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Some Language/MicroArchitecture
Prehistory

• Von Neumann model  Fortran

• Interpretative languages => “just in time
compiling” => trace caches

• Dataflow languages => dynamic register
renaming and out-of-order execution

• SPMD => SMPs, cache coherency, multi-
threading

• Distributed parallelism => MPI, NICs, …

Still Have the Memory Wall!!!
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My Concern: We’re Focused on the
Wrong Aspect of the Wall

What about bandwidth?

Today
Future Trend/
Memory Wall}

7% Performance Difference
NOTE: ACCOUNTS ONLY FOR 
COMPUTATION (NOT MPI)!

Chart courtesy
Richard Murphy,

SNL

Application:
Trilinos
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It Also Bothers Me That:

• Modern microprocessor state growing as
Moore’s Law
– But not the number of computational units

• Memory is as dumb as it was 50 years ago
• We insist on giving persistent names to the

tarballs representing the physical cores
– And go to great extremes to separate the persistent

names of memory from its location

• Newer classes of apps “visit” data
irregularly
– Where “caching” copies is wasted energy
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How Are We Using Our Silicon?
Compare CPU to a DP FPU
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Core CPU State vs Time
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• Today: “Killer Micros” becoming
“physics-limited” very hungry multi-
core monsters

• Maturing Multi-threading & Tiling
providing more nimble systems

• Is there an alternative evolutionary
path we’ve ignored?

My View: HPC Evolutionary Paths
Diverging – And this Will Change

Language Strategies
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The Darwinian
Multi-Core Evolution

Now
Up to ~2002
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Area Scaling Alone Reveals the
Rationale for Multi-Core
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With a Staggering Potential

Assume we scale entire current single core chip & replicate to fill 280 sq mm die
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And a Flood Tide of Recent
Announcements

Many new 2006
Chips TBA
In Feb 2007
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And Not Just “Twosies”
Multi-core Announcements
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The Classical Limiting Factors:
Power & Contacts
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Peak Logic Clock Rates
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Why the Clock Flattening?
POWERPOWER
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Because Vdd No Longer Declining
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The Multi-Core Family Tree
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• Intel Core Duo
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• Intel Teraflop
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And then there’s Array Approaches
that Provide Internal Memory

• Intel Core Duo
• IBM Power5
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Particularly Effective for Weak Scaling Apps
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And Today’s Memory Architecture
is Evolving to Feed the Beast
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… But Not to Reduce Latency

We’ve introduced 16 extra chip crossings!
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Effects on HPC Language

• It’s latency, not bandwidth, that’s the
killer

• Flattening of clocks means that we’re
forced into explicit parallelism

• There are at least three forms of such
parallelism

• Compiling and/or run-time becomes 2D
optimization problem
– What data goes in which memory, at what time
– What code is run on what core, at what time
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A Simple Case Study
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A Modern HPC System
Computational Board
• 4 PE Nodes
• Each PE Node:

– Dual core Opteron @ 2.6GHz
– 4 DDR2 2GB DIMMs

• 4 Routers per Board
Key Ratios (all “Peak”)
• 2 Flops per cycle per core
• 1.5B per Flop
• 1.25B/s of Memory BW per

Flop per core
• 0.25B/s Link BW per flop per

PE
• 0.06-0.25B/s of Bisection BW

per Flop
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What Are We Doing with the Total
System Silicon?
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What Is the Power Density
Distribution Like?
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What Is the Board Space
Utilization Like?
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What Is the Power Per Unit Board
Space Like?
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A Dual Core Processor Chip

http://techreport.com/reviews/2005q2/opteron-x75/dualcore-chip.jpg
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Some Projections
• Off chip memory controls

performance

• IPC/core more sensitive to
latency than bandwidth

• “Flat” off chip physical latency
=> relative latency grows
with clock

48%
Drop 73%

Drop

82%
Increase

3.08 X
Increase

1.0
48%
Drop 73%

Drop

82%
Increase

3.08 X
Increase

1.0

Clock

IPC
IPS/Core

Ack. R. Murphy, SNL
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Where Does This Lead Us?
• Use density increase to replicate cores

• Keep clock flat to minimize power

• Still need additional I/O for both bandwidth & latency
management (reduce queuing delays by multiple banks)
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Example Next Evolutionary Step

• Add in more DDR ports

• Change memory hierarchy
to add in big L3 for latency

• Requires significant inter-
core Interconnect

http://www.hypertransport.org/docs/tech/HT3pres.pdf
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Effects on HPC Language

• Current trends: multi-core, deep memory
hierarchy

• Power and contacts dominate current
architectures
– Causing flattening of clock rate, and thus single

thread ILP

• Focus on deep memory hierarchies is
paramount
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The Emergence of More
Organized Architectures
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Tiling & Local Memory Regularizes
Layout & Lowers Latency

• Work well with partitionable algorithms
• Compiling problem: placement of kernels to minimize inter-

core bandwidth
• Good fit for applications that support weak scaling
• Problems with global synchronization
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Multi-Threading

• Provide explicit latency hiding

• More efficient logic utilization of simpler
cores

• Increase potential for memory references
“in flight”

• Shares path to memory

• But still doesn’t help “single thread”
performance in terms of chained memory
references
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Multi-Threaded Systems Not New
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Sun’s Niagara
• 8 4-way multi-threaded single

issue cores
• 3MB 12 bank shared L2
• 4 DDR2 Memory Interfaces
• Measured 5.76 IPC vs Peak of

8 on Java Business B/M
• 63W @90nm (2W cores)
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Cray’s Eldorado

Supports 128 Threads/core

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005
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Problems Still Remain
• Programming models not changed

• States still very heavy

• Compiling to specific cores

• Data partitioning

• Problems with coherency

• Doesn’t address barriers, sync
points, …

• Doesn’t help emerging low reuse
apps
– AMR
– Data mining
– Graph traversals
– Non-numeric solvers such as SAT
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Are We Ready for a
Mutation?
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Ideas

• Ultra light weight “butterflies” take
functions to the data flowers
– Memory reference becomes “traveling

threadlet”

• But, like flowers, data can respond to
the touch of the butterfly.
– Add small amount of metadata to each word

• Finally, it’s the “flowers” whose
location is important
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Adding Metadata to the Memory

• “Special Values”
– Uninitialized, error code, null

• Full/Empty bits
– And multiple flavors of “empty”
– Esp. “empty pending outstanding value”
– Greatly simplifies Producer/Consumer

• Forwarding

• Locked

• Traps

• Especially interesting when aliased to
thread state registers
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Full/Empty Bits & MPI

Ack. A. Rodrigues, SNL
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One Step Further:
Allowing the Threads to Travel

• “Overprovision” memory with huge numbers of
anonymous execution sites
– Place at bottom of, or near, memory

• Reduce state of a thread to a memory reference

• Make creating a new thread “near” some memory
a cheap operation

• Allow thread to “move” to new site when locality
demands

• Don’t require target to maintain code

Latency reduced by huge factors
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Piglet Processing
At Base of Memory

Target Address Operands & Working Registers CodePC
Additional Data Payload

MANAGEMENT

PIGLET
PROCESSING

Memory NODES

NETWORK
INTERCONNECTCACHE

HEAVYWEIGHT
ISA

PROCESSING

PIGLET
PROCESSING

“CLASSICAL”
HOST CPU NODE

THREADLET FORMAT

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

Memory Bank

PIGLET
PROCESSING
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Types of Piglet Programs

• Classical memory operations

• Atomic Memory Operations

• Short Vector to Memory

• “Object-oriented” method evaluation at
the object

• Small slices of programs



52

Example: AMO
• AMO = Atomic Memory Operation

– Update some memory location
– With guaranteed no interference
– And return result

• Parcel Registers: A=Address, D=Data, R=Return Address
• Sample Code:

MOVE
L1: LOCK & LOAD
OP
STORE & RELEASE L1
SWAPRA
MOVE A
STORE
QUIT

Atomic Update “At the Memory”

Return Result

Bottom Line: 2 network transactions rather than up to 6!
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Vector Add (Z[I]=X[I]+Y[I]) via
Threadlets
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A Personal Goal
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• Huge increase in silicon per board
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Effects on HPC Language

• “Chicken and egg” problem re
implementation

• Seems a good match for many, but not
all, of remaining problems

• Work needed in areas like transactional
memory

• Does not solve the “single thread”
performance problem
– But nothing does
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The Future

Will We Design Like This? Or This?
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Backup
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My Background is Simplistic

Space Shuttle IOP (1975)
• World’s 2nd (& certainly
oldest still running) multi-
threaded machine
• Also “fastest” & “highest”

Execube (1993)
• Perhaps world’s 1st

Tiled Multi-core
• World’s 1st PIM on
DRAM
• Built for massive
radar tracking

PIM Lite (2004)
• Perhaps world’s first
multi-threaded core
designed for life at
bottom of memory bank
• With light weight
thread states that travel
like memory references
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Ongoing Work
• Improving MPI latency & throughput
• Improving OpenMP library
• Extracting small threadlets from programs
• Architectures for “wide word” threadlets
• Properties of “Traveling threads” on multi-bank

memory system
• Synchronization primitives
• Collectives
• Transactional primitives
• Active graphs
• Multi-level multi-threaded algorithms for graph

problems, SAT solvers, data mining
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The “Piglet” Architecture
• Make operands of memory request into “registers”

for “threadlet” state
– Target Address => A “Address” Register
– Write Data => D “Data” Register
– Reply Address => R “Reply” Register
– Command => PC (<8bits) + “Program”
– Cache Line Payload => Extended set of registers

• Instructions in multiples of 4 bits
– Simple “Accumulator” style: D <= D op Memory[A]

• Key new instructions
– MOVE thread to address specified by A
– SPAWN a new threadlet
– LOCK out & RELEASE access to a local location
– SUSPEND self to local memory
– AWAKEN some suspended thread in local memory
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Programs for “Dumb” Operations

Function  A Register  R Register  D Register  Payload  Program Size  

Single Word Read  
Target 

Address  

Return 

Address  
None No 24 bits  

Single Word Read Return  
Return 

Address  
Data Word  None No Part of Above  

Single Word Write  
Target 

Address  

Acknowledge 

Address   
Data Word  No 40 bits  

Single Word Write 

Acknowledge  

Acknowledge 

Address  
None None No Part of Above  

Cache Read  
Target 

Address  

Return 

Address  
None No 32 bits  

Cache Read Return  
Target 

Address  
None None Yes Part of Above  

Cache Write  
Target 

Address  

Acknowledge 

Address  
None Yes 40 bits  

Cache Write Acknowledge  
Target 

Address  
None None No Part of Above  

 

Bottom Line: “Dumb” Operations = “Simple” Programs
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Vector Gather via Threadlets
Traffic Estimates
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• 4X+ reduction in Transactions
• 25%+ reduction in bytes transferred
• Huge reduction in latency

Q = Payload size in DW
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PIM Lite

memory interconnect network

Memory interconnect network

Memory
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Memory interconnect network
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CPU
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• “Looks like memory” at Interfaces

• ISA: 16-bit multithreaded/SIMD
– “Thread” = IP/FP pair
– “Registers” = wide words in frames

• Designed for multiple nodes per chip

• 1 node logic area ~ 10.3 KB SRAM
(comparable to MIPS R3000)

• TSMC 0.18u 1-node 1st pass success

• 3.2 million transistors (4-node)
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Use of Threadlets for Program
Slices
P: desired # concurrent threads

From Basic Application Data Through Detailed Thread Characteristics

Analysis

To Overall Concurrency 
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Summary Comments
• “Business as Usual” leading to significant

mismatches in way we use silicon, board space, …
– Huge variations in heat dissipation
– Increasing clock rates not productive without latency fixes

• Alternative explicit parallelism (tiling, multi-
threading) helps, especially with significant
program-controllable local memory
– Smaller, more efficient cores
– But doesn’t address the remote latency issue

• Changing paradigm to make memory the focus may
solve many of these issues
– Reduce the weight of thread state to increase mobility
– Spread out the processing logic to level power dissipation

• In all cases, need cleaner expressiveness of locality
& safe explicit parallelism
– Its not processing that needs to sit still


