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Introduction

e We estimate a sample covariance matrix > from empirical data.

e Objective: infer dependence relationships between variables.

e We also want this information to be as sparse as possible.

e Basic solution: look at the magnitude of the covariance coefficients:

12i;| > 0B <& variables i and j are related.

We can do better. . .



Covariance Selection
Following Dempster (1972), look for zeros in the inverse matrix instead:

e Parsimony. Suppose that we are estimating a Gaussian density:

flz,X) = (%)j <det 2)7 exp (—%:{:TE_la:) :

a sparse inverse matrix X1 corresponds to a sparse representation of the
density f as a member of an exponential family of distributions:

exp(ag + t(x) + ar1t11(x) + ... + aypstrs(x))
with here tij(CIZ) = X;T; and Q5 = Z;l

e Dempster (1972) calls Z,L._jl a concentration coefficient.



Covariance Selection

We have m -+ 1 observations z; € R" on n random variables.

We can estimate a sample covariance matrix .S such that

We choose a (symmetric) subset I of index pairs and denote by J the
remaining indices so that 7 U J = N2,

We choose a matrix ¥ such that:

o %i; = Sy for all indices (i,7) in J

o XA); = 0 for all indices (¢,7) in [



Covariance Selection

Why is this a better choice? Dempster (1972) shows:

e Existence and Uniqueness. If there is a positive semidefinite matrix ZA]Z-]-
satisfying >;; = S;; on J, then there is only one such matrix satisfying
Nt=0onl.

o Maximum Entropy. Among all Gaussian models X such that X;; = S;; on
J, the choice Ei_jl = 0 on I has maximum entropy.

e Maximum Likelihood. Among all Gaussian models X such that Ei_jl =0
on I, the choice f]ij = S;; on J has maximum likelihood.



Applications & Related Work

e Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes.
See Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West
(2004) for example.

e Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen &
Gopinath (1999).

e Finance. ldentify links between sectors, etc.

e Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior
point methods for large, sparse MLE.
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Maximum Likelihood Estimation

We can estimate X by solving the following maximum likelihood problem:

max logdet X — Tr(SX)
xeS"

Problem here: How do we make ¥~1 sparse?
Or, in other words, how do we efficiently choose I and J7?

Solution: penalize the MLE.



AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

masx logdet X — Tr(SX) — pCard(X)
xXeS"”

where Card(X) is the number of nonzero elements in X.

e p=2/(m+ 1) for the Akaike Information Criterion (AIC).

o p= % for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .



Convex Relaxation

e We can form a convex relaxation of AIC or BIC penalized MLE

maéx logdet X — Tr(SX) — pCard(X)
xXeS"

replacing Card(X) by || X|[1 = >_,; | Xij| to solve

max logdet X — Tr(SX) — p|| X1
xXeS"

e This is the classic I; heuristic, || X ||1 is a convex lower bound on
Card(X).

e See Fazel, Hindi & Boyd (2000) or d'Aspremont, El Ghaoui, Jordan &
Lanckriet (2004) for related applications.
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Robustness

This penalized MLE problem can be rewritten:

max min logdet X — Tr((S —U)X)
xXeS" |U|<p

This can be interpreted as a robust MLE problem with componentwise
noise of magnitude p on the elements of S.

The relaxed sparsity requirement is equivalent to a robustification.

See d'Aspremont et al. (2004) for similar results on sparse PCA.
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Algorithms

We need to solve:

max logdet X — Tr(SX) — p|| X |1
xXeS"

For medium size problems, this can be done using interior point methods.

In practice, we need to solve very large instances. . .

The || X||; penalty implicitly introduce O(n?) linear constraints.
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Algorithms

Here, we can exploit problem structure

e Our problem here has a particular min-max structure:

max min logdet X — Tr((S — U)X)
xXeS" |U|<p

e This min-max structure means that we use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense
problem instances.

e We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’'s method

Solve

min f(z)

e Starts from a particular min-max model on the problem:

f(z) = f(2) + max{(Tz,u) — o(u) : u€ Q)

e assuming that:

o f is defined over a compact convex set (J; C R"”

o f(x) is convex, differentiable and has a Lipschitz continuous gradient
with constant M > 0

o TERTLXTL

o ¢(u) is a continuous convex function over some closed compact set
n
2 C R".
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Nesterov’'s method

Assuming that a problem can be written according to this min-max model,
the algorithm works as follows. . .

e Regularization. Add strongly convex penalty inside the min-max
representation to produce an e-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizabal (1997) for example).

e Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .
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Nesterov’'s method

The min-max model makes this an ideal candidate for robust optimization

For fixed problem size, the number of iterations required to get an ¢
solution is given by
1
€
compared to O (e%) for generic first-order methods.
Each iteration has low memory requirements.

Change in granularity of the solver: larger number of cheaper iterations.
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Nesterov’'s method

e We solve the following (modified) problem:

max min logdet X — Tr((S —U)X)
{XeS"™: al,xX=pI,} {UeS™: |U;;|<p}

equivalent to the original problem if a < 1/(||S|| + np) and 8 > n/p.

e \We can write this in the min-max model's format:

A

min max f(X)+4+ Tr((TX)U) = min f(X),

XeQ: UeQq Xe@
where:
o f(X)=—logdet X + Tr(SX)
o T = pl 2

o Q1:={XeS§" : al, XX pI,}
o Qy:={U €S5" : ||U||lso <1}
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Nesterov’'s method

Regularization. The objective is first smoothed by penalization, we define:

fo(X) = f(X) + max Tr(XU) — (¢/2D2)d2(U)

which is an € approximation of f where
e the prox function on Q2 is do(U) = 2 Tr(UTU)
e the constant Dy is given by Ds := maxg,d2(U) = n?/2.

In this case, this corresponds to a classic Moreau-Yosida regularization of the
penalty || X||1 and the function f. has a Lipschitz continuous gradient with
constant:

L. := M + Dyp*/(2¢)
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Nesterov’'s method

Optimal first-order minimization. The minimization algorithm in Nesterov
(1983) then involves the following steps:

Choose ¢ > 0 and set Xy = 31, For K =0,...,N(e¢) do

1. Compute Vf(Xy) = - X 1+ 3+ U*(Xy)

2. Find
Y, = argminy {Tr(V /(X)) (Y — Xg)) + 2L ||Y — Xil|% : YV € O}

3. Find 7, =
arg min x {Leﬁle(X) + 3R VTRV (X)(X - X;) © X € Ql}.

4. Update X = kL—I—SZk + Z—:[;)Yk.
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Nesterov’'s method

We have chosen a prox function d;(X) for the set {al, = X < (1,}:

di(X) = —logdet X + log (3

Step 1 only amount to computing the inverse of X and the (explicit)
solution to the regularized subproblem on @)s.

Steps 2 and 3 are both projections on ()1 and require an eigenvalue
decomposition.

This means that the total complexity estimate of the method is:
v/ n(l
O (R n(log ) (4n*op + n3\@)>
€

where log k = log(3/a) bounds the solution’s condition number.
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Dual block-coordinate descent

e Here we consider the dual of the original problem:
maximize logdet(S + U)

subject to  ||U||co < p
S+U>=0

e The diagonal entries of an optimal U are U;; = p.

e We will solve for U column by column, sweeping all the columns.
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Dual block-coordinate descent

e Let C be the current iterate, after permutation we can always assume
that we optimize over the last column:

. Cct! C'? +u
maximize logdet C20 4 T (122 )
subject to  ||ul|eo < p

where C'1? is the last column of C' (off-diag.).

e Each iteration reduces to a simple box-constrained QP:

minimize w!C 'y
subject to  ||ul|eo < p

e We stop when Tr(SX) + p[|X]||1 —n < e where X = C~1.
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Numerical Examples

Generate random examples:

e Take a sparse, random p.s.d. matrix A € S™

e We add a uniform noise with magnitude o to its inverse

We then solve the penalized MLE problem (or the modified one):

max logdet X — Tr(SX) — p|| X
xXeS"

and compare the solution with the original matrix A.
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Numerical Examples

A basic example. . .

Original inverse A Noisy inverse ¥~ 1 Solution for p = o

The original inverse covariance matrix A, the noisy inverse >~ 1 and the
solution.
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Error (in %)

log(p/o)

Average and standard deviation of the percentage of errors (false positives +
false negatives) versus log(p/c) on random problems.
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Coefficients
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Classification Error. Magnitude of solution coefs associated with nonzero
coefs in A (solid line) and magnitude of solution coefs associated with zero
coefs in A (dashed line). Here n = 100.
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Duality Gap
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Computing time. Convergence plot a random problem of size n = 100, this
time comparing Nesterov's method where ¢ = 5 (solid line A) and € = 1

(solid line B) with one sweep of the block-coordinate descent method
(dashed line C).
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Conclusion

e A convex relaxation for sparse covariance selection.
e Robustness interpretation.
e Two algorithms for dense large-scale instances.

e Precision requirements? Thresholding? . ..

Slides and software available online at www.princeton.edu/~aspremon
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