
MPI: The Last Large Scale
Success?

William Gropp
www.mcs.anl.gov/~gropp

(I Hope Not!)

Argonne National
Laboratory MPI Lessons

Outline
 Background
 Why Was MPI A Success?
 Red Herrings
 Overcoming Greatest Common Denominator

Argonne National
Laboratory MPI Lessons

Quotes from “System Software and Tools for High
Performance Computing Environments” (1993)
 “The strongest desire expressed by these users was simply to

satisfy the urgent need to get applications codes running on
parallel machines as quickly as possible”

 In a list of enabling technologies for mathematical software,
“Parallel prefix for arbitrary user-defined associative operations
should be supported. Conflicts between system and library
(e.g., in message types) should be automatically avoided.”
– Note that MPI-1 provided both

 Immediate Goals for Computing Environments:
– Parallel computer support environment
– Standards for same
– Standard for parallel I/O
– Standard for message passing on distributed memory machines

 “The single greatest hindrance to significant penetration of
MPP technology in scientific computing is the absence of
common programming interfaces across various parallel
computing systems”

Argonne National
Laboratory MPI Lessons

Quotes from “Enabling Technologies for
Petaflops Computing” (1995):

 “The software for the current generation of 100 GF machines is not
adequate to be scaled to a TF…”

 “The Petaflops computer is achievable at reasonable cost with
technology available in about 20 years [2014].”
– (estimated clock speed in 2004 — 700MHz)*

 “Software technology for MPP’s must evolve new ways to design
software that is portable across a wide variety of computer
architectures. Only then can the small but important MPP sector of the
computer hardware market leverage the massive investment that is
being applied to commercial software for the business and commodity
computer market.”

 “To address the inadequate state of software productivity, there is a
need to develop language systems able to integrate software
components that use different paradigms and language dialects.”

 (9 overlapping programming models, including shared memory,
message passing, data parallel, distributed shared memory, functional
programming, O-O programming, and evolution of existing languages)

Argonne National
Laboratory MPI Lessons

Some History
 The Cray 1 was a very successful machine. Why?

– Not the first or fastest vector machine (CDC Star 100 and later
Cyber 203/205 had much higher peaks)

– Early users were thrilled that Cray 1 was 1.76 x faster than CDC
7600
• 1.76 = 22/12.5 = ratio of (scalar) clock speed
• Applications were not vectorizing!
• These were legacy applications

– Balanced (by comparison with Star100 etc.) performance
– Hardware supported programming model; predictable

performance
– Software (compiler) trained users

• Worked with the user to performance-tune code
– Of course, this was before the memory wall

Argonne National
Laboratory MPI Lessons

Why Was MPI Successful?
 It address all of the following issues:

– Portability
– Performance
– Simplicity and Symmetry
– Modularity
– Composability
– Completeness

 For a more complete discussion, see “Learning from the Success of
MPI”, http://www.mcs.anl.gov/~gropp/bib/papers/2001/mpi-
lessons.pdf

Argonne National
Laboratory MPI Lessons

Portability and Performance
 Portability does not require a “lowest common denominator”

approach
– Good design allows the use of special, performance enhancing

features without requiring hardware support
– For example, MPI’s nonblocking message-passing semantics

allows but does not require “zero-copy” data transfers
 MPI is really a “Greatest Common Denominator” approach

– It is a “common denominator” approach; this is portability
• To fix this, you need to change the hardware (change

“common”)
– It is a (nearly) greatest approach in that, within the design space

(which includes a library-based approach), changes don’t
improve the approach
• Least suggests that it will be easy to improve; by definition,

any change would improve it.
• Have a suggestion that meets the requirements? Lets talk!

– More on “Greatest” versus “Least” at the end of this talk…

Argonne National
Laboratory MPI Lessons

Simplicity and Symmetry
 MPI is organized around a small number of concepts

– The number of routines is not a good measure of complexity
– E.g., Fortran

• Large number of intrinsic functions
– C and Java runtimes are large
– Development Frameworks

• Hundreds to thousands of methods
– This doesn’t bother millions of programmers

Argonne National
Laboratory MPI Lessons

Symmetry
 Exceptions are hard on users

– But easy on implementers — less to implement and test
 Example: MPI_Issend

– MPI provides several send modes:
• Regular
• Synchronous
• Receiver Ready
• Buffered

– Each send can be blocking or non-blocking
– MPI provides all combinations (symmetry), including the “Nonblocking

Synchronous Send”
• Removing this would slightly simplify implementations
• Now users need to remember which routines are provided, rather

than only the concepts
– It turns out he MPI_Issend is useful in building performance and

correctness debugging tools for MPI programs

Argonne National
Laboratory MPI Lessons

Modularity
 Modern algorithms are hierarchical

– Do not assume that all operations involve all or only one process
– Provide tools that don’t limit the user

 Modern software is built from components
– MPI designed to support libraries
– Communication contexts in MPI are an example

• Other features, such as communicator attributes, were less
successful features

Argonne National
Laboratory MPI Lessons

Composability
 Environments are built from components

– Compilers, libraries, runtime systems
– MPI designed to “play well with others”

 MPI exploits newest advancements in compilers
– … without ever talking to compiler writers
– OpenMP is an example

• MPI (the standard) required no changes to work with OpenMP

Argonne National
Laboratory MPI Lessons

Completeness
 MPI provides a complete parallel programming model and avoids

simplifications that limit the model
– Contrast: Models that require that synchronization only occurs

collectively for all processes or tasks
– Contrast: Models that provide support for a specialized (sub)set

of distributed data structures
 Make sure that the functionality is there when the user needs it

– Don’t force the user to start over with a new programming model
when a new feature is needed

Argonne National
Laboratory MPI Lessons

Conclusions: Lessons From MPI
 A successful parallel programming model must enable more than the

simple problems
– It is nice that those are easy, but those weren’t that hard to begin

with
 Scalability is essential

– Why bother with limited parallelism?
– Just wait a few months for the next generation of hardware

 Performance is equally important
– But not at the cost of the other items

Argonne National
Laboratory MPI Lessons

More Lessons
 A general programming model for high-performance technical computing

must address many issues to succeed, including:
 Completeness

– Support the evolution of applications
 Simplicity

– Focus on users not implementors
– Symmetry reduces the burden on users

 Portability rides the hardware wave
– Sacrifice only if the advantage is huge and persistent
– Competitive performance and elegant design is not enough

 Composability rides the software wave
– Leverage improvements in compilers, runtimes, algorithms
– Matches hierarchical nature of systems

 Even that is not enough. Also need:
– Good design
– Buy-in by the community
– Effective implementations

 MPI achieved these through an Open Standards Process

Argonne National
Laboratory MPI Lessons

An Open and Balanced Process
 Open Process

– No entry fee
– Anyone can (and did!) comment on the deliberations, not just draft products

 Balanced representation from
– Users

• What users want and need
– Including correctness

– Implementers (Vendors)
• What can be provided

– Many MPI features determined by implementation needs
– Researchers

• Directions and Futures
– MPI planned for interoperation with OpenMP before OpenMP

conceived
– Support for libraries strongly influenced by research

 Quality of work is clear from
– Success of MPI
– Recent work at the University of Utah on a formal specification of MPI (from the

standard documents) has shown that the standard, though informal, is very solid
(though it is not perfect)

Argonne National
Laboratory MPI Lessons

Multiple MPI Implementations

 Freely available implementations ensured that MPI was
– Ubiquitous
– Safe for applications to rely on (can always support source

directly if required)
– Basis for proprietary implementations (through a “FreeBSD”-style

license)
• This was a trade off --- the community would be better off with

a GPL, but only if that did not hinder adoption. Unfortunately,
a GPL might have killed MPI because the HPC market is too
small

 Multiple implementations
– Ensured friendly competition in performance and features
– Provided users with different design points (e.g., scalability,

different sets of optimizations, progress modes, extra features)
– A separate market for test suites (ensuring that MPI is defined by

the specification, not a particular implementation)

Argonne National
Laboratory MPI Lessons

Improving Parallel Programming
 How can we make the programming of real applications easier?
 Problems with the Message-Passing Model

– User’s responsibility for data decomposition
– “Action at a distance”

• Matching sends and receives
• Remote memory access

– Performance costs of a library (no compile-time optimizations)
– Need to choose a particular set of calls to match the hardware

 In summary, the lack of abstractions that match the applications

Argonne National
Laboratory MPI Lessons

Challenges
 Must avoid the traps:

– The challenge is not to make easy programs easier. The challenge is to make
hard programs possible.

– We need a “well-posedness” concept for programming tasks
• Small changes in the requirements should only require small changes in the

code
• Rarely a property of “high productivity” languages
– Abstractions that make easy programs easier don’t solve the problem

– Evaluating a specific MPI implementation is not the same as evaluating MPI the
programming model

– Latency hiding is not the same as low latency
• Need “Support for aggregate operations on large collections”

 An even harder challenge: make it hard to write incorrect programs.
– OpenMP is not a step in the (entirely) right direction
– In general, current shared memory programming models are very dangerous.

• They also perform action at a distance
• They require a kind of user-managed data decomposition to preserve

performance without the cost of locks/memory atomic operations
– Deterministic algorithms should have provably deterministic implementations

Fortress
X10

Chapel

Fortress
X10

Chapel

Argonne National
Laboratory MPI Lessons

What is Needed To Achieve Real High
Productivity Programming
 Simplify the construction of correct, high-performance applications
 Managing Data Decompositions

– Necessary for both parallel and uniprocessor applications
– Many levels must be managed
– Strong dependence on problem domain (e.g., halos, load-balanced

decompositions, dynamic vs. static)
 Possible approaches include

– Language-based
• Limited by predefined decompositions
– Some are more powerful than others; Divacon provided a built-in

divided and conquer
– Library-based

• Overhead of library (incl. lack of compile-time optimizations), tradeoffs
between number of routines, performance, and generality

– Domain-specific languages

Argonne National
Laboratory MPI Lessons

Distributed Memory code
 Single node performance is clearly a problem.
 What about parallel performance?

– Many successes at scale (e.g., Gordon Bell Prizes for >200TF on 64K
BG nodes

– Some difficulties with load-balancing, designing code and algorithms for
latency, but skilled programmers and applications scientists have been
remarkably successful

 Is there a problem?
– There is the issue of productivity.
– It isn’t just Message-passing vs shared memory

• Message passing codes can take longer to write but bugs are often
deterministic (program hangs). Explicit memory locality simplifies
fixing performance bugs

• Shared memory codes can be written quickly but bugs due to races
are difficult to find; performance bugs can be harder to identify and fix

– It isn’t just the way in which you move data
• Consider the NAS parallel benchmark code for Multigrid (mg.f):

What is the problem?
The user is responsible for all
steps in the decomposition of
the data structures across the
processors

Note that this does give the
user (or someone) a great
deal of flexibility, as the data
structure can be distributed in
arbitrary ways across
arbitrary sets of processors

Another example…

Argonne National
Laboratory MPI Lessons

Manual Decomposition of Data
Structures

 Trick!
– This is from a paper on dense matrix tiling for uniprocessors!

 This suggests that managing data decompositions is a common problem
for real machines, whether they are parallel or not
– Not just an artifact of MPI-style programming
– Aiding programmers in data structure decomposition is an important

part of solving the productivity puzzle

Argonne National
Laboratory MPI Lessons

How to Replace MPI
 Retain MPI’s strengths

– Performance from matching programming model to the realities of underlying
hardware

– Ability to compose with other software (libraries, compilers, debuggers)
– Determinism (without MPI_ANY_{TAG,SOURCE})
– Run-everywhere portability

 Add to what MPI is missing, such as
– Distributed data structures (not just a few popular ones)
– Low overhead remote operations; better latency hiding/management; overlap with

computation (not just latency; MPI can be implemented in a few hundred
instructions, so overhead is roughly the same as remote memory reference
(memory wall))

– Dynamic load balancing for dynamic, distributed data structures
– Unified method for treating multicores, remote processors, other resources

 Enable the transition from MPI programs
– Build component-friendly solutions

• There is no one, true language

Argonne National
Laboratory MPI Lessons

Is MPI the Least Common Denominator
Approach?
 “Least common denominator”

– Not the correct term
– It is “Greatest Common Denominator”! (Ask any Mathematician)
– This is critical, because it changes the way you make

improvements
 If it is “Least” then improvements can be made by picking a better

approach. I.e., anything better than “the least”.
 If it is “Greatest” then improvements require changing the rules

(either the “Denominator,” the scope (“Common”), or the goals (how
“Greatest” is evaluated)

 Where can we change the rules for MPI?

Argonne National
Laboratory MPI Lessons

Changing the Common
 Give up on ubiquity/portability and aim for a subset of architectures

– Vector computing was an example (and a cautionary tale)
– Possible niches include

• SMT for latency hiding
• Reconfigurable computing; FPGA
• Stream processors
• GPUs
• Etc.

 Not necessarily a bad thing (if you are willing to accept being on the
fringe)
– Risk: Keeping up with the commodity curve (remember vectors)

Argonne National
Laboratory MPI Lessons

Changing the Denominator
 This means changing the features that are assumed present in every

system on which the programming model must run
 Some changes since MPI was designed:

– RDMA Networks
• Best for bulk transfers
• Evolution of these may provide useful signaling for shorter

transfers
– Cache-coherent SMPs (more precisely, lack of many non-cache-

coherent SMP nodes)
– Exponentially increasing gap between memory and CPU

performance
– Better support for source-to-source transformation

• Enables practical language solutions
 If DARPA HPCS is successful at changing the “base” HPC systems,

we may also see
– Remote load/store
– Hardware support for hiding memory latency

Argonne National
Laboratory MPI Lessons

Changing the Goals
 Change the space of features

– That is, change the problem definition so that there is room to
expand (or contract) the meaning of “greatest”

 Some possibilities
– Integrated support for concurrent activities

• Not threads:
– See, e.g., Edward A. Lee, "The Problem with Threads,"

Computer, vol. 39, no. 5, pp. 33-42, May, 2006.
– “Night of the Living Threads”,

http://weblogs.mozillazine.org/roc/archives/2005/12/night_o
f_the_living_threads.html, 2005

– “Why Threads Are A Bad Idea (for most purposes)” John
Ousterhout (~2004)

– “If I were king: A proposal for fixing the Java programming
language's threading problems” http://www-
128.ibm.com/developerworks/library/j-king.html, 2000

– Support for (specialized or general) distributed data structures

Argonne National
Laboratory MPI Lessons

Conclusions
 MPI is a successful “Greatest Common Denominator” parallel

programming model
 The next success must

– Change the rules
– Be an developed as an open process
– Have a clear focus on the audience

Argonne National
Laboratory MPI Lessons

Further Reading
 For a historical perspective (and a reality check),

– “Enabling Technologies for Petaflops Computing”, Thomas Sterling,
Paul Messina, and Paul H. Smith, MIT Press, 1995

– “System Software and Tools for High Performance Computing
Environments”, edited by Paul Messina and Thomas Sterling, SIAM,
1993

 For recent thinking on possible directions,
– “Report of the Workshop on High-Productivity Programming Languages

and Models”, edited by Hans Zima, May 2004.

