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HPCS Language Origins
HPCS = High Productivity Computing Systems
• Goal: Raise productivity by 10× for the year 2010
• Productivity = Performance

+ Programmability
+ Portability
+ Robustness

Phase II (July 2003 – June 2006)
• Participants: Cray, IBM, Sun
• Evaluation of the entire system architecture’s impact on productivity…

processors, memory, network, I/O, OS, runtime, compilers, tools, …
…including new languages

IBM: X10 Sun: Fortress Cray: Chapel
• Has revived interest in parallel language R&D in the US
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HPCS ⇒ HPLS
September 2005: DARPA forks off HPLS effort
HPLS = High Productivity Language Systems
Goals:
• Study languages, advise DARPA

Rusty Lusk (ANL) – chair
Kathy Yelick (LBL/UCB)
John Mellor-Crummey (Rice)

• Build plan for unifying languages/kick-starting consortium effort
• Timeframe: September 2005 – December 2007 (and then ???)

Impact:
• All three Phase II vendors eligible for funding through 2007
• Emphasis shift: 

from: making vendor system productive
to: contribution to broader HPC community

• Established a forum for technical exchange between language teams

Robert Harrison, et al. (ORNL)
Bill Gropp (ANL)
…
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Outline
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Recent Chapel Activity
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Chapel’s Motivating Themes
General Parallel Programming through good abstractions
• general parallel programming =

data parallel + task parallel + composable parallelism
portable
user should never say “I’ve hit a wall, time to go back to MPI”

• good abstractions =
for data parallelism:

• domains (first-class index sets, potentially distributed)
• arrays (including strided, sparse, associative, “opaque”)
• user-defined distributions
• iterators and promotion

for task parallelism:
• futures and cobegins to create tasks
• variable-based synchronization
• transactional memory concepts (atomic sections) 
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Chapel’s Motivating Themes II
Ability to tune for locality
• placement of data

distribution of domains, arrays
placement of non-distributed variables

• placement of computation
in a data-driven manner

• incrementally
supports the 90/10 rule
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Chapel’s Motivating Themes III
Narrow gap between mainstream and parallel languages
• support object-oriented programming (OOP)

reference and value classes
keep it optional (for the C/Fortran/HPC crowd)

• support inferred types, generic programming, polymorphism
code reuse
exploratory programming



Recent Chapel Activity
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Recent Activity: Initial Release
Releasing to subset of HPLS team this Friday
Contains:
• compiler and runtime
• initial standard libraries
• example codes
• draft rewrite of language specification

Goals:
• demonstrate Chapel features in single-locale setting

Linux, Cygwin (Windows), Mac OS X, SunOS, …
• get feedback
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Recent Activity: HPC Challenge
Submitted entry to HPCC “productivity” competition at SC06
• wrote STREAM, Random Access, 1D FFT in Chapel
• all codes compile and run on a single locale
• no performance results reported – hasn’t been our focus to date
• wrote detailed report…

…walking through codes in detail as Chapel tutorial
…describing performance benefits and challenges for codes

• very interested in feedback on this report from users, community
(“simple codes” caveat)
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HPCC Code Size Summary (SLOC)
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Panel Questions
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Panel Questions
Q: What Chapel features are best-suited to current and 

emerging apps on highly-parallel systems?

• rich support for distributed domains and arrays
distributed data aggregates are ubiquitous in code
(and the next whipping boy after MPI, according to Bill Gropp  :)

• sparse/associative/opaque domains & arrays for graph-based and 
irregular algorithms

• fine-grain threading and synchronization
• locality tuning

• NOTE: floating-point vs. integer is pretty much a wash from language 
point-of-view

A:
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Panel Questions
Q: What Chapel features do you see as “required” for a 

consortium language?

• see previous slide
• but more generally:

partitioned global address space (PGAS)
break away from SPMD programming & execution models
save users from manually distributed/fragmented data aggregates
locality control for data and computation
generality
learn from modern type-safe and scripting languages

A:
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Panel Questions
Q (continued): Does standardizing make sense?

• Definitely.  (Where would we be without MPI standard?)
• Or rather, attempting to standardize does.  But…

timing is tricky
• too early can result in overly conservative/optimistic features 

» MPI, OpenMP, HPF had significant prior experience
• too late may lead to impatience, frustration
• at this point focusing on semantic concepts seems most 

productive; let languages continue to prove concepts for now
even in mainstream computing we use several languages
need to avoid recreating…

…the during-HPF myopia
…the post-HPF vacuum

how to involve mainstream multicore without getting steamrolled?

A:
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Panel Questions
Q: When will we see large-scale (10k–100k lines), scalable 

Chapel apps performing comparably to MPI?

• Who can say?
• Depends on so many factors…

funding situation, headcount, resources
institutions that can incubate language work
ability to generate a large-scale, open-source movement
apps. community feedback, involvement, and acceptance

• e.g., how many apps folks required to write such an app?
• Definitely not by 2010 under Cray’s phase III proposal

we didn’t budget for effort of this scale because focus expected to 
shift post-2007 to consortium effort

• Note that 10k–100k MPI lines could be 1k–10k Chapel lines

A:
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Other interesting questions
New language vs. language extension vs. interoperability
Easy problems (that people know and can fit on slides) vs.
hard problems (that are big and/or unfamiliar and/or 
haven’t been codified)
• Why is HPCC our only beauty contest?

implication that higher-level languages…
…are a hindrance to obtaining performance
…prevent the user from tuning, dropping to lower levels

MTA programming model and relation to…
• Chapel
• other languages
• traditional/emerging architectures
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For more information…

http://chapel.cs.washington.edu

bradc@cray.com
chapel_info@cray.com



Backup Slides
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Compact High-Level Code…
CGEP FT
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…need not perform poorly
CGEP FT

MG IS

C/Fortran + MPI

ZPL versions

See also  Rice University’s 
recent D-HPF work…
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Chapel HPCC Code Size Summary (SLOC)
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Chapel HPCC Code Size Summary (tokens)
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STREAM Triad Overview

const ProblemSpace: domain(1) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;
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STREAM Triad Overview

const ProblemSpace: domain(1) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

ProblemSpace

Declare a 1D arithmetic domain 
(first-class index set)

L0 L1 L2 L3 L4

Specify its distribution

A

B

C

Use domain to declare 
distributed arrays

alpha

=

+

*
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=
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*

Express computation using promoted scalar operators 
and whole-array references ⇒ parallel computation
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Random Access Overview

[i in TableSpace] T(i) = i;

forall block in subBlocks(updateSpace) do
for r in RAStream(block.numIndices, block.low) do
T(r & indexMask) ^= r;
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Random Access Overview

[i in TableSpace] T(i) = i;

forall block in subBlocks(updateSpace) do
for r in RAStream(block.numIndices, block.low) do
T(r & indexMask) ^= r;

Initialize table using a forall expression

Express table updates using 
forall- and for-loops

Random stream expressed 
modularly using an iterator

iterator RAStream(numvals, 
start:randType = 0): randType {

var val = getNthRandom(start);
for i in 1..numvals {

getNextRandom(val);
yield val;

}
}
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FFT Overview (radix 4)
for i in [2..log2(numElements)) by 2 {

const m = span*radix, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
var wk2 = …, wk1 = …, wk3 = …;

forall j in [k..k+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

wk1 = …; wk3 = …; wk2 *= 1.0i;

forall j in [k+m..k+m+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

}
span *= radix;

}

def butterfly(wk1, wk2, wk3, inout A:[1..radix]) { … }
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FFT Overview (radix 4)
for i in [2..log2(numElements)) by 2 {

const m = span*radix, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
var wk2 = …, wk1 = …, wk3 = …;

forall j in [k..k+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

wk1 = …; wk3 = …; wk2 *= 1.0i;

forall j in [k+m..k+m+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

}
span *= radix;

}

def butterfly(wk1, wk2, wk3, inout A:[1..radix]) { … }

Parallelism expressed 
using nested forall-loops

Support for complex and imaginary 
math simplifies FFT arithmetic

Generic arguments allow routine to be called with 
complex, real, or imaginary twiddle factors
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