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Introduction

• We estimate a sample covariance matrix Σ from empirical data.

• Objective: infer dependence relationships between variables.

• We also want this information to be as sparse as possible.

• Basic solution: look at the magnitude of the covariance coefficients:

|Σij| > β ⇔ variables i and j are related.

We can do better. . .
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Covariance Selection

Following Dempster (1972), look for zeros in the inverse matrix instead:

• Parsimony. Suppose that we are estimating a Gaussian density:

f(x,Σ) =
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,

a sparse inverse matrix Σ−1 corresponds to a sparse representation of the
density f as a member of an exponential family of distributions:

exp(α0 + t(x) + α11t11(x) + . . . + αrstrs(x))

with here tij(x) = xixj and αij = Σ−1
ij .

• Dempster (1972) calls Σ−1
ij a concentration coefficient.

3



Covariance Selection

• We have m + 1 observations xi ∈ Rn on n random variables.

• We can estimate a sample covariance matrix S such that

S =
1

m

m+1
∑

i=1

(xi − x̄)(xi − x̄)T

• We choose a (symmetric) subset I of index pairs and denote by J the
remaining indices so that I ∪ J = N

2.

• We choose a matrix Σ̂ such that:

◦ Σ̂ij = Sij for all indices (i, j) in J

◦ Σ̂−1
ij = 0 for all indices (i, j) in I
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Covariance Selection

Why is this a better choice? Dempster (1972) shows:

• Existence and Uniqueness. If there is a positive semidefinite matrix Σ̂ij

satisfying Σ̂ij = Sij on J , then there is only one such matrix satisfying

Σ̂−1
ij = 0 on I.

• Maximum Entropy. Among all Gaussian models Σ such that Σij = Sij on

J , the choice Σ̂−1
ij = 0 on I has maximum entropy.

• Maximum Likelihood. Among all Gaussian models Σ such that Σ−1
ij = 0

on I, the choice Σ̂ij = Sij on J has maximum likelihood.
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Applications & Related Work

• Gene expression data. The sample data is composed of gene expression
vectors and we want to isolate links in the expression of various genes.
See Dobra, Hans, Jones, Nevins, Yao & West (2004), Dobra & West
(2004) for example.

• Speech Recognition. See Bilmes (1999), Bilmes (2000) or Chen &
Gopinath (1999).

• Finance. Identify links between sectors, etc.

• Related work by Dahl, Roychowdhury & Vandenberghe (2005): interior
point methods for large, sparse MLE.

6



Outline

• Introduction

• Robust Maximum Likelihood Estimation

• Algorithms

• Numerical Results
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Maximum Likelihood Estimation

• We can estimate Σ by solving the following maximum likelihood problem:

max
X∈Sn

log det X − Tr(SX)

• Problem here: How do we make Σ−1 sparse?

• Or, in other words, how do we efficiently choose I and J?

• Solution: penalize the MLE.

8



AIC and BIC

Original solution in Akaike (1973), penalize the likelihood function:

max
X∈Sn

log det X − Tr(SX) − ρCard(X)

where Card(X) is the number of nonzero elements in X.

• ρ = 2/(m + 1) for the Akaike Information Criterion (AIC).

• ρ = log(m+1)
(m+1) for the Bayesian Information Criterion (BIC).

Of course, this is a (NP-Hard) combinatorial problem. . .
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Convex Relaxation

• We can form a convex relaxation of AIC or BIC penalized MLE

max
X∈Sn

log det X − Tr(SX) − ρCard(X)

replacing Card(X) by ‖X‖1 =
∑

ij |Xij| to solve

max
X∈Sn

log det X − Tr(SX) − ρ‖X‖1

• This is the classic l1 heuristic, ‖X‖1 is a convex lower bound on
Card(X).

• See Fazel, Hindi & Boyd (2000) or d’Aspremont, El Ghaoui, Jordan &
Lanckriet (2004) for related applications.
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Robustness

• This penalized MLE problem can be rewritten:

max
X∈Sn

min
|Uij|≤ρ

log det X − Tr((S − U)X)

• This can be interpreted as a robust MLE problem with componentwise
noise of magnitude ρ on the elements of S.

• The relaxed sparsity requirement is equivalent to a robustification.

• See d’Aspremont et al. (2004) for similar results on sparse PCA.
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Algorithms

• We need to solve:

max
X∈Sn

log det X − Tr(SX) − ρ‖X‖1

• For medium size problems, this can be done using interior point methods.

• In practice, we need to solve very large instances. . .

• The ‖X‖1 penalty implicitly introduce O(n2) linear constraints.
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Algorithms

Here, we can exploit problem structure

• Our problem here has a particular min-max structure:

max
X∈Sn

min
|Uij|≤ρ

log det X − Tr((S − U)X)

• This min-max structure means that we use prox function algorithms by
Nesterov (2005) (see also Nemirovski (2004)) to solve large, dense
problem instances.

• We also detail a “greedy” block-coordinate descent method with good
empirical performance.
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Nesterov’s method

Solve
min
x∈Q1

f(x)

• Starts from a particular min-max model on the problem:

f(x) = f̂(x) + max
u

{〈Tx, u〉 − φ̂(u) : u ∈ Q2}

• assuming that:

◦ f is defined over a compact convex set Q1 ⊂ Rn

◦ f̂(x) is convex, differentiable and has a Lipschitz continuous gradient
with constant M ≥ 0

◦ T ∈ Rn×n

◦ φ̂(u) is a continuous convex function over some closed compact set
Q2 ⊂ Rn.
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Nesterov’s method

Assuming that a problem can be written according to this min-max model,
the algorithm works as follows. . .

• Regularization. Add strongly convex penalty inside the min-max
representation to produce an ǫ-approximation of f with Lipschitz
continuous gradient (generalized Moreau-Yosida regularization step, see
Lemaréchal & Sagastizábal (1997) for example).

• Optimal first order minimization. Use optimal first order scheme for
Lipschitz continuous functions detailed in Nesterov (1983) to the solve
the regularized problem.

Caveat: Only efficient if the subproblems involved in these steps can be
solved explicitly or very efficiently. . .
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Nesterov’s method

• The min-max model makes this an ideal candidate for robust optimization

• For fixed problem size, the number of iterations required to get an ǫ
solution is given by

O

(

1

ǫ

)

compared to O
(

1
ǫ2

)

for generic first-order methods.

• Each iteration has low memory requirements.

• Change in granularity of the solver: larger number of cheaper iterations.
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Nesterov’s method

• We solve the following (modified) problem:

max
{X∈Sn

: αIn�X�βIn}
min

{U∈Sn
: |Uij|≤ρ}

log det X − Tr((S − U)X)

equivalent to the original problem if α ≤ 1/(‖S‖ + nρ) and β ≥ n/ρ.

• We can write this in the min-max model’s format:

min
X∈Q1

max
U∈Q2

f̂(X) + Tr((TX)U) = min
X∈Q1

f(X),

where:

◦ f̂(X) = − log det X + Tr(SX)

◦ T = ρIn2

◦ Q1 := {X ∈ Sn : αIn � X � βIn}
◦ Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1}.
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Nesterov’s method

Regularization. The objective is first smoothed by penalization, we define:

fǫ(X) := f̂(X) + max
U∈Q2

Tr(XU) − (ǫ/2D2)d2(U)

which is an ǫ approximation of f where

• the prox function on Q2 is d2(U) = 1
2 Tr(UTU)

• the constant D2 is given by D2 := maxQ2d2(U) = n2/2.

In this case, this corresponds to a classic Moreau-Yosida regularization of the
penalty ‖X‖1 and the function fǫ has a Lipschitz continuous gradient with
constant:

Lǫ := M + D2ρ
2/(2ǫ)
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Nesterov’s method

Optimal first-order minimization. The minimization algorithm in Nesterov
(1983) then involves the following steps:

Choose ǫ > 0 and set X0 = βIn, For k = 0, . . . , N(ǫ) do

1. Compute ∇fǫ(Xk) = −X−1 + Σ + U∗(Xk)

2. Find
Yk = arg minY {Tr(∇fǫ(Xk)(Y − Xk)) + 1

2Lǫ‖Y − Xk‖2
F : Y ∈ Q1}.

3. Find Zk =

arg minX

{

Lǫβ
2d1(X) +

∑k
i=0

i+1
2 Tr(∇fǫ(Xi)(X − Xi)) : X ∈ Q1

}

.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk.
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Nesterov’s method

• We have chosen a prox function d1(X) for the set {αIn � X � βIn}:

d1(X) = − log det X + log β

• Step 1 only amount to computing the inverse of X and the (explicit)
solution to the regularized subproblem on Q2.

• Steps 2 and 3 are both projections on Q1 and require an eigenvalue

decomposition.

• This means that the total complexity estimate of the method is:

O

(

κ
√

n(log κ)

ǫ
(4n4αρ + n3

√
ǫ)

)

where log κ = log(β/α) bounds the solution’s condition number.
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Dual block-coordinate descent

• Here we consider the dual of the original problem:

maximize log det(S + U)
subject to ‖U‖∞ ≤ ρ

S + U � 0

• The diagonal entries of an optimal U are Uij = ρ.

• We will solve for U column by column, sweeping all the columns.
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Dual block-coordinate descent

• Let C be the current iterate, after permutation we can always assume
that we optimize over the last column:

maximize log det

(

C11 C12 + u
C21 + uT C22

)

subject to ‖u‖∞ ≤ ρ

where C12 is the last column of C (off-diag.).

• Each iteration reduces to a simple box-constrained QP:

minimize uTC−1u
subject to ‖u‖∞ ≤ ρ

• We stop when Tr(SX) + ρ‖X‖1 − n ≤ ǫ where X = C−1.
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Numerical Examples

Generate random examples:

• Take a sparse, random p.s.d. matrix A ∈ Sn

• We add a uniform noise with magnitude σ to its inverse

We then solve the penalized MLE problem (or the modified one):

max
X∈Sn

log det X − Tr(SX) − ρ‖X‖1

and compare the solution with the original matrix A.
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Numerical Examples

A basic example. . .

   

 

 

 

 

 

 
   

 

 

 

 

 

 
   

 

 

 

 

 

 

Noisy inverse Σ−1 Solution for ρ = σOriginal inverse A

The original inverse covariance matrix A, the noisy inverse Σ−1 and the
solution.
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Computing time. CPU time (in seconds) to reach gap of ǫ = 1 versus
problem size n on random problems, solved using Nesterov’s method (stars)
and the coordinate descent algorithm (dots).
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Conclusion

• A convex relaxation for sparse covariance selection.

• Robustness interpretation.

• Two algorithms for dense large-scale instances.

• Precision requirements? Thresholding? . . .

Slides and software available online at www.princeton.edu/∼aspremon
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