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QC Goals:

●- Rigorous treatment of the continuum at
finite T
-- A “replacement” for thermostatted MD

QC Issues:

- Entropy of Coarse-Grained region

CADD Goals:

- Atomistic region can be “far from
equilibrium”
- Don’t want artificial damping due to a
thermostat
- Continuum treatment of dislocations

CADD Issues:

- Wave reflections at the
atomistic/continuum interface
- Heat dissipation
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Concurrent Multiscale Modeling
● One such method is the

Quasicontinuum (QC)
Method

– Originally developed to solve
quasi-static, 2D, single crystal
deformation problems
(Tadmor, Ortiz and Phillips,
1996).

● Extended to:
– Polygrains (Shenoy et al 1998)
– 3D (Rodney and Phillips,

1999)
– Finite T (Shenoy, Shenoy and

Phillips, 1999, Dupuy et al
2005)
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The Quasicontinuum (QC) Method
● Identify regions of slowly varying deformation.
● Note that environment of each atom in these regions is

about the same
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The Quasicontinuum (QC) Method
● "Representative atoms" are chosen
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The Quasicontinuum (QC) Method
● Finite Element mesh to constrain the position of all other

atoms
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The Quasicontinuum (QC) Method
● The potential energy is approximated as:

“Local” or continuum
regions

“Nonlocal” or
atomistic
regions
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Extension to Finite Temperature
● Our goal:

– Canonical (constant T) ensemble, multiscale approach
● Our "gold standard":

– a thermostatted, full MD simulation with the same underlying
interatomic potentials.

● Our criteria to quantify the success of the method:
– Nonlocal (atomistic) regions behave as in full MD
– behaviour of the overall system compared to full MD:

e.g.: thermal expansion, elastic constants
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● Divide into repatoms, {qr, pr} and constrained atoms
{qc, pc}

● Determine the mean position of the
constrained atoms using FE shape
functions

● We seek a Hamiltonian that depends only on the repatom
positions and momenta:

● The masses, mi
r and the potential VQC will ultimately

determine the dynamics of our system

Repatoms and Constrained Atoms
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● The Hamiltonian we choose must give an accurate
approximation to the Helmholtz Free Energy

● F is separable into the momentum and positional parts

The Helmholtz Free Energy

Try to accurately
approximate
both contributions



11

● For all atoms of the same mass, m

● The QC momentum free energy is

● these can be made to exactly agree if we choose the
masses correctly

The Momentum Free Energy
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● Formally integrate out the constrained atoms

● Where the QC potential energy is

The Positional Free Energy

But it is not practical to compute VQC this way
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● VQC is comprised of two parts:
(1) Zero T contribution with atoms at their mean positions
(2) Contribution due to the thermal fluctuations of atoms about

mean positions

● Treat using the Quasi-Harmonic Approximation of LeSar
et al (1989):

Quasi-Harmonic Approximation

Entropic contribution, TS
T=0 contribution
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Quasi-Harmonic Approximation

Rcut

Fe

Fe

Cauchy-Born rule for E and D

zero T energy contributions Thermal motion of
constrained atoms
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● Couple the repatoms to a heat bath
● Problem:

– motion of local repatoms is really the motion of the mean
positions of the atoms.

– Thus, the repatoms acquire an unphysical vibrational entropy of
their own - "ghost entropy"

● This is negligible if delements datoms

Nosé-Poincaré Thermostat

T
Q
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● Ghost Entropy comes from an error in the Helmholtz Free
Energy

● Introduce a correction to VQC :

such that it approximately cancels out the ghost entropy.

Correcting the "Ghost Entropy"
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● Again, appeal to the quasi-harmonic model.
● Approximate ghost entropy as coming from harmonic

flucutations about mean positions {qr}

Correcting the "Ghost Entropy"

Stiffness Matrix from the FE Number of local repatoms
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Final Form of QC Potential Energy

● Completes the definition of the QC Hamiltonian:

Gives an accurate Helmholtz Free Energy:
FQC(T)=FMD(T)+(T2)
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Thermal Expansion: FCC Ni

(Melting T is 1478K)

Error in lattice
Parameter is
about 0.5%
at 1000K

(10% error in
expansion
coefficient)
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Elastic Constants
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Finite Temperature Indentation
● Spherical

Indenter,
R=7nm

● Ni EAM
Potential

● 5000 repatoms
vs. 107 atoms

● Speed up
approx. 103
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Finite Temperature Indentation

Lund, Hodge, and Schuh,
Applieds Physics Letters 85 (2004)
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Next Steps

● An important feature of QC:
Automatic Adaption

– Algorithm to determine if a
region is “local” or
“nonlocal”

– Algorithm to determine if an
element must be refined

● Non-equilibrium dynamics
– Thermostat only the local

region

(Miller et al, 1998)

[1-10]

[110] 36.9o
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Extension to Finite Temperature
● The original QC method is an equilibrium or "molecular

statics" approach.
● We wish to extend this method in a rigorous way to finite

temperature.
Thermostatted MD without all the atoms

● We are not considering issues related to “far from
equilibrium” MD/continuum coupling:

– wave reflections
– absorbing boundary conditions


