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Outline of the talk

Examples of multiscale problems

A prototypical 1D multiscale method

Analysis of the method:
case of a convex interatomic potential
Lennard-Jones case
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combustible

steel vessel

a few meters

Nuclear power plants:

Nuclear reaction => emission
of neutrons, that interact with
the atomistic lattice (billiard).
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Materials aging (CEA pictures)

=⇒

defects formation (vacancies or interstitials);

these defects diffuse and react one with each other;

at the macroscopic scale, the material properties are modified.

Several space scales (10−10 to 1 m) and time scale (10−15 s to tens of
years) are involved.

Hierarchical approach: compute parameters of a coarse-grain model with
a fine scale model (MD ⇒ kMC ⇒ . . .⇒ Continuum mechanics)
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Multiscale methods: concurrent coupling

Domain decomposition approach:

the macroscopic constitutive law (either postulated or computed from
a finer scale model) is valid only in the subregion ΩM ⊂ Ω.

Idea: model ΩM at the macroscopic scale and Ω \ ΩM at the fine
scale; difficulty: couple both models at the interface.

Approach without any macroscopic constitutive law:

one does not want / cannot make use of a constitutive law at the
macroscopic scale.

Idea: numerically compute the macroscopic constitutive law
εM → σM through computations at the microscopic scale.
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The two models that we consider here

Continuum Mechanics: u(x) the current position:

EM (u) =

∫

Ω

WM (∇u(x))dx

→ Minimize EM (u);
→ Solve the equilibrium equations.
⊕ computational efficiency;
	 postulate WM ; does not take into account atomistic nature of
matter;

Molecular mechanics (lattice statics):

Eµ(u0, . . . , uN ) =
1

2

∑

i6=j

W
(

uj − ui
)

⊕ atomic scale phenomena can be described;
	 cost!
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Domain decomposition methods

Examples:

Quasi Continuum Method:
Tadmor, Phillips, Ortiz, Langmuir 1996
Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, JMPS 1999
Dupuy, Tadmor, Miller, Phillips, PRL 2005
Website: www.qcmethod.com

MAAD method (QM / MD/ FE):
Rudd and Broughton, Abraham, Bernstein, Kaxiras, Phys. Rev. B 60,
1999

See also Nakano, Kalia, Vashishta, Lidorikis, Belytschko, . . .

Bridging scale coupling approach: Karpov et al.
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The QuasiContinuum Method (QCM) in its first version

Tadmor, Phillips, Ortiz (Langmuir, 1996):

Eµ =
∑

j>i

W (uj − ui)

Eµ ≈ E =
∑

local FE

|Ωe| WM

(

∇u|Ωe

)

+
∑

nonlocal FE

∑

i∈Ωe

ei

local FE

P1 interpolation : u(x) =
∑

k

UkNk(x)

ei = ei(U) =
∑

j 6=i

Wµ(u(jh) − u(ih))

h : atomistic lattice parameter

⊕ the micro/macro partition of Ω can evolve along the simulation
(adaptivity);
	 global minimum: equilibrium at zero temperature.
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Nanoindentation simulation (CEA picture)

Dislocations appear: localized core,
long range effects.

Other possible applications: fracture
simulation, . . .
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Some more recent approaches to QCM

split the set of atoms (and not the Finite Elements) into local /
nonlocal atoms:
Shenoy, Miller, Tadmor, Rodney, Phillips, Ortiz, JMPS 1999
Knap and Ortiz, JMPS 2001

QCM method to evaluate NVT statistical averages computations:
Dupuy, Tadmor, Miller, Phillips, PRL 2005

In this work, we will look at some error analysis of the QCM. On this
subject, see also Ping Lin works (2002, 2005).
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Derivation of a continuum model from an atomistic model

Point wise approaches: Eµ(u) → EM (u)

Equilibrium, deterministic case:
Blanc, Le Bris, Lions, Arch Rat Mech Anal 2002 (bulk energy)

µ model: interatomic potential, or some QM models (eg TFW).

Blanc, Le Bris, CRAS 2005 (surface energy)
Arndt and Griebel, SIAM MMS 2005 (bulk energy)

Equilibrium, stochastic networks:
Blanc, Le Bris, Lions (bulk energy)

Dynamical case: discrete dynamics → time-dependent PDE
Berezhnyy and Berlyand, JMPS 2006

Γ-limit approach (equilibrium): inf Eµ → inf EM : Braides et al, Arch Rat
Mech Anal 1999
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Methods without any macroscopic constitutive law

EM (u) =

∫

Ω

WM (∇u(x))dx

Computation of εM → σM through microscopic considerations, at each
Gauss point of the macroscopic mesh:

εM σM

↓ ↑ averaging

εµ micro law
−→

σµ

BC on the micro problem are to be consistant with εM .

This approach is being used in the continuum mechanics community.

E and Engquist: HMM method.
E and Li: HMM method where microscopic model = molecular dynamics
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Alternative approaches to multiple scale coupling

From the atomistic model, derive a continuum mechanics model with
higher order derivatives:

EM (u) =

∫

Ω

WM (∇u(x),∇2u(x))dx

and minimize / look for critical points (Triantafyllidis, Bardenhagen).

Approximation of the discrete variational problems throught a Γ limit
homogenization approach (Braides, Dal Maso, Garroni);

Compare local (instead of global) minimizers of macro and micro
energies (E, Ming).
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Paradigm: coupling atomistic with continuum mechanics

2000 Å

1000 Å

Non smooth deformation
Smooth deformation

Large computational domain;

Expected deformation: non-smooth in some small region of the solid.

Method: variational problem coupling an (accurate) atomistic model with a
(cheap) continuum mechanics model (Domain Decomposition idea).

Search for global minima: statics, temperature = 0.
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The atomistic model

Reference configuration (1D): Ω = (0, L) ⊂ R

Current position of atom i: ui

Atomic lattice parameter: h, with Nh = L

Energy per particle: Eµ(u0, . . . , uN ) =
1

2N

∑

i6=j

Wh

(

uj − ui
)

ξ

Wh(ξ)

h Wh(uj − ui) = W

(

uj − ui

h

)

Atomistic model (assuming Nearest Neighbor interactions):

Eµ(u0, . . . , uN ) =
h

L

N−1
∑

i=0

W

(

ui+1 − ui

h

)

− h

L

N
∑

i=0

ui f(i h)

inf
{

Eµ(u0, . . . , uN ), u0 = 0, uN = a, ui+1 > ui
}

→ Intractable!
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Derivation of a continuum model from an atomistic model

Blanc, Le Bris, Lions, Arch Rat Mech Anal 2002: Consider a macroscopic
smooth deformation u:

Eµ(u(0), u(h), . . . , u(Nh)) =
h

L

N−1
∑

i=0

W

(

u((i + 1)h) − u(ih)

h

)

→h→0
1

L

∫

Ω

W (u′(x)) dx =: EM (u)

→ Continuum model (elastic energy density derived from atomistic
model).

This derivation can been done in 3D, without the nearest neighbor
interaction assumption: =⇒ WCM (∇u) as a function of W (∇u).
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Toward a coupled problem

If u is smooth on Ω, we associate to

inf
{

Eµ(u0, . . . , uN ), u0 = 0, uN = a, ui+1 > ui
}

the problem

inf
{

EM (u), u ∈ H1(Ω), u(0) = 0, u(L) = a, u′ > 0 a.e. on Ω
}

What if the deformation is not smooth on the whole domain?

Make use of different models in different domains, and pass to the limit
only in some part of Ω.
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Coupled model: a first attempt

Ec(u) :=

∫

ΩM (u)

W (u′(x)) − f(x) u(x) dx

+ h
∑

i∈Ωµ(u)

W

(

ui+1 − ui

h

)

− uif(ih)

where







ΩM (u) = subdomain where u is smooth,

Ωµ(u) = subdomain where u is non-smooth.

For instance: ΩM (u) = {x ∈ Ω; |u′′(x)| ≤ C}.

Highly nonlinear problem →
remove the link between u and the partition of Ω
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The natural coupled model

For any partition Ω = ΩM ∪ Ωµ with ΩM = ∪j(ajh, bjh):

bjhajh aj+1hContinuum mech. Atomistic model

Ec(u) :=

∫

ΩM

W (u′(x)) − f(x) u(x) dx

+ h
∑

i,[ih,ih+h]⊂Ωµ

W

(

ui+1 − ui

h

)

− h
∑

i,ih∈Ωµ

uif(ih)

Balance between numerical efficiency / precision
Consistency: limh→0 Ec(u) = EM (u).

inf







Ec(u), u|ΩM
∈ H1(ΩM ), u|Ωµ

≡ (ui)ih∈Ωµ
,

uaj = u ((ajh)+), ubj = u ((bjh)−), u(0) = 0, u(L) = a, u ↑






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The coupled problem after discretization

Discretization of the continuum mechanics term on a mesh of size H � h:

EH
c

(

U, u|Ωµ

)

:=

∫

ΩM

W

(

∑

k

UkN ′
k(x)

)

dx −
∑

k

Uk

∫

ΩM

f(x)Nk(x) dx

+ h
∑

i,[ih,ih+h]⊂Ωµ

W

(

ui+1 − ui

h

)

− h
∑

i,ih∈Ωµ

uif(ih)

bjhajh aj+1hContinuum mech. Atomistic model

Nk(x)

Mesh size H Atomic spacing h

This method is the 1D version of the Quasi-Continuum Method (v 1996).
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Questions

Ec(u) =

∫

ΩM

W (u′(x)) dx + h
∑

Ωµ

W

(

ui+1 − ui

h

)

How to choose the partition?
Idea: the set ΩM should consist of all the zones of regularity of uµ

Is Ec a good definition for the coupled energy?

Bounds on the error?

Convex interatomic potential W ;

The Lennard-Jones case.

WLJ

3210

3

2

1

0

-1
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Convex case

f ∈ C0(Ω); W ∈ C2(R) with 0 < α ≤ W ′′(z) and |W ′(z)| ≤ β |z − 1|

W convex =⇒ elliptic regularity: {singularities of u} = {singularities of f}

The interval (ih, ih + h) is said to be regular if

‖f‖L∞(ih,ih+h) ≤ κf and f ′ ∈ L1(ih, ih + h), ‖f ′‖L1(ih,ih+h) ≤
hκf

L

Set ΩM := ∪
{

(ih, ih + h) which are regular
}

= ∪j(ajh, bjh)

Continuum mech. Atomistic model Continuum mech.

f(x)

κf

Partition just depends on f !F. Legoll, AtC coupling methods workshop, Albuquerque, March 2006 – p. 22



Estimates between uc and uµ (convex case)

Let uµ be the minimizer of Eµ, and uc the minimizer of Ec.

With previous definition of partition, ∃h0 such that, for all h ≤ h0,

sup
i∈Ωµ

∣

∣

∣

∣

∣

ui+1
c − ui

c

h
−

ui+1
µ − ui

µ

h

∣

∣

∣

∣

∣

≤ Chκf ,

‖u′
c − (Πcuµ)′‖L∞(ΩM ) ≤ Chκf ,

sup
i∈Ωµ

∣

∣ui
c − ui

µ

∣

∣ ≤ Chκf , ‖uc − Πcuµ‖L∞(ΩM ) ≤ Chκf ,

|Ic − Iµ| ≤ Chκf .

Πc: affine interpolation operator
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The Lennard-Jones case

WLJ (z) :=
1

z12
− 2

z6

W ′
LJ (1) = 0

W ′′
LJ (rc) = 0

rc = (13/7)1/6

W ∗∗
LJ

WLJ

3210

2

1

0

-1
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The atomistic problem (f = 0)

inf

{

Eµ(u) = h
N−1
∑

i=0

WLJ

(

ui+1 − ui

h

)

, u0 = 0, uN = a, u ↑
}

– if a ≤ L (compression): unique minimizer, smooth (homog. strain).
– if a > L (tension): many minimizers, “smooth” everywhere except on a
single bond:

u(x)

iµ

iµ + 1

x

u
iµ+1
µ − u

iµ
µ

h
∼h→0

a − L

h
(“crack”)

∀i 6= iµ,
ui+1

µ − ui
µ

h
≈ 1

L. Truskinovsky, 1996.

Because NN interaction and f = 0, crack location can be anywhere (same
energy).
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The atomistic problem (f ∈ C0(Ω))

inf

{

Eµ(u) = h
N−1
∑

i=0

WLJ

(

ui+1 − ui

h

)

− h
N
∑

i=0

ui f(i h), u0 = 0, uN = a, u ↑
}

There exists a threshold θµ such that:
– if a ≤ θµ, unique minimizer;
– if a > θµ: one or many minimizers, smooth everywhere except on a
single bond (iµ, iµ + 1):

u(x)

iµ

iµ + 1

x

u
iµ+1
µ − u

iµ
µ

h
∼h→0

C

h

∀i 6= iµ,
(

ui+1
µ − ui

µ

)

→h→0 0

Crack location can be characterized:

F i
µ := h

i
∑

j=1

f(jh) : F iµ
µ = inf

i
F i

µ

F. Legoll, AtC coupling methods workshop, Albuquerque, March 2006 – p. 26



Macroscopic problem

SBV (Ω) =

{

u ∈ D′(Ω), u′ = Du +
∑

i∈N

viδxi
, Du ∈ L1(Ω), xi ∈ Ω

}

.

inf

{

EM (u), u ∈ SBV (Ω),
1

Du
∈ L12(Ω), u′ > 0 a.e., u(0) = 0, u(L) = a

}

When f ≡ 0:

If a ≤ L: uM (x) = ax/L.

If a > L: infinity of solutions, uM = x +
∑

i viH(x − xi).
Crack location is not determined.

Results can be generalized to the case f 6= 0: ∃ θM s.t.
– if a ≤ θM , ∃! solution, which is smooth;
– if a > θM , crack whose location can be characterized.
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Natural micro-macro approach

Suppose f ≡ 0: interesting case is a > L:

Atomistic problem: a unique crack appears, no specific location.
Aim: use a coupled model s.t.
– the atomistic zone contains the crack,
– any minimizer of coupled problem is close to a minimizer of the atomistic
model.

For any partition Ω = ΩM ∪ Ωµ,

Ec(u) =

∫

ΩM

WLJ (u′(x)) dx + h
∑

i,[ih,ih+h]⊂Ωµ

WLJ

(

ui+1 − ui

h

)

inf







Ec(u), u|ΩM
∈ SBV (ΩM ), u|Ωµ

= (ui)ih∈Ωµ
,

uaj = u ((ajh)+) , ubj = u ((bjh)−) , u(0) = 0, u(L) = a, u ↑







Where the crack is going to appear?

F. Legoll, AtC coupling methods workshop, Albuquerque, March 2006 – p. 28



Energy cost of crack (case f ≡ 0)

Ec(u) =

∫

ΩM

WLJ (u′(x))dx + h
∑

Ωµ

WLJ

(

ui+1 − ui

h

)

x

u(x)

Ωµ

ΩM

If crack localized in ΩM :

u′(x) = 1+(a−L)δx0 , ∀i,
ui+1 − ui

h
= 1

Ec(u) = |ΩM |WLJ (1) + |Ωµ|WLJ (1) = L WLJ (1)

x

u(x)

Ωµ

ΩM

If crack in Ωµ: u′(x) = 1,
ui+1 − ui

h
= 1 (i 6= iµ)

Ec(u) = |ΩM |WLJ(1)

+ (|Ωµ| − h)WLJ (1) + hWLJ (broken bond)

≈ (L − h) WLJ (1) (surface energy)

WLJ (1) < 0: Ec(F ∈ ΩM ) < Ec(F ∈ Ωµ).
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ui+1 − ui

h
= 1 (i 6= iµ)
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The natural algorithm leads to issues

First algorithm (refine): initialize ΩM = Ω,

solve the coupled problem inf
u

Ec(u) with ΩM fixed;

look for the zones where the minimizer uc is not smooth (e.g. has a
large derivative), enlarge Ωµ correspondingly and go back to step 1.

Then, at the end, Ωµ = Ω.

Another algorithm (refine/unrefine): initialize ΩM = Ω,

solve the coupled problem inf
u

Ec(u) with ΩM fixed;

look for the zones where the minimizer uc is smooth (resp. not
smooth), enlarge ΩM (resp. Ωµ) correspondingly and go back to step
1.

Then the algorithm does not converge.
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A modified micro-macro approach

Idea: give an energy cost (surface energy) to a crack in ΩM .

Emod(u) =

∫

ΩM

Wh
LJ (u′(x)) − f(x) u(x) dx

+ h
∑

i,[ih,ih+h]⊂Ωµ

WLJ

(

ui+1 − ui

h

)

− h
∑

i,ih∈Ωµ

uif(ih)

Wh
LJ (r) := WLJ (r) +

√
h

(

r − 1 + rc

2

)

+

W ′
LJ (1) = 0, W ′′

LJ (rc) = 0.

limh→0 Emod(u) = EM (u) (consistency).

Wh
LJ

WLJ

43210

3

2

1

0

-1

If f ≡ 0, does that solve the problem?
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Energy cost of crack (case f ≡ 0)

Emod(u) =

∫

ΩM

[

WLJ (u′(x)) +
√

h(u′(x) − r0)+

]

dx+h
∑

Ωµ

WLJ

(

ui+1 − ui

h

)

x

u(x)

Ωµ

ΩM

If crack localized in ΩM :

u′(x) = 1+(a−L)δx0 , ∀i,
ui+1 − ui

h
= 1

Emod(u) = Ec(u)+
√

h(a−L) = L WLJ (1)+
√

h(a − L)

x

u(x)

Ωµ

ΩM

If crack in Ωµ:

Emod(u) = Ec(u) = L WLJ (1)−h WLJ (1)

√
h � h: Emod(F ∈ ΩM ) > Emod(F ∈ Ωµ).

f ≡ 0: the modified approach is ok!
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Partition Construction (Lennard-Jones case)

(1) Compute a solution uM for the macro problem

inf

{

EM (u), u ∈ SBV (Ω),
1

u′
∈ L12(Ω), u′ > 0, u(0) = 0, u(L) = a

}

.

(2) Define ΩM := ∪i(ih, ih + h) with (ih, ih + h) s.t.

‖f‖L∞(ih,ih+h) ≤ κf , f ′ ∈ L1(ih, ih + h), ‖f ′‖L1(ih,ih+h) ≤ h
κf

L
,

and uM is continuous on (ih, ih + h).

(3) On this partition, consider the modified coupled problem

inf







Emod(u), u|ΩM
∈ W 1,∞(ΩM ), u|Ωµ

≡ (ui)ih∈Ωµ
,

uaj = u ((ajh)+) , ubj = u ((bjh)−) , u(0) = 0, u(L) = a, u ↑






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Modified coupled problem: error estimates

There exists a threshold θM such that:

if a ≤ θM (no crack case): ∃! solution umod, estimates similar to the
convex case ones: ‖umod − uµ‖W 1,∞ ≤ Chκf .

If a > θM : There are one or many minimizer(s) for inf Emod.

For any minimizer umod, a “crack” nucleates in Ωµ at some bond
imod. There is no crack in ΩM .

Let uµ be a minimizer of the atomistic model with “crack” in iµ.

sup
i∈Ωµ

∣

∣

∣

∣

∣

ui+1
mod − ui

mod

h
−

ui+1
µ − ui

µ

h

∣

∣

∣

∣

∣

≤ Ch (and same in ΩM ),

uimod+1
mod − uimod

mod ∼h→0 a − θM , uiµ+1
µ − uiµ

µ ∼h→0 a − θM ,

∣

∣

∣
(uimod+1

mod − uimod
mod) − (uiµ+1

µ − uiµ
µ )
∣

∣

∣
≤ Ch, |Imod − Iµ| ≤ Ch.

F. Legoll, AtC coupling methods workshop, Albuquerque, March 2006 – p. 34



In practice . . .

EH
c

(

U, u|Ωµ

)

=

∫

ΩM

W

(

∑

k

UkN ′
k(x)

)

dx + h
∑

Ωµ

W

(

ui+1 − ui

h

)

x

Ωµ

H

u(x)

ΩM

If crack localized in ΩM :
∑

UkN ′
k(x) = 1,

c

H
, 1; ∀i,

ui+1 − ui

h
= 1

EH
c = (|ΩM |−H) WLJ (1) + HWLJ

( c

H

)

+ |Ωµ|WLJ (1)

≈ (L−H) WLJ (1)

x

u(x)

Ωµ

ΩM

If crack in Ωµ:
∑

UkN ′
k(x) = 1;

ui+1 − ui

h
= 1 (i 6= iµ)

EH
c (u) ≈ (L−h) WLJ (1)

When h � H � 1: EH
c (F ∈ ΩM ) > EH

c (F ∈ Ωµ).
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Conclusions on the Lennard-Jones case

Ec(u) =

∫

ΩM

WLJ (u′(x))dx + h
∑

Ωµ

WLJ

(

ui+1 − ui

h

)

Emod(u) =

∫

ΩM

Wh
LJ (u′(x))dx + h

∑

Ωµ

WLJ

(

ui+1 − ui

h

)

EH
c (u) =

∫

ΩM

WLJ

(

∑

k

UkN ′
k(x)

)

dx + h
∑

Ωµ

WLJ

(

ui+1 − ui

h

)

in a code, people work with EH
c =⇒ good results.

if H → 0, EH
c (u) → Ec(u). However, inf Ec and inf EH

c have
qualitatively different behaviours.

the problem inf Ec has some flaws, inf Emod has a better behaviour.

inf EH
c is not the discretized version of inf Ec, but of inf Emod.
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Conclusions

We have studied 1D materials described by NN pair interatomic potential,
and looked at their equilibrium at zero temperature:

Convex potential: one can define a partition of Ω based only on the
body forces f .

Lennard-Jones potential: there are issues with the natural coupling.
These issues disappear when FE discretization.

We propose another (consistent) definition for the coupling energy
and a strategy to partition Ω.

X. Blanc, C. Le Bris, F. Legoll, Analysis of a prototypical multiscale method coupling

atomistic and continuum mechanics, Mathematical Modelling and Numerical
Analysis, vol. 39 (2005).
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