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Scheduling Under Uncertainty

* Production scheduling has received increasing
attention from both academia and industries in the
past decade (Floudas & Lin, 2004, 2005).

* Uncertainty exists widely in process model
parameters and environmental data: processing time,
demand, market price, etc.

e EXisting techniques:
— Stochastic methods
— Robust optimization methods
— Probabilistic methods
— Fuzzy set programming methods
— Reactive scheduling




Scheduling Under Uncertainty

e Stochastic methods:
Bassett, Pekny, Reklaitis (1997) — I&ECR
Vin and lerapetritou (2001) — I&QECR
Balasubramanian and Grossmann (2002) — I&ECR
Balasubramanian and Grossmann (2004) — C&ChE
Jia and lerapetritou (2004) — I&ECR
Bonfill, Bagajewicz, Espuna, Puigjaner (2004) — I&ECR
Bonfill, Espuna, Puigjaner (2005) — I&ECR
Ostrovsky, Datskov, Achenie, Volin (2004) — AIChE J.

* Robust optimization methods:
Ben-Tal and Nemirovski (2000) — Math. Prog.
Lin, Janak, Floudas (2004) — I&ECR
Janak, Lin, Floudas (2005) — I&ECR
Bertsimas and Sim (2003) — Math. Prog. Ser. B
Bertsimas and Sim (2004) — Oper. Res.




Scheduling Under Uncertainty

« Probabilistic or chance constraints:
— Orcun, Altinel, Hortacsu (1996) — C&ChE
— Petkov and Maranas (1997) — I&ECR
 Fuzzy set programming methods:
— Wang (2004) — Eur. J. Oper. Res.
— Balasubramanian and Grossmann (2003) — C&ChE
 Reactive scheduling:
Cott and Macchietto (1989) — C&ChE
Kanakamedala, Reklaitis, Venkatasubramanian (1994) — I&QECR
Huercio, Espuna, Puigjaner (1995) — C&ChE
Sanmarti, Huercio, Espuna, Puigjaner (1996) — C&ChE
Rodrigues, Gimeno, Passos, Campos (1996) — C&ChE
Honkomp, Mockus, Reklaitis (1999) — C&ChE
Vin and lerapetritou (2000) — I&ECR
Roslof, Harjunkoski, Bjorkqvist, Karlsson, Westerlund (2001) — C&ChE




Uncertainty

e Sources:

— Process model parameters: processing time/rate

— Environmental data: market demands, due dates,
prices

e Types:
— Discrete or continuous distribution
— Characteristics: bounded, symmetric, etc.
— Known distribution: normal, uniform, discrete, etc.




Short-Term Scheduling Model




Problem Statement

Given

— Production recipe in terms of task sequences
Pieces of equipment and their ranges of capacities
Intermediate storage capacity
Production requirement
Time horizon under consideration
Uncertain parameters and level/form of uncertainty

Determine

— Optimal sequence of tasks taking place in each unit

— Amount of material processed at each time in each unit
— Processing time of each task in each unit

SO as to optimize a performance criterion,
— Maximization of production, minimization of makespan, etc.

— Subject to the production schedule remaining feasible for all
Instances of the uncertain parameters




Novel Continuous-time Model: Concepts

Continuous-time representation
— event points: time instances when tasks begin
— same number of event points in all units

— different locations of event points for different units
(unit specific continuous-time representation)

Decouple task events from unit events
— reduce number of binary variables

Avoid nonlinearities
Avoid use of time slots
Reduce the combinatorial problem




Continuous-Time Formulation for
Short-Term Scheduling

lerapetritou and Floudas (1998a,b); Janak and Floudas (2004);
Floudas and Lin (2004), (2005); Lin and Floudas (2001)

— Continuous-time representation
— Mixed Integer Linear Programming (MILP) Problem

Max/Min Profit/Make-span

S.1L. Allocation constraints
Capacity constraints
Material balance constraints
Storage constraints
Demand constraints
Duration constraints
Seguence constraints
Time horizon constraints




Short-Term Scheduling Model

Variables:
wv(i,j,n) binary, assign the beginning of task (/) in unit (j) at event
point (n);

yv(f,n) binary, assign the utilization of unit (j) at event point (n);

B(i,j,n) amount of material undertaking task (/) in unit (j) at event
point (n);

STl(s) initial amount of state (S);

ST(s,n) amount of state (s) at event point (n);

STF(s) amount of state (s) at the end of the horizon;

D(s,n) amount of state (s) delivered at event point (n);

SL(s,n) slack variable for the amount of state (s) not meeting the
demand at event point (n);

T3(i,j,n) time that task (i) starts in unit (j) at event point (n);

T'(i,j,n) time that task (i) finishes in unit (j) while it starts at event
point (n).




Short-Term Scheduling Model

Allocation Constraints

> wv(i, j,n)=yv(j,n),vViel,neN

|€|j

Material Balance Constraints
ST(S,Nyg) =STI(S)+ D> 5 > B(i, j.nyg), VseS

el jed;

ST(s,n)=ST(s,n-1)-D(s,n)+ > pf > B(i, j,n-1)

el jed;

+> ps Y. B(i,j.,n),vseS,neN

el j€ed;

STF (S) — ST (S’ nIas.t) + Zpsﬁ) Z B(I’ j’ nlast)’ VS < S

el jed;

where o£,=0, p°,20 represent the proportion of state (s) consumed by
or produced from task (i), respectively.




Short-Term Scheduling Model

Capacity Constraints
Vijmln -wv(i, j,n) < B(, j,n) <V.™ -wv(i, j,n),Viel, jeJ,,neN

j

where V" and V,/"* denotes the minimal and maximal capacity allowed
of the specific unit (f)) when performing task (i), respectively.

B(i, j,n) =V,™ -wv(i, j,n),iel,, jed,neN

where /. is the set of reaction tasks.

Duration Constraints
T, j,n)=T°@, j,n) +ewv(i, j,n)+ B;B(i, j,n),Viel,jeJ;,neN

oy fixed processing times for reaction and drying tasks, zero for extrusion

tasks;
B inverse of processing rates for extrusion tasks, zero for reaction and

drying tasks.




Short-Term Scheduling Model

Sequence Constraints
e Same task in the same unit
TG, j,n+)>T'(,j,n),Viel,jed,neN,nzn,_,

 Different tasks in the same unit
T°(i, j,n+1)2Tf(i', J,n)+tcl. -wv(l', J,n)—H@Q-wv(l', J,n)),
Vield,le Ij,i'e Ij,i z1'neN,n#n

last

where fcl;. is the clean-up time for units when switched from task (/) to
task (/).

» Different tasks in different units

T°@, j,n+) =T (@', ', n)—HA-wv(', j',n)),

Vj,j'eJ,ieIj,i'elj.,i;ti',neN,n;tn

last




Short-Term Scheduling Model

Constraints for Demands with Intermediate Due Dates
D(s,n)+SL(s,n)=dint_,vVseS,neN

where dint,, denotes the demand for state (s) at event point (n).

sn!

Due Date Constraints
T°(1, j,n) <due

where due,, is the due time for the demand of state (s) at event point (n).

seS,lel,Jed,neN

sn?

Constraints for Demands at the End of the Time Horizon
STF(s)>dend,, Vs e S

where dend, is the demand for state (s) at the end of the time horizon.




Short-Term Scheduling Model

Unit Available Time Constraints
T°(, j,n) > tav; —H@-wv(i, J,n)),Viel,jed.,neN

where fav; is the time when unit (j) starts to become available.
Time Horizon Constraints

T'(i,j,n)<H,Vviel,jeJ,,neN
T°(@,j,n)<H,Viel,jeJ,,neN

Objective: Maximization of Production

—> > Py - SL(s,n)+»>_vd, -vp, -vm, - STF (s)

p.,: priority of the demand for state (s) at event point (n),

vm: relative value of state (s) in the material sequence,

vp,: relative value indicating priority of the corresponding product,

vd: relative value indicating importance to fulfill future demands for the
corresponding product,

. constant coefficient to balance meeting demands with intermediate
due dates and overall production.




Robust Optimization:
General MILPs

: J
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°Lin, X, S.L. Janak and C.A. Floudas, 2004, A New Robust Optimization
Approach for Scheduling under Uncertainty: I. Bounded Uncertainty,
Comp. Chem. Engng. 28, 1069.

*Janak, S.L., X. Lin and C.A. Floudas, 2005, A New Robust Optimization
Approach for Scheduling under Uncertainty: Il. Uncertainty with Known
Distribution, Comp. Chem. Engng., submitted for publication.




Robust Optimization Methodology
« Consider the general class of MILP:

Min/Max ¢' x+d'y
st Ex+Fy=e
AX+By<p

X" <X <X

yk :{01 1}1 Vk

Assume that both the coefficients and the right-hand-side parameters
of the inequality constraint are uncertain, (i.e. &;, b, , and p,).

 We are concerned about feasibility of the following

iInequality:
Zaijxj +Zbikyk <P
j k




Robust Optimization Methodology

 We are concerned about feasibility of the following

iInequality:
Zaijxj +Zbikyk <P
j k

By introducing a small number of auxiliary variables
and applying developments in probability theory, the
stochastic problem is converted to its deterministic
robust counterpart which gives “reliable” solutions for
a given level of uncertainty, infeasibility tolerance,
and reliability level when a probabilistic measure is
applied.




Bounded Uncertainty

Ijl—gla | |b|k_b|k|—g|b|k| |p| p||Sg|p||

d;;, bik, p; : true values; &, D, P;: nominal values; & : uncertainty level

Property 1: Interval Robust Counterpart [g,8] (IRC[g,d]) — MILP:
Min/ Max c'x+d'y
st EX + Fy—e
Ax + By

Zau J+EZ|3., |u +Zb|kyk +ngblk | Yy

< p, 2| p, |+ max[L| p, 1, Vi
—U; <X; S U, , V]
xL<x<xU

={0,1}, Vk

0 : infeasibility tolerance Ievel




Bounded and Symmetric Uncertainty

—~

aij :(14‘55 )alj’ « = A+e5 )by, p=01+&5)p,

é:ij, ik, i 1 random variables distributed symmetrically in [-1,1].

PEY a,x + > by, > B+ max[L| p, [} <«
J k

K : reliability level.

Property 2: Robust Counterpart [€,0,x] (RC[e,0,x]) — Convex MINLP:

Zau J_I_Z:bmyk_I_‘(E.[leau|u|1_|_£2 Za +Zblkyk+pl

jed; jed; keK,

< p. +omax|[l| p; |], Vi
Vi, j

—Uy <X;—Z; SUy,

where xk = exp{-Q?/ 2}.



Uncertainty with Known Distribution
aij = (1+ ggij)aij’ b, = (A+&& )by, P =1+&5)n,

Cfij, S, &i : random variables of known distribution.

Jeime G = Zfij aij‘xj T Zfik‘bik‘Yk _é:i‘ pi‘

jE\Ji kEKi

Cumulative distribution function:

F (1)=PlE< ) =1 P> 2] =1-x

Inverse distribution function (quantile function):
_ (
F. 1(1_K): f A aij‘xj "bik‘yk" pi‘)
Robust Counterpart[e,d,x] (RCle,8,x]) — MILP or Convex MINLP:
Zaijxj +Zbikyk +e- 1 (ﬂ“"aij‘xj "bik‘yk" pi‘)
J “<p +smaxL,|p,]] vi




Uncertainty with Uniform Distribution

One uncertain parameter per constraint:

= 1+ &g )by

ik - random variable of uniform distribution in [-1,1].

Property 3: Robust Counterpart [€,0,x] — MILP:

Min / Max c'x+d'y
"7 st Ex+Fy=e
Ax+By<p

Zalj j+zblkyk+g(1 2K)( |k‘yk

< p, +smaxL| p,[], i
X < X< X
—{0, 13}, vk




Uncertainty with Normal Distribution

Property 4. Robust Counterpart [g,0,x] — Convex MINLP:
I\/Im/l\/lax c'x+d'y
" st Ex+Fy=e
Ax+By<p
Zalj J +Zblkyk +‘9ﬂ’ Zalj J + Zblkyk T pl
jed; keK,
< p: +omax[i| p; |], Vi

X" <x<xY
~{0,1}, vk

where 1= F7_(1-x) and F_ is the inverse distribution
function of a standardized normal distribution.




Uncertainty with a Difference of Normal

Distributions
Property 5. Robust Counterpart [g,0,x] — Convex MINLP:

Min/ Max c'x+d'y
" st Ex+Fy=e
Ax+By<p

Zalj j+zblkyk+gﬂ’ Zalj J+Zblkyk+p|

jed; keK,
< p: +omax[i| p; |], Vi

X" <x<xY
~{0,1}, vk

where 1= F7_(1-x) and F_ is the inverse distribution
function of a standardized normal distribution, and . and
o are the mean and standard deviation, respectively, of
the difference of two normal random variables.




Uncertainty with Discrete Distribution
Property 6: Robust Counterpart [€,0,x] — MILP:

Min/ Max c'x+d'y
"7 st Ex+Fy=e

AXx+By<p
Zaijxj+2bikyk+g/1

k
< p. +Smax[L| p. [], Vi
X" < x<x”
Y =10,1}, VK

where 1= F7_(1-x) and F_ is the inverse distribution
function of the overall discrete distribution of the sum of
several discrete random variables,

G = Zé:ij‘aij‘xj + Zé:ik‘bik‘yk _é:i‘pi‘_

jE\]i kEKi




Uncertainty with Binomial Distribution

Property 7: Robust Counterpart [€,0,x] — MILP:

I\/Im/l\/lax
" st

c'x+d'y
Ex+Fy=e
Ax+By<p

Za” o+ Zb,k Y, + gxl‘au ‘xj.

< o +5max[1| p. |], Vi

X < XSX
—{0, 13, Vk

where we consider only a single uncertain parameter per
constraintand 1 = F7, (1-x) and F7, is the inverse
distribution function of a binomial distribution with
parameters n and p.




Uncertainty with Poisson Distribution

Property 8. Robust Counterpart [g,0,x] — MILP:
I\/Im/l\/lax c'x+d'y
" st Ex+Fy=e
Ax+By<p

Za” o+ Zb,k Y, + gxl‘au ‘xj.

< o +5max[1| p. |], Vi

X < XSX
—{0, 13, Vk

where we consider only a single uncertain parameter per
constraintand 4 = F7,(1-x) and F7 is the inverse
distribution function of a binomial distribution with
parameter .




Continuous-Time Formulation for
Short-Term Scheduling

lerapetritou and Floudas (1998a,b); Janak and Floudas (2004)
Floudas and Lin (2004), (2005); Lin and Floudas (2001)

— Unit-specific continuous-time representation
— Mixed Integer Linear Programming (MILP) Problem

Max/Min Profit/Make-span

S.1. Allocation constraints
Capacity constraints
Material balance constraints
Storage constraints
Demand constraints
Duration constraints
Seguence constraints
Time horizon constraints




Uncertainty in Processing Times

T =T, =a-wv, +4-b
T.f.’ —TS LZaw,+ B

Bounded Uncertainty: | a" <a <aV, p-< p<py

IRCl[e,d]: (MILP) - Ti,fj,n _Ti,sj,n >a” Wi "‘:BU 'bi,j,n -0

Uncertainty with Known Distribution (8= 0): | ¢ = 1+ gga)a
— Uniform Distribution in [-1,1]:

RCle 8. MILP) = TS =T,' |+ 1+ &(d—2k))a - Wy, , <&

— Normal Distribution:
RCle3.]: MILP) - | T —T."  + @A+ ed)a-wy, , <6

i, j,n I, j,n

where 1 = F7 (1-x) and F7_ is the inverse distribution function of
a standardized normal distribution.



Uncertainty in Processing Times

Difference of Normal Distributions:

RCle8): MILP) =TS —T." + L+ e[ Ao + ul)ar-wy,,, < &

where 1 = F (1-x) and F7_ is the inverse distribution function of
a standardized normal distribution, and x and o are the mean and
standard deviation, respectively, of the difference of two normal
random variables.

Discrete Distribution (General, Binomial, or Poisson):

RCeOK MILP) = T8 T+ 1+ ed)a-wy, , <&

1, ],Nn

where 1 = F7,(1-x) and Fis the inverse distribution function of
a general discrete distribution or a binomial or poisson
distribution.



Uncertainty in Product Demands

STF(s) > dem, —&

Bounded Uncertainty: dems'- < de~mS < dem;J

IRC: (MILP) - | STF(s) > dem, — & - dem,

Uncertainty with Known Distribution: déymS =1+ &£, )dem,
— Uniform Distribution in [-1,1]:

RC[e,8,x]: (MILP) — | STF(S) > 1+ &(1—2x)—0) - dem,

— Normal Distribution:

RC[e,8,]: (MILP) — | STF(S) > (1+ &4 —0)-dem,

where 1 = F (1-x) and F_ is the inverse distribution function of a
standardized normal distribution.




Uncertainty in Product Demands

 Difference of Normal Distributions:

RC[e.5.]: (MILP) — |STF (S) > (L+ g[AN o + 1] - S5) - dem,

where 1 = F (1-x) and F7_ is the inverse distribution function of
a standardized normal distribution, and x and o are the mean and
standard deviation, respectively, of the difference of two normal
random variables.

Discrete Distribution (General, Binomial, or Poisson):

RC[e,8,«]: (MILP) — | STF(S) > (1+ &4 — ) - dem,

where 1 = F7,(1-x) and Fis the inverse distribution function of
a general discrete distribution or a binomial or poisson
distribution.




Uncertainty in Market Prices

Maximize Profit
st. Profit< Y p,-STF(s)- Y p,-STI(s)

SIS seS,

 Bounded Uncertainty:

IRC: (MILP) — | Profit(1-8)< > p; -STF(s)— > p; -STI(s)

SES seS,

Bounded and Symmetric Uncertainty in [-1,1]:
RC[e,8,x]: (Convex MINLP) —

> p,-STI(S)— D p, - STF(s)+ Profit(1- &)

seS, SIS

e S py()+ Y pLy(s) + O Jz p2z2(s)? + Y plz(s)’ | <0

seS, SIS seS, SIS

—y(s) <STI(s)—z(s) < y(s), VseS,
~ y(s) < STF(s)-2(s) < y(s), VseS,
where K = exp{—Q2 /2}.




Uncertainty in Market Prices

Normal Distribution:
RCle,8,x]: (Convex MINLP) —
S p.STI(s)— 3 p,STF (s)+ Profit(1—5)

seS, SIS

+ el \/ Y pISTF(s)? + Y p2STI(5)? <0

seS, seS,

where 4 = F7 (1-x) and F7_ is the inverse distribution function of a
standardized normal distribution.

Difference of Normal Distributions:
RClg,0,x]: (MILP) —

3 p.STI(s)— Y p.STF(s)+Profit(l— &) + e[ Ao + 1] <0

seS, seS,

where 1 = F (1-x) and F_ is the inverse distribution function of a
standardized normal distribution, and x# and o are the mean and

standard deviation, respectively, of the difference of two normal
random variables.



Uncertainty in Market Prices

Discrete Distribution (General, Binomial, or Poisson):
RC[e,0,x]: (MILP) —

3 p,STI(s)— " p,STF(s)+Profit(L— &) + 1 <0

seS, sed,,

where 1 = F7,(1-x) and F is the inverse distribution function of
the overall discrete distribution of the sum of several discrete
random variables,

D EID|STF(s)+D & p,|STI(S)

or a binomial or a poisson distribution of a single random variable.



Robust Optimization for Scheduling

under Uncertainty

Processing Time

Demand

Price

Constraint

TI T >a-wv+ b

STF(s) > dem,

P<> p,ST(s)

Bounded

MILP

Bounded and
Symmetric

convex MINLP

Uniform Distribution

Normal Distribution

convex MINLP
or MILP

convex MINLP

Difference of Normal
Distributions

convex MINLP
or MILP

convex MINLP

Discrete Distribution

MILP

Binomial Distribution

MILP

Poisson Distribution

MILP




Motivating Example

Product 1

Impure E

Product 2

State-Task Network Representation

Units Capacity Suitability Processing Time

Heater 100 Heating 1.0

Reactor 1 50 Reactionl, 2, 3 2.0,2.0,1.0

Reactor 2 80 Reactionl, 2, 3 2.0,2.0,1.0

Separator Separation 2.0




Motivating Example: Bounded Uncertainty

Separator
Reactor 2
Reactor [

Heater

Separator
Reactor 2
Reactor |

Heater

In Processing Time

80.00
R1 R2
0.0

Rl R2 !

52.00

f 1 A

0 1 2 3 4 5
Nominal solution of the motivating example (profit = 3638.75)

97.50 109.69

Sep
30.00 5 : 40.00

Sep

Rl ! 3 R2
50.00 . . | 50,00

Rl !

1 2 3 4 7 8 9 10 11

Robust solution of the motivating example (profit = 3264.69)

 uncertainty level, ¢ = 0.10
* infeasibility tolerance level, 6 = 0.15



Motivating Example: Bounded Uncertainty
In Processing Time

3700 l

3600

3500

3400

3300

3200

3100

3000

2900

7 S X K 7

2800

0.06 0.08 0.1 0.12 0.14 0.16 0.18
Infeasibility Tolerance, 6

——£=0.00 =005 ——c=0.10 ——&=0.15 =¥ =020

Profit vs. infeasibility tolerance (0) at different uncertainty levels (g)



Motivating Example: Poisson Uncertainty
In Processing Time

Seperrulor | |
I E? 1

Reuclor 2 Zales |

¥ U E1 !

Reuclor § ! ! l il ! el
1 1 1 T R.E 1 R.Jl T

Healer |¢|
Hegt

o 1 2 31 4 s & 7 1 s 10 1
Nominal solution of the motivating example (profit = 3638.75)

deperralor I S | I s
I 1 I
Bep S
Reuclor 2 2hit I e
El | R}
0,00
Fl

REHEIGF .Iil I : I LI} 1 I LI } 1 I

Heler

0 1 2 3 4 a 6 T & g 10 11
Robust solution of the motivating example (profit = 2887.19)
 uncertainty level, € = 0.05
* infeasibility tolerance level, 6 = 0.20
e reliability level, k = 0.24




Motivating Example: Poisson Uncertainty
In Processing Time

~ -
— /

7

L

0.2 0.3 0.4 0.5 0.6 : 0.8
Reliability Level, x
—8—¢=0.05, 6=0.05 —0—:=0.05, 5=0.10 €=0.05, 6=0.15 €=0.05, =0.20

€=0.10, 6=0.05 ——¢=0.10, 3=0.10 ——¢=0.10, 5=0.15 —-¢=0.10, 6=0.20
—A—¢=0.15, 6=0.05 —A—¢=0.15, 5=0.10 —A&—¢=0.15, 5=0.15 —A&—¢=0.15, 5=0.20

Profit vs. reliability level (k) at different uncertainty and infeasibility levels.




Motivating Example: Normal Uncertainty
In Product Demand

.S'CPH?‘HFG?"

redactor 2

reactor |

heater

0 1 > 3 1 5 6 ' ' 9
Nominal solution of the motivating example (makespan = 8.007)

9 G2
5
3700
R2
2313
Rl

separdator

redactor 2

reactor 1

heater

0 1 2 6 7 8
Robust solution of the motivating example (makespan = 8.222)
 uncertainty level, ¢ = 0.10
* infeasibility tolerance level, 6 = 0.10
e reliability level, k = 0.05




Motivating Example: Normal Uncertainty
In Product Demand

—~
e
=
c
@©
o
0
()
4
©
=

0.125 0.225

Reliability Level,

—4—¢=0.05,6=0.05 —4—¢=0.05,5=0.10 €=0.05, 5=0.15 €=0.10,3=0.05 —=*—¢=0.10, 6=0.10
€=0.10,6=0.15 —®—¢=0.15,6=0.05 —®—¢=0.15,5=0.10 e=0.15, 6=0.15

Profit vs. reliability level (k) at different uncertainty and infeasibility levels.



Motivating Example: Uniform Uncertainty
In Product Demand

.S'CPH?‘HFG?"

redactor 2

reactor |

heater

0 1 > 3 1 5 ' ' ' 9
Nominal solution of the motivating example (makespan = 8.007)

Teparafor | o
=

reactor 2 =
Rl

reactor 1 a1
T 1 T F\.!

heater

0 1 2 3 4 5 : 7 g
Robust solution of the motivating example (makespan = 8.174)
 uncertainty level, ¢ = 0.10
* infeasibility tolerance level, 6 = 0.05
e reliability level, k = 0.00




Motivating Example: Uniform Uncertainty
In Product Demand

\N

—~
e
=
c
@©
o
n
(]
X
©
=

®
»
I

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Reliability Level, x

—-¢=0.05, 6=0.00 ——¢=0.10, 5=0.00 €=0.10,0=0.05  —><—¢=0.15,6=0.00 —K—¢e=0.15, 5=0.05 e=0.15, 5=0.10

Profit vs. reliability level (k) at different uncertainty and infeasibility levels.




Motivating Example: Bounded and
Symmetric Uncertainty in Market Prices

Separator
Reactor 2
Reactor |

Heater

Separator
Reactor 2
Reactor |

Heater

97.50

Sep

52.00 .
Heat

0 1 2 3 4 5 6 7
Nominal solution of the motivating example (profit = 1088.75)

97.50

Sep

0 | 2 3 4 5 6 7
Robust solution of the motivating example (profit = 955.23)
uncertainty level, ¢ = 0.05
infeasibility tolerance level, 6 = 0.05
reliability level, « = 0.05



Motivating Example: Bounded and
Symmetric Uncertainty in Market Prices

0.04 0.05 0.06

Uncertainty Level, ¢

——5=0.00,x=0.05 ——5=0.00,x=0.10 0=0.00,x=0.15 —*+—§=0.00,x=0.20 —*—8=0.05,x=0.05 ——5=0.05,x=0.10
0=0.05,x=0.15 —+—8=0.05,x=020 —*—5=0.10,x=0.05 8=0.10,x=0.10 —#+—=8=0.10,x=0.15 —+—5=0.10,x=0.20

Profit vs. uncertainty level (¢) at different infeasibility and reliability levels.




M

otivating Example: Normal Uncertainty

Separator
Reactor 2
Reactor |

Heater

JEpRratar
reactor 2
reactor I

heater

In Market Prices

52.00 f
Heat

0 1 2 3 4 5 6 7
Nominal solution of the motivating example (profit = 1088.75)

i 5150
I

]
H 1

0 1 > 3 4 5 5 7
Robust solution of the motivating example (profit = 966.97)
uncertainty level, ¢ = 0.05
infeasibility tolerance level, 6 = 0.05
reliability level, « = 0.05



Motivating Example: Normal Uncertainty
In Market Prices

1100
1000

. J.//I.’__,ll,_——l}———ll~———————~——~—II—-———————-—-||__
800 lr///

700 -

600 l
500 4

400 -

300

200 A
0 0.05 0.1 0.15 0.2

Reliability Level, x

—M—¢=0.05,5=0.20 —€—¢=0.10, 6=0.20 €=0.15, 5=0.20 €=0.20, 3=0.20

Profit vs. reliability level (k) at different uncertainty and infeasibility levels.




Model and Solution Statistics for
Motivating Example

Bounded
Uncertainty in
Processing Time
(e=0.15, 6=0.10)

Bounded and
Symmetric Uncertainty
in Market Prices
(¢=0.05, 6=0.05,
k=0.05)

Normal Uncertainty
in Product Demand
(¢=0.10, 6=0.10,
k=0.05)

Nominal
Solution

Robust
Solution

Nominal
Solution

Robust
Solution

Nominal
Solution

Robust
Solution

Objective
Function

3638.75

2887.19

8.007

8.222

1088.75

955.23

CPU Time (s)

0.44

18.35

0.02

0.02

0.02

0.02

Binary
Variables

96

96

60

60

60

60

Continuous
Variables

Constraints




Model and Solution Statistics for

Motivating Example

Poisson Uncertainty
in Processing Time
(e=0.05, 6=0.20,
k=0.24)

Uniform Uncertainty
in Product Demand
(¢=0.10, 6=0.05,
k=0.00)

Normal Uncertainty
in Market Prices
(€=0.05, 6=0.05,

k=0.05)

Nominal
Solution

Robust
Solution

Nominal
Solution

Robust
Solution

Nominal
Solution

Robust
Solution

Objective
Function

3638.75

2887.19

8.007

8.174

1088.75

966.97

CPU Time (s)

0.46

11.33

0.02

0.02

0.02

0.05

Binary
Variables

96

96

60

60

60

60

Continuous
Variables

Constraints




Rolling Horizon Framework
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Case Study 2: A Large-Scale
Polymer Compounding Plant




Case Study 2: Plant Data Description

Over 80 different products considered (250 overall)
Basic operations: reaction, filtering, storing and filling
Units: reactors, filter presses, prill tower, swing and
product tanks, filling stations — (60+ units)
Scheduling horizon: 18 days

Storage limitations on reactors, tanks

Given:

— processing recipes for all products

— unit suitability for each task of each product

— capacity limits of each unit for a suitable task

— processing time or processing rate of each task

— clean-up time for each unit switching between tasks
— Inventory level of each product

— demands: amount and due date




Case Study 2: Process Alternatives
State-Task Network (STN) representation

Reaction Filter swing |+(P)— Filling | +(P)

Reaction Filling

Reaction Tank Filling

—(P)
—(P)

Reaction Swing Filling

Tank Filling |~(P)

Reaction Pril Tank |-(P)—] Filling

Mixed Prod Tank Tank —»®—> Filling




Case Study 2: Challenges

Inherent complexity of the physical problem
— Long time horizon

Intermediate due dates and demands

Many products (250)

Many units (60)

Storage considerations

Clean-up — sequence dependent

Special constraints and restrictions
— Differentiate between category 1 and category 2 products
— Campaign mode production (sequence-dependent) for prill tower

Leads to large-scale combinatorial problem with many
binary variables which must consider a tradeoff between
guality of solutions and required computational resources




Case Study 2:

Distribution of Demands

B Category 1 B Category 2

DI D2 D3 D4 D5 D6

Iu-

D10 D11 D12 D13 Dil4




Case Study 2: Decomposition Results

e Production in 18 days (with campaign mode
production) decomposed into eight time horizons

Time horizon | Days Main Additional
products  Products

0-2 27 1
3-4 31
5-6 51
/-8 53
9-10

11-12

13-14

15-18

0O N O O &~ W DN P




Case Study 2: Campaign Mode Production

| | | | | | | | | | | | | | | | | |
0 24 43 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456

Nominal Schedule for Campaign Mode Production Units




Case Study 2: Nominal Solution

1 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
48 72 96 120 144 168 182 21 240 264 288 312 336 360 384 408 432 456

Nominal Schedule with Campaign Mode Production




Case Study 2: Robust Solution

96 120 144 158 182 21é 240 264 288 312 336 360 384 408 432 456

e Robust Schedule with campaign mode production and bounded
uncertainty (e = 10%, 6 = 0%) in fixed processing times of reactor tasks




Case Study 2: Robust Solution

Bood
BRI
B2o4 H
B203

SPRT

FiEw) H H H H H H
FiPa H —H H H
R32 —t— : : : : |
R3L —— — —
RIS : | — | | — :
Riz

I I
Riz | | | | i | i | | | | |l |

Ril | | | | | | | | | |
I I T | I 1 I I | 1
P 1 |

—
Roe I ! ! | | —

Ria A |
R | |

i

RO2 —— | —t— : | :
Rari I I I | | | |

€30 — ———t—

0 24 48 72 96 120 144 168 162 2leé 240 264 288 312 336 360 384 408 432 456

* Robust Schedule with campaign mode production and bounded
uncertainty (¢ = 10%, 6 = 0%) in intermediate demand of all products




Results with Campaign Mode Production

for the First Horizon, H1

Nominal

Robust: Time
(e=10%, 6=0%)

Robust: Demand
(e=10%, 6=0%)

Binary Variables

4914

4914

4914

Continuous
Variables

34778

36114

34778

Constraints

172846

284734

172846

Objective
Function

-18404.23

-16776.87

No. of Uncertain
Parameters

26




Scheduling under Uncertainty: Conclusions

Uncertainty in production scheduling comes from model
parameters and environmental data. Solutions obtained
at nominal values can be unreliable.

A novel Robust Optimization approach is proposed to
generate “robust” solutions for MILP problems by
transforming the stochastic problem into its deterministic
counterpart. Different types of uncertainty addressed:
bounded; bounded and symmetric; with known
distribution, e.g. uniform, normal, difference of normal,
discrete, binomial, poisson distributions.

Robust Optimization is applied to scheduling problems
with uncertain processing times, product demands, and
market prices.

Results show effectiveness, rendering the potential to
solve large problems, and provide insights on tradeoffs
between conflicting objectives.




