Past Predictions, the
Present, and Future Trends

Peter M. Kogge
Associate Dean for Research
McCourtney Prof. of CS & Engr
University of Notre Dame
IBM Fellow (retired)

* T UNIVERSITY OF

Some Language/MicroArchitecture

Prehistory
¢ \Von Neumann model < Fortran

e Interpretative languages => “just in time
compiling” => trace caches

e Dataflow languages => dynamic register
renaming and out-of-order execution

e SPMD => SMPs, cache coherency, multi-
threading

e Distributed parallelism => MPI, NICs, ...

Still Have the Memory Wall!l!

= an
| TN R ~ Eyicnycaliiil e
a— — [RROYTIOR]

My Concern: We're Focused on the

Wrong Aspect of the Wall

7% Performance Differen_ce

1.5

Lawanoy {Fatative to Cobesart)

* I UNIVERSITY OF

a6

What about bandwidth?

Cubeld CRE Latencw'Bandwidth Sansithsity

. __ﬂ_,..-;"’
25

Chart courtesy
- Richard Murphy,
SNL
NOTE: ACCOUNTS ONLY FOR
COMPUTATION (NOT MPI)!
Future Trend/
Memory Wall
Application:
Trilinos
3 Sandia
National _
Bandwicl i Heiative ko Oplerand b

/fﬁ_
3

= LAABIING
UNKOUTIOR

It Also Bothers Me That:

e Modern microprocessor state growing as
Moore’s Law
— But not the number of computational units

e Memory is as dumb as it was 50 years ago

e We insist on giving persistent names to the
tarballs representing the physical cores

— And go to great extremes to separate the persistent
names of memory from its location

e Newer classes of apps “visit” data
irregularly
- Where “caching” copies is wasted energy

* I UNIVERSITY OF

How Are We Using Our Silicon?
Compare CPU to a DP FPU

450

400 fﬁ

350 ﬁ /
/A

= 300

E. 250 \ / \ /

g 200 \ Crossover / \ f“ 66to 1:
/ .

g \ J \ /| |Is This

o
/ State?
0 " e S SSUV0 S

1970 1975 1980 1985 1990 1995 2000 2005

/
f

—e— CPU Die Area —¢— Eqvt. DP FPU
* T UNIVERSITY OF " tNAEZIN&
=/ NOTREIN-. m— INNOTTOR,

Core CPU State vs Time

100,000.00
M .
E 10,000.00) g -
X 1,000.00 wx’e,/ﬂ
L ‘ﬂ\\‘g
s 100.00 GYo
> 10.00 Q\““é o] o Wit
@ ' oY -)f"—"'f'
s 1.00 x.‘:ﬁ"c 2= //~ &
£ ¥ —
X 0.10 (&~ —
= = /
0.01
1970 1980 1990 2000
—e— Total State —=— Machine —a— Supenvisor
User —#— Transient —e— Latency Enhancing
—— Access Enhancing

* I UNIVERSITY OF

“5) NOTRE DAME | HN/\Y@%{WWN

/fﬁ_
6

My View: HPC Evolutionary Paths
Diverging — And this Will Change
Language Strategies

e Today: “Killer Micros” becoming
“physics-limited” very hungry multi-
core monsters

e Maturing Multi-threading & Tiling
providing more nimble systems

e Is there an alternative evolutionary
path we’'ve ignored?

* I UNIVERSITY OF

1) NOTRE DAME B iﬁﬁ@%ﬁ@ﬁ

The Darwinian
Multi-Core Evolution

! ’

Up to ~2002

* T UNIVERSITY OF

1) NOTRE DAME | HN/\Y@[VAWWN

Area Scaling Alone Reveals the
Rationale for Multi-Core

1000

ITRS Projected
Economic Die Size

100

10

Single Core Projected Die Size (mm2)

1
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Each line represents the scaling of a unique real microprocessor chip from its incegtioni
9

o
* g UNIVERSITY OF - F/V/Z’Bl7~-6 r
) NOTRE DAME - NN RO

With a Staggering Potential

1000

100

10

Number of uP per Square Centimeter

4

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Assume we scale entire current single core chip & replicate to fill 280 sq mm di

*+ UNIVERSITY OF - 10

And a Flood Tide of Recent
Announcements

30

25

20

(o}

15
4
Iny n}w 2006
10 hips TBA

Feb 2007

sQ=

of New Multi-core Announcements

r

0 * » 1

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 200
———— s r»
* g UNIVERSITY OF . BIIA/& 't ey

5/ NOTREIN. N g

And Not Just "Twosies”

Multi-core Announcements

10000
4
1000 .
 J
&
3 100 5
pe ¢ ?
E =S
* » *
10 !
L 4 t N ‘
*
*
F *
1 T T

* I UNIVERSITY OF

5 NOTRE DAME

The Classical Limiting Factors:
Power & Contacts

* T UNIVERSITY OF

Peak Logic Clock Rates

100,000 . ~ 100000
/ r_l".‘ Q,s /J'.
p A
e 2 g
10,000 T E\d £ 10000

N (. @0 4 ~
—_— (/) EmEm = N
E 0‘5 :E 3 (JHIZ .o(b /* lllll 3 GH:: I
= A > {1° =
~ 1,000 . 2 & 1000
5 \":t: * Ve £t e T
(8} <) 0 o & (54
8 PR oo o0 3
o &4 ‘*0 ogo ’0 (&)

\~, : * & O L &4
100 O7, 4. ot B 100
VAR R PYRIR 29
0" LS o’ Ot
/ T z *e
10 bt - 10
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 10000 1000 100 10
I ¢ Hstorical —#— ITRS Max Clock Rate (12 invertors) | Feature Size

[Historical # MRS Max |

2005 projection was for 5.2 GHz — and we didn’t make it in production.
Further, we’re still stuck at 3+GHz in production

* T UNIVERSITY OF

Why the Clock Flattening?
POWER

1000 1000
. ot, Hot, Hot! .
.
¢ .o £ 100 - ozzle -3}
100 RAAE © $4,
.d—, P v ¢ 3 2 4 :
(] ¢ .o ¢=U ’0‘:
— . . * o
8 S M » 10 lron oo’
7 e o ? - *d .
2 o elet e Q . ‘§§
S 10 ML " it
R S £ _ 113
poe T 1 Llﬂllt Bu b *3%e
. : % . ; 3 LR S :.
o ¢ ot
. .
. : . | .
1 . 0.1
1976 1986 1996 2006 1976 1986 1996 2006

* I UNIVERSITY OF

Because Vdd No Longer Declining

6
.
5 e 6 6 406 40000
*
4 +
* e
o] *o00030
T 3 *
> 3
$e
2 %6 o
* ‘%:% s,
1 003:;;;
0
1970 1980 1990 2000 2010 2020

* I UNIVERSITY OF

ITRS Power Density Projection

Components

S 100

o

N

o

wid

S 10

wid

L

D

(14
N

o) 1

©

>

.)g

=

3

) 0

2000 2005 2010 2015 2020

~—# - |TRS Clock Rate @ ITRS Vdd Squared — A — Clock*Vdd"2 Clock*Vdd*(Vdd-Vth)

* I UNIVERSITY OF

Summarizing Clock Growth,
Including Memory Bus

100,000 . c - o
C\o
0w
(0\6 [
10,000 “ZS — : 80 8t
’ n " o gneant POV "
: " ClotkTor €00
N
§ 1,00 > HHH* 2
o 23
100 i 0—:—‘&@#@—0
- ¢ ;\;A\t“
] :] \X\S\O
10
1990 1995 2000 2005 2010 2015 2020
Intel Bus Speed = |ntel CPU Clock A ITRS: Max On-Chip Clock
B ITRS: Max Off-Chip Clock # Constant Dissipation Clock "0.3 of Power Limited Clock"

* I UNIVERSITY OF

Does Logic Performance Match
Off-chip Bandwidth Potential?

1,000
. ed CV ck
§ y ¥ POW er Limite
N astoY De“S‘ Y
= 100 Try
>
(o}
5 / te
8 7 a Gropth R
L 10 {TRS Ball BORE ===
=
_—— | Signal Pads * Modified Off Chi k
‘g /// ignal Pads odified 1p Cloc
©] _— ITRS Hi Perf uP Signal Pad Growth Rate
//—V/
1
2004 2006 2008 2010 2012 2014 2016 2018 2020
—— ITRS Signal Pads per Hi Perf uP —— Ball Bond Contacts per sq.cm
Signal Pads * Modified Off Chip Clock — Transistor Density * Power Limited Clock

A Growing Mismatch!

* I UNIVERSITY OF

bt | res| NOTRE DAME

The Multi-Core Family Tree

* I UNIVERSITY OF

NOTRE DAME

This may be the 1st Layout Approach
You Think of for Multi-Core

(a) Hierarchical Designs

* Intel Core Duo
- IBM Power5
 AMD Opteron
 SUN Niagara

External Bandwidth = sum of escapes from cores

* g UNIVERSITY OF /

5 NOTRE DAME | HN/\Y@[VAWWN

But There’s at Least One Approach
with Lower Bandwidth Needs

r

|

|

|

|

|

|
-

(b) Pipelined Designs
* IBM Cell
* Most Router chips
* Many Video chips

External bandwidth largely independent of # of cores

* I UNIVERSITY OF

And then there’s Array Approaches
that Provide Internal Memory

A A
‘ Cache/ Cache/
\ Memory o o o Memory
| [Core Core

-g=pp=- [nterconnect & Control

| Core Core

Memory Memory

r *F ***** ﬂlf =1
|

\

|

\

\

|

\

e o o ‘

Cache/ Cache/ ‘

Sy e
Y(c) Array Designs v

* Terasys
 Execube

* Yukon

* Intel Teraflop

* I UNIVERSITY OF

5 NOT RE DAME

And Today’s Memory Architecture
iIs Evolving to Feed the Beast

* T UNIVERSITY OF

5 NOT RE DAM E

... But Not to Reduce Latency

We’ve introduced 16 extra chip crossings!

* I UNIVERSITY OF

NOTRE DAME

Effects on HPC Language
o Jt's latency, not bandwidth, that's the
Killer

e Flattening of clocks means that we’re
forced into explicit parallelism

e There are at least three forms of such
parallelism

e Compiling and/or run-time becomes 2D

optimization problem
— What data goes in which memory, at what time
- What code is run on what core, at what time

/f%

* T UNIVERSITY OF

1) NOTRE DAME | HN/\Y@[VAWWN

A Simple Case Study

- UNIVERSITY OF

NOTRE DAME

A Modern HPC System

Computational Board
e 4 PE Nodes

e Each PE Node:
— Dual core Opteron @ 2.6GHz
- 4 DDR2 2GB DIMMs

e 4 Routers per Board

Key Ratios (all "Peak”)

e 2 Flops per cycle per core
e 1.5B per Flop

e 1.25B/s of Memory BW per
Flop per core

0.25B/s Link BW per flop per
PE

0.06-0.25B/s of Bisection BW

per Flop /fﬁ_
*+ UNIVERSITY OF : / 28

5 NOTRE DAME i iﬁﬁ@%ﬁ@ﬁ

What Are We Doing with the Total
System Silicon?

* I UNIVERSITY OF

NOTRE DAME

What Is the Power Density
Distribution Like?

* I UNIVERSITY OF

NOTRE DAME

What Is the Board Space
Utilization Like?

* UNIVERSITY OF

NOTRE DAME

What Is the Power Per Unit Board
Space Like?

* I UNIVERSITY OF

NOTRE DAME

A Dual Core Processor Chip

http://techrep0rt.com/revie*/Z005q2/0pter0n-x75/dualcore-chip.jpg

* I UNIVERSITY OF

NOTRE DAME

Some Projections

Cube3 CRS Latency/Bandwidth Sensitivity

o Off chip memory controls
performance

e IPC/core more sensitive to
latency than bandwidth

e “Flat” off chip physical latency
=> relative latency grows

— 40

with clock e -

<
Latency (Relative to Opteron) 25

Bandwidth (Relative to Opteron)

HMr308X
Increase

82%
Increase

IPS/Core
IPC

* I UNIVERSITY OF

Where Does This Lead Us?

e Use density increase to replicate cores
e Keep clock flat to minimize power

e Still need additional I/O for both bandwidth & latency
management (reduce queuing delays by multiple banks)

* g UNIVERSITY OF

Example Next Evolutionary Step

e Add in more DDR ports

e Change memory hierarchy
to add in big L3 for latency

e Requires significant inter-
core Interconnect

http://www.hypertransport.org/docs/tech/HT3pres.pdf
: /4 f@
T JUNIVERSITY OF , [

5 NOT RE DAM E

Effects on HPC Language

e Current trends: multi-core, deep memory
hierarchy

e Power and contacts dominate current

architectures

— Causing flattening of clock rate, and thus single
thread ILP

e Focus on deep memory hierarchies is
paramount

* I UNIVERSITY OF

The Emergence of More
Organized Architectures

* T UNIVERSITY OF

Tiling & Local Memory Regularizes
Layout & Lowers Latency

" mman ;

i
UussisiiuMlbsusidlsualhisu gt

—
]
=
=
E

e Work well with prtiionable algorithms

e Compiling problem: placement of kernels to minimize inter-
core bandwidth

e Good fit for applications that support weak scaling
e Problems with global synchronization

* I UNIVERSITY OF

5 NOT RE DAME

Multi-Threading

e Provide explicit latency hiding

e More efficient logic utilization of simpler
cores

e Increase potential for memory references
“in flight”

e Shares path to memory

e But still doesn’t help “single thread”
performance in terms of chained memory
references

* T UNIVERSITY OF

Multi-Threaded Systems Not New

V4
°
HTMT EId:rado

: .
E Horizon MTA
e ¢ ¢ &PV Hite—
EI: J-Machi S
5 =iviacnine
s 3 . *e oo o Hyper Threading.
Q
g 2 HEP | .

1 * *e o

6600 Space Shuttle
0 10P
1960 1970 1980 1990 2000 2010
[= m
TL]UNIVERSITY OF r#‘u_

5) NOTRE DAME ﬁ : HN/\Y@[VAWWN

Sun’s Niagara

e 8 4-way multi-threaded single
issue cores

3MB 12 bank shared L2

o
e i e 4 DDR2 Memory Interfaces
‘ e Measured 5.76 IPC vs Peak of
;-:ﬂ;; 8 on Java Business B/M
‘q_ = {;
""" AU B L.X
=i e 63W @90nm (2W cores)
UltraSPARC-Core
100
Remainder ™~
, 23% s
\
B \\ \\
C 37%
Other ores. E NN \\
Functions,— & 10
3% g - \\\
DDR2 < \\\x ~_
Interfaces, \\ I~ ™~
1% T
Crossbar, L2, 21% 1
3% S 8 8§ 58 8 83 & £ ¢ & F 2 ¢ £ 2 2 8
S R R &§ &§ & {8 {8 {8 {8 R R R R R R R’
FPU, 2%
Single Core Area Entire L2 Area Single DDR2 I/F Area Crossbar
-

*'-l- UNIVERSITY OF BIIA/& 42

5 NOTRE DAME | i iﬁﬁ@%ﬁ@ﬁ

Cray’s Eldorado

Service & 10

- -
Contomar
DOR
Controller

BDR :‘| ';
I" Memery Intarface

-4
[eowne

E===megs® RAID Controllers

Supports 12@ Threads/core

Figure 2. MT processor block diagram

Figure 1. Eldorado system architecture

X . Table 5. RandomAccess
Table 3. Sparse matrix-vector multiply

Table 4. Linked-list search

Syst Gi dat "5 d ; ;
System T (sec) ystem 1ga updates per secon System]I—\l_nles(ggg) E‘fliésgg%
Cray X1 800 MHz (60 P) 0.0031 B T
IBM Powerd 1.7 GHz (1 P) 26.10 :
IBM Powerd 1.7 GHz (256 P) 0.0055 SunFire 880 MHz (1 P) 9.3 107.0
MTA-2 (1P) 7.11) N
MTA-2 (2 P) 0.041 Intel Xeon 2.8GHz (1 P) 7.15 40.0
MTA-2 (2P) 3.59 N
MTA-2 (5 P) 0.204 MTA-2 (1 P) 0.485 1.98
MTA-2 (4 P) 1.83 -
MTA-2 (10 P) 0.405 MTA-2 (2 P) 0.053 0.197
MTA-2 (8 P) 0.94 —
Eldorado (576 P) (estimated) 17.32 Eldorado (576P) (estimiated) 0.0014 0.0058
Eldorado (576 P) (estimated) 0.043 — N
Eldorado (2112 P) (estimated) 47.57 Eldorado (2112 P) (estimiared) 0.0005 0.0020
Eldorado (2112 P) (estimated) | 0.016 : —
Eldorado (8064 P) (estimated) 121.0 Eldorado (8064 P) (estimiated) 0.0002 0.0008
Eldorado (8064 P) (estimated) | 0.006 :

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005

* I UNIVERSITY OF

NOTRE DAME

INNOY O

Problems Still Remain

e Programming models not changed

e States still very heavy

e Compiling to specific cores
e Data partitioning

e Problems with coherency

e Doesn’t address barriers, sync
points,

e Doesn’t help emerging low reuse
apps
- AMR
— Data mining
— Graph traversals
— Non-numeric solvers such as SAT

* I UNIVERSITY OF

=H) NOTRE DAME

Are We Ready for a
Mutation?

* I UNIVERSITY OF

1) NOTRE DAME

Ideas

e Ultra light weight “butterflies” take
functions to the data flowers

— Memory reference becomes “traveling
threadlet”

e But, like flowers, data can respond to
the touch of the butterfly.

— Add small amount of metadata to each word

e Finally, it's the “flowers” whose
location is important

* T UNIVERSITY OF

Adding Metadata to the Memory

e "Special Values”
— Uninitialized, error code, null

e Full/Empty bits
— And multiple flavors of “empty”
- Esp. "empty pending outstanding value”
— Greatly simplifies Producer/Consumer

e Forwarding
e Locked
e Traps

e Especially interesting when aliased to
thread state registers

* I UNIVERSITY OF

=H) NOTRE DAME

Full/Empty Bits & MPI

18F T

16

-
SN
T

-
N
T

p—

Latency (norm to base case)

o
e3]
T
I

06 N
I I I I I I I

16 64 256 1024 4096 16384 65536 262144

Buffer Size (bytes)
T JUNIVERSITY OF , 7 T‘ﬁ——

5 NOT RE DAME

One Step Further:
Allowing the Threads to Travel

e "Overprovision” memory with huge numbers of
anonymous execution sites
— Place at bottom of, or near, memory

e Reduce state of a thread to a memory reference

e Make creating a new thread “near” some memory
a cheap operation

e Allow thread to "move” to new site when locality
demands

e Don’t require target to maintain code

Latency reduced by huge factors

* T UNIVERSITY OF

Piglet Processing
At Base of Memory

Target Address Operands & Working Registers PC Code
Additional Data Payload

THREADLET FORMAT

NETWORK
INTERCONNECT

“CLASSICAL”
HOST CPU NODE L P ROCTSSING
Memory NODES
[— E?%
*I.]UNIVERSITY OF ,, [/VAE[I/V& 50

5) NOTRE DAME R LINNOTTOR

Types of Piglet Programs

e Classical memory operations
e Atomic Memory Operations
e Short Vector to Memory

e "Object-oriented” method evaluation at
the object

e Small slices of programs

* T UNIVERSITY OF

Example: AMO

e AMO = Atomic Memory Operation
- Update some memory location
— With guaranteed no interference
— And return result

e Parcel Registers: A=Address, D=Data, R=Return Address

e Sample Code:
e MOVE
~ L1: LOCK & LOAD
~oP ~Atomic Update “At the Memory”
__STORE & RELEASE L1 |

T

* I UNIVERSITY OF

) NOTRE DAME B iﬁﬁ@%ﬁ@ﬁ

Vector Add (Z[I]=X[I]+Y[I]) via
Threadlets

i Transaction Reduction factor:
«1.66X (0=1)

10X (0=6)
- e2
- *up to 50X (0=30)

Accumulate Q

X’s in payload

Fetch Q

g

matching Y’s,

\Y |

E

add to X’s, M
save in payload, N 0 0 0 0
g > R R

Y

store in Q Z’s

* I UNIVERSITY OF

A Personal Goal

* Huge increase in silicon per board
 Level out power dissipation

*I.|UNIVERSITY OF] r]

Effects on HPC Language
e "Chicken and egg” problem re
implementation

e Seems a good match for many, but not
all, of remaining problems

e \Work needed in areas like transactional
memory

e Does not solve the “single thread”

performance problem
— But nothing does

* T UNIVERSITY OF

The Future

Will We Design Like This? Or This?

* I UNIVERSITY OF

Backup

*T.JUNIVERSITY OF

My Background is Simplistic

Space Shuttle IOP (1975)
* World’s 2" (& certainly
oldest still running) multi-

threaded machine
 Also “fastest” & “highest”

* I UNIVERSITY OF

NOTRE DAME

w
B
=
=
=
&
| &
=
E
=
=
1=
=
¥

WURES s ntonannnannnt
ittt bl

Execube (1993)

* Perhaps world’s 15t
Tiled Multi-core

* World’s 15t PIM on
DRAM

* Built for massive
radar tracking

PIM Lite (2004)

* Perhaps world’s first
multi-threaded core
designed for life at
bottom of memory bank
* With light weight
thread states that travel
like memory references

Ongoing Work

e Improving MPI latency & throughput

e Improving OpenMP library

e Extracting small threadlets from programs
e Architectures for “wide word” threadlets

e Properties of "Traveling threads” on multi-bank
memory system

e Synchronization primitives
e Collectives

e Transactional primitives

e Active graphs

e Multi-level multi-threaded algorithms for graph
problems, SAT solvers, data mining

* T UNIVERSITY OF

The "Piglet” Architecture

e Make operands of memory request into “registers”
for “threadlet” state
- Target Address => A “Address” Register
— Write Data => D “"Data” Register
— Reply Address => R "Reply” Register
- Command => PC (<8bits) + “Program”
— Cache Line Payload => Extended set of registers

e Instructions in multiples of 4 bits
— Simple “"Accumulator” style: D <= D op Memory[A]

e Key new instructions
- MOVE thread to address specified by A
- SPAWN a new threadlet
— LOCK out & RELEASE access to a local location
— SUSPEND self to local memory
- AWAKEN some suspended thread in local memory

*.JUNIVERSITY OF %

Programs for "Dumb” Operations

Function A Register R Register D Register | Payload | Program Size

. Target Return .
Single Word Read Address Address None No 24 bits

. Return
Single Word Read Return Data Word None No Part of Above
Address
Target Acknowledge .

. . Dat 40 bit
Single Word Write Address Address ata Word No 0 bits
Single Word Write Acknowledge

Acknowledge Address None None No Part of Above
Target Return .
Cache Read Address Address None No 32 bits
Target
Cache Read Return a8 None None Yes Part of Above
Address
. Target Acknowledge .
Cache Write Address Address None Yes 40 bits
. Target
Cache Write Acknowledge None None No Part of Above
Address

Bottom Line: “Dumb” Operations = “Simple” Programs

* g UNIVERSITY OF

=5/ NOTRE DAME

Vector Gather via Threadlets
Traffic Estimates

100000 ,LJJ\ 10000000
@ 10000 %K < 1000000 *\R
c o |
g : |
& 1000 LN \ % 100000 -
2 | g
E —
= 100 ’ -
£ 10000
[m]
10
1 10 100 1000 10000 1000
_ 1 10 100 1000 10000
Stride (Bytes) Q = Payload size in DW Stride (Bytes)
—=— Classical Q=2 Q=3 —m— Classical Q=2 Q=3
¥ Q=4 — o Q=6 —+— Q=8 v Q=4 —e Q=6 Q=8

* 4X+ reduction in Transactions
* 25%+ reduction in bytes transferred

- Huge reduction in latency /(ﬁ_
— - B &—

UNIVERSITY OF

:5)) NOTRE DAME

PIM Lite

Thread Pool

Instruction Memory
(4 Kbytes)

Frame Memory (1 K

45 mm

)

ALU & Permute Net

Data Memory
(2 Kbytes)

Write-Back Logic

—29mm — >

PIM

|

CPU

C

¢ "Looks like memory” at Interfaces

e ISA: 16-bit multithreaded/SIMD
- “Thread” = IP/FP pair
- "“Registers” = wide words in frames

e Designed for multiple nodes per chip

e 1 node logic area ~ 10.3 KB SRAM
(comparable to MIPS R3000)

e TSMC 0.18u 1-node 15t pass success
e 3.2 million transistors (4-node)

Parcel in (via chip data bus) Parcel out (via chip data bus)

memory interconnect network II > *

?

Thread || Instr Frame Data il
™ ALU Back
Queue | Memory| || Memoryj Memory Logic

Memory interconnect network

UNIVERSITY OF

:5)) NOTRE DAME

Use of Threadlets for Program
Slices

P: desired # concurrent threads

Instruction

1[.1\(. . R
‘ l Executable Dependancy

| .
Amber -> -’ ('Nph "> ey "

A% Extraction
9 |8

Tracing (u?)

Thread length(target size=8)
- :

100
o £ 80
10 g
& 0
50 3
E g 40
=
10 ‘ < 20
, | :
10” Imp.lj.nve Imp.poly Imp.big Imp.flow cth.2gas
0 5 10 15 20 25 30 a5 40 45
Thread length
100
£ 8o0f
& 2
10 =
§ oof
* 5
g % w0 ~
2 2
. < 20
10
o L= o 1 |‘ |) cth.amr cth.efp its.cg its.cad sppm
Imp.lj.nvémp.poly Imp.big Imp.flowcth.2gas cth.amr cth.efp its.cg its.cad sppm 10 0 5 10 15 20 25 30 as 40 45
Thread length
From Basic Application Data Through Detailed Thread Characteristics

UNIVERSITY OF

NOTRE DAME

Summary Comments

e “"Business as Usual” leading to significant

mismatches in way we use silicon, board space, ... ml]"IUVﬂmrS
— Huge variations in heat dissipation !Vgr!“ma
- Increasing clock rates not productive without latency fixes SRR

to Fail

e Alternative explicit parallelism (tiling, multi-
threading) helps, especially with significant
program-controllable local memory

— Smaller, more efficient cores
— But doesn’t address the remote latency issue

e Changing paradigm to make memory the focus may
solve many of these issues

— Reduce the weight of thread state to increase mobility
— Spread out the processing logic to level power dissipation

e In all cases, need cleaner expressiveness of locality
& safe explicit parallelism

— Its not processing that needs to sit still

* I UNIVERSITY OF

