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Scheduling Under Uncertainty
• Production scheduling has received increasing 

attention from both academia and industries in the 
past decade (Floudas & Lin, 2004, 2005).

• Uncertainty exists widely in process model 
parameters and environmental data: processing time, 
demand, market price, etc.

• Existing techniques:
– Stochastic methods
– Robust optimization methods
– Probabilistic methods
– Fuzzy set programming methods
– Reactive scheduling



Scheduling Under Uncertainty
• Stochastic methods:

– Bassett, Pekny, Reklaitis (1997) – I&ECR
– Vin and Ierapetritou (2001) – I&ECR
– Balasubramanian and Grossmann (2002) – I&ECR
– Balasubramanian and Grossmann (2004) – C&ChE
– Jia and Ierapetritou (2004) – I&ECR
– Bonfill, Bagajewicz, Espuna, Puigjaner (2004) – I&ECR
– Bonfill, Espuna, Puigjaner (2005) – I&ECR
– Ostrovsky, Datskov, Achenie, Volin (2004) – AIChE J.

• Robust optimization methods:
– Ben-Tal and Nemirovski (2000) – Math. Prog.
– Lin, Janak, Floudas (2004) – I&ECR
– Janak, Lin, Floudas (2005) – I&ECR
– Bertsimas and Sim (2003) – Math. Prog. Ser. B
– Bertsimas and Sim (2004) – Oper. Res.



Scheduling Under Uncertainty
• Probabilistic or chance constraints:

– Orcun, Altinel, Hortacsu (1996) – C&ChE
– Petkov and Maranas (1997) – I&ECR

• Fuzzy set programming methods:
– Wang (2004) – Eur. J. Oper. Res.
– Balasubramanian and Grossmann (2003) – C&ChE

• Reactive scheduling:
– Cott and Macchietto (1989) – C&ChE
– Kanakamedala, Reklaitis, Venkatasubramanian (1994) – I&ECR
– Huercio, Espuna, Puigjaner (1995) – C&ChE
– Sanmarti, Huercio, Espuna, Puigjaner (1996) – C&ChE
– Rodrigues, Gimeno, Passos, Campos (1996) – C&ChE
– Honkomp, Mockus, Reklaitis (1999) – C&ChE
– Vin and Ierapetritou (2000) – I&ECR
– Roslof, Harjunkoski, Bjorkqvist, Karlsson, Westerlund (2001) – C&ChE



Uncertainty

• Sources:
– Process model parameters: processing time/rate 
– Environmental data: market demands, due dates, 

prices

• Types:
– Discrete or continuous distribution
– Characteristics: bounded, symmetric, etc.
– Known distribution: normal, uniform, discrete, etc.



Short-Term Scheduling Model



Problem Statement
• Given

– Production recipe in terms of task sequences
– Pieces of equipment and their ranges of capacities
– Intermediate storage capacity
– Production requirement
– Time horizon under consideration
– Uncertain parameters and level/form of uncertainty

• Determine
– Optimal sequence of tasks taking place in each unit
– Amount of material processed at each time in each unit
– Processing time of each task in each unit

• so as to optimize a performance criterion,
– Maximization of production, minimization of makespan, etc.
– Subject to the production schedule remaining feasible for all 

instances of the uncertain parameters



Novel Continuous-time Model: Concepts

• Continuous-time representation
– event points: time instances when tasks begin
– same number of event points in all units
– different locations of event points for different units 

(unit specific continuous-time representation)
• Decouple task events from unit events

– reduce number of binary variables
• Avoid nonlinearities
• Avoid use of time slots
• Reduce the combinatorial problem



Continuous-Time Formulation for     
Short-Term Scheduling

Ierapetritou and Floudas (1998a,b); Janak and Floudas (2004); 
Floudas and Lin (2004), (2005); Lin and Floudas (2001)
– Continuous-time representation
– Mixed Integer Linear Programming (MILP) Problem

Max/Min Profit/Make-span
s.t. Allocation constraints

Capacity constraints
Material balance constraints
Storage constraints
Demand constraints
Duration constraints
Sequence constraints
Time horizon constraints



Short-Term Scheduling Model
Variables:
wv(i,j,n) binary, assign the beginning of task (i) in unit (j) at event

point (n);
yv(j,n) binary, assign the utilization of unit (j) at event point (n);
B(i,j,n) amount of material undertaking task (i) in unit (j) at event

point (n);
STI(s) initial amount of state (s);
ST(s,n) amount of state (s) at event point (n);
STF(s) amount of state (s) at the end of the horizon;
D(s,n) amount of state (s) delivered at event point (n);
SL(s,n) slack variable for the amount of state (s) not meeting the

demand at event point (n);
Ts(i,j,n) time that task (i) starts in unit (j) at event point (n);
Tf(i,j,n) time that task (i) finishes in unit (j) while it starts at event

point (n). 



Short-Term Scheduling Model
Allocation Constraints

Material Balance Constraints

where ρc
si≤0, ρp

si≥0 represent the proportion of state (s) consumed by
or produced from task (i), respectively.
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Short-Term Scheduling Model
Capacity Constraints

where Vij
min and Vij

max denotes the minimal and maximal capacity allowed
of the specific unit (j) when performing task (i), respectively.

where Ir is the set of reaction tasks.

Duration Constraints

αij: fixed processing times for reaction and drying tasks, zero for extrusion
tasks;

βij: inverse of processing rates for extrusion tasks, zero for reaction and
drying tasks.
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Short-Term Scheduling Model
Sequence Constraints

• Same task in the same unit

• Different tasks in the same unit

where tclii’ is the clean-up time for units when switched from task (i) to
task (i’). 

• Different tasks in different units

lasti
fs nnNnJjIinjiTnjiT ≠∈∈∈∀≥+ ,,,),,,()1,,(

lastjj

ii
fs

nnNniiIiIiJj
njiwvHnjiwvtclnjiTnjiT

≠∈≠∈∈∈∀
−−⋅+≥+

,,',',,
)),,,'(1(),,'(),,'()1,,( '

lastjj

fs

nnNniiIiIiJjj
njiwvHnjiTnjiT

≠∈≠∈∈∈∀
−−≥+

,,',',,',
)),,','(1(),','()1,,(

'



Short-Term Scheduling Model
Constraints for Demands with Intermediate Due Dates

where dintsn denotes the demand for state (s) at event point (n).

Due Date Constraints

where duesn is the due time for the demand of state (s) at event point (n).

Constraints for Demands at the End of the Time Horizon

where dends is the demand for state (s) at the end of the time horizon.
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Short-Term Scheduling Model
Unit Available Time Constraints

where tavj is the time when unit (j) starts to become available.
Time Horizon Constraints

Objective: Maximization of Production

psn: priority of the demand for state (s) at event point (n),
vms: relative value of state (s) in the material sequence,
vps: relative value indicating priority of the corresponding product,
vds: relative value indicating importance to fulfill future demands for the

corresponding product,
γ: constant coefficient to balance meeting demands with intermediate

due dates and overall production.
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Robust Optimization:
General MILPs

•Lin, X, S.L. Janak and C.A. Floudas, 2004, A New Robust Optimization 
Approach for Scheduling under Uncertainty: I. Bounded Uncertainty, 
Comp. Chem. Engng. 28, 1069.
•Janak, S.L., X. Lin and C.A. Floudas, 2005, A New Robust Optimization 
Approach for Scheduling under Uncertainty: II. Uncertainty with Known 
Distribution, Comp. Chem. Engng., submitted for publication.



Robust Optimization Methodology
• Consider the general class of MILP:

Assume that both the coefficients and the right-hand-side parameters 
of the inequality constraint are uncertain, (i.e.     ,     , and ).

• We are concerned about feasibility of the following 
inequality:
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Robust Optimization Methodology

• We are concerned about feasibility of the following 
inequality:

• By introducing a small number of auxiliary variables 
and applying developments in probability theory, the  
stochastic problem is converted to its deterministic 
robust counterpart which gives “reliable” solutions for 
a given level of uncertainty, infeasibility tolerance, 
and reliability level when a probabilistic measure is 
applied.
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Bounded Uncertainty

,     ,     : true values;     ,     ,    : nominal values;  ε : uncertainty level

Property 1: Interval Robust Counterpart [ε,δ] (IRC[ε,δ]) – MILP:
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Bounded and Symmetric Uncertainty

iiiikikikijijij ppbbaa )1(,)1(,)1( εξεξεξ +=+=+=~ ~ ~

ijξ iξikξ,      ,      : random variables distributed symmetrically in [-1,1].
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κ : reliability level.
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Property 2: Robust Counterpart [ε,δ,κ] (RC[ε,δ,κ]) – Convex MINLP:

where κ = exp{-Ω2 / 2}.



Uncertainty with Known Distribution
iiiikikikijijij ppbbaa )1(,)1(,)1( εξεξεξ +=+=+=~ ~ ~

ijξ iξikξ,      ,      : random variables of known distribution.
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Cumulative distribution function:

Inverse distribution function (quantile function):

Robust Counterpart[ε,δ,κ] (RC[ε,δ,κ]) – MILP or Convex MINLP:
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Uncertainty with Uniform Distribution
One uncertain parameter per constraint:

: random variable of uniform distribution in [-1,1].

Property 3: Robust Counterpart [ε,δ,κ] – MILP:
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Uncertainty with Normal Distribution
Property 4: Robust Counterpart [ε,δ,κ] – Convex MINLP:

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution 
function of a standardized normal distribution.
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Uncertainty with a Difference of Normal 
Distributions

Property 5: Robust Counterpart [ε,δ,κ] – Convex MINLP:

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution 
function of a standardized normal distribution, and μ and 
σ are the mean and standard deviation, respectively, of 
the difference of two normal random variables.
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Uncertainty with Discrete Distribution
Property 6: Robust Counterpart [ε,δ,κ] – MILP:

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution 
function of the overall discrete distribution of the sum of 
several discrete random variables,

.

∑ ∑ ++
j k

kikjij ybxa λε

ipp ii ∀+≤ |],|,1max[δ

ydxc TT +
eFyEx =+
pByAx ≤+

kyk ∀= },1,0{

UL xxx ≤≤

yx
MaxMin

,
/

..ts

∑ ∑
∈ ∈

−+=
i iJj Kk

iikikikjijij pybxa ξξξξ



Uncertainty with Binomial Distribution
Property 7: Robust Counterpart [ε,δ,κ] – MILP:

where we consider only a single uncertain parameter per 
constraint and λ = F-1

b (1-κ) and F-1
b is the inverse 

distribution function of a binomial distribution with 
parameters n and p.
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Uncertainty with Poisson Distribution
Property 8: Robust Counterpart [ε,δ,κ] – MILP:

where we consider only a single uncertain parameter per 
constraint and λ = F-1

p (1-κ) and F-1
p is the inverse 

distribution function of a binomial distribution with 
parameter γ.
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Continuous-Time Formulation for     
Short-Term Scheduling

Ierapetritou and Floudas (1998a,b); Janak and Floudas (2004)
Floudas and Lin (2004), (2005); Lin and Floudas (2001)

– Unit-specific continuous-time representation
– Mixed Integer Linear Programming (MILP) Problem

Max/Min Profit/Make-span
s.t. Allocation constraints

Capacity constraints
Material balance constraints
Storage constraints
Demand constraints
Duration constraints
Sequence constraints
Time horizon constraints



Uncertainty in Processing Times

• Bounded Uncertainty:

IRC[ε,δ]: (MILP) -

• Uncertainty with Known Distribution (β = 0):
– Uniform Distribution in [-1,1]:

RC[ε,δ,κ]: (MILP) –

– Normal Distribution:

RC[ε,δ,κ]: (MILP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of 
a standardized normal distribution.
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Uncertainty in Processing Times
• Difference of Normal Distributions:

RC[ε,δ]: (MILP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of 
a standardized normal distribution, and μ and σ are the mean and 
standard deviation, respectively, of the difference of two normal 
random variables.

• Discrete Distribution (General, Binomial, or Poisson):

RC[ε,δ,κ]: (MILP) –

where λ = F-1
d (1-κ) and F-1

d is the inverse distribution function of 
a general discrete distribution or a binomial or poisson 
distribution.
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Uncertainty in Product Demands

• Bounded Uncertainty:

IRC: (MILP) –

• Uncertainty with Known Distribution:

– Uniform Distribution in [-1,1]:

RC[ε,δ,κ]: (MILP) –

– Normal Distribution:

RC[ε,δ,κ]: (MILP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of a 
standardized normal distribution.
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Uncertainty in Product Demands
• Difference of Normal Distributions:

RC[ε,δ,κ]: (MILP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of 
a standardized normal distribution, and μ and σ are the mean and 
standard deviation, respectively, of the difference of two normal 
random variables.

• Discrete Distribution (General, Binomial, or Poisson):

RC[ε,δ,κ]: (MILP) –

where λ = F-1
d (1-κ) and F-1

d is the inverse distribution function of 
a general discrete distribution or a binomial or poisson 
distribution.
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Uncertainty in Market Prices

• Bounded Uncertainty:

IRC: (MILP) –

• Bounded and Symmetric Uncertainty in [-1,1]:
RC[ε,δ,κ]: (Convex MINLP) –
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Uncertainty in Market Prices
• Normal Distribution:

RC[ε,δ,κ]: (Convex MINLP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of a 
standardized normal distribution.

• Difference of Normal Distributions:
RC[ε,δ,κ]: (MILP) –

where λ = F-1
n (1-κ) and F-1

n is the inverse distribution function of a 
standardized normal distribution, and μ and σ are the mean and 
standard deviation, respectively, of the difference of two normal 
random variables.
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Uncertainty in Market Prices
• Discrete Distribution (General, Binomial, or Poisson):

RC[ε,δ,κ]: (MILP) –

where λ = F-1
d (1-κ) and F-1

d is the inverse distribution function of 
the overall discrete distribution of the sum of several discrete
random variables, 

or a binomial or a poisson distribution of a single random variable.
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Robust Optimization for Scheduling   
under Uncertainty
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Motivating Example
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Motivating Example: Bounded Uncertainty 
in Processing Time

Nominal solution of the motivating example (profit = 3638.75)

Robust solution of the motivating example (profit = 3264.69)
• uncertainty level, ε = 0.10

• infeasibility tolerance level, δ = 0.15



Motivating Example: Bounded Uncertainty 
in Processing Time
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Motivating Example: Poisson Uncertainty 
in Processing Time

Nominal solution of the motivating example (profit = 3638.75)

Robust solution of the motivating example (profit = 2887.19)
• uncertainty level, ε = 0.05

• infeasibility tolerance level, δ = 0.20
• reliability level, κ = 0.24



Motivating Example: Poisson Uncertainty 
in Processing Time

Profit vs. reliability level (κ) at different uncertainty and infeasibility levels.
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Motivating Example: Normal Uncertainty 
in Product Demand

Nominal solution of the motivating example (makespan = 8.007)

Robust solution of the motivating example (makespan = 8.222)
• uncertainty level, ε = 0.10

• infeasibility tolerance level, δ = 0.10
• reliability level, κ = 0.05



Motivating Example: Normal Uncertainty 
in Product Demand

Profit vs. reliability level (κ) at different uncertainty and infeasibility levels.
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Motivating Example: Uniform Uncertainty 
in Product Demand

Nominal solution of the motivating example (makespan = 8.007)

Robust solution of the motivating example (makespan = 8.174)
• uncertainty level, ε = 0.10

• infeasibility tolerance level, δ = 0.05
• reliability level, κ = 0.00



Motivating Example: Uniform Uncertainty 
in Product Demand

Profit vs. reliability level (κ) at different uncertainty and infeasibility levels.
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Motivating Example: Bounded and 
Symmetric Uncertainty in Market Prices

Nominal solution of the motivating example (profit = 1088.75)

Robust solution of the motivating example (profit = 955.23)
uncertainty level, ε = 0.05

infeasibility tolerance level, δ = 0.05
reliability level, κ = 0.05



Motivating Example: Bounded and 
Symmetric Uncertainty in Market Prices
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Profit vs. uncertainty level (ε) at different infeasibility and reliability levels.



Motivating Example: Normal Uncertainty 
in Market Prices

Nominal solution of the motivating example (profit = 1088.75)

Robust solution of the motivating example (profit = 966.97)
uncertainty level, ε = 0.05

infeasibility tolerance level, δ = 0.05
reliability level, κ = 0.05



Motivating Example: Normal Uncertainty 
in Market Prices

Profit vs. reliability level (κ) at different uncertainty and infeasibility levels.
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Model and Solution Statistics for       
Motivating Example
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Model and Solution Statistics for       
Motivating Example
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Rolling Horizon Framework
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Case Study 2: A Large-Scale 
Polymer Compounding Plant



Case Study 2: Plant Data Description
• Over 80 different products considered (250 overall)
• Basic operations: reaction, filtering, storing and filling
• Units: reactors, filter presses, prill tower, swing and 

product tanks, filling stations – (60+ units)
• Scheduling horizon: 18 days
• Storage limitations on reactors, tanks
• Given:

– processing recipes for all products
– unit suitability for each task of each product
– capacity limits of each unit for a suitable task
– processing time or processing rate of each task
– clean-up time for each unit switching between tasks
– inventory level of each product
– demands: amount and due date 



Case Study 2: Process Alternatives
State-Task Network (STN) representation

F Reaction I1 PSwing Filling PFilter I2

F Reaction P Filling P

F Reaction I1 Tank P Filling P

F Reaction I1 Swing P Filling P

F Mixed Prod I1 Tank P Filling P

F Reaction M PTank Filling PPrill I1

F Mixed Prod I1 Tank I2 Tank P Filling P



Case Study 2: Challenges
• Inherent complexity of the physical problem

– Long time horizon
– Intermediate due dates and demands
– Many products (250)
– Many units (60)
– Storage considerations
– Clean-up – sequence dependent

• Special constraints and restrictions
– Differentiate between category 1 and category 2 products
– Campaign mode production (sequence-dependent) for prill tower

• Leads to large-scale combinatorial problem with many 
binary variables which must consider a tradeoff between 
quality of solutions and required computational resources



Case Study 2: Distribution of Demands
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Case Study 2: Decomposition Results
• Production in 18 days (with campaign mode

production) decomposed into eight time horizons
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Case Study 2: Campaign Mode Production

Nominal Schedule for Campaign Mode Production Units



Case Study 2: Nominal Solution

Nominal Schedule with Campaign Mode Production



Case Study 2: Robust Solution

• Robust Schedule with campaign mode production and bounded 
uncertainty (ε = 10%, δ = 0%) in fixed processing times of reactor tasks



Case Study 2: Robust Solution

• Robust Schedule with campaign mode production and bounded 
uncertainty (ε = 10%, δ = 0%) in intermediate demand of all products



Results with Campaign Mode Production 
for the First Horizon, H1
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Scheduling under Uncertainty: Conclusions
• Uncertainty in production scheduling comes from model 

parameters and environmental data.  Solutions obtained 
at nominal values can be unreliable.

• A novel Robust Optimization approach is proposed to 
generate “robust” solutions for MILP problems by 
transforming the stochastic problem into its deterministic 
counterpart.  Different types of uncertainty addressed:  
bounded; bounded and symmetric; with known 
distribution, e.g. uniform, normal, difference of normal, 
discrete, binomial, poisson distributions.

• Robust Optimization is applied to scheduling problems 
with uncertain processing times, product demands, and 
market prices.

• Results show effectiveness, rendering the potential to 
solve large problems, and provide insights on tradeoffs 
between conflicting objectives.


