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Notes
• Multicore – Niagra, cell, and everything else

– Cell: gather-compute-scatter 
• Transactional memory
• Shared memory: yes or no
• Reconfiguration – mixed media
• Global asynchrony
• Accelerators – did we forget Amdahl?
• Technology matters – power, bandwidth, wasted area

– Off chip memory controls performance
– IPC/core more sensitive to latency than bandwidth
– Flat off chip physical latency implies relative latency grow with clock

• PIM
– PNM

• More $$ for watts than hardware
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A Growth-Factor of a Billion in 
Performance in a Single Lifetime
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Linpack 1 Exaflops in 2020
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• No.500 machine 6514x
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Multi-Core
• Motivation for Multi-Core

– Exploits increased feature-size and density
– Increases functional units per chip (spatial 

efficiency)
– Limits energy consumption per operation
– Constrains growth in processor complexity

• Challenges resulting from multi-core
– Relies on effective exploitation of multiple-thread 

parallelism
• Need for parallel computing model and parallel 

programming model
– Aggravates memory wall

• Memory bandwidth
– Way to get data out of memory banks
– Way to get data into multi-core processor array

• Memory latency
• Fragments L3 cache

– Pins become strangle point
• Rate of pin growth projected to slow and flatten
• Rate of bandwidth per pin (pair) projected to grow 

slowly
– Requires mechanisms for efficient inter-processor 

coordination
• Synchronization
• Mutual exclusion
• Context switching
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Heterogeneous Architecture

• Combines different types of processors
– Each optimized for a different operational 

modality
• Performance  > nX better than other n processor 

types
– Synthesis favors superior performance

• For complex computation exhibiting distinct 
modalities

• Conventional co-processors
– Graphical processing units (GPU)
– Network controllers (NIC)
– Efforts underway to apply existing special 

purpose components to general applications
• Purpose-designed accelerators

– Integrated to significantly speedup some critical 
aspect of one or more important classes of 
computation

– IBM Cell architecture
– ClearSpeed SIMD attached array processor
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Strategic Forces Driving Direction
• Expectation and wish

– Searching under the lamp post
– Some do not believe in new directions
– Others insist upon it

• Perception of Market
– Legacy (looking forward thu the rearview mirror)
– Status quo (only better)
– Clock rates (Intel) and pretty boxes (Apple)
– Size (it does matter)
– Gullibility (bottled water)

• Money and all that
– What does it really cost
– How much margin will the market tolerate

• Competition pushes back
– How much NRE investment required (biases towards reuse and incrementalism)

• Real application opportunities
– Games, sex, and myspace.com
– Mobile, embedded, and user interfaces 
– Important specialized applications (where Federal funding plays)
– Benchmarks

• What the technology will permit/enable and where it is going
– Device
– Architecture
– Programming models
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Device Technology Implications 

• Power, cost, size
– We finally really care

• ALUs take relatively little real estate
– byte/flops area ration 2 to 3 orders of magnitude
– Clock rates uncertain

• Memory capacity defines processor size
– If 1:1 design point forced, would dominate cost

• Memory external bandwidth small percentage of innate internal 
bandwidth (primary sense amps)
– Processor chip (multicore) demand greatly exceeds the memory 

bandwidth (hence caches)
• Communication costs would dominate for flat interconnect

– Low percentage versus ops
– On chip communication growing factor on chip design and real 

estate overhead
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• Memory mats: ~ 1 Mbit each
• Row Decoders
• Primary Sense Amps
• Secondary sense amps & “page” multiplexing
• Timing, BIST, Interface
• Kerf

Classical DRAM
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Peak Logic Clock Rates
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Golden Age of Parallel 
Architecture

• 1975 – 1992 
• Vector

– Cray-1&2, NEC SX, 
Fujitsu VPP

• SIMD
– Maspar, CM-2

• Systolic
– Warp

• Dataflow
– Manchester, Sigma, 

Monsoon
• Multithreaded

– HEP, MTA
• Actor-based

– J-Machine

1976
Cray 1
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Dark Ages of Parallel Computing
Technology drivers

• 1992 to present
• Killer Micro and mass market 

PCs
• High density DRAM
• High cost of fab lines
• CSP

– Message passing
• Economy of scale S-curve
• MPP
• Weak scaling

– Gustafson et al
• Beowulf, NOW Clusters
• MPI
• Ethernet, Myrinet
• Linux
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Architecture evolution or revolution
• Is HPC community simply victim of vendor whims?

– Yes: somebody has to build the stuff we use
– No: HPC enhancements can help general purpose processing

• Will architecture stay wedged in 1950s tradeoff balance
– Yes: as long as possible, it keeps us in the same species
– No: there will be a singularity point

• punctuated equilibrium
• When the gap between opportunity and delivery is too large

• Towards a new balance
– Ubiquitous ALUs: high availability, not utilization

• Increased bandwidth
• Reduced latency

– Bandwidth precious resource
• Memory bandwidth most important
• Global bandwidth

– Memory capacity defined system size
• Threaded parallelism emergent

– Multicore
– Multithreaded
– Remote invocation
– Lightweight synchronization

• Towards simpler cores
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Challenges for Future Architectures

• Performance degradation
– Latency (idle time due to round trip delays)
– Overhead (critical path support mechanisms)
– Contention (inadequate bandwidth)
– Starvation (sufficient parallelism and load balancing)

• Power consumption
– Just too much!
– Dominating practical growth in mission critical domains

• Reliability
– Single point failure modes cannot be tolerated
– Reduced feature size and increased component count

• Changing application workload characteristics
– Data (meta-data) intensive for sparse numerics and symbolics

• Programmability & ease of use
– System complexity, scale and dynamics defy optimization by hand
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Programming Models

• How to coordinate application driver with architecture
• Purpose of this workshop

– Multiple target architecture classes
• Issues

– Exposing parallelism
– Coordinating concurrency
– Ease of representation of algorithm constructs and data object 

relationships
• Missing is the next model of computation

– Ad hoc interrelationships among architecture elements
– Governs architecture design
– Guides programming language

• Who will tell us what’s next?
– Bill, Rusty, Marc
– DARPA and its anointed vendors
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ParalleX Semantics

• Locality domains
– Intra-locality: Controlled synchronous
– Inter-locality: Asynchronous between localities

• Split-phase transactions
– Work queue model 

• Only do work on local state
• No blocking or idle time for remote access

• Message-driven computation
– Parcels carry data, target address, action, continuation

• Multi-threaded
– First class objects
– Dataflow on transient values

• Local control objects
– Futures
– Dataflow
– Data-directed parallel control

• Meta-data embedded address translation
• Failure-oriented with micro-checkpointing
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The Gilgamesh-2 System Strategy

• Cost imperatives:
– High availability ALUs
– High utilization of memory bandwidth
– Percolation: cheap threads manage global parallel flow control

• New Model of Parallel computation (ParalleX)
– Intrinsic latency hiding
– Message-driven split-phase transaction processing
– Near fine-grain in-memory synchronization local control objects

• Heterogeneous architecture for disparate temporal-locality 
modalities
– High temporal locality: high ALU-density dataflow controlled
– Low temporal locality: in memory threads

• Global name space
– Address translation in meta-data
– Copy semantics for targeted value-sets
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Gilgamesh-2 System Elements

• Executable Memory
– Supports low-temporal (e.g. touch once) locality global data operations
– Threads in memory with wide ALUs

• Dataflow Accelerator
– Supports high-temporal locality operations
– Very high throughput low latency processing
– Low power per operation 

• Data Vortex optical network
– Innovative topology
– Low latency, low logic
– Graceful degradation of injection rate with traffic density
– High degree switches

• Penultimate store
– Fast backing store for core computing
– Exploits highest density semiconductor memory
– Reconfigurable for fault tolerance
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MIND elements
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Summary : Vision2020 Characteristics
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Can’t Change the Architecture but if I could:
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FPGA ParalleX Accelerator

• Based on prior work performed on MIND architecture 
as part of Caltech/JPL Gilgamesh project

• Goal: enhance scalability and efficiency
– Hide system wide latency
– Reduce parallelism control overhead

• Design FPGA-based hardware drivers and co-
processors to support ParalleX model
– Parcel message-driven computation handler
– Medium grained multithread execution scheduler
– Global address translation support
– Percolation pre-staging task manager
– (possibly) local control object synchronization acceleration
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FPGA attached boards: a new 
opportunity for advanced execution 
models
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And a couple more:
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Significant Changes to architecture 
over the next decade and beyond

• Realignment from processor oriented to memory oriented 
architectures

• Development and adoption of a new model of computation with 
abundant parallelism, intrinsic latency hiding, built-in reliability 
management, low overhead control mechanisms, and automatic 
load balancing

• Dominance of symbolic processing over numeric processing
• Replacement of conventional core processors with very fine 

grain elements
• Merger of logic and memory
• Fixless computers where maintenance is never performed and 

system automatically reconfigures for graceful degradation
• Multi-billion to trillion-way parallelism
• Self programming computers through goal directed 
• New technologies beyond conventional semiconductors 
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