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Alternate Title

“In absence of a portable parallel language and in the
presence of recurring yet evolving system architectures,
while in the meantime trying to get work done with the
current tools and solve problems of interest, what we have
developed to solve large-scale systems of equations on
large-scale computers and allow for adapting in the
future.”



Outline
 Context for Discussion: Trilinos and POM.
 Parallel Basic Linear Algebra Software Requirements.
 Main Points:

 Abstract machine model provides flexibility.
 Abstraction of distribution is essential.
 Abstraction of high-level operators enable use of wide range of

operators.
 (In the solvers area) Nested Parallelism is a Dubious Option.
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Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous
Fluids

And More…



Trilinos Packages
 Trilinos is a collection of Packages.
 Each package is:

 Focused on important, state-of-the-art algorithms in its problem
regime.

 Developed by a small team of domain experts.
 Self-contained: No explicit dependencies on any other software

packages (with some special exceptions).
 Configurable/buildable/documented on its own.

 Sample packages: NOX, AztecOO, ML, IFPACK, Meros.
 Special package collections:

 Petra (Epetra, Tpetra, Jpetra): Concrete Data Objects
 Thyra: Abstract Conceptual Interfaces
 Teuchos: Common Tools.
 New_package: Jumpstart prototype.



Galeri, Isorropia, Moertel, RTOp, Aristos, RBGenOther new in 7.0 (8.0)
NewPackageArchetype package
MOOCHO, AristosOptimization
PyTrilinos, WebTrilinos, Star-P, Stratimikos, ForTrilinos“Skins”
DidaskoTrilinos Tutorial

RythmosTime Integrators/DAEs

ThyraAbstract interfaces
NOX, LOCANonlinear system solvers

Teuchos, EpetraExt, KokkosC++ utilities, (some) I/O

Epetra, Teuchos, PlirisDirect dense solvers
AmesosDirect sparse linear solvers
MerosBlock preconditioners
AnasaziEigenvalue problems
ML, CLAPSMultilevel preconditioners
AztecOO, IFPACKILU-type preconditioners
AztecOO, Belos, KomplexKrylov solvers
Epetra, Jpetra, TpetraLinear algebra objects
Package(s)Objective Trilinos

Package
Summary



Full “Vertical” Solver Coverage Trilinos Packages

· Transient Problems:

· DAEs/ODEs: Rythmos0 0
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· Nonlinear Problems:

· Nonlinear equations:

· Stability analysis:
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· Explicit Linear Problems:

· Matrix/graph equations:

· Vector problems:
Epetra, Tpetra
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· Implicit Linear Problems:

· Linear equations:

· Eigen problems:

AztecOO, Belos, 
Ifpack,ML,etc.
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· Optimization Problems:

· Unconstrained:

· Constrained:
MOOCHO
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Observations

 30-80% of application runtime spent in solvers or:
 Solvers are not applications but can drive app

performance.

 Vast majority of solver time spent in kernels or:
 Kernels are not solvers but can drive solver performance.



// Header files omitted…
int main(int argc, char *argv[]) {
  MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
  Epetra_MpiComm Comm( MPI_COMM_WORLD );                      

A Simple Epetra/AztecOO Program

  // ***** Create x and b vectors *****
  Epetra_Vector x(Map);
  Epetra_Vector b(Map);
  b.Random(); // Fill RHS with random #s                  

// ***** Create an Epetra_Matrix  tridiag(-1,2,-1) *****

  Epetra_CrsMatrix A(Copy, Map, 3);
  double negOne = -1.0; double posTwo = 2.0;

  for (int i=0; i<NumMyElements; i++) {
    int GlobalRow = A.GRID(i); 
    int RowLess1 = GlobalRow - 1; 
    int RowPlus1 = GlobalRow + 1;
    if (RowLess1!=-1) 
       A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
    if (RowPlus1!=NumGlobalElements) 
       A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
    A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);
  }
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****        

  int NumMyElements = 1000 ;
  Epetra_Map Map(-1, NumMyElements, 0, Comm);
  int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************    
  cout << "Solver performed " << solver.NumIters()   
          << " iterations." << endl
          << "Norm of true residual = " 
          << solver.TrueResidual() 
          << endl;

  MPI_Finalize() ;
  return 0;
}

  // ***** Create/define AztecOO instance, solve *****
  AztecOO solver(problem);
  solver.SetAztecOption(AZ_precond, AZ_Jacobi);
  solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
  Epetra_LinearProblem problem(&A, &x, &b);          

// Header files omitted…
int main(int argc, char *argv[]) {
Epetra_SerialComm Comm();



Typical Flow of Epetra Object
Construction

Construct Comm

Construct Map

Construct x Construct b Construct A

• Any number of Comm objects can exist.
• Comms can be nested (e.g., serial within MPI).

• Maps describe parallel layout.
• Maps typically associated with more than one comp object.
• Two maps (source and target) define an export/import object.

• Computational objects.
• Compatibility assured via common map.



Perform redistribution of distributed objects:
• Parallel permutations.
• “Ghosting” of values for local computations.
• Collection of partial results from remote processors.

Petra Object
Model

Abstract Interface to Parallel Machine
• Shameless mimic of MPI interface.
• Keeps MPI dependence to a single class (through all of Trilinos!).
• Allow trivial serial implementation.
• Opens door to novel parallel libraries (shmem, UPC, etc…)

Abstract Interface for Sparse All-to-All Communication
• Supports construction of pre-recorded “plan” for data-driven communications.
• Examples: 

• Supports gathering/scatter of off-processor x/y values when computing y = Ax.
• Gathering overlap rows for Overlapping Schwarz.
• Redistribution of matrices, vectors, etc…

Describes layout of distributed objects:
• Vectors: Number of vector entries on each processor and global ID
• Matrices/graphs: Rows/Columns managed by a processor.
• Called “Maps” in Epetra.

Dense Distributed Vector and Matrices:
• Simple local data structure.
• BLAS-able, LAPACK-able.
• Ghostable, restributable.
• RTOp-able.

Base Class for All Distributed Objects:
• Performs all communication.
• Requires Check, Pack, Unpack methods from derived class.

Graph class for structure-only computations:
• Reusable matrix structure.
• Pattern-based preconditioners.
• Pattern-based load balancing tools.

Basic sparse matrix class:
• Flexible construction process.
• Arbitrary entry placement on parallel machine.



Petra Implementations
 Three version under development:
 Epetra (Essential Petra):

 Current production version.
 Restricted to real, double precision arithmetic.
 Uses stable core subset of C++ (circa 2000).
 Interfaces accessible to C and Fortran users.

 Tpetra (Templated Petra):
 Next generation C++ version.
 Templated scalar and ordinal fields.
 Uses namespaces, and STL: Improved usability/efficiency.

 Jpetra (Java Petra):
 Pure Java. Portable to any JVM.
 Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.



Important Requirements for Parallel Basic
Linear Algebra Software

 Major algorithmic requirements include:
 [A1] Support sparse and dense matrix construction, use and reuse in

scientific and engineering applications.
 [A2] Support for advanced numerical algorithms.
 [A3] Abstractions of basic linear algebra objects for efficiency and

extensibility.
 Major software design requirements include:

 [S1] Efficient execution on parallel computers.
 [S2] Portability of libraries on current and future serial and parallel

computers.
 [S3] Utilize existing software capabilities for performance and

functionality.
 Two usability requirements, that are not entirely compatible, are:

 [U1] Accessible to C and Fortran applications and users.
 [U2] Efficient support of multiple data types including 32 or 64-bit

floating point, complex numbers and large integer types.



First Useful Abstraction:
Comm



Epetra Communication Classes

 Epetra_Comm is a pure virtual class:
 Has no executable code: Interfaces only.
 Encapsulates behavior and attributes of the parallel machine.
 Defines interfaces for basic services such as:

• Collective communications.
• Gather/scatter capabilities.

 Allows multiple parallel machine implementations.

 Implementation details of parallel machine confined to Comm
classes.

 In particular, rest of Epetra (and rest of Trilinos) has no dependence
on MPI.



Comm Methods

•CreateDistributor() const=0 [pure virtual] 
•CreateDirectory(const Epetra_BlockMap & map) const=0 [pure virtual] 
•Barrier() const=0 [pure virtual]  
•Broadcast(double *MyVals, int Count, int Root) const=0 [pure virtual]  
•Broadcast(int *MyVals, int Count, int Root) const=0 [pure virtual]  
•GatherAll(double *MyVals, double *AllVals, int Count) const=0 [pure virtual]  
•GatherAll(int *MyVals, int *AllVals, int Count) const=0 [pure virtual]  
•MaxAll(double *PartialMaxs, double *GlobalMaxs, int Count) const=0 [pure virtual]  
•MaxAll(int *PartialMaxs, int *GlobalMaxs, int Count) const=0 [pure virtual]  
•MinAll(double *PartialMins, double *GlobalMins, int Count) const=0 [pure virtual]  
•MinAll(int *PartialMins, int *GlobalMins, int Count) const=0 [pure virtual]  
•MyPID() const=0 [pure virtual]  
•NumProc() const=0 [pure virtual]  
•Print(ostream &os) const=0 [pure virtual]  
•ScanSum(double *MyVals, double *ScanSums, int Count) const=0 [pure virtual]  
•ScanSum(int *MyVals, int *ScanSums, int Count) const=0 [pure virtual]  
•SumAll(double *PartialSums, double *GlobalSums, int Count) const=0 [pure virtual]  
•SumAll(int *PartialSums, int *GlobalSums, int Count) const=0 [pure virtual]  
•~Epetra_Comm() [ inline,  virtual]



Comm Implementations

Three current implementations of Petra_Comm:
 Epetra_SerialComm:

• Allows easy simultaneous support of serial and parallel version of user code.
 Epetra_MpiComm:

• OO wrapping of C MPI interface.
 Epetra_MpiSmpComm:

• Allows definition/use of shared memory multiprocessor nodes.



Comm, Distributor, Directory

 Efficient Execution:
 Provide high-level abstract description of parallel machine:

• Flexibility: How the operations optimally performed.
• Distributor: Static, reusable, record of data-dependent

communications.

 Portability on Parallel Platforms:
 All classes abstract.
 Can provide multiple implementations: MPI and serial.
 No widespread dependence on MPI.
 Possible to develop adapters for other parallel libraries and

languages.
 Utilize Existing Software:

 Utilize MPI as the primary adapter
 Provide trivial serial adapters.



Example: Specialized Comm Adapters

 int levelsetSolve_Epetra_Operator::Apply (const Epetra_MultiVector& X,
              Epetra_MultiVector& Y) const {

 try {
 const Epetra_SmpMpiComm & comm =
                                      dynamic_cast<const Epetra_SmpMpiComm>(X.Map().Comm());
  … comm.getThread(…)
} catch (…)

 Fragment of code from levelset preconditioner Epetra_Operator
adapter.

 Allows specialized parallel machine types.
 Should allow specializations such as:

 CAF/UPC kernels
 Co-processors: GPUs, Cell SPEs.



Second Useful Abstraction:
ElementSpace aka Map



Map Classes
 Epetra maps prescribe the layout of distributed objects across the

parallel machine.
 Typical map:  99 elements, 4 MPI processes could look like:

 Number of elements = 25 on PE 0 through 2,
= 24 on PE 3.

 GlobalElementList = {0, 1, 2, …, 24} on PE 0,
= {25, 26, …, 49} on PE 1. … etc.

 Funky Map: 10 elements, 3 MPI processes could look like:
 Number of elements = 6 on PE 0,

= 4 on PE 1,
= 0 on PE 2.

 GlobalElementList = {22, 3, 5, 2, 99, 54} on PE 0,
= { 5, 10, 12, 24} on PE 1,
= {} on PE 2.

Note: Global elements IDs (GIDs) are only labels:
 Need not be contiguous range on a processor.
 Need not be uniquely assigned to processors.
 Funky map is not unreasonable, given auto-generated meshes, etc.
 Use of a “Directory” facilitates arbitrary GID support.



Epetra Map Collaboration Diagram &
Inheritance Graph

Notes:
1. Epetra_Object is base class for all concrete Epetra classes:

 Has labeling and ostream methods.
 Maintains definitions of global constants.

2. BlockMap is the base map class.
3. Maps have Epetra_Directory to keep track of global ID

distribution.



ElementSpace/Map

 Critical classes for efficient parallel execution. Provides
ability to:
 Generate families of compatible objects.
 Quickly test if two objects have compatible layout.
 Redistribute objects to make compatible layout (using

Import/Export).



Example: Quick Testing of Compatible
Distributions

int dft_PolyA22_Epetra_Operator::Apply (const Epetra_MultiVector& X, 
              Epetra_MultiVector& Y) const {

  TEST_FOR_EXCEPT(!X.Map().SameAs(OperatorDomainMap()));
  TEST_FOR_EXCEPT(!Y.Map().SameAs(OperatorRangeMap()));
  

 Fragment of code from Epetra_Operator adapter.
 Test for compatibility of maps.
 Lack of this ability is critical flaw of most parallel

languages to date.



Third Useful Abstraction:
DistObject



Epetra DistObject Base Class
• Some Epetra

distributed object classes:
– Vector
– MultiVector
– CrsGraph
– CrsMatrix
– VbrMatrix

• DistObject is a base class for all the above:
– Construction of DistObject requires a Map (or BlockMap or LocalMap).
– Has concrete methods for parallel data redistribution of an object.
– Has virtual Pack/Unpack method that each derived class must implement.

– DistObject advantages:
– Minimized redundant code.
– Facilitates incorporation of other distributed objects in future.



Epetra_DistObject Virtual Methods

virtual int CheckSizes (const Epetra_SrcDistObject &Source)=0
 Allows the source and target (this) objects to be compared for compatibility, return nonzero if not.

virtual int CopyAndPermute (const Epetra_SrcDistObject &Source, int NumSameIDs,
            int NumPermuteIDs, int *PermuteToLIDs, int *PermuteFromLIDs)=0

 Perform ID copies and permutations that are on processor.

virtual int PackAndPrepare (const Epetra_SrcDistObject &Source, int NumExportIDs, int *ExportLIDs, 
                            int Nsend, int Nrecv, int &LenExports, char *&Exports, int &LenImports, 

         char *&Imports, int &SizeOfPacket, Epetra_Distributor &Distor)=0
 Perform any packing or preparation required for call to DoTransfer().

virtual int UnpackAndCombine (const Epetra_SrcDistObject &Source, int NumImportIDs, int *ImportLIDs, 
                char *Imports, int &SizeOfPacket, Epetra_Distributor &Distor, 
                Epetra_CombineMode CombineMode)=0

 Perform any unpacking and combining after call to DoTransfer().



Epetra_DistObject Import/Export
Methods

int Import (const Epetra_SrcDistObject &A, const Epetra_Import &Importer, Epetra_CombineMode CombineMode)
Imports an Epetra_SrcDistObject using the Epetra_Import object. 

int Import (const Epetra_SrcDistObject &A, const Epetra_Export &Exporter, Epetra_CombineMode CombineMode)
Imports an Epetra_SrcDistObject using the Epetra_Export object. 

int Export (const Epetra_SrcDistObject &A, const Epetra_Import &Importer, Epetra_CombineMode CombineMode)
Exports an Epetra_SrcDistObject using the Epetra_Import object. 

int Export (const Epetra_SrcDistObject &A, const Epetra_Export &Exporter, Epetra_CombineMode CombineMode)
Exports an Epetra_SrcDistObject using the Epetra_Export object. 



Import, Export and DistObject

 Work with any class that isa DistObject (or
SrcDistObject).

 Abstraction of these operations to classes simplifies:
 Optimal implementation on a variety of systems.
 Reuse of complex parallel data redistribution:

• DistObject has most of the complexity.



Example: 1D Matrix Assembly

a b

-uxx = f
u(a) = γ0
u(b) = γ1

x1 x2 x3

PE 0 PE 1

• 3 Equations: Find u at x1, x2 and x3
• Equation for u at x2 gets a contribution from PE 0 and PE 1.
• Would like to compute partial contributions independently.
• Then combine partial results. 



Two Maps

 We need two maps:
 Assembly map:

• PE 0: { 1, 2 }.
• PE 1: { 2, 3 }.

 Solver map:
• PE 0: { 1, 2 } (we arbitrate ownership of 2).
• PE 1: { 3 }.



End of Assembly Phase

 At the end of assembly
phase we have
AssemblyMatrix:
 On PE 0:

 On PE 1:

 Want to assign all of
Equation 2 to PE 0 for use
with solver.
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Export Assembly Matrix to Solver
Matrix

Epetra_Export Exporter(AssemblyMap, SolverMap);

Epetra_CrsMatrix SolverMatrix (Copy, SolverMap, 0);

SolverMatrix.Export(AssemblyMatrix, Exporter, Add);

SolverMatrix.TransformToLocal();



End of Export Phase

 At the end of Export phase we have SolverMatrix:
 On PE 0:

On PE 1:

 Each row is uniquely owned.
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Need for Import/Export

 Solvers for complex engineering applications need
expressive, easy-to-use parallel data redistribution:
 Allows better scaling for non-uniform overlapping Schwarz.
 Necessary for robust solution of multiphysics problems.

 We have found import and export facilities to be a very
natural and powerful technique to address these issues.



Other uses for Import/Export

 In addition, import and export facilities provide a variety
of other capabilities:
 Communication needs of sparse matrix multiplication.
 Parallel assembly: Shared nodes receive contributions from multiple processors,

reverse operation replicates results back.
 Higher order interpolations are easy to implement.
 Ghost node distributions.
 Changing work loads can be re-balanced.
 Sparse matrix transpose become trivial to implement.
 Allows gradual MPI-izing of an application.
 Cached Overlapped distributed vectors (generalization of distributed sparse MV).
 Rendezvous algorithms easy to implement.



Fourth Useful Abstraction:
Coarse-grain linear algebra objects



Epetra_Operator and
Epetra_RowMatrix

Notes:
• All Trilinos solvers can access

linear operators via:
• Epetra_Operator if no

coefficients needed.
• Epetra_RowMatrix if

coefficients.
• All Epetra matrix and operator

class implement these two
interfaces.



GPU Utilization: y = Ax

CPU

GPU

Node 0

CPU

GPU

Node 1

CPU

GPU

Node m-1

 Epetra_GpuOperator:
• Object data mostly resides on GPU.
• Remains resident through many uses.

 Vectors:
• Input vector x comes in for apply operation.
• Output vector y is returned.



Final Topic: Nested Parallelism



Nested Parallelism

 Question: How to program for multi-core nodes?
 Similar to 1995: How do we program multi-processor nodes?
 ’95 Experience:

 Hybrid programming model (threads/OpenMP under MPI) is complex.
 Restructuring large-scale app for hybrid approach akin to serial-to-MPI

conversion.

 ’95 Conclusion:
 Just use MPI.
 Must be SMP-Aware
 Don’t ask for all procs on node.

 What’s different today?



Summary
 Abstract machine model provides flexibility:

 Required for Portability.
 Enables state retention.
 Allows specialized extensibility.

 Abstraction of distribution is dssential:
 Required for efficient loop execution.
 Supports easy construction of compatibly distributed objects.
 Enables efficient redistribution mechanisms.

 Coarse-grain abstraction enables use of a range of computer systems:
 (Within SPMD model) abstractions like Epetra_Operator seem to give us a

fighting chance on incremental and novel architectures.
 (In the solvers area) Nested Parallelism is a Dubious Option:

 Been there, done that (circa 95-96).
 Limited opportunity for improvement.
 Many opportunities to hinder performance.
 Could (potentially) help with load imbalance.


