
1

Past Predictions, the
Present, and Future Trends

Peter M. Kogge

Associate Dean for Research

McCourtney Prof. of CS & Engr

University of Notre Dame

IBM Fellow (retired)

2

Some Language/MicroArchitecture
Prehistory

• Von Neumann model  Fortran

• Interpretative languages => “just in time
compiling” => trace caches

• Dataflow languages => dynamic register
renaming and out-of-order execution

• SPMD => SMPs, cache coherency, multi-
threading

• Distributed parallelism => MPI, NICs, …

Still Have the Memory Wall!!!

3

My Concern: We’re Focused on the
Wrong Aspect of the Wall

What about bandwidth?

Today
Future Trend/
Memory Wall}

7% Performance Difference
NOTE: ACCOUNTS ONLY FOR
COMPUTATION (NOT MPI)!

Chart courtesy
Richard Murphy,

SNL

Application:
Trilinos

4

It Also Bothers Me That:

• Modern microprocessor state growing as
Moore’s Law
– But not the number of computational units

• Memory is as dumb as it was 50 years ago
• We insist on giving persistent names to the

tarballs representing the physical cores
– And go to great extremes to separate the persistent

names of memory from its location

• Newer classes of apps “visit” data
irregularly
– Where “caching” copies is wasted energy

5

How Are We Using Our Silicon?
Compare CPU to a DP FPU

0

50

100

150

200

250

300

350

400

450

1970 1975 1980 1985 1990 1995 2000 2005

A
re

a
 (
s
q

.
m

m
)

CPU Die Area Eqvt. DP FPU

66 to 1:
Is This
State?

Crossover

6

Core CPU State vs Time

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

E
s
ti

m
a
te

d
 S

ta
te

 (
k
 b

it
s
)

Total State Machine Supervisor

User Transient Latency Enhancing

Access Enhancing

1.5X Compound Growth Rate per Year

7

• Today: “Killer Micros” becoming
“physics-limited” very hungry multi-
core monsters

• Maturing Multi-threading & Tiling
providing more nimble systems

• Is there an alternative evolutionary
path we’ve ignored?

My View: HPC Evolutionary Paths
Diverging – And this Will Change

Language Strategies

8

The Darwinian
Multi-Core Evolution

Now
Up to ~2002

9

Area Scaling Alone Reveals the
Rationale for Multi-Core

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

S
in

g
le

 C
o

re
 P

ro
je

c
te

d
 D

ie
 S

iz
e
 (

m
m

2
)

Each line represents the scaling of a unique real microprocessor chip from its inception

ITRS Projected
Economic Die Size

10

With a Staggering Potential

Assume we scale entire current single core chip & replicate to fill 280 sq mm die

1

10

100

1000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

N
u

m
b

e
r

o
f

u
P

 p
e
r

S
q

u
a
re

 C
e
n

ti
m

e
te

r

11

And a Flood Tide of Recent
Announcements

Many new 2006
Chips TBA
In Feb 2007

0

5

10

15

20

25

30

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

#
 o

f
N

e
w

 M
u

lt
i-

c
o

r
e
 A

n
n

o
u

n
c
e
m

e
n

ts

12

And Not Just “Twosies”
Multi-core Announcements

1

10

100

1000

10000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

#
 o

f
C

o
r
e
s

13

The Classical Limiting Factors:
Power & Contacts

14

Peak Logic Clock Rates

10

100

1,000

10,000

100,000

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

C
lo

c
k
 (

M
H

z
)

Historical ITRS Max Clock Rate (12 invertors)

10

100

1000

10000

100000

10100100010000

Feature Size

C
lo

c
k
 (

M
H

z
)

Historical ITRS Max

3 GHz

Clas
sic

al
Moo

re
’s

La
w

Clas
sic

al
Moo

re
’s

La
w

2005 projection was for 5.2 GHz – and we didn’t make it in production.
Further, we’re still stuck at 3+GHz in production.

3 GHz

15

Why the Clock Flattening?
POWERPOWER

1

10

100

1000

1976 1986 1996 2006

W
a

tt
s

 p
e

r
D

ie

0.1

1

10

100

1000

1976 1986 1996 2006

W
a

tt
s

 p
e

r
S

q
u

a
re

 c
m

Hot, Hot, Hot!

Light Bulb

Iron

Rocket Nozzle

16

Because Vdd No Longer Declining

0

1

2

3

4

5

6

1970 1980 1990 2000 2010 2020

V
d
d

17

0

1

10

100

2000 2005 2010 2015 2020

C
lo

c
k

*
V

d
d

2
 R

e
la

ti
v

e
 t

o
 2

0
0

4

ITRS Clock Rate ITRS Vdd Squared Clock*Vdd 2̂ Clock*Vdd*(Vdd-Vth)

ITRS Power Density Projection
Components

~10X in Power Density

Transistors are getting faster faster than Vdd is declining

Clock rate assuming short pipes

Square of Vdd for Hi Perf chips

18

10

100

1,000

10,000

100,000

1990 1995 2000 2005 2010 2015 2020

M
H
z

Intel Bus Speed Intel CPU Clock ITRS: Max On-Chip Clock

ITRS: Max Off-Chip Clock Constant Dissipation Clock "0.3 of Power Limited Clock"

Summarizing Clock Growth,
Including Memory Bus

Histo
rica

l In
tel

CPU Clock

ITRS Projected CPU Clock

 Clock for Constant Power Density

Historical Intel Memory Bus Rate
 Assumed Projected Memory Rate

19

1

10

100

1,000

2004 2006 2008 2010 2012 2014 2016 2018 2020

G
ro

w
th

 F
a
c
to

r
o

v
e
r

2
0
0
4

ITRS Signal Pads per Hi Perf uP Ball Bond Contacts per sq. cm

Signal Pads * Modified Off Chip Clock Transistor Density * Power Limited Clock

Does Logic Performance Match
Off-chip Bandwidth Potential?

A Growing Mismatch!

ITRS Ball Bond Growth Rate

ITRS Hi Perf uP Signal Pad Growth Rate

Signal Pads * Modified Off Chip Clock

Transistor Density * Power Limited Clock

20

The Multi-Core Family Tree

21

Cache/Memory

Cache

Core Core

. . .

. . .

Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

This may be the 1st Layout Approach
You Think of for Multi-Core

• Intel Core Duo
• IBM Power5
• AMD Opteron
• SUN Niagara
• …

External Bandwidth = sum of escapes from cores

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
• Intel Teraflop

22

Cache/Memory

Cache

Core Core

. . .

. . .

Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

But There’s at Least One Approach
with Lower Bandwidth Needs

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
• Intel Teraflop

External bandwidth largely independent of # of cores

23

Cache/Memory

Cache

Core Core

. . .

. . .

Cache

Core Core

. . .

(a) Hierarchical Designs

C
O
R
E

C
O
R
E

C
O
R
E

M
E
M . . .

Cache/Memory

(b) Pipelined Designs

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Cache/
Memory

Core

Cache/
Memory

Core

. . .

Interconnect & Control

(c) Array Designs

And then there’s Array Approaches
that Provide Internal Memory

• Intel Core Duo
• IBM Power5
• Sun Niagara
• …

• IBM Cell
• Most Router chips
• Many Video chips

• Terasys
• Execube
• Yukon
• Intel Teraflop

Particularly Effective for Weak Scaling Apps

24

And Today’s Memory Architecture
is Evolving to Feed the Beast

25

… But Not to Reduce Latency

We’ve introduced 16 extra chip crossings!

26

Effects on HPC Language

• It’s latency, not bandwidth, that’s the
killer

• Flattening of clocks means that we’re
forced into explicit parallelism

• There are at least three forms of such
parallelism

• Compiling and/or run-time becomes 2D
optimization problem
– What data goes in which memory, at what time
– What code is run on what core, at what time

27

A Simple Case Study

28

A Modern HPC System
Computational Board
• 4 PE Nodes
• Each PE Node:

– Dual core Opteron @ 2.6GHz
– 4 DDR2 2GB DIMMs

• 4 Routers per Board
Key Ratios (all “Peak”)
• 2 Flops per cycle per core
• 1.5B per Flop
• 1.25B/s of Memory BW per

Flop per core
• 0.25B/s Link BW per flop per

PE
• 0.06-0.25B/s of Bisection BW

per Flop

29

What Are We Doing with the Total
System Silicon?

30

What Is the Power Density
Distribution Like?

31

What Is the Board Space
Utilization Like?

32

What Is the Power Per Unit Board
Space Like?

33

A Dual Core Processor Chip

http://techreport.com/reviews/2005q2/opteron-x75/dualcore-chip.jpg

34

Some Projections
• Off chip memory controls

performance

• IPC/core more sensitive to
latency than bandwidth

• “Flat” off chip physical latency
=> relative latency grows
with clock

48%
Drop 73%

Drop

82%
Increase

3.08 X
Increase

1.0
48%
Drop 73%

Drop

82%
Increase

3.08 X
Increase

1.0

Clock

IPC
IPS/Core

Ack. R. Murphy, SNL

35

Where Does This Lead Us?
• Use density increase to replicate cores

• Keep clock flat to minimize power

• Still need additional I/O for both bandwidth & latency
management (reduce queuing delays by multiple banks)

36

Example Next Evolutionary Step

• Add in more DDR ports

• Change memory hierarchy
to add in big L3 for latency

• Requires significant inter-
core Interconnect

http://www.hypertransport.org/docs/tech/HT3pres.pdf

37

Effects on HPC Language

• Current trends: multi-core, deep memory
hierarchy

• Power and contacts dominate current
architectures
– Causing flattening of clock rate, and thus single

thread ILP

• Focus on deep memory hierarchies is
paramount

38

The Emergence of More
Organized Architectures

39

Tiling & Local Memory Regularizes
Layout & Lowers Latency

• Work well with partitionable algorithms
• Compiling problem: placement of kernels to minimize inter-

core bandwidth
• Good fit for applications that support weak scaling
• Problems with global synchronization

40

Multi-Threading

• Provide explicit latency hiding

• More efficient logic utilization of simpler
cores

• Increase potential for memory references
“in flight”

• Shares path to memory

• But still doesn’t help “single thread”
performance in terms of chained memory
references

41

Multi-Threaded Systems Not New

0

1

2

3

4

5

6

7

1960 1970 1980 1990 2000 2010

R
e

le
v

a
n

t
F

e
a

tu
r
e

s

6600 Space Shuttle
IOP

HEP

J-Machine

Horizon MTA

HTMT

PIM Lite

Hyper Threading
P5, U4

Niagara
Eldorado

42

Sun’s Niagara
• 8 4-way multi-threaded single

issue cores
• 3MB 12 bank shared L2
• 4 DDR2 Memory Interfaces
• Measured 5.76 IPC vs Peak of

8 on Java Business B/M
• 63W @90nm (2W cores)

Cores, 37%

L2, 21%

FPU, 2%

Crossbar,

3%

DDR2

Interfaces,

11%

Other

Functions,

3%

Remainder

, 23%

1

10

100

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

A
re

a
 (
s
q

.
m

m
)

Single Core Area Entire L2 Area Single DDR2 I/F Area Crossbar

43

Cray’s Eldorado

Supports 128 Threads/core

John Feo, David Harper, Simon Kahan, Petr Konecny, “Eldorado”, Computing Frontiers, 2005

44

Problems Still Remain
• Programming models not changed

• States still very heavy

• Compiling to specific cores

• Data partitioning

• Problems with coherency

• Doesn’t address barriers, sync
points, …

• Doesn’t help emerging low reuse
apps
– AMR
– Data mining
– Graph traversals
– Non-numeric solvers such as SAT

45

Are We Ready for a
Mutation?

46

Ideas

• Ultra light weight “butterflies” take
functions to the data flowers
– Memory reference becomes “traveling

threadlet”

• But, like flowers, data can respond to
the touch of the butterfly.
– Add small amount of metadata to each word

• Finally, it’s the “flowers” whose
location is important

47

Adding Metadata to the Memory

• “Special Values”
– Uninitialized, error code, null

• Full/Empty bits
– And multiple flavors of “empty”
– Esp. “empty pending outstanding value”
– Greatly simplifies Producer/Consumer

• Forwarding

• Locked

• Traps

• Especially interesting when aliased to
thread state registers

48

Full/Empty Bits & MPI

Ack. A. Rodrigues, SNL

49

One Step Further:
Allowing the Threads to Travel

• “Overprovision” memory with huge numbers of
anonymous execution sites
– Place at bottom of, or near, memory

• Reduce state of a thread to a memory reference

• Make creating a new thread “near” some memory
a cheap operation

• Allow thread to “move” to new site when locality
demands

• Don’t require target to maintain code

Latency reduced by huge factors

50

Piglet Processing
At Base of Memory

Target Address Operands & Working Registers CodePC
Additional Data Payload

MANAGEMENT

PIGLET
PROCESSING

Memory NODES

NETWORK
INTERCONNECTCACHE

HEAVYWEIGHT
ISA

PROCESSING

PIGLET
PROCESSING

“CLASSICAL”
HOST CPU NODE

THREADLET FORMAT

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

ADDRESS
MANAGEMENT

PIGLET
PROCESSING

Memory Bank

PIGLET
PROCESSING

51

Types of Piglet Programs

• Classical memory operations

• Atomic Memory Operations

• Short Vector to Memory

• “Object-oriented” method evaluation at
the object

• Small slices of programs

52

Example: AMO
• AMO = Atomic Memory Operation

– Update some memory location
– With guaranteed no interference
– And return result

• Parcel Registers: A=Address, D=Data, R=Return Address
• Sample Code:

MOVE
L1: LOCK & LOAD
OP
STORE & RELEASE L1
SWAPRA
MOVE A
STORE
QUIT

Atomic Update “At the Memory”

Return Result

Bottom Line: 2 network transactions rather than up to 6!

53

Vector Add (Z[I]=X[I]+Y[I]) via
Threadlets

X

M
E
M
O
R
Y

X

M
E
M
O
R
Y

X

M
E
M
O
R
Y

X

M
E
M
O
R
Y

Type 1

Y

M
E
M
O
R
Y

Y

M
E
M
O
R
Y

Y

M
E
M
O
R
Y

Y

M
E
M
O
R
Y

Type 2

Type 3

Accumulate Q
X’s in payload

Spawn type 2s

Fetch Q
matching Y’s,

add to X’s,
save in payload,
store in Q Z’s

Z

M
E
M
O
R
Y

Z

M
E
M
O
R
Y

Z

M
E
M
O
R
Y

Z

M
E
M
O
R
Y

Stride thru Q elements

Transaction Reduction factor:
•1.66X (Q=1)
•10X (Q=6)
• up to 50X (Q=30)

54

A Personal Goal

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

PIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIM

Interconnection

Network

PIM Cluster
PIM Cluster

“Host”

PIM Cluster

I/O

A “PIM Cluster”

A “PIM DIMM”
PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM

PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM
PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM

PIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIMPIM PIM PIM PIM PIM PIM PIM PIM

Interconnection

Network

PIM ClusterPIM Cluster
PIM ClusterPIM Cluster

“Host”“Host”

PIM ClusterPIM Cluster

I/OI/O

A “PIM Cluster”

A “PIM DIMM”

• Huge increase in silicon per board
• Level out power dissipation

55

Effects on HPC Language

• “Chicken and egg” problem re
implementation

• Seems a good match for many, but not
all, of remaining problems

• Work needed in areas like transactional
memory

• Does not solve the “single thread”
performance problem
– But nothing does

56

The Future

Will We Design Like This? Or This?

57

Backup

58

My Background is Simplistic

Space Shuttle IOP (1975)
• World’s 2nd (& certainly
oldest still running) multi-
threaded machine
• Also “fastest” & “highest”

Execube (1993)
• Perhaps world’s 1st

Tiled Multi-core
• World’s 1st PIM on
DRAM
• Built for massive
radar tracking

PIM Lite (2004)
• Perhaps world’s first
multi-threaded core
designed for life at
bottom of memory bank
• With light weight
thread states that travel
like memory references

59

Ongoing Work
• Improving MPI latency & throughput
• Improving OpenMP library
• Extracting small threadlets from programs
• Architectures for “wide word” threadlets
• Properties of “Traveling threads” on multi-bank

memory system
• Synchronization primitives
• Collectives
• Transactional primitives
• Active graphs
• Multi-level multi-threaded algorithms for graph

problems, SAT solvers, data mining

60

The “Piglet” Architecture
• Make operands of memory request into “registers”

for “threadlet” state
– Target Address => A “Address” Register
– Write Data => D “Data” Register
– Reply Address => R “Reply” Register
– Command => PC (<8bits) + “Program”
– Cache Line Payload => Extended set of registers

• Instructions in multiples of 4 bits
– Simple “Accumulator” style: D <= D op Memory[A]

• Key new instructions
– MOVE thread to address specified by A
– SPAWN a new threadlet
– LOCK out & RELEASE access to a local location
– SUSPEND self to local memory
– AWAKEN some suspended thread in local memory

61

Programs for “Dumb” Operations

Function A Register R Register D Register Payload Program Size

Single Word Read
Target

Address

Return

Address
None No 24 bits

Single Word Read Return
Return

Address
Data Word None No Part of Above

Single Word Write
Target

Address

Acknowledge

Address
Data Word No 40 bits

Single Word Write

Acknowledge

Acknowledge

Address
None None No Part of Above

Cache Read
Target

Address

Return

Address
None No 32 bits

Cache Read Return
Target

Address
None None Yes Part of Above

Cache Write
Target

Address

Acknowledge

Address
None Yes 40 bits

Cache Write Acknowledge
Target

Address
None None No Part of Above

Bottom Line: “Dumb” Operations = “Simple” Programs

62

Vector Gather via Threadlets
Traffic Estimates

10

100

1000

10000

100000

1 10 100 1000 10000

Stride (Bytes)

T
ra

n
s

a
c

ti
o

n
s

Classical Q=2 Q=3

Q=4 Q=6 Q=8

1000

10000

100000

1000000

10000000

1 10 100 1000 10000

Stride (Bytes)

D
a

ta
 T

ra
n

s
fe

rr
e

d
 (

B
)

Classical Q=2 Q=3

Q=4 Q=6 Q=8

• 4X+ reduction in Transactions
• 25%+ reduction in bytes transferred
• Huge reduction in latency

Q = Payload size in DW

63

PIM Lite

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

memory interconnect network

Memory interconnect network

Memory

CPU

PIM

• “Looks like memory” at Interfaces

• ISA: 16-bit multithreaded/SIMD
– “Thread” = IP/FP pair
– “Registers” = wide words in frames

• Designed for multiple nodes per chip

• 1 node logic area ~ 10.3 KB SRAM
(comparable to MIPS R3000)

• TSMC 0.18u 1-node 1st pass success

• 3.2 million transistors (4-node)

Thread
Queue

Frame
Memory

Instr
Memory ALU Data

Memory

Write-
Back
Logic

Parcel in (via chip data bus) Parcel out (via chip data bus)

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5

 m
m

Instruction Memory

(4 Kbytes)

Frame Memory (1 K)

ALU & Permute Net

Data Memory

(2 Kbytes)

Thread Pool

Write-Back Logic

2.9 mm

4
.5

 m
m

64

Use of Threadlets for Program
Slices
P: desired # concurrent threads

From Basic Application Data Through Detailed Thread Characteristics

Analysis

To Overall Concurrency

65

Summary Comments
• “Business as Usual” leading to significant

mismatches in way we use silicon, board space, …
– Huge variations in heat dissipation
– Increasing clock rates not productive without latency fixes

• Alternative explicit parallelism (tiling, multi-
threading) helps, especially with significant
program-controllable local memory
– Smaller, more efficient cores
– But doesn’t address the remote latency issue

• Changing paradigm to make memory the focus may
solve many of these issues
– Reduce the weight of thread state to increase mobility
– Spread out the processing logic to level power dissipation

• In all cases, need cleaner expressiveness of locality
& safe explicit parallelism
– Its not processing that needs to sit still

