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Outline of the talk

-

# Examples of multiscale problems
# A prototypical 1D multiscale method

# Analysis of the method.
s case of a convex interatomic potential
» Lennard-Jones case

o |
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-

steel vessel

combustible

Materials aging

afew meters

Nuclear power plants:

Nuclear reaction => emission
of neutrons, that interact with
the atomistic lattice (billiard).

|
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Materials aging (CEA pictures)

® defects formation (vacancies or interstitials);
® these defects diffuse and react one with each other;

® at the macroscopic scale, the material properties are modified.

Several space scales (107'° to 1 m) and time scale (10~!° s to tens of
years) are involved.

Hierarchical approach: compute parameters of a coarse-grain model with
fine scale model (MD = kMC =- ... =- Continuum mechanics)
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Multiscale methods: concurrent coupling
D

® the macroscopic constitutive law (either postulated or computed from
a finer scale model) is valid only in the subregion €2, C .

omain decomposition approach:

® |dea: model 2, at the macroscopic scale and Q2 \ €2;, at the fine
scale; difficulty: couple both models at the interface.

Approach without any macroscopic constitutive law:

® one does not want / cannot make use of a constitutive law at the
macroscopic scale.

® Idea: numerically compute the macroscopic constitutive law
em — oy through computations at the microscopic scale.

o |
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The two models that we consider here

-

® Continuum Mechanics: u(x) the current position:
/ Wy (Vu(zx))dx

— Minimize E;(u);

— Solve the equilibrium equations.

¢ computational efficiency;

& postulate W,,; does not take into account atomistic nature of
matter;

® Molecular mechanics (lattice statics):

Eﬂ(uo,...,uN):%ZW(uj—

V7]
¢ atomic scale phenomena can be described,;

\_ o cost! J
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Domain decomposition methods

.

®» Quasi Continuum Method:
Tadmor, Phillips, Ortiz, Langmuir 1996
Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, IMPS 1999
Dupuy, Tadmor, Miller, Phillips, PRL 2005
Website: www. qcrret hod. com

xamples:

» MAAD method (QM / MD/ FE):
Rudd and Broughton, Abraham, Bernstein, Kaxiras, Phys. Rev. B 60,
1999

See also Nakano, Kalia, Vashishta, Lidorikis, Belytschko, ...

® Bridging scale coupling approach: Karpov et al.

|
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The QuasiContinuum Method (QCM) In its first version

Fl'admor, Phillips, Ortiz (Langmuir, 1996):

L, = Z Wu; — uy)
J>1
EM ~ F = Z |Qe‘ W s (V’U,me) +

D D«
local FE

nonlocal FE 1€,

P1 interpolation : u(x) = Z U Ni(x)
k

e\ e; =e;(U) =Y Wy(u(jh) —u(ih))
jocal FE N\, |09\ 7

h : atomistic lattice parameter

¢ the micro/macro partition of €2 can evolve along the simulation
(adaptivity);

global minimum: equilibrium at zero temperature.

|
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Nanoindentation simulation (CEA picture)

-

Dislocations appear: localized core,
long range effects.

Other possible applications: fracture
simulation, ...

o |
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Some more recent approaches to QCM

-

® split the set of atoms (and not the Finite Elements) into local /
nonlocal atoms:

Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, IMPS 1999
Knap and Ortiz, IMPS 2001

® QCM method to evaluate NVT statistical averages computations:
Dupuy, Tadmor, Miller, Phillips, PRL 2005

In this work, we will look at some error analysis of the QCM. On this
subject, see also Ping Lin works (2002, 2005).

o |
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Derivation of a continuum model from an atomistic model

fPoint wise approaches: E,(u) — Ejs(u) T

® Equilibrium, deterministic case:
Blanc, Le Bris, Lions, Arch Rat Mech Anal 2002 (bulk energy)
1 model: interatomic potential, or some QM models (eg TFW).

Blanc, Le Bris, CRAS 2005 (surface energy)
Arndt and Griebel, SIAM MMS 2005 (bulk energy)

® Equilibrium, stochastic networks:
Blanc, Le Bris, Lions (bulk energy)

® Dynamical case: discrete dynamics — time-dependent PDE
Berezhnyy and Berlyand, JMPS 2006

I'-limit approach (equilibrium): inf £/, — inf I/;: Braides et al, Arch Rat J
ech Anal 1999
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Methods without any macroscopic constitutive law

f EM(u):AWM(Vu(a:))d:I: —‘

Computation of €;,; — o through microscopic considerations, at each
Gauss point of the macroscopic mesh:

EM O M

! T averaging

e, Mmicro law o,

—

BC on the micro problem are to be consistant with .

This approach is being used in the continuum mechanics community.

E and Engquist: HMM method.
\—E and Li: HMM method where microscopic model = molecular dynamics J
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Alternative approaches to multiple scale coupling

o N

® From the atomistic model, derive a continuum mechanics model with
higher order derivatives:

B (1) = /Q Was (Vu(z), V2u(z))dz

and minimize / look for critical points (Triantafyllidis, Bardenhagen).

® Approximation of the discrete variational problems throught a I limit
homogenization approach (Braides, Dal Maso, Garroni);

® Compare local (instead of global) minimizers of macro and micro
energies (E, Ming).

o |
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Paradigm: coupling atomistic with continuum mechanics

Non smooth deformation
S —

mooth deformation\

1000 A

2000 A

$ |arge computational domain;

® Expected deformation: non-smooth in some small region of the solid.

Method: variational problem coupling an (accurate) atomistic model with a
(cheap) continuum mechanics model (Domain Decomposition idea).

Search for global minima: statics, temperature = 0.
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The atomistic model

|
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The atomistic model

|7 Reference configuration (1D): Q= (0,L) C R T
Current position of atom <: U’
Atomic lattice parameter: h, with Nh = L
1 . |
: . 0 N )
Energy per particle: Byl u) = o— Z Wi, (v — u?)
~ 7]
W (§)
' h 3 J ) ul —u'
\/ > Wi —u') =W ;
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The atomistic model

|7 Reference configuration (1D): Q= (0,L) C R T
Current position of atom <: U’
Atomic lattice parameter: h, with Nh = L
1 . |
: . 0 N )
Energy per particle: Byl u) = o— Z Wi, (v — u?)
~ 7]
W (§)
b 3 j i w — v’
\/ > Wi —u') =W ;

Atomistic model (assuming Nearest Neighbor interactions):
N—1 - - N
h w Tt — h -
0 Ny _ E : E : ) .
Eu(u,...,u )—Zi_o LL ( h )—LZO’U/ f(’l,h)

L inf{ Eu(uo,...,uN), w? =0, v =a, vt >ui} — J
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Derivation of a continuum model from an atomistic model

fBIanc, Le Bris, Lions, Arch Rat Mech Anal 2002: Consider a macroscopic T
deformation wu:

E,(u(0),u(h),...,u(Nh)) =

fil - (u((i + 1)2) - U(ih))

1=

—h—0

~ = NS

S~

W (v (z))dx =: Ep(u)

—  Continuum model (elastic energy density derived from atomistic
model).

This derivation can been done in 3D, without the nearest neighbor
interaction assumption: = W¢s(Vu) as a function of W (Vu).

o |
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Toward a coupled problem

N

f u is smooth on €2, we associate to
inf{ B, (... ul), wl =0, vV =a, W > uz}

the problem
inf { Epr(u), w€ H(Q), u(0) =0, u(L) =a, v’ > 0a.e. on Q}

What if the deformation is not smooth on the whole domain?

Make use of in different domains, and pass to the limit
only in some part of €).

o |
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Coupled model: a first attempt

E.(u) = /Q ( )W(u’(a:)) — f(x)u(z) dr

+ Y W (“Mh_ “’) — ' f(ih)

1€Q, (u)

Qs (u) = subdomain where « is smooth,
where

(2, (u) = subdomain where w« is non-smooth.
For instance: Qp(u) = {x € Q;|u”(x)| < C}.

Highly nonlinear problem —
remove the link between « and the partition of 2

o |
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The natural coupled model

For any partition Q = Q3 UQ, with Q= U,(a;h,bjh):
+——+— 1
/ | N
ajh Continuum mech. bih Atomistic model aj+1h

E.(u) := /Q W(u'(x)) — f(z) u(z) dx

+ h Y W(“th_“i)—h S W f(in)

i,[ih,ih+h]CS, i,ih€Q,,

Balance between numerical efficiency / precision
Consistency: limy,_g E.(u) = Ep(u).

E.(u), wa, € H' (Qum), g, = (W)irca,,

inf g
u(l)=a, u J

e = @), w = (), wl0) =
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The coupled problem after discretization

Discretization of the continuum mechanics term on a mesh of size H > h;:

Ef (U,uq,) = /Q W(ZUkN,’g(x)> d:z:—ZUk . f(x)Ny(x) dx
M L L M

RS |
S W( . )—h S i fih)
i\[ih,ih+h]CQ,, i,ih€Q,
Mesh size H Atomic spacing h
N (z)
—+—+—1—1 X |Ml
a;h Continuum mech. bih Atomistic model ajt+1h

This method is the 1D version of the Quasi-Continuum Method (v 1996).

o |
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Questions

f E.(u) = W (u'(x)) d + hZW (uiﬂ _ uz) T
Q

Qs h

"

® How to choose the partition?
ldea: the set 2, should consist of all the zones of regularity of u,

® |Is E. agood definition for the coupled energy?
® Bounds on the error?
3 |
#® Convex interatomic potential 1V; ok 1 S -
1) AR S E—
® The Lennard-Jones case. | |
oLl
1 | |

| 0 1 2 3
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Convex case

 feC®@); WeCR) with 0<a<W(z) and W'(2)| <flz—1]

W convex — elliptic regularity: {singularities of «} = {singularities of f}

The interval (¢h,ih 4 h) is said to be regular if

h/ﬁ)f

| fll o (insininy < Ky @nd  f" € Li(ih,ih + h), ||| L2n,ingn) < L

Set Q= U{(ih, ih 4+ h) which are regular} = U;(ajh,bjh)

Continuum mech. Atomistic model Continuum mech.

Partition just depends on
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Estimates between . and u,, (convex case)

h_et u,, be the minimizer of £, and u. the minimizer of E.. T

With previous definition of partition, d Ay such that, for all h < h,

: : 41 i
uZ—|—1_uZ u,l' — U
sup |— ¢c K Pl < Chk
h h = R

lue = (Mewp)'l| L (2,) < Chiiy,

C

Sl;zp ‘ué — uz} < Chiky, ||ue —Heuy||peo(q,) < Chiy,
i€Q,

‘IC — IM‘ < Ch/ﬁlf.

I1.: affine interpolation operator
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The Lennard-Jones case

|
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The atomistic problem (f = 0)

N—-1 i+1 4
f inf{Eu(u)—hZWLJ (u u),uO—O,uN—a,uT} T
1=0

h

—if a < L (compression): unique minimizer, smooth (homog. strain).
—if a > L (tension): many minimizers, “smooth” everywhere except on a
single bond:

u(x)

u’u, - u’u, a — L 1] ”
— ; ~h—0 (“crack”)
41 0
iy S urtt —u
Vi # i, - ; P~

L. Truskinovsky, 1996.

ecause NN interaction and f = 0, crack location can be anywhere (same

energy). J
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The atomistic problem (f € C°(Q))

R N }

N-—1 N
inf{EM(u)hZWLJ( n >—hzuzf(7,h), uO:O,uN:a,,’LLT
1=0 1=0

There exists a threshold 6, such that:

—if a < 6,,, unique minimizer;

—if a > 6, one or many minimizers, smooth everywhere except on a
single bond (7, ¢, + 1):

h

iy 41

Vi # 1y, (’LLZ—H — uz) —p—0 0

Crack location can be characterized:

o Fi:=hY f(jh): Fp=itF, |
j=1
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Macroscopic problem

ueD(Q), v =Du+» vidy,, DueL'(Q), z; € Q
1eN

B { }.7

inf {EM(u), u € SBV(Q), Diu c L'2(Q), v > 0a.e.,u(0) =0,u(L) = a}
When f = 0:
® Ifa<Ll: wupy(xr)=azr/L.

® |[fa > L: infinity of solutions, uyr = >+ > . viH(z — ;).
Crack location is not determined.

Results can be generalized to the case f # 0: 40, S.t.
—if a < 6,4, 3! solution, which is smooth;
—if a > 0,4, crack whose location can be characterized.
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Natural micro-macro approach

fSuppose f = 0: interesting case is a > L: T

Atomistic problem: a unique crack appears, no specific location.
Aim: use a coupled model s.t.

— the atomistic zone contains the crack,

— any minimizer of coupled problem is close to a minimizer of the atomistic
model.

For any partition 2 = Q,, U 2,

/ il i
EC(’U,) — WLJ(U (SIZ))CZ&?%—}Z Z Wi ( s )
m i,[ih,ih+h]CQ,

Ee(u), uq, € SBV(Qum), uq, = (ui)ihegﬂ,
u®% =u((a;h)"), ub =u((bjh)™), w(0) =0, u(L) =a, u ]

inf

\_ Where the crack is going to appear? J
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Energy cost of crack (case f = 0)

L g
E.(u) = Wry (x)dz+hy W ( )
(W= [ Wis'(@) ZJ h O
u(x)
If crack localized in 2,
i+1 i
o v (z) = 1+(a—L)oy,, Vi, “ - v

Ee(u) = [Qu|Wry(1) +[Qu| Wrs(1) = LWr,(1)

|

F. Legoll, AtC coupling methods workshop, Albuquergque, March 2006 — p. 29



u(x)

E.(u)

u(x)

Energy cost of crack (case f = 0)

1+1 )
, wtt —
o WLJ(U (ZE))dZC + h QE Wt ( 7 )

If crack localized in 2,

v (z) = 1+(a—L)oy,, Vi, =1

Ee(u) = [Qu|Wry(1) +[Qu| Wrs(1) = LWr,(1)

uz—{—l —

If crack in Q,: u'(z) =1, — =1 (i #1,)
Ee(u) = [Qu|Wrs(1)
+ (|| — h) W s(1) + hWp,;(broken bond)
~ (L—=h)Wr;1) )

WLJ(l) < 0 EC(F c QM) < EC(F c Q,u) J
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The natural algorithm leads to issues

fFirst algorithm (refine): initialize 2, = €, T
® solve the coupled problem inf E.(u) with €, fixed;

® |ook for the zones where the minimizer u. is not smooth (e.g. has a
large derivative), enlarge (2, correspondingly and go back to step 1.

Then, attheend, €, = Q.

o |
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The natural algorithm leads to issues

fFirst algorithm (refine): initialize 2, = €, T

® solve the coupled problem inf E.(u) with €, fixed;

® |ook for the zones where the minimizer u. is not smooth (e.g. has a
large derivative), enlarge (2, correspondingly and go back to step 1.

Then, attheend, €, = Q.

Another algorithm (refine/unrefine): initialize 2, = €,

® solve the coupled problem inf E.(u) with €, fixed;

® |ook for the zones where the minimizer u. is smooth (resp. not

smooth), enlarge €2, (resp. (1,,) correspondingly and go back to step
1.

Then the algorithm does not converge.

o |
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A modified micro-macro approach

Fdea: give an energy cost (surface energy) to a crack in 2. T
Emod(u) = Wi (2)) — f(x) u(z) de
Qs
) S
+ h Z WLJ( h )—hz uf(@h)
i,[ih,th+h]CQ,, 1,5h €,
ST L
1+ 7, | b/ _
W (r) :=Wrs(r)+Vh (’r— ;T ) 2 | Wi,
+ | _
Wi (1) =0,Wr,(re) =0. 1 '
limy, o Fmod(u) = E(u) (consistency). or | /"_
1 \l | |

0 1 2 3 4

If f = 0, does that solve the problem?
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Energy cost of crack (case f = 0)

|7Emod (u) = /

{WLJ(u/(x)) + Vh(u' () - To)+} dz+h Z Wy (Uiﬂ — “ZV

Qs o h
u(x)
If crack localized in 2,

Qn | i+1 i

’ v (z) = 1+(a—L)oy,, Vi, “ 7 Y

. Emod(u) = Ec(u)+\/ﬁ(a—L) =L WLJ(1)+\/E(a — L)

u(@) If crack in €2,

I Emod(u) — Ec(u) — L WLJ(l)—h WLJ(1>
Qs \/E > h: Emod(F c QM) > Emod(F c Q,u)-

\— we f = 0: the modified approach is ok! J
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Partition Construction (Lennard-Jones case)

-

inf {EM(u), uw € SBV(Q), i, c L™2(Q), u' >0, u(0) =0, u(L) = a,} .

-

(1) Compute a solution u;, for the macro problem

u

(2) Define Qp; := U;(ih,ih 4+ h) with (¢h,ih + h) S.t.

1 f Nl oo insinrny < gy f1€ LM (ihyih 4 k), 1|2 ninn) < h%,
and u ;s is continuous on (ih,ih + h).
(3) On this partition, consider the modified coupled problem
> Emod (1), uja,, € WH™(Qur), ujq, = (u)ineq,,

L u®% =u((a;h)"), ub =u((bjh)™), w(0) =0, u(L) =a, u ] J
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Modified coupled problem: error estimates

h’here exists a threshold 8,, such that: T

® ifa <0, (nocrack case): J! solution umeg, €Stimates similar to the
convex case oNnes: ||[umod — Uy llwio < Chky.

® |Ifa > 0y There are one or many minimizer(s) for inf Enmnog.

o For any minimizer umog, @ “crack” nucleates in €2, at some bond
imod. T here is no crack in €,,.

» Letwu, be a minimizer of the atomistic model with “crack” in ¢,,.

1+1 ) 1+1 1
Uu — U Uu — U .
sup |—med __mod _ _p L1 < Ch (and same in Qy),
i€Q, h h
il i i+l i
unr]n(())dd — unngd ~h—0 @ — eMa u,uu _ u,ﬁ ~h—0 @ — 9M7

\_ )(u%ﬂgdd+1 - u?rrlngdd) - (UZM—H - u;f) < Ch, [ Imod — L] < Ch.
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In practice ...

f EF (U, uq,) :/QMW (zk: UW;Q(:::)) dx+h;W (“Mh_ “) T

7

o |
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In practice ...

f EM (U, uq,) / (ZUka )dethW(uiH—ui) T

7

e If crack localized in Qy,:
Qg / . C . ) ’U,H_1 — ui -
D UeNi(@) =1, .1 Vi, ———— =1
% El = (1Qu|—H) Wy (1) + HW, (H) + Q| Wiy (1)
H ~ (L—H) W (1)
ue) - wt — o
If crack in Q,: > " UpNj(z) = 1; — =1(i # i)
ECH(u) ~ (L—h) WLJ(l)
Qg
S Whenh < H < 1: EX(FeQy)>EXNFeQ,).
L N
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Emod(u) = Wi (' (x))dx + h;WLJ <Ui+1h Z)

°

o o

Conclusions on the Lennard-Jones case

Qnr

E.(u) = Wi (u'(z))dz + h ; Wes (um . u) a

"

Qs
In

&
S
£

|

1+1 )
, w Tt —
o Wt ( Ek Uka(ZL‘)> dx + h QE Wi ( 3 )

W

in a code, people work with E — good results.

if H — 0, X (u) — E.(u). However, inf E. and inf £ have
gualitatively different behaviours.

the problem inf E. has some flaws, inf F,oq has a better behaviour.

inf Ef IS not the discretized version of inf E ., but of inf Eroq.

|
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Conclusions

-

We have studied 1D materials described by NN pair interatomic potential,
and looked at their equilibrium at zero temperature:

® Convex potential: one can define a partition of €2 based only on the
body forces f.

® [ennard-Jones potential: there are issues with the natural coupling.
These issues disappear when FE discretization.

® \We propose another (consistent) definition for the coupling energy
and a strategy to partition €.

X. Blanc, C. Le Bris, F. Legoll, Analysis of a prototypical multiscale method coupling
atomistic and continuum mechanics, Mathematical Modelling and Numerical
Analysis, vol. 39 (2005).

o |
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