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Scientific Goals

Nonequilibrium processes with a wide range of length and time
scales: Contact, adhesion, friction, lubrication, multiphase flows

Self-affine fractal surface and distribution of contact areas

Scientific Goals

Nonequilibrium processes with a wide range of length and time
scales: Contact, adhesion, friction, lubrication, multiphase flows

Problems where interfaces or small scale singularity affects large

scale behavior
Nanomotor (C. Denniston & MOR)

Require algorithms that are dynamic, finite temperature, nonlinear in
continuum region, treat both solid and fluid phases and interfaces

Linking Atomistic and Continuum Regions

Three overlap regions where solve both continuum and MD
Outermost — Continuum solution gives MD boundary condition
Innermost - MD gives continuum boundary condition
Middle — Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities

Solids: Apply boundary conditions to displacements

Streamlines in L~100nm channel with moving Model contact region atomistically,
top wall. Atomistic solution in <1% of area elastic deformations with finite-elements,
constrain deformations in overlap region

(green) removes continuum singularity

Linking Atomistic and Continuum Regions

Three overlap regions where solve both continuum and MD
Outermost — Continuum solution gives MD boundary condition
Innermost — MD gives continuum boundary condition
Middle — Two solutions equilibrate independently

Fluids: Apply boundary conditions to velocities

Solids: Apply boundary conditions to displacements
Fluids: S. T. O’Connell & P. A. Thompson, Phys. Rev. E52, R5792, (1995)

Why not use forces instead of displacements/velocities?
E. G. Flekkoy, G. Wagner & J. Feder, Europhys. Lett. 52, 271 (2000)

Fluids — Position of boundary is undetermined
— drifts in response to fluctuations or systematic errors

General — Any error in constitutive relation creates problems in
overlap region
Less sensitive when match displacements
any global factor in stress is irrelevant

Fluid Continuum — Incompressible Navier-Stokes
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Navier slip boundary condition
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Knowledge of S and pu completely characterizes
a simple fluid.

Find can apply within atomic distance from solid
and S ~ atomic size in most cases

Why parametrize instead of finding S, p on the fly?
Substantial computational overhead — thermal fluctuations
When simple parameters aren’t good, need explicit atoms

Atomistic Region — Molecular Dynamics

Truncated and shifted Lennard-Jones potential
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o: Characteristic length, particle diameter.
¢: Characteristic energy.
1=(mo?/g)"2: Characteristic time of the potential.

r.: Cut-off distance, usually 2.2c for fluids
Integrate with velocity-Verlet, time step Aty,;,=0.005t

Determine parameters for fluid continuum model:
Temperature 1.1¢&/ky, density p=0.81mo™3, viscosity p=2.14etc3.
Wall (111) surface of fcc crystal
Wall-fluid interaction €, controls flow boundary condition (BC)
£,~=0.95¢ — no-slip BC, S=0

Single Fluid Structure

* Near walls — layering

& in-plane order ofine bins

. . i A binned by layer
* To compare with continuum b

average over layers

 Choice of wall position z
is not unique at molecular
level.

» Choose so total # of particles matches continuum

Single Fluid Slip ~_oo I\mm
* Bulk flow extrapolates (lines) 3‘ 0
to u(0) # u,,, (shaded bars) ".0.04 \I
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0.04 Hiug 16-mers
azvx(z):cxz =
(or finite difference) 2 9
« Then find Navier slip condition ~ ~ \l
w 0.04
Us :J‘b d20,(uV) = Lo /1, S T T
b .
L= J.Wdz(nh /n-1) £ 0.006 1o-mers
. . - 0.004
e S>0slip, S<O stick T \ exponential
. = 0.002) decay
e S/atypically ~-2 — 20 can be 0 - NI
much bigger for polymers 0o 2 4 —
(Thompson & Robbins PRA41, 6830 (1990)) 7/a

Hybrid Algorithm Applied to Fluids

Continuum: Incompressible Navier-Stokes (Projection method)
Atomistic: Molecular dynamics of Lennard-Jones atoms, no-slip
Potential: U(r) —45((cs/r)12 (c/r)8]; Unitse, o
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Equation of Motion for Constrained Particle
The equation of motion for the particle i:

L Du,) F)
= F + L F=—2% VY
T N, mZ Dt b0 Z,: !

Finite Difference Scheme for the equation of motion:
X(t+Atyp) = 2X(0) + X(t=Aty,)
Atyo

AL se. { Sy -u (t))

m NJm i=1 AtMD J i=1

Ate=40At,, — Staggered time grid
Average MD over Aty to fix continuum boundary
Extrapolate continuum to integrate next MD interval




Particle Confinement and Mass Flux

External force F for y, <y<y,

Dynamic Couette Flow

Schematic of simulation Hybrid solution (symbols) tracks
full continuum (lines) as a function
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Robbins, J. Fluid Mech. 2004.
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Maintain a mass flux by introducing _—
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Couette Flow with Velocity Slip
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Hybrid vs. Continuum with no-slip Hybrid vs. Pure MD

MovingWall —U___,

Flow past a rough wall
Continuum
Streamlines from hybrid~MD | _____|___________
includes flow between regions Overlap
Continuum fails because doesn’t D
match complex boundary N N e
condition around bump still Wall
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Determination of Thermal Conductivity 1

Heat current

30=3 v+ 3 v)
1 1

a=omf 3240

Thermal conductivity A is calculated using Green-Kubo formula

Site energy
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Coupling Scheme: Momentum and Energy

MD->Continuum :
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Continuum->MD (Constraint Dynamics and velocity rescaling):
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Mass flux across the interface :

n'=-Apu Ate, /m

Temperature in Steady State Couette Flow
1

MovingWall L, H = ¥ g =
—T, U=lo/t
. 0.8 F J
Continuum AMD
Overlap 0.6 = Continuum 5
MD
—T, *o4} b
still wall
At boundaries of overlap region: 0.2p 1
rms MD veloc. < continuum T 0 <

Hybrid solution (symbols) tracks
full continuum (line)

Smooth variation in overlap region
Allows determination of Kapitza
resistance at solid-fluid interface
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Heat Flow with Roughness (U=0 o/1)
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Singular Cavity Flow

Continuum approach: Navier-Stokes + no-slip boundary condition (bc)
Usually phenomenological no-slip be has little effect at large scales

Corner flow =Molecular scale

Moving Wall I
influences macroscopic forces

/""’_ \\ 1S No-slip boundary condition is

discontinuous at corners a, b
=Stress diverges as 1/r
\ =Log divergence in total force

\ on wall
B /

I d

L. Only need atomic information near corners

= Use hybrid method that treats bulk with continuum
Navier-Stokes equations, corners with MD




Coupling in Overlap Region

MD = Navier Stokes 4 B & b
Mean atomic \'.cl>oc1ty gives 7 T
boundary condition to NS egs. = -

Continuum = MD
1) Average tangential MD velocity in

shadowed bins forced to NS value:

E 1 & Du 0
X =t-— S F+—L F=-03VyU
T, 25 e T e
2) Normal MD velocity constrained by /—'
matching mass flux at boundary

Have tested:

Agrees with pure MD calculations.

Independent of continuum grid 1, 3 and 6c and specific set of
constrained velocities (within MD noise)

X.B. Nie, S.Y. Chen and M. R. Robbins, Physics of Fluids 2004.

Comparison With Full MD Near Corners

L=125¢c el R
U =0.530/7 v v

Velocity

Stress

NS and Hybrid Velocities Near Corners
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Effect like slip BC on scale S
S is larger of ~2c and U/O*.lc/‘t

discreteness shear-thinning
Hard to use effective Navier BC: spatially varying, nonlinear

Treating Large Range of Length Scales

Problem: Size of atomistic region independent of system size L
BUT time to equilibrate NS flow field grows with L.
Initial approach limited to L~0.1pum.

Solution: Multigrid and time approach
Integrate to steady state at each scale with optimum time step.
Tterate between scales till self-consistent (~10 times).

Result: Size limited only by onset of non-steady, turbulent flow
Show results for 0.1mm cavities.
> 10 orders of magnitude faster than fully atomistic
~ 20 minutes per iteration
Use average over 16 MD representations to accelerate

Schematic of Local Refinement

Coarse ->Fine: Prolongation. Fine->Coarse: Restriction.

—r——]——————p—

Flow at each scale reaches steady state at its own
characteristic time




Multiscale Solution for Re=6400 (U=0.068 o/7)
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* Ten grid levels, largest 256x256, others 64x64, smallest mesh 0.95c J
* Dashed lines: the regions expanded in successive plots. Final plot — MD region

* Stokes equations— bottom corners self-similar under mag. by ~16 (red arrows)
This scaling is cut off by atomic structure.

+ Computational time saving more than 10'° over fully atomistic.

Stress along the moving wall
Three regions contribute to force F:
Atomistic, Stokes, high Re Re=pUL/pn
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Breakdown of Stokes for r<S — atomistic or r>R; =p/pU — inertial
Little change for r <R; as increase Re by increasing L
Large r contribution gives change in F for fixed U, atomic props.

Total Force on the Moving Wall

Re - only parameter in continuum theory

Find strong variation with U at fixed Re, atomic model
R : -
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Eal e ot
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fy given by assumption that stress saturates at S
S= 0.3+ 7Ut; j; fre is phenomenological fit

Moving Contact-line Problem

No-slip condition also leads to 1/r
singularity at moving contact line ——

Interface bent by viscous stress Fluid 1 Fluid 2 y
6(r)=0, + Ca (Q+In(r/S)) i ! [

where Ca=pU/y, Q, S, consts. o X

Contact line affects entire flow field ﬁ

Solve in transformed coordinate
system with fixed multigrid

Interface: x =f(t,y,) '
xX=x-f(t,y), y’=y T_
X'

Hybrid Scheme for Two Phase Flow

Must fix interface angle,
position in addition to
velocity

P=C: Find location where
concentration changes to
determine angle & position

C=P: Add forces that
enforce interface position at
outer edge Displace atoms to
maintain location in middle

Procedure to get steady MD solution:

1) Fix the boundary shape, let
system reach steady state.
Originally C had no-slip at 2) Correct boundary shape
fluid-fluid interface, according to the new interface
but found slip length ~5.56 and then repeat the first step

until the the boundary and
Had to change C code interface shapes are consistent.




Summary for Fluid Flow

* We have developed a multiscale hybrid method that can
simulate a macro-length scale flow while still resolving the
atomistic structure in a small region. Treats mass and heat
flux

+ The ability to resolve the stress on all scales enables the first
calculation of the drag force on the moving wall in cavity
flow. The force depends on three dimensionless numbers:

R PUL | _UT g S_US
u o L]

* Algorithm adapted to dynamic interfaces
Initial results for contact line motion will be extended to study
interface shape and stress over wide range of length scales.

Multi-scale modeling of contacts
between self-affine surfaces

Contact geometry and stresses central to friction & adhesion

Real surfaces often rough on many scales — self-affine
Surfaces steeper at smaller scales, fractal contact regions,
most connected regions of contact at resolution of calculation
=Not clear continuum mechanics applies

Self-affine surface Contact (blue) of self-affine surface

Hybrid model for 2d self-affine surfaces
Easily treat volumes with ~10% atoms

At edge of overlap region
MD and FEM
displacements provide
BC’s for each other
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Continuum Treatment of Solid
* Linear finite elements
» Explicit dynamics for nodes
* Newmark method Aty ~10 Aty , Langevin thermostat
» Staggered time grid as for fluids

« Constitutive law — quadratic in strain
— accurate to 2% in each strain component

Atomistic Treatment of Solid
* Two dimensional triangular lattice
» Lennard-Jones interactions between neigbors

* Velocity Verlet, Langevin thermostat
Show low T results to minimize noise, but works at high T

-0,/E

Quasistatic Test

Cylindrical Contact
Mesh, & overlap
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onp ;1 lineA c
0m — L "I. _
5 f:.'; 2N Lines — pure MD
5' 1 / ! Symbols — hybrid
e s .l Filled — MD region
H 7 line B Open — FEM region
°f — A-c, -0,
| SO e w AN | v

Xy

Quasistatic Test
Cylindrical Contact

Mesh, & overlap
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Scaling of Contact Width a with Load

— Continuum theory BT T
0,0 All MD -]
i commensurate / v ]

x,* Hybrid . cyhnder .
Excellent agreement of I ek )/i/ ]
hybrid with MD ]
Deviate from continuum dense 1
due to anelastic response 5rs cylinder 1
and atomic discreteness / 1

° o O.QIOS 0'0] 0.0'[5 0.02 0.025
N/(RE")

Contact Area vs Load for Self-Affine Fractal

ooon - — Continuum theory
o All MD

onos . X Hybrid

1024 atomic spacings in
each dimension

N/(LE")

Roughness exponent 0.6 o004 -

Voss midpoint algorithm
Excellent agreement of 0.002
hybrid with MD

Only deviation due to v e
activated plastic event. 0 0025 005 0075 0.1 0.125 0.15
See fluctuations in time L/L
of occurrence for all MD

Multiscale simulation of shear wave in solid
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116,22% 4 o Hybrid

3 ;,{J I'il'. x FEM

0zf T 1 1 t|  Deviations from full MD are
bos b 6. 1.1% 1 like those caused by coarse
3 ! \ o, 1.1% resolution in FEM.
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Percentage of energy reflected
I I I £ at overlap region comparable to
446, 0.3% that from resolution change in
1 FEM

Small for pulse > ten times
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Multiscale simulation of dynamic friction
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Friction vs. Load for Rough Surface

L=1024d,, U=0.0lc/t — Not in quasistatic limit
LB BN BN BB B

0.001 -_ Static Friction:
x-Hybrid, o Full MD
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Kinetic Friction:
*Hybrid, o Full MD A
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Smooth surfaces, A=0.26, little plasticity

A=rms surface slope 0.012
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) . Friction forces

Plastic results for A=0.78 show size effects f 0.0008 PANRAOSRRARARRRR ]
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Conclusions for Hybrid Method

» Have robust multiscale method for both fluids and solids
» Implemented for quasi-2D flows near solids
— lengths to ~1um for dynamic cases, ~1mm for quasistatic
» Implemented for quasi-2D contact between
self-affine surfaces
* Incorporated heat flux for sheared fluids
» Comparisons to MD and continuum results show limitations of
continuum approximation at interfaces
—Position and rate dependent slip near solids
—Sensitivity of contact area and stress to atomic scale structure,
unexpected mode of plastic deformation at interface
« First calculation of drag force in singular corner flow
— integrate stress over 5 orders of magnitude in length
« First calculation of atomistic effects in self-affine contact
— rough over 4 orders of magnitude in length scale




