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First main point:

Accurate models for numerical simulation are not necessari ly the

right models for control design.

We will illustrate by describing three types of models which we believe are

quite suitable for control design in high-dimensional flow systems.



Outline of Part 1 (Modeling issues)

Background: Adjoint- and Riccati-based noncooperative an alysis.

• Linear control of nonlinear systems.

• Regularization is key! (Bartosz Protas)

A. A time-periodic approach for jet control. (Catalin Trenchea)

• Underlying assumption: approximate time periodicity .

• Natural simplification ⇒ tractable adjoint optimization.

B. A spatially localized approach for b.l. control. (Markus Högberg)

• Underlying assumption: (nearly) parallel flow .

• Truncated convolution kernels ⇒ overlapping decentralized control.

C. A nonlocalized approach for b.l. control. (Patricia Cathalifaud)

• Underlying assumption: parabolic evolution of system in x

• Sacrifice localization in x ⇒ global perspective on system evolution.



– Background –
Essentials of adjoint-based and Riccati-based

noncooperative analysis



1 Adjoint-based analysis

State equation :

Eq̇ = N(q, f,φ,ψ) on 0< t < T

q = q0 at t = 0

with: q = state, f = external force, φ = control, ψ = disturbance.

Perturbation equation :
{

L q′ = Bφφ′+Bψψ′ on 0< t < T

q′ = 0 at t = 0

}

⇒
Small perturbationsφ′ to controlφ
small perturbationsψ′ to disturbanceψ
cause small perturbationq′ to stateq.

L q′ ,
(

E d
dt −A

)

q′ is the linearization of the state eqn about the trajectory q(φ,ψ).

Cost function (minimize w.r.t. φ):

J =
1
2

Z T

0
(q∗Qq+ ℓ2φ∗φ−γ2ψ∗ψ)dt ⇒ J ′ =

Z T

0
(q∗Qq′+ ℓ2φ∗φ′−γ2ψ∗ψ′)dt.
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(
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q′ is the linearization of the state eqn about the trajectory q(φ,ψ).

Cost function (minimize w.r.t. φ and maximize w.r.t. ψ):

J =
1
2
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(q∗Qq+ ℓ2φ∗φ−γ2ψ∗ψ)dt ⇒ J ′ =
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0
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Statement of adjoint identity . Define inner product 〈r,q′〉 =
R T
0 r∗q′dt. Then:

〈r,L q′〉 = 〈L ∗r,q′〉+b

with: r = adjoint, L ∗r =
(

−E∗ d
dt −A∗

)

r, b = r∗Eq′
∣
∣
∣
t=T

− r∗Eq′
∣
∣
∣
t=0

.

Definition of adjoint equation . Adjoint field is easy to compute, but A∗ = A∗(q).
{

L ∗r = Qq on 0< t < T

r = 0 at t = T

}

⇔
−E∗ṙ = A∗r+Qq on 0< t < T

r = 0 at t = T

Extraction of gradients . Combining equations, we have:

〈r,Bφφ′+Bψψ′〉 = 〈Qq,q′〉 ⇒

Z T

0
q∗Qq′dt =

Z T

0
r∗(Bφφ′+Bψψ′)dt.

J ′ =
Z T

0

[(

B∗
φr+ ℓ2φ

)∗
φ′+

(

B∗
ψr− γ2ψ

)∗
ψ′

]

dt ,

Z T

0

[(
DJ

Dφ

)∗

φ′+
(

DJ

Dψ

)∗

ψ′
]

dt

As φ′ and ψ′ are arbitrary,
DJ

Dφ
= B∗

φr+ ℓ2φ and
DJ

Dψ
= B∗

ψr− γ2ψ .
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2 Riccati-based analysis

Characterization of saddle point . The control φ which minimizes J
and the disturbance ψ which maximizes J are given by

DJ

Dφ
= 0,

DJ

Dψ
= 0 ⇒ φ = −

1

ℓ2B∗
φr, ψ =

1

γ2B∗
ψr.

Combined matrix form . Combining the perturbation and adjoint eqns
at the saddle point determined above, assuming E = I, gives:

˙[
q′

r

]

=

[

A − 1
ℓ2BφB∗

φ + 1
γ2BψB∗

ψ
−Q −A∗

][
q′

r

]

control and disturbance
︷ ︸︸ ︷

Perturbation equation →

Adjoint equation →

Solution Ansatz . Relate perturbation q′ = q′(t) and adjoint r = r(t):

r = Xq′ , where X = X(t).
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Riccati equation . Inserting solution ansatz into the combined matrix
form to eliminate r and combining rows to eliminate q̇′ gives:

[

−Ẋ = A∗X +XA+X
(

1
γ2 BψB∗

ψ− 1
ℓ2

BφB∗
φ

)

X +Q
]

q′.

As this equation is valid for all q′, it follows that:

−Ẋ = A∗X +XA+X
(

1
γ2 BψB∗

ψ− 1
ℓ2

BφB∗
φ

)

X +Q .

Due to the terminal conditions on r, we must have X = 0 at t = T .

Note that, by the characterization of the saddle point, we have

ψ =
1

γ2B∗
ψr and φ = Kq where K = −

1

ℓ2B∗
φX .

This is referred to as the finite-horizon H∞ control solution, and may be
solved for linear time-varying (LTV) systems.
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Oblique-wave channel flow transition benchmarks
Feedback control increases the threshold energy of the init ial
perturbation which leads to transition by up to 100x.
(Högberg, B, Henningson 2002, JFM).
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Turbulent channel flow benchmarks
(Reτ = 100DNS, 64×65×64 grid, 4π×2×4π/3 box).

Adjoint-based receding-horizon model predictive control .
(B, Moin, & Temam 2001, JFM).
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Riccati-based constant-gain linear state feedback.
(Högberg & B, PoF).

0 1000 2000 3000 4000

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

History of drag. History of TKE.



Regularization issues in adjoint analysis

Ω1

Ω2

Ω3

Cost function domain: Ω1, Flow domain: Ω2, Control domain Ω3.

Three components of optimization problem:

1. Statement of cost function: inner product on Ω1.

2. Statement of adjoint identity: inner product on Ω2.

3. Identification of gradient: inner product on Ω3.



Prototype implementation for jet control
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Once control strategy is optimized, actuators which are

an order of magnitude smaller should also be effective.



– Method A –
A time-periodic approach for systems

dominated by vortex shedding

Artificial assumption of spatial periodicity is fundamental

to the numerical simulation of near-wall turbulence.

For certain systems dominated by vortex shedding, artificial assumption

of time periodicity might be similarly useful.

Results in 4D stationary system amenable to multigrid analysis.

⇒ can leverage prior guesses in iterative control optimization algorithm!

Nonuniqueness of solutions.

Q: Which solution should we design our controls for?
The worst one, of course! ⇒ a noncooperative optimization!
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Summary of Method A

New mathematical analysis necessary to set the stage for adjoint-based

optimization. The central problem is that the manifold of solutions of ex-

act problem is discrete (there may be only a finite number of solutions) so

gradient-based methods based on adjoints are useless.

Algorithm: Solve an approximate problem first which is continuous. Con-

trol the level of approximation, gradually refining it to determine the solution

of the optimization problem you are interested in!

See B & Trenchea (AIAA Paper, 2003) for details.



– Method B –
A spatially localized feedback calculation

based on the parallel flow assumption

3D O.S./Squire control problem solved in Fourier space , where

decoupling simplifies to several 1D problems.

Result inverse transformed to physical space , yields localized

convolution kernels.

Procedure highly sensitive to nuances of control formulation
and numerical discretization:

– Lifting of controls results in penalization of φ̇ in cost function.

– Spurious eigenvalues must be addressed.



Spatial localization of convolution kernels

Controller gain relating the state v (left) and ω (right) inside the domain
to the control forcing term φ̇(0,−1,0) on the wall.

Estimator gain relating the wall measurement ∆y(0,−1,0) to the
forcing of the estimator model for v (left) and ω (right) inside the domain.



• Kernels independent of the box size in which they were computed, so
long as the computational box is sufficiently large.

⇒ Nonphysical assumption of spatial periodicity is relaxed.

• Kernels are well-resolved with grid resolutions appropriate for the
simulation of the physical system of interest.

⇒ Grid independent.

• Kernels eventually decay exponentially, and may be truncated to any
desired degree of precision.

⇒ Truncated kernels are spatially compact with finite support.

• Kernel structure is physically tenable, but not imposed a priori:

⇒ Control convolution kernels angle away from the actuator upstream.

⇒ Estimation convolution kernels extend well downstream of sensor.



Overlapping decentralized implementation of feedback

Experimental
apparatus

actuator inputs
on tile {i, j} only

sensor measurements
on tile {i, j} only

Localized physical-space compensation:
estimation of state above tile{i, j},
computation of control on tile{i, j}

Decentralized logic circuit
replicated on each tile

⇐⇒ ⇐⇒

Communication with neighboring tiles about
nearby sensor measurements and state estimates



Summary of Method B

Approach is not plagued by the communication bottleneck experienced by

schemes which require centralized computation of FFTs and iFFTs.

Communication between tiles is limited in spatial extent by size of the trun-

cated kernels. ⇒ By replication, can extend system to large arrays of

sensors and actuators.

For spatially-invariant systems, logic on each tile is identical. Extension to

gradually evolving flows (Blasius, Falkner-Skan-Cooke, ...) is easy.

See B & Liu, JFM 1998, and Högberg, B, & Henningson, JFM 2002.



– Method C –
A spatially nonlocal feedback calculation
based on the parabolic flow assumption

Fourier transforms still used to decouple problem in z, but we now use
a boundary-layer assumption to simplify the problem in x.

We have a finite-horizon linear system discretized in direction (y),
but the system evolves in space (x), not time (t).

Control problem solved by marching a Riccati equation in space .

There is no causality constraint for systems which evolve in space:

downstream measurements may be used to update
upstream controls .

Some new tools are needed to solve this problem correctly.



Summary of Method C

The control responds to upstream and downstream disturbances

• Discrete formulation of the state equation (Delta formulation).

• Augmentation of the state vector by the disturbances entering the
downstream system (to cast in the standard causal framework).

Regularity of the control is insured

• Augmentation of the state vector by the current control variable.

• Simplification to standard discrete form by a change of variables.

Estimator responds to upstream and downstream measurements

• Derivation of a smoothing problem from a classical filtering problem.

See B & Cathalifaud, Systems & Control Letters 2004, for details.



Summary of Part 1 (Modeling issues)

Background: Adjoint- and Riccati-based noncooperative an alysis.

• Linear control of nonlinear systems.

• Regularization is key! (Bartosz Protas)

A. A time-periodic approach for jet control. (Catalin Trenchea)

• Underlying assumption: approximate time periodicity .

• Natural simplification ⇒ tractable adjoint optimization.

B. A spatially localized approach for b.l. control. (Markus Högberg)

• Underlying assumption: (nearly) parallel flow .

• Truncated convolution kernels ⇒ overlapping decentralized control.

C. A nonlocalized approach for b.l. control. (Patricia Cathalifaud)

• Underlying assumption: parabolic evolution of system in x

• Sacrifice localization in x ⇒ global perspective on system evolution.


