
 Programming with a 105 Threads

Kunle Olukotun
Computer Systems Lab

Stanford University
 Dec 2006

Niagara Design Philosophy

• Multiple simple cores vs. single large ILP processor
 Tradeoff latency of single thread for throughput of multiple threads
 Improves performance and power efficiency (perfromance/watt)
 Lower development cost, schedule risk with simple pipeline
 Improve yield by selling non-perfect parts

• Design for good performance with cache misses
 Lots of memory bandwidth per socket
 Not “brittle”: runs real apps even better than benchmarks?
 Hide cache, branch stalls with threads vs. OOO
 Works well for commercial server and HPC workloads

• Take leadership in microprocessor design with most
threads per socket (for standard ISA)
 Niagara 2 maintains performance lead

Niagara 2 Overview

• 8 cores x 8 threads =
64 threads per socket

• Crossbar: 180 GB/s
read, 90 GB/s write

• 4MB L2, 8-banks, 16-
way S.A

• 4 x dual-channel
FBDIMM ports:
63 GB/s

• Two 10/1 Gb Ethernet
ports

• One PCI-Express x8
@ 2.5 Gb/s port

• 342 mm2 @ 65nm

Niagara 2 SPARC Core

• IFU – Instruction Fetch Unit
 16 KB I$, 32B lines, 8-way SA
 64-entry fully-associative ITLB

• EXU0/1 – Integer Execution Units
 4 threads share each unit

• LSU – Load/Store Unit
 8KB D$, 16B lines, 4-way SA
 128-entry fully-associative DTLB

• FGU – Floating-Point/Graphics Unit
• SPU – Stream Processing Unit

 Cryptographic coprocessor
• TLU – Trap Logic Unit
• MMU – Memory Management Unit

 Hardware tablewalk (HWTW)
 8KB, 64KB, 4MB, 256MB pages

• > 2x Niagara 1 throughput and
throughput/watt

• 1.4 x Niagara 1 on integer
• > 10x Niagara 1 on FP

Niagara 2+ Supercomputer

40Nodes/Rack
0.4Power (KW)

8Off-node BW (GB/s)
64Mem size (GB)

126Mem BW (GB/s)
23Gflops

128Threads
16Cores
2Sockets

N
o
d
e

~0.4Power (MW)
26Racks
~8Mem size (TB)

128KThreads
45Tintops
5Bisection BW (TB/s)

23Tflops
1000Nodes

S
y
s
t
e
m

N2+

IB

N2+

IB

Big Infiniband Switch
2000 ports

4 x DDR IB (4 GB/s)

Single shared address space?

Shared Memory vs.
Message Passing

 Lots of discussion in 90’s with
MPPs
 SM much easier programming

model
 Performance similar, but MP much

better for some apps
 MP hardware is simpler

 Message passing won
 Most machines > 100 processors

use message passing
 MPI the defacto standard

 Programmer productivity suffers
 It takes too long to do

“computational science”
 Architectural knowledge required to

tune performance
 Opportunity

 develop a single shared memory
parallel programming paradigm that
works from small to large scale

93 93 94 94 95 95 96 96 97 97 98 98 99 99 00

500

400

300

200

100

0

Single Instruction multiple data (SIMD)

Cluster

(network of

workstations)

Cluster

(network of

SMPs)

Massively

parallel

processors

(MPPs)

Shared-

memory

multiprocessors

(SMPs)

Uniprocessors

Plot of top 500 supercomputer sites
 over a decade

Transactional Memory (TM)

• Programmer simply specifies atomic tasks
 atomic { some_work; }
 Multiple objects, unstructured control-flow, …
 Declarative: user simply specifies, system implements details

• TM brings database semantics to parallel programming
 Atomicity: all or nothing
 Isolation: writes not visible until transaction commits
 Consistency: serializable commit order

• Stanford Transactional Coherence and Consistency (TCC) uses TM
for coherence & consistency
 All transactions, all the time
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 Sequential consistency at the transaction level

 Address the memory model challenge as well

TM Programming with TCC

• Basic approaches
 Sequential algorithms: use TM for thread-level speculation
 Parallel algorithm: use TM for non-blocking synchronization

• C-based programming
 OpenMP extensions for transactional programming
 Familiar, high-level model for C programmers

• Java-based programming with Atomos [PLDI’06]
 Replaces synchronized and volatile with atomic
 Transaction-based conditional waiting

 Removed wait, notify, and notifyAll
 Watch sets for efficient implementation

 Nested transactions, violation handlers, …

Scaling Shared Memory with
Transactional Memory

• Scaling Transactional Memory
 User managed coherence: when and sometimes what and where
 Memory update options: atomic, consistent, inconsistent
 Automatic locality optimization

Eliminate commit as a bottleneck to scaling (up to 128 CPUs)

Conclusions

• Niagara 2 Supercomputer
 Microprocessor optimized for performance/watt on multithreaded

applications
 Simple pipeline, CMP and multithreading, high bandwidth memory

hierarchy
 2K Niagara 2s : 23 Tflops, 128 Kthreads, < 0.5 MW
 Global shared address space

• TM programming model
 Simple code that scales well on parallel systems
 TCC: Use TM to provide coherence & consistency model
 Use transactions to improve scalability: relax coherence, improve

locality

