix. Then the adjacency matrix is stored implicitly as the
product of the sparse object-feature matrix and its transpose (a feature-object matrix).

Our new decomposition is called Implicit Slice Canonical Decomposition (IMSCAND)
and does all of its computations on the sparse matrices only. This allows us to treat much
larger problems than if we stored the full similarity matrices. We illustrate the effectiveness
of our decomposition on a set of journal publications from the Society of Industrial and
Applied Mathematics (SIAM). Our long-term goal is to use this approach to cluster files on
computer hard drives.

2. Tensors. In this paper we focus on third-order tensors. These are denoted by boldface
Euler script letters, e.g., X. When we say order, way, or mode we are referring to the number
of dimensions of the tensor. A third-order tensor, X € R™/*X ig illustrated in Figure 2.1.

*Department of Mathematics, North Carolina State University, tmselee @ncsu.edu
Sandia National Laboratories, tgkolda@sandia.gov
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FiG. 2.1. Third-order tensor X € R*/*K

Matrices are denoted by boldface capital letters, e.g., A. Vectors are denoted by boldface
lowercase letters, e.g., a. Scalars are denoted by lowercase letters, e.g., a. The ith entry of a
is a;. The i row of A is a,., the j’h column of A is a.; or sometimes just a;. Finally, the (i, j)
entry of A is a;;.

‘We have similar notation for tensors. The higher-order analogue of rows and columns are
fibers. A column vector is a mode-1 or column fiber, denoted X. jx. A row vector is a mode-2
or row fiber, denoted x;. Vectors in the third dimension are tube fibers, written x;;.. These
are illustrated in Figure 2.2.

e

Column fibers: RO\\ ﬂbu’s T“bt fibers:
Xk Xij

FiG. 2.2. Fibers of a third order tensor X.

We must also discuss the notation for two-dimensional slices. Slices of a tensor are
matrices and can be horizontal, lateral, or frontal. They are denoted as X;..,X:;. and X,
respectively. The notation X is also used to denote the k" frontal slice of a tensor. These are

displayed in Figure 2.3.

Horizontal Lateral Frontal

slices slices slices

X.-'.:: -\’:_,i: Xk
FiG. 2.3. Slices of a third order tensor.

In addition, there are tensor symbols we need to define. The symbol o denotes the outer
product of vectors. For example, for a € R/, b € R’ and ¢ € RX, we can form a tensor X
from the outer product, X = aob o ¢ where x;% = a;bjc; foralli=1,...,1,j=1,...,J, and
k=1,...,K. We define the Hadamard (i.e., elementwise) matrix product using the symbol .
The Khatri-Rao product [18, 22, 2, 24] is a columnwise Kronecker product. For two matrices
A € R™P and B € R’*P, the Khatri-Rao product is

A@B:[a1®b1 b, - ap®bp],

where a ® b denotes the matrix Kronecker product.
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For some computations, it is necessary to treat the entire tensor in matrix form. To do
this we go through a process called matricization. We define X to the be the mode-1 matri-
cization of X. This means the mode-1 fibers (the column fibers) are aligned to form a matrix.
Specifically, the mode-1 fibers are mapped to the rows of a matrix, and the modes-2 and -3
fibers are mapped to the columns of the matrix. See Figure 2.4 for an illustration of mode-1
matricization. We also look at X(») and X(3), the mode-2 (row) and mode-3 (tube) matriciza-

Xq)

FiG. 2.4. Example of a mode-1 matricization, X(1y. The column fibers are aligned to form a matrix, with the
mode-1 fibers as rows in our matrix, and the modes-2 and -3 fibers as the columns of the matrix.

tions, respectively. The ordering of the grouped modes makes a difference. Although we do
not indicate it explicitly, we assume X1y = X(13x(2.3))> X2) = X(2ix(1,3p)> and X3y = X31x{1,2))»
per the notation of [14]. This ordering is not unlversal, see, e.g., [, 13].

The tensor norm is defined as the square root of the sum of the squares of all the elements
of a tensor. For X € R*/*K,

I J K
2 2
EUEDIIIEA
i=1 j=1 k=1
This is the higher-order analogue of the matrix Frobenius norm.
For more information on tensor notation, see [13, 9, 1, 14].

3. Special types of tensors. We will discuss two special types of tensors in this paper:
Kruskal tensors and sp3way tensors.

3.1. Kruskal tensors. Kruskal tensors, named for Kruskal [15, 16], are tensors that are
stored as the sum of R rank-1 tensors. If X € R™*/*K is a Kruskal tensor, it is stored as:

R
X:Za,Ob,ocr,
r=1

where A € RPR B € R and C € RX¥*R. The notation a, denotes the r column of a
matrix A. An illustration of this idea is in Figure 3.1. This type of tensor results from a CAN-
G CRr

/|

i)C

C
|

[j h_‘+"'+ by,

FiG. 3.1. A third-order Kruskal tensor X is written as the sum of R rank-1 tensors.

DECOMP/PARAFAC decomposition [3, 7], described in section 4. We use the shorthand
notation from [14]:

X = [A,B.C],
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though other notation can be used. For instance, Kruskal [15] uses
X =(AB,0).

It is also possible to have explicit weights A € RR. Then

R
X = le, a,ob,oc,, and X =[4A,B,C].
r=1
3.2. A new class of tensors: sp3way tensors. We have created a new class of tensors
that are third-order (3-way) with special structure. For this type of tensor, each slice is dense,
but formed from the product of a sparse matrix and its transpose. Specifically, each (frontal)
slice of X € RMM*F is written, X, = Y, Y], for sparse Y, with p = 1,..., P. This is shown

in Figure 3.2.

FiG. 3.2. An sp3way tensor, in which each slice of the tensor, X, is formed from the product of a sparse matrix
and its transpose, X, = YPY; for sparse Y, withp =1,..., P.

The motivation for this type of tensor came from wanting to store multiple similarity
matrices simultaneously. Our idea is to view the similarity (object-object) matrices as formed
from the product of an object-feature matrix and its transpose. For the tensor X € RVVxP
we have N objects and P features. In general, object-feature matrices are sparse. The slices
of our final tensor are object-object matrices which can be dense, and each slice is a different
similarity matrix. When we do computations on sp3way tensors, everything is done on the
sparse matrices directly.

4. CANDECOMP/PARAFAC (CP) and INDSCAL. Canonical Decomposition
(CANDECOMP) [3] and Para