
 Programming with a 105 Threads

Kunle Olukotun
Computer Systems Lab

Stanford University
 Dec 2006

Niagara Design Philosophy

• Multiple simple cores vs. single large ILP processor
 Tradeoff latency of single thread for throughput of multiple threads
 Improves performance and power efficiency (perfromance/watt)
 Lower development cost, schedule risk with simple pipeline
 Improve yield by selling non-perfect parts

• Design for good performance with cache misses
 Lots of memory bandwidth per socket
 Not “brittle”: runs real apps even better than benchmarks?
 Hide cache, branch stalls with threads vs. OOO
 Works well for commercial server and HPC workloads

• Take leadership in microprocessor design with most
threads per socket (for standard ISA)
 Niagara 2 maintains performance lead

Niagara 2 Overview

• 8 cores x 8 threads =
64 threads per socket

• Crossbar: 180 GB/s
read, 90 GB/s write

• 4MB L2, 8-banks, 16-
way S.A

• 4 x dual-channel
FBDIMM ports:
63 GB/s

• Two 10/1 Gb Ethernet
ports

• One PCI-Express x8
@ 2.5 Gb/s port

• 342 mm2 @ 65nm

Niagara 2 SPARC Core

• IFU – Instruction Fetch Unit
 16 KB I$, 32B lines, 8-way SA
 64-entry fully-associative ITLB

• EXU0/1 – Integer Execution Units
 4 threads share each unit

• LSU – Load/Store Unit
 8KB D$, 16B lines, 4-way SA
 128-entry fully-associative DTLB

• FGU – Floating-Point/Graphics Unit
• SPU – Stream Processing Unit

 Cryptographic coprocessor
• TLU – Trap Logic Unit
• MMU – Memory Management Unit

 Hardware tablewalk (HWTW)
 8KB, 64KB, 4MB, 256MB pages

• > 2x Niagara 1 throughput and
throughput/watt

• 1.4 x Niagara 1 on integer
• > 10x Niagara 1 on FP

Niagara 2+ Supercomputer

40Nodes/Rack
0.4Power (KW)

8Off-node BW (GB/s)
64Mem size (GB)

126Mem BW (GB/s)
23Gflops

128Threads
16Cores
2Sockets

N
o
d
e

~0.4Power (MW)
26Racks
~8Mem size (TB)

128KThreads
45Tintops
5Bisection BW (TB/s)

23Tflops
1000Nodes

S
y
s
t
e
m

N2+

IB

N2+

IB

Big Infiniband Switch
2000 ports

4 x DDR IB (4 GB/s)

Single shared address space?

Shared Memory vs.
Message Passing

 Lots of discussion in 90’s with
MPPs
 SM much easier programming

model
 Performance similar, but MP much

better for some apps
 MP hardware is simpler

 Message passing won
 Most machines > 100 processors

use message passing
 MPI the defacto standard

 Programmer productivity suffers
 It takes too long to do

“computational science”
 Architectural knowledge required to

tune performance
 Opportunity

 develop a single shared memory
parallel programming paradigm that
works from small to large scale

93 93 94 94 95 95 96 96 97 97 98 98 99 99 00

500

400

300

200

100

0

Single Instruction multiple data (SIMD)

Cluster

(network of

workstations)

Cluster

(network of

SMPs)

Massively

parallel

processors

(MPPs)

Shared-

memory

multiprocessors

(SMPs)

Uniprocessors

Plot of top 500 supercomputer sites
 over a decade

Transactional Memory (TM)

• Programmer simply specifies atomic tasks
 atomic { some_work; }
 Multiple objects, unstructured control-flow, …
 Declarative: user simply specifies, system implements details

• TM brings database semantics to parallel programming
 Atomicity: all or nothing
 Isolation: writes not visible until transaction commits
 Consistency: serializable commit order

• Stanford Transactional Coherence and Consistency (TCC) uses TM
for coherence & consistency
 All transactions, all the time
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 Sequential consistency at the transaction level

 Address the memory model challenge as well

TM Programming with TCC

• Basic approaches
 Sequential algorithms: use TM for thread-level speculation
 Parallel algorithm: use TM for non-blocking synchronization

• C-based programming
 OpenMP extensions for transactional programming
 Familiar, high-level model for C programmers

• Java-based programming with Atomos [PLDI’06]
 Replaces synchronized and volatile with atomic
 Transaction-based conditional waiting

 Removed wait, notify, and notifyAll
 Watch sets for efficient implementation

 Nested transactions, violation handlers, …

Scaling Shared Memory with
Transactional Memory

• Scaling Transactional Memory
 User managed coherence: when and sometimes what and where
 Memory update options: atomic, consistent, inconsistent
 Automatic locality optimization

Eliminate commit as a bottleneck to scaling (up to 128 CPUs)

Conclusions

• Niagara 2 Supercomputer
 Microprocessor optimized for performance/watt on multithreaded

applications
 Simple pipeline, CMP and multithreading, high bandwidth memory

hierarchy
 2K Niagara 2s : 23 Tflops, 128 Kthreads, < 0.5 MW
 Global shared address space

• TM programming model
 Simple code that scales well on parallel systems
 TCC: Use TM to provide coherence & consistency model
 Use transactions to improve scalability: relax coherence, improve

locality

