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’i Overview

e What type of robust optimization techniques can be used with
general MILP formulations?

e Driver application: sensor placement in water distribution networks

e Key issue: how can we bound risk while maximizing performance?
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Water Security

National Water Security Goals
- Protect long-term availability of national water resources
- Protect the operation of water utility distribution systems
- Protect water resources and infrastructure from improper use

Universal Vulnerabilities in Water Systems
- Plant access
- Source Water
- Water storage
- Water distribution
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What iIs a water distribution network?

Drinking Water Wastewater

e \WWater source » \Wastewater source

e Treatment facilities e Collection system

e Transmission systems e Treatment facility

e Distribution systems e Receiving water body
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| A Motivating Threat Scenario

Contaminant Injection

Ll

DT
Risk: moderate-high M
- Technically difficult to accomplish | Wy =T

- Potential terrorists fascinated by this prospect . -‘ |

Impact: public health impacts, network contamination impacts 5 ‘

Mitigation:
- Use of detection equipment

Response:
- Coordination with public health institutions
- Proactive identification of contaminant source
- Decontamination procedures
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4 Designing a Contaminant Warning System (CWS)

Technical Goal: placement of sensors for the CWS within a budget

Possible objectives:
- Minimize response time
- Minimize health impacts
- Minimize extent of contamination
- Minimize volume of water that enters the water network
- Minimize number of failed detections
- Minimize cost
- Minimize political risk...
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What data do we need for sensor placement?

e Population consumption

- Location and time

- Individual characteristics: health, age
e Attack risks

- Location and time

- Contaminant type

- Duration of impact
e Network model

- Physical topology
- Demand characteristics through time
- Variability in demands

Note: there are major uncertainties in many of this data!
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>
Integer Programming for Sensor Placement

IPs can be used to model sensor placement for water security
- Berry et al (2003, 2004); Watson et al (2004)

Objective: |2, 2. %aWeXa minimize . > a,W,X,
o st.
= o - attack I_|keI|hood Z X =1 Vae A
= W - attack impact 't _
= X - attack witness variable Xai =5, vacAlel
= 5 - sensor placement variable D S <S
S, € {0,1}

IP model:
e Can capture different objectives/networks
e Can be solved with COTS software

- We need a 64-bit workstation to solve large instances
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4 ; Two RO Approaches

Interval Uncertainties
- Data lies within a specified interval about an estimated value

- Formulate models that find the best solution for all possible
uncertain values within the interval

- Consider side-constraints that exploit additional knowledge
about the uncertainties

Attack Location Uncertainties
- Contamination impact varies with attack location

- Formulate models that minimize or constrain the risk of a
catastrophic attack

- Consider different notions of risk: worst-case, VaR, CVaR

Note: Our focus is on developing robust MILP models
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4‘ Interval Uncertainties

ldea: consider uncertainties as simple errors on given numerical

estimates

- T
min, ., MaX ., «,)C X

where
X 1s the set of feasible integer points

U(c,,c,)=1{c:c <c<c,}

Note: This RO problem can be trivially reformulated as an IP model!
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- ' Bounded Interval Uncertainties

Example: population estimates
- The total population is probably well-known

- The estimated population at any given site may have
considerable error

Modeling interval uncertainties as a sum-restricted ball

Let o be the population estimate and let 5 be the true population.
Let A be the total population.

Weassumethat A=) &, = ZISI :
We assume that 6, <o <9, .

Note: this model of uncertainty works for various model parameters
- attack probabilities, consumption demands, etc.
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Optimization with Bounded Uncertainties

ldea: minimize the worst case value with bounded uncertainty
T
MaX g, C X

min

xeX

B(E,e)=1c:l-sf<c<@+e) ¢ =Y &

We consider proportional uncertainty intervals to simplify our
presentation...

where

There are two cases that reflect different applications/models
1. Linearly weighted uncertainty
2. Bilinear uncertainty
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4‘ Linearly Weighted Uncertainty

Example: minimizing extent of contamination (EC)

= Objective: y > oW X
ol 3 olc

a’ "aiai

= w,, IS the pipe length contaminated, which is well-known
= ¢, IS uncertain

RO formulation with bounded interval uncertainty

min

xeX

Idea: reformulate this RO formulation using the dual of this subproblem
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4‘ Solving Linearly Weighted RO Problems

The optimal solution for EC can be obtained by solving the following IP:

min ZaeA ieLO}aWai Xai T ‘90’2(7/ _:u)
(LWRO) st z+p, =7, =D WXy

H,y 20
Xe X

Interval uncertainty can be addressed by solving a related MILP!
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Preliminary Experiments with LWRO

Network A: 97 junctions, 234 pipes
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4‘ A Special Case: Unweighted Uncertainties

Example: minimizing the number of failed detections (NF)
= Objective: ZaeAZieLaaXai

= ¢, IS uncertain

Theorem: The optimal solution to the problem

min - max > > a.X,

xe X aeB(a,e)

Is the optimal solution to the problem

mInZaeA ieLaaXai

xeX

for all ¢>0.

Conclusion: proportional interval uncertainty does not impact this formulation!
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4‘ Bilinearly Weighted Uncertainty

Example: minimizing the population exposed (PE)

= Objective:
J ylaeA JieLa Wai X

a ' VaiMai

= W, IS the population exposed to contaminant, which is uncertain
= ¢, IS uncertain

RO formulation with bounded interval uncertainty

aig?;?,(g} ZaeA ieLaaWaiXai
weB(W,&

min

XxeX

This is NOT a MILP.

Note: even solving this bilinear maximization problem is hard!
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s
= Solving Bilinearly Weighted RO Problems

1. Consider the impact of uncertainties for o, and w, independently
(using the linearly weighted technique)

2. Sample one of the uncertainties and solve a problem of the form

min  max max D D WX

- a'VaiMai
xeX ae= WEB W g

This can be reformulated as a MILP.

3. Build a custom MINLP solver

- Linearize the subproblem problem using standard techniques
(McCormick’s linear relaxations)

- Reformulate as a dual to provide an overall lower bound
- Branch on choice variables and uncertainty regions
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i; Solving Bilinearly Weighted Problems (cont’d)

4. Heuristically search X and evaluate solutions using the bilinear
subproblem.
e May not be computationally feasible
e |t is NP-hard to solve this subproblem
e Can compute approximation values (using McCormick bounds)
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| Attack Location Uncertainties

Idea: consider the risk of a catastrophic attack

Goal: limit the risk that the worst impacts have a big effect
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A
Risk Measures of Interest

» Worst-Case
- The value of the worst impact

e Value-at-Risk (VaR)

- VaR(x,y) is the value of the 1—y quantile of the impact
distribution

e Conditional Value at Risk

- Tail Conditional Expectation (TCE) is the average loss in worst
100y percent of the impact distribution

- CVaR(x,y) is an approximation to TCE
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| Examples of Risk Measures
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V

j; Defining CVaR

Let A, = 1 if D wx; > VaR(x,7)
0 otherwise

Lety, = max{0, " w, x, —VaR(x, »)}

i | aiNai

TCE(x,7) _Za Z(Z o )A

—VaR(x,y )+ (2 (35, Wa Xy ~ VaR(x, ) A,

Za OCaAa

=VaR(x, y)+ 2., %Y
aaaAa

Now ' a,A, ~ y,50 we can approximate TCE(x, ) with

CVaR(x,7)=VaR(x, )+ 2., %Y
y
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Risk-Constrained MILPs

Goal: Minimize expected impact while constraining the risk of a
catastrophic attack

Worst-case MILPs are easy to formulate
VaR-constrained formulations are messy

- Can formulate with a simple quadratic constraint
- Can use binary indicator variables in a MILP formulation

CVaR-constrained formulation...
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A
CVaR-Constrained Formulation

Let Q be a bound on CVaR

The following formulation bounds CVaR

min Z D ZaWei X

Xe X

Note: we can include CVaR in both the objective as well!
Note: v is VaR when the CVaR constraint is binding
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Experimental Experience with CVaR MILPs

Considered Performance/CVaR trade-off for Network B
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Runtime vs. Optimal CVaR
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>
Empirical Observations

1. There appears to be a clear spike in the runtime
e |n many trials we were not able to find (near-)optimal solns

e CPLEX had difficulty finding good incumbent solutions
e We weren’t able to solve a minimum CVaR model on this

network

2. This formulation consistently found dominated solutions
e Need an additional bias to guarantee pareto optimal solutions
e Found undominated solutions with weighted risk objective
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Ongoing Work

e Developing methods to more efficiently enumerate pareto front
- Considering bi-objective MILP methods

e Working on reduced fidelity models that aggregate sensor locations
- Fast solutions with guaranteed approximation bounds
- May lead to branch-and-price solver

e Analyzing the structure of VaR/CVaR risk measures in MILP

formulations
- E.g. tighter-constrained MILPs seem to take longer. Why?
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