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Themes

« (oals for robust and stochastic optimization can
align

 Different approaches may lead to the same
outcomes

e Some cases create apparent paradoxes between the
approaches (that can be resolved with a consistent
framework)

* Methods/results from each approach may useful
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Outline

o Traditional views

e Overall framework

« Consistent interpretation

o Paradoxes, pitfalls, and resolutions
o Converging methods and results

e Conclusions and revisions
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Traditional Views

Stochastic optimization

(SO)
minxz X EP[f(X’ 5)]

where P iIs a (known)
prob. measure on &

Issues: What are f, P?

Robust optimization

(RO)

min,, y [Max 5= g(x,&)]
where = IS the set of
possible &

Issues: What are g, ='?
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Misinterpretations

e Objective functions:
— fand g are the same in each model

 Probability distribution:
— P, = must be known with certainty

e Results are inconsistent with each
rationality or behavior
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Easy Form of Resolution

Make models look the same:
RO =>SO: Letf(x,9)=v , g(x,£) 8 &2 =
min, x Eplt(x,8)] = min,; x Epv]v, 9(x,£)8<]
& ming, [max . =9(x,$)]
SO => RO: Let £ be the domain of P, g(x,&)=>
g(X, P)=Ep[f(x,S)]
min,, y [max p,=9(x, P)] <> min,, y Ex[f(x,£)]
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What about Probabilistic
Constraints?

 Prob./chance-constrained form:

MIN,, » prhx). 0] o T(X)
e RO Form:

P(5), «, g(x1§):f(x)§{§|h(x,§)-0}
e SO Form:

f(x,8)=t(x) O s PINX.&)- O], @
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What i1s the True Goal?

* Maximize expected utility?
f(x,&) = - U(x,<&), P given
e A robust form?
g(x,6) = U(x,¢) and for f(x)=argmax = g(X,s)

P(&(x))=1
Expected utility with P_that depends on x

e Can this be rational?
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Toward a Consistent View:
Competition

e Suppose (a) competitor(s) choose(s) y(x,<&) to
maximize c(X,y,<)

e Formulation:
min,, y Ep[f(X,y,8)|y2 argmax c(x,y,&)]
o vy fixed (or f independent of y) => SO
* y=¢2 5 1(xy,g)=c(x)y,)=9(x,5) => RO
e SO assumes irrelevant adversary
* RO assumes perfect adversary
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Paradoxes and Pitfalls

 Value of Information: “Blau’s dilemma”
e Suppose demand=b=0 w.p. 0.9 and 1 w.p. 0.1

e Problem:
min x s.t. P[x, b], 0.9
Solution: x*=0
With perfect information: x=0 w.p. 0.9 and 1 w.p. 0.1

EVPI = Exp. Value without Perfect Information — Exp. Value
with Perfect Information

=0-01=-01<0
(Same may be true with EVSamplelnformation)
For RO, let 2= {b | P[b], 0.9} = {0}
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Problems with “Paradox”

 Utility may depend on information level

— With no information, 0.9 may be acceptable but
not the same with more information

— Cannot may direct comparisons in information
value

* Not including role of competitor
— Competitor may gain information as well

— In this case, more information may not always
be beneficial
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Coherent and Rational Risk
Measures

e RIs a coherent risk measure If
— R 1s convex and decreasing
- R(x(5)+a)=R(x(5)) + a, a2 <
- R(Ax(8)) = AR(X(£))
Von Neumann-Morganstern (rational) utility
(negative risk):

Complete, Transitive, Continuous, Monotonic,
Substitutable (Independent)
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Resolving Utility Problems

Role in RO model

R(x,5) = MaX - 9(%,9
may not have all the properties (unless interpreted
differently)

Examples: g(x,8)= &'(x-b) , Z={&| &' & - &7}
Max ,, =9(x,5)=¢ [|x-b]|
Not coherent in x but ok in ||x-b|]

g(x,&) = max{&2 Z'| & - x}=min{{m x}

Not coherent when min is &ma put ok If x
Re-interpretation may be consistent with axioms
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Problems with Other Forms: Mean-
Variance

Suppose objective Is
Mean(f(x)) + AVariance(f(x))
vNM independence:
Suppose E(x1)=-1, Var(x1)=1, EA(x2):-1.5, Var(x2)=0.25
R(x1)=0, R(x2)=-1.25=>x2 A x1

Consider adding a to each with E(a)=0,Var(a)=«?, Cov(x1,a)=-¢,
Cov(x2,a)=0.5a; E(x1+a)+Var(xl+a)=-1+1-2a+a?

E(x2+a)+Var(x2+a)=-1.5+0.25+ a+
R(x1)-R(x2)=-3a+1.25<0 if o > 1.25/3 => x1+a A x2+a
Two-stage problem

f(x,y,&) = c(x) +q(y(S))
Min of Mean(f) + AVariance(f) may
not be have f(x,y,&)=min, c(x) + q(y(x,<))
Resolution: fix utility as quadratic (or other)

© JRBirge Robust Optimization/Sandia — 31Aug2005 14



CHICAGO - * G5B

Do Axioms Matter?

* \What is observed? (Kahnemann-Tversky
prospect theory)

— Targets define utility
— Preference depends on closeness to targets

Satisfied

Form for
RO/Prob

Traditional SO constrained

applies

~ Small
prob.
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Converging Models

* Both RO and SO models can apply for
observed preferences

 Interpretation of a competitor brings them
together

« Paradoxes generally concern mis-
Interpretations

e \What about methods?
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Convergent Methods

e Bounding methods for SO:
Find P* s.t. Ep[f(x,&)]- (,) Ep[f(X,&)]
Equivalent to Max(Min)e., p Ep-[f(X,&)]
e Procedures:

— Generalized programming (subproblems to generate
weights on £2 &)

— Use of convexity properties

— Finite support (but often non-convex subproblems)

 Direct interpretation for RO: Interpret Z'as P
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Combining: When to Use What?

* Risk-neutral expectation

— Repeated (often), Complete markets (after
transformation) and discounting

— Distribution from fundamentals
 Traditional expected utility

— Can define function, incomplete market
o “Worst-case” robust or given probability

— Little information, only survivability counts
e Competition and distribution domains

— Allows consistent view from risk-neutral to “worst
case”
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Conclusions

 Traditional stochastic optimization and
robust optimization can be viewed In same
framework

e Can model decision problems in either
framework

e Problems when mis-interpreting one
situation to the other

* View of competition and distributions
allows broad perspective
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