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Niagara Design Philosophy

• Multiple simple cores vs. single large ILP processor
 Tradeoff latency of single thread for throughput of multiple threads
 Improves performance and power efficiency (perfromance/watt)
 Lower development cost, schedule risk with simple pipeline
 Improve yield by selling non-perfect parts

• Design for good performance with cache misses
 Lots of memory bandwidth per socket
 Not “brittle”: runs real apps even better than benchmarks?
 Hide cache, branch stalls with threads vs. OOO
 Works well for commercial server and HPC workloads

• Take leadership in microprocessor design with most
threads per socket (for standard ISA)
 Niagara 2 maintains performance lead



Niagara 2 Overview

• 8 cores x 8 threads =
64 threads per socket

• Crossbar: 180 GB/s
read, 90 GB/s write

• 4MB L2, 8-banks, 16-
way S.A

• 4 x dual-channel
FBDIMM ports:
63 GB/s

• Two 10/1 Gb Ethernet
ports

• One PCI-Express x8
@ 2.5 Gb/s port

• 342 mm2 @ 65nm



Niagara 2 SPARC Core

• IFU – Instruction Fetch Unit
 16 KB I$, 32B lines, 8-way SA
  64-entry fully-associative ITLB

• EXU0/1 – Integer Execution Units
 4 threads share each unit

• LSU – Load/Store Unit
 8KB D$, 16B lines, 4-way SA
 128-entry fully-associative DTLB

• FGU – Floating-Point/Graphics Unit
• SPU – Stream Processing Unit

 Cryptographic coprocessor
• TLU – Trap Logic Unit
• MMU – Memory Management Unit

 Hardware tablewalk (HWTW)
 8KB, 64KB, 4MB, 256MB pages

• > 2x Niagara 1 throughput and
throughput/watt

• 1.4 x Niagara 1 on integer
• > 10x Niagara 1 on FP



Niagara 2+ Supercomputer
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Single shared address space?



Shared Memory vs.
Message Passing

 Lots of discussion in 90’s with
MPPs
 SM much easier programming

model
 Performance similar, but MP much

better for some apps
 MP hardware is simpler

 Message passing won
 Most machines > 100 processors

use message passing
 MPI the defacto standard

 Programmer productivity suffers
 It takes too long to do

“computational science”
 Architectural knowledge required to

tune performance
 Opportunity

 develop a single shared memory
parallel programming paradigm that
works from small to large scale
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Transactional Memory (TM)

• Programmer simply specifies atomic tasks
 atomic { some_work; }
 Multiple objects, unstructured control-flow, …
 Declarative: user simply specifies, system implements details

• TM brings database semantics to parallel programming
 Atomicity: all or nothing
 Isolation: writes not visible until transaction commits
 Consistency: serializable commit order

• Stanford Transactional Coherence and Consistency (TCC) uses TM
for coherence & consistency
 All transactions, all the time
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 Sequential consistency at the transaction level

 Address the memory model challenge as well



TM Programming with TCC

• Basic approaches
 Sequential algorithms: use TM for thread-level speculation
 Parallel algorithm: use TM for non-blocking synchronization

• C-based programming
 OpenMP extensions for transactional programming
 Familiar, high-level model for C programmers

• Java-based programming with Atomos [PLDI’06]
 Replaces synchronized and volatile with atomic
 Transaction-based conditional waiting

 Removed wait, notify, and notifyAll
 Watch sets for efficient implementation

 Nested transactions, violation handlers, …



Scaling Shared Memory with
Transactional Memory

• Scaling Transactional Memory
 User managed coherence: when and sometimes what and where
 Memory update options: atomic, consistent, inconsistent
 Automatic locality optimization

Eliminate commit as a bottleneck to scaling (up to 128 CPUs) 



Conclusions

• Niagara 2 Supercomputer
 Microprocessor optimized for performance/watt on multithreaded

applications
 Simple pipeline, CMP and multithreading, high bandwidth memory

hierarchy
 2K Niagara 2s : 23 Tflops, 128 Kthreads, < 0.5 MW
 Global shared address space

• TM programming model
 Simple code that scales well on parallel systems
 TCC: Use TM to provide coherence & consistency model
 Use transactions to improve scalability: relax coherence, improve

locality


