Programming with a 10° Threads

Kunle Olukotun
Computer Systems Lab
Stanford University
Dec 2006

Niagara Design Philosophy

* Multiple simple cores vs. single large ILP processor
Tradeoff latency of single thread for throughput of multiple threads
Improves performance and power efficiency (perfromance/watt)
Lower development cost, schedule risk with simple pipeline
Improve yield by selling non-perfect parts

* Design for good performance with cache misses
Lots of memory bandwidth per socket
Not “brittle”: runs real apps even better than benchmarks?
Hide cache, branch stalls with threads vs. OO0
Works well for commercial server and HPC workloads

* Take leadership in microprocessor design with most
threads per socket (for standard ISA)

Niagara 2 maintains performance lead

Niagara 2 Overview

e 8 cores x 8 threads =
64 threads per socket

* Crossbar: 180 GB/s
read, 90 GB/s write

* 4MB L2, 8-banks, 16-
way S.A

—_—

|

PR [RETRE,

Cl }ﬁg;g,, 12 Dirter—-
S | T

.- -
- ‘.'
oL P

AR AR |
2

.‘#

L 1
s w8

-
T
3 e A Ak AT
Bt ST, (N TN
ce‘ta' un y
s@ie o ‘B .

R [
oo '
"
~ 5+
-ﬂ-.ﬁ.héh.ﬁ’

?
% A

e

o2
| P o

B -
ol B

* 4 x dual-channel
FBDIMM ports:
63 GB/s

« Two 10/1 Gb Ethernet
ports

P e T T T | One PCI-Express x8
| bt | B @ 2.5 Gb/s port
342 mm? @ 65nm

..
-

R L L
2T T T
LT

rs -1

Ele o

\
X
i
£
it

“" o.t

e

-~
i B
i

- 4.- -h
S e 34
|
I" -r
uls ! 28 .
e I L T

e DT H
8 21 RE) RN IR o) R e P AR
o Sl o St P St o e S g 5l S B .
[

8
WS TEVE 88 ST =1

5 ERGE L e e e e e L
R > SR =4 re
[J

Niagara 2 SPARC Core

TLU

Y

Crossbar/L.2

IFU — Instruction Fetch Unit
+ 16 KB 1$, 32B lines, 8-way SA
¢ ©64-entry fully-associative ITLB
EXUO/1 — Integer Execution Units
¢ 4 threads share each unit

LSU — Load/Store Unit
+ 8KB D$, 16B lines, 4-way SA
+ 128-entry fully-associative DTLB

FGU — Floating-Point/Graphics Unit
SPU — Stream Processing Unit
+ Cryptographic coprocessor
TLU — Trap Logic Unit
MMU — Memory Management Unit

¢+ Hardware tablewalk (HWTW)
+ 8KB, 64KB, 4MB, 256MB pages

> 2x Niagara 1 throughput and
throughput/watt

1.4 x Niagara 1 on integer
> 10x Niagara 1 on FP

Niagara 2+ Supercomputer

Sockets 2
Cores 16
Threads 128
Gflops 23
Mem BW (GB/s) 126
Mem size (GB) 64
Off-node BW (GB/s) 8
Power (KW) 0.4
Nodes/Rack 40
Nodes 1000
Tflops 23
Bisection BW (TB/s) 3}
Tintops 45
Threads 128K
Mem size (TB) ~8
Racks 26
Power (MW) ~0.4

4 x DDR IB (4 GB/s)

Single shared address space?

Shared Memory vs.
Message Passing

+ Lots of discussion in 90’s with
MPPs

= SM much easier programming Plot of top 500 supercomputer sites

model over a decade
= Performance similar. but MP much Single Instruction multiple data (SIMD)
better for some apps 500 ~. Cluster
. . — network of
= MP hardware is simpler \(Norkstations)
¢+ Message passing won 400 Cluster

(network of

= Most machines > 100 processors SMPs)

use message passing
= MPI the defacto standard

+ Programmer productivity suffers
= |t takes too long to do

300

— Massively
parallel
processors

200

“computational science” (MPPs)
= Architectural knowledge required t@o 1
tune performance il?;i‘r’y

multiprocessors
(SMPs)

¢ Opportunity .

) | B N |
= develop a single shared memory B BB A BB BBT T BBP DO
parallel programming paradigm that
works from small to large scale Uniprocessors

Transactional Memory (TM)

Programmer simply specifies atomic tasks
atomic { some_work; }
Multiple objects, unstructured control-flow, ...
Declarative: user simply specifies, system implements details

TM brings database semantics to parallel programming
Atomicity: all or nothing
|solation: writes not visible until transaction commits
Consistency: serializable commit order

Stanford Transactional Coherence and Consistency (TCC) uses TM
for coherence & consistency
All transactions, all the time

Use TM to replace MESI coherence
= Other proposals build TM on top of MESI

Sequential consistency at the transaction level
= Address the memory model challenge as well

TM Programming with TCC

e Basic approaches
Sequential algorithms: use TM for thread-level speculation
Parallel algorithm: use TM for non-blocking synchronization

e (C-based programming
OpenMP extensions for transactional programming
Familiar, high-level model for C programmers

e Java-based programming with Atomos [PLDI'06]
Replaces synchronized and volatile with atomic
Transaction-based conditional waiting

= Removed wait, notify, and notifyAll
= Watch sets for efficient implementation

Nested transactions, violation handlers, ...

Scaling Shared Memory with

Transactional Memory

Eliminate commit as a bottleneck to scaling (up to 128 CPUs)

B Usaful Cache Mizse] de] Commit] Viclations

[|
N .ﬂ "
nd
el
(1]

5
[]

')
v B -4
. 5.1_ L2 L) -
o e -1 |
TLT DLOIT DEOIT DO DO
SN ewim . tomeaty waterns volrand waﬂrs.p

—
I=
—

g

g ::-.u: Fﬂ
ﬂ

I
ey @

e Scaling Transactional Memory
+ User managed coherence: when and sometimes what and where
¢+ Memory update options: atomic, consistent, inconsistent
+ Automatic locality optimization

Conclusions

* Niagara 2 Supercomputer

Microprocessor optimized for performance/watt on multithreaded
applications

Simple pipeline, CMP and multithreading, high bandwidth memory
hierarchy

2K Niagara 2s : 23 Tflops, 128 Kthreads, < 0.5 MW
Global shared address space

 TM programming model
Simple code that scales well on parallel systems
TCC: Use TM to provide coherence & consistency model

Use transactions to improve scalability: relax coherence, improve
locality

