
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Graphs, Informatics,
Architectures and Languages

Bruce Hendrickson
Jon Berry

Discrete Algorithms and Math Dept.
Sandia National Laboratories

Graph-Based Informatics

Parallelizing Graph-Based Informatics

• Graphs can be huge

• Edge and vertex types make queries more tractable

• Graphs are highly unstructured
– High variance in number of neighbors
– No exploitable global structure
– Little or no locality – Not partitionable
– Lessons from scientific computing are of limited utility

Performance Challenges

• When it exists, parallelism is often very fine-grained

• Runtime is dominated by latency
– Random accesses to global address space
– Perhaps many at once

• Essentially no computation to hide memory costs

• Access pattern is data dependent
– Prefetching unlikely to help
– Usually only want small part of cache line

• Potentially abysmal locality at all levels of memory hierarchy

Desirable Architectural Features

• Low latency / high bandwidth
– For small messages!

• Latency tolerant
• Light-weight, fine-grained synchronization mechanisms
• Global address space

– No graph partitioning required
– Avoid memory-consuming profusion of ghost-nodes
– No local/global numbering conversions

• Cray’s massively multithreaded machines have these properties

How Does the MTA Work?

• Latency tolerance via massive multi-threading
– Context switch in a single tick
– Global address space, hashed to reduce hot-spots
– No cache or local memory. Context switch on memory request.
– Multiple outstanding loads

• Remote memory request doesn’t stall processor
– Other streams work while your request gets fulfilled

• Light-weight, word-level synchronization
– Minimizes access conflicts

• Flexibly supports dynamic load balancing
• Notes:

– MTA-2 is 5 years old
– Largest machine is 40 processors (at NRL)

Case Study: MTA-2 vs. BlueGene/L

• With LLNL, implemented S-T shortest paths in MPI
• Ran on IBM/LLNL BlueGene/L, world’s fastest computer
• Finalist for 2005 Gordon Bell Prize

– 4B vertex, 20B edge, Erdös-Renyi random graph
– Analysis: touches about 200K vertices
– Time: 1.5 seconds on 32K processors

• Ran similar problem on MTA-2
– 32 million vertices, 128 million edges
– Measured: touches about 23K vertices
– Time: .7 seconds on one processor, .09 seconds on 10 processors

• Conclusion: 4 MTA-2 processors = 32K BlueGene/L processors

But Speed Isn’t Everything

• MPI code is 3 times larger than MTGL code
– Took considerably longer to develop

• MTA easily supports multiple, simultaneous users
– Important for flexible usage model

• But … MPI code runs everywhere
– MTGL doesn’t. But MTGL does run on SMPs

Multithreaded Software Challenges

• Code may look easy, but can be quite subtle
– Especially for unstructured, asynchronous operations like graph algorithms

• Two fundamental difficulties
– Race conditions cause hard-to-recognize bugs

• Nondeterministic code very hard to debug
• Hard to know that the code is correct (or not)

– Memory hot-spots limit scalability
• If many threads hit on same memory simultaneously, performance is

throttled
– Fundamental impact on algorithm & data structure design

• However, fine grained synchronization on MTA/XMT is a big
improvement over traditional shared memory machines

Multithreaded Graph Library (MTGL)

• Software engineering: Encapsulate most challenging details
• Generic programming through the visitor design pattern

– General idea, advocated for graph algorithms by Lumsdaine (Boost GL)
– Algorithms are customized by invoking “visitor” functions at key times

• E.g. when seeing a vertex for the first time, etc.
– Visitors are a clean way to support complex filtering
– Visitors also support generic algorithmic functionality

• E.g. one thread-safe breadth-first-search code can compute connected
components, spanning tree, shortest paths, betweeness centrality, etc.

• Parallelism
– Loop-based, but highly dynamic and adaptive
– “Futures” support recursive parallelism and thread virtualization

How to Code for XMT?

• Design large systems by abstracting away multithreading subtleties.

• Carefully design software layers
– Lower layers handle parallelization (requires expert knowledge)
– Top layers allow for customization of functionality (non-experts allowed)

• Generic programming through the visitor design pattern
– General idea, advocated for graph algorithms by Lumsdaine (Boost GL)
– Algorithms are customized by invoking “visitor” functions at key times

• E.g. when seeing a vertex for the first time, etc.
– Visitors are a clean way to support complex filtering
– Visitors also support generic algorithmic functionality

• E.g. one thread-safe breadth-first-search code can compute connected
components, spanning tree, shortest paths, betweeness centrality, etc.

Connected Components Performance

2.6s

Power Law Graph
(highly unstructured)

MTGL Status

•~10,000 lines of C++ (simpler use of language than STL (e.g. no iostream))

• Thread-Safe Primitives
– Dynamic array
– HashSet, HashTable
– Tuple Datatypes, Timing Objects
– Synchronization Wrappers, Counting Sort, Comparison & Copier Objects, etc.

•Graph Layer
– Graph, Vertex and Edge objects
– Parallel Search
– Breadth-First Search
– Induced subgraph operator, Masking for algorithms as filters
– Various graph generators and readers, Graph metrics

MTGL: Status (cont.)

• Algorithm Layer
– Several algorithms for connected components
– Strongly connected components
– S-T shortest path
– Semantic subgraph isomorphism
– Sparse matrix-vector multiplication and conjugate gradients
– Single-Source Shortest-Path through Delta stepping and Thorup algorithm
– Random walks
– Connection subgraphs (in progress)
– Betweenness Centrality (in prototype)
– Network simplex algorithms (next year)

Lessons for HPC Languages

• Application characteristics that are problematic for MPI include
– Fine-grained parallelism
– Highly adaptive computation
– Non-BSP structure
– Time-varying amount of parallelism

• Graphs algorithms require support for a different style of parallelism
– Global address space
– Nested parallelism, e.g. through Futures
– Thread virtualization

• Many more threads than processors to facilitate load-balance
– Support for fine-grained parallelism

• Latency tolerance, not just amortization as with MPI
• light-weight synchronization mechanisms

• No main-stream approach currently has the necessary capabilities
– Complex interplay between languages and architecture

