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Some Language/MicroArchitecture

Prehistory
¢ \Von Neumann model < Fortran

e Interpretative languages => “just in time
compiling” => trace caches

e Dataflow languages => dynamic register
renaming and out-of-order execution

e SPMD => SMPs, cache coherency, multi-
threading

e Distributed parallelism => MPI, NICs, ...

Still Have the Memory Wall!l!
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My Concern: We're Focused on the

Wrong Aspect of the Wall
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It Also Bothers Me That:

e Modern microprocessor state growing as
Moore’s Law
— But not the number of computational units

e Memory is as dumb as it was 50 years ago

e We insist on giving persistent names to the
tarballs representing the physical cores

— And go to great extremes to separate the persistent
names of memory from its location

e Newer classes of apps “visit” data
irregularly
- Where “caching” copies is wasted energy
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How Are We Using Our Silicon?
Compare CPU to a DP FPU
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Core CPU State vs Time
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My View: HPC Evolutionary Paths
Diverging — And this Will Change
Language Strategies

e Today: “Killer Micros” becoming
“physics-limited” very hungry multi-
core monsters

e Maturing Multi-threading & Tiling
providing more nimble systems

e Is there an alternative evolutionary
path we’'ve ignored?
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The Darwinian
Multi-Core Evolution
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Up to ~2002
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Area Scaling Alone Reveals the
Rationale for Multi-Core
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With a Staggering Potential
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And a Flood Tide of Recent
Announcements
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And Not Just "Twosies”

Multi-core Announcements
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The Classical Limiting Factors:
Power & Contacts
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Peak Logic Clock Rates
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2005 projection was for 5.2 GHz — and we didn’t make it in production.
Further, we’re still stuck at 3+GHz in production
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Why the Clock Flattening?
POWER
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Because Vdd No Longer Declining

6
.
5 e 6 6 406 40000
*
4 +
* e
o] *o00030
T 3 *
> 3
$e
2 %6 o
* ‘%:% s,
1 003:;;;
0
1970 1980 1990 2000 2010 2020

* I UNIVERSITY OF




ITRS Power Density Projection
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Summarizing Clock Growth,
Including Memory Bus
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Does Logic Performance Match
Off-chip Bandwidth Potential?
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A Growing Mismatch!
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The Multi-Core Family Tree
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This may be the 1st Layout Approach
You Think of for Multi-Core

(a) Hierarchical Designs

* Intel Core Duo
- IBM Power5
 AMD Opteron
 SUN Niagara

External Bandwidth = sum of escapes from cores
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But There’s at Least One Approach
with Lower Bandwidth Needs
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(b) Pipelined Designs
* IBM Cell
* Most Router chips
* Many Video chips

External bandwidth largely independent of # of cores
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And then there’s Array Approaches
that Provide Internal Memory
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* Terasys
 Execube

* Yukon

* Intel Teraflop
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And Today’s Memory Architecture
iIs Evolving to Feed the Beast
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... But Not to Reduce Latency

We’ve introduced 16 extra chip crossings!
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Effects on HPC Language
o Jt's latency, not bandwidth, that's the
Killer

e Flattening of clocks means that we’re
forced into explicit parallelism

e There are at least three forms of such
parallelism

e Compiling and/or run-time becomes 2D

optimization problem
— What data goes in which memory, at what time
- What code is run on what core, at what time

/f%
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A Simple Case Study
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A Modern HPC System

Computational Board
e 4 PE Nodes

e Each PE Node:
— Dual core Opteron @ 2.6GHz
- 4 DDR2 2GB DIMMs

e 4 Routers per Board

Key Ratios (all "Peak”)

e 2 Flops per cycle per core
e 1.5B per Flop

e 1.25B/s of Memory BW per
Flop per core

0.25B/s Link BW per flop per
PE

0.06-0.25B/s of Bisection BW

per Flop /fﬁ_
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What Are We Doing with the Total
System Silicon?
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What Is the Power Density
Distribution Like?
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What Is the Board Space
Utilization Like?
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What Is the Power Per Unit Board
Space Like?
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A Dual Core Processor Chip

http://techrep0rt.com/revie*/Z005q2/0pter0n-x75/dualcore-chip.jpg
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Some Projections

Cube3 CRS Latency/Bandwidth Sensitivity

o Off chip memory controls
performance

e IPC/core more sensitive to
latency than bandwidth

e “Flat” off chip physical latency
=> relative latency grows

— 40

with clock e -

<
Latency (Relative to Opteron) 25

Bandwidth (Relative to Opteron)

HMr308X
Increase

82%
Increase

IPS/Core
IPC
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Where Does This Lead Us?

e Use density increase to replicate cores
e Keep clock flat to minimize power

e Still need additional I/O for both bandwidth & latency
management (reduce queuing delays by multiple banks)
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Example Next Evolutionary Step

e Add in more DDR ports

e Change memory hierarchy
to add in big L3 for latency

e Requires significant inter-
core Interconnect

http://www.hypertransport.org/docs/tech/HT3pres.pdf
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Effects on HPC Language

e Current trends: multi-core, deep memory
hierarchy

e Power and contacts dominate current

architectures

— Causing flattening of clock rate, and thus single
thread ILP

e Focus on deep memory hierarchies is
paramount
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The Emergence of More
Organized Architectures
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Tiling & Local Memory Regularizes
Layout & Lowers Latency
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e Work well with prtiionable algorithms

e Compiling problem: placement of kernels to minimize inter-
core bandwidth

e Good fit for applications that support weak scaling
e Problems with global synchronization
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Multi-Threading

e Provide explicit latency hiding

e More efficient logic utilization of simpler
cores

e Increase potential for memory references
“in flight”

e Shares path to memory

e But still doesn’t help “single thread”
performance in terms of chained memory
references
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Multi-Threaded Systems Not New

V4
°
HTMT EId:rado

: .
E Horizon MTA
e ¢ ¢ &PV Hite—
EI: J-Machi S
5 =iviacnine
s 3 . *e oo o Hyper Threading.
Q
g 2 HEP | .

1 * *e o

6600 Space Shuttle
0 10P
1960 1970 1980 1990 2000 2010
[ = m
TL]UNIVERSITY OF r#‘u_

5) NOTRE DAME ﬁ : HN/\Y@[VAWWN




Sun’s Niagara

e 8 4-way multi-threaded single
issue cores

3MB 12 bank shared L2

o
e i e 4 DDR2 Memory Interfaces
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Cray’s Eldorado

Service & 10

- -
Contomar
DOR
Controller

BDR :‘| ';
I" Memery Intarface

-4
[ eowne

E===megs® RAID Controllers

Supports 12@ Threads/core

Figure 2. MT processor block diagram

Figure 1. Eldorado system architecture

X . Table 5. RandomAccess
Table 3. Sparse matrix-vector multiply

Table 4. Linked-list search

Syst Gi dat "5 d ; ;
System T (sec) ystem 1ga updates per secon System ]I—\l_nles(ggg) E‘fliésgg%
Cray X1 800 MHz (60 P) 0.0031 B T
IBM Powerd 1.7 GHz (1 P) 26.10 :
IBM Powerd 1.7 GHz (256 P) 0.0055 SunFire 880 MHz (1 P) 9.3 107.0
MTA-2 (1P) 7.11 ) N
MTA-2 (2 P) 0.041 Intel Xeon 2.8GHz (1 P) 7.15 40.0
MTA-2 (2P) 3.59 N
MTA-2 (5 P) 0.204 MTA-2 (1 P) 0.485 1.98
MTA-2 (4 P) 1.83 -
MTA-2 (10 P) 0.405 MTA-2 (2 P) 0.053 0.197
MTA-2 (8 P) 0.94 —
Eldorado (576 P) (estimated) 17.32 Eldorado (576P) (estimiated) 0.0014 0.0058
Eldorado (576 P) (estimated) 0.043 — N
Eldorado (2112 P) (estimated) 47.57 Eldorado (2112 P) (estimiared) 0.0005 0.0020
Eldorado (2112 P) (estimated) | 0.016 : —
Eldorado (8064 P) (estimated) 121.0 Eldorado (8064 P) (estimiated) 0.0002 0.0008
Eldorado (8064 P) (estimated) | 0.006 :

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005
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Problems Still Remain

e Programming models not changed

e States still very heavy

e Compiling to specific cores
e Data partitioning

e Problems with coherency

e Doesn’t address barriers, sync
points,

e Doesn’t help emerging low reuse
apps
- AMR
— Data mining
— Graph traversals
— Non-numeric solvers such as SAT
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Are We Ready for a
Mutation?
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Ideas

e Ultra light weight “butterflies” take
functions to the data flowers

— Memory reference becomes “traveling
threadlet”

e But, like flowers, data can respond to
the touch of the butterfly.

— Add small amount of metadata to each word

e Finally, it's the “flowers” whose
location is important
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Adding Metadata to the Memory

e "Special Values”
— Uninitialized, error code, null

e Full/Empty bits
— And multiple flavors of “empty”
- Esp. "empty pending outstanding value”
— Greatly simplifies Producer/Consumer

e Forwarding
e Locked
e Traps

e Especially interesting when aliased to
thread state registers

* I UNIVERSITY OF
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Full/Empty Bits & MPI
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One Step Further:
Allowing the Threads to Travel

e "Overprovision” memory with huge numbers of
anonymous execution sites
— Place at bottom of, or near, memory

e Reduce state of a thread to a memory reference

e Make creating a new thread “near” some memory
a cheap operation

e Allow thread to "move” to new site when locality
demands

e Don’t require target to maintain code

Latency reduced by huge factors
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Piglet Processing
At Base of Memory

Target Address Operands & Working Registers PC Code
Additional Data Payload

THREADLET FORMAT

NETWORK
INTERCONNECT

“CLASSICAL”
HOST CPU NODE L P ROCTSSING
Memory NODES
[ — E?%
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Types of Piglet Programs

e Classical memory operations
e Atomic Memory Operations
e Short Vector to Memory

e "Object-oriented” method evaluation at
the object

e Small slices of programs
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Example: AMO

e AMO = Atomic Memory Operation
- Update some memory location
— With guaranteed no interference
— And return result

e Parcel Registers: A=Address, D=Data, R=Return Address

e Sample Code:
e MOVE
~ L1: LOCK & LOAD
~oP ~Atomic Update “At the Memory”
__STORE & RELEASE L1 |

_____________________________________

T
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Vector Add (Z[I]=X[I]+Y[I]) via
Threadlets

i Transaction Reduction factor:
«1.66X (0=1)

10X (0=6)
- e2
- *up to 50X (0=30)

Accumulate Q

X’s in payload

Fetch Q

g

matching Y’s,

\Y |

E

add to X’s, M
save in payload, N 0 0 0 0
g > R R

Y

store in Q Z’s
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A Personal Goal

* Huge increase in silicon per board
 Level out power dissipation
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Effects on HPC Language
e "Chicken and egg” problem re
implementation

e Seems a good match for many, but not
all, of remaining problems

e \Work needed in areas like transactional
memory

e Does not solve the “single thread”

performance problem
— But nothing does
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The Future

Will We Design Like This? Or This?
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Backup
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My Background is Simplistic

Space Shuttle IOP (1975)
* World’s 2" (& certainly
oldest still running) multi-

threaded machine
 Also “fastest” & “highest”
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Execube (1993)

* Perhaps world’s 15t
Tiled Multi-core

* World’s 15t PIM on
DRAM

* Built for massive
radar tracking

PIM Lite (2004)

* Perhaps world’s first
multi-threaded core
designed for life at
bottom of memory bank
* With light weight
thread states that travel
like memory references




Ongoing Work

e Improving MPI latency & throughput

e Improving OpenMP library

e Extracting small threadlets from programs
e Architectures for “wide word” threadlets

e Properties of "Traveling threads” on multi-bank
memory system

e Synchronization primitives
e Collectives

e Transactional primitives

e Active graphs

e Multi-level multi-threaded algorithms for graph
problems, SAT solvers, data mining
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The "Piglet” Architecture

e Make operands of memory request into “registers”
for “threadlet” state
- Target Address => A “Address” Register
— Write Data => D “"Data” Register
— Reply Address => R "Reply” Register
- Command => PC (<8bits) + “Program”
— Cache Line Payload => Extended set of registers

e Instructions in multiples of 4 bits
— Simple “"Accumulator” style: D <= D op Memory[A]

e Key new instructions
- MOVE thread to address specified by A
- SPAWN a new threadlet
— LOCK out & RELEASE access to a local location
— SUSPEND self to local memory
- AWAKEN some suspended thread in local memory

*.JUNIVERSITY OF %




Programs for "Dumb” Operations

Function A Register R Register D Register | Payload | Program Size

. Target Return .
Single Word Read Address Address None No 24 bits

. Return
Single Word Read Return Data Word None No Part of Above
Address
Target Acknowledge .

. . Dat 40 bit
Single Word Write Address Address ata Word No 0 bits
Single Word Write Acknowledge

Acknowledge Address None None No Part of Above
Target Return .
Cache Read Address Address None No 32 bits
Target
Cache Read Return a8 None None Yes Part of Above
Address
. Target Acknowledge .
Cache Write Address Address None Yes 40 bits
. Target
Cache Write Acknowledge None None No Part of Above
Address

Bottom Line: “Dumb” Operations = “Simple” Programs

* g UNIVERSITY OF
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Vector Gather via Threadlets
Traffic Estimates

100000 ,LJJ\ 10000000
@ 10000 %K < 1000000 *\R
c o |
g : |
& 1000 LN \ % 100000 -
2 | g
E —
= 100 ’ -
£ 10000
[m]
10
1 10 100 1000 10000 1000
_ 1 10 100 1000 10000
Stride (Bytes) Q = Payload size in DW Stride (Bytes)
—=— Classical Q=2 Q=3 —m— Classical Q=2 Q=3
¥ Q=4 — o Q=6 —+— Q=8 v Q=4 —e Q=6 Q=8

* 4X+ reduction in Transactions
* 25%+ reduction in bytes transferred

- Huge reduction in latency /(ﬁ_
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PIM Lite

Thread Pool

Instruction Memory
(4 Kbytes)

Frame Memory (1 K

45 mm

)

ALU & Permute Net

Data Memory
(2 Kbytes)

Write-Back Logic

—29mm — >

PIM

|

CPU

C

¢ "Looks like memory” at Interfaces

e ISA: 16-bit multithreaded/SIMD
- “Thread” = IP/FP pair
- "“Registers” = wide words in frames

e Designed for multiple nodes per chip

e 1 node logic area ~ 10.3 KB SRAM
(comparable to MIPS R3000)

e TSMC 0.18u 1-node 15t pass success
e 3.2 million transistors (4-node)

Parcel in (via chip data bus) Parcel out (via chip data bus)

memory interconnect network II > *

?

Thread || Instr Frame Data il
™ ALU Back
Queue | Memory| || Memoryj Memory Logic

Memory interconnect network
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Use of Threadlets for Program
Slices

P: desired # concurrent threads

Instruction

1[.1\(. . R
‘ l Executable Dependancy

| .
Amber -> -’ ('Nph "> ey "

A% Extraction
9 |8

Tracing (u?)

Thread length(target size=8)
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Summary Comments

e “"Business as Usual” leading to significant

mismatches in way we use silicon, board space, ... ml]"IUVﬂmrS
— Huge variations in heat dissipation !Vgr!“ma
- Increasing clock rates not productive without latency fixes SRR

to Fail

e Alternative explicit parallelism (tiling, multi-
threading) helps, especially with significant
program-controllable local memory

— Smaller, more efficient cores
— But doesn’t address the remote latency issue

e Changing paradigm to make memory the focus may
solve many of these issues

— Reduce the weight of thread state to increase mobility
— Spread out the processing logic to level power dissipation

e In all cases, need cleaner expressiveness of locality
& safe explicit parallelism

— Its not processing that needs to sit still
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