
Chapel: a Confabulated Overview

HPCS Language Panel
HPC WPL

December 13, 2006

Brad Chamberlain
Chapel Team, Cray Inc.

HPCC BOF, SC06

HPCS Language Origins
HPCS = High Productivity Computing Systems
• Goal: Raise productivity by 10× for the year 2010
• Productivity = Performance

+ Programmability
+ Portability
+ Robustness

Phase II (July 2003 – June 2006)
• Participants: Cray, IBM, Sun
• Evaluation of the entire system architecture’s impact on productivity…

processors, memory, network, I/O, OS, runtime, compilers, tools, …
…including new languages

IBM: X10 Sun: Fortress Cray: Chapel
• Has revived interest in parallel language R&D in the US

HPCC BOF, SC06

HPCS ⇒ HPLS
September 2005: DARPA forks off HPLS effort
HPLS = High Productivity Language Systems
Goals:
• Study languages, advise DARPA

Rusty Lusk (ANL) – chair
Kathy Yelick (LBL/UCB)
John Mellor-Crummey (Rice)

• Build plan for unifying languages/kick-starting consortium effort
• Timeframe: September 2005 – December 2007 (and then ???)

Impact:
• All three Phase II vendors eligible for funding through 2007
• Emphasis shift:

from: making vendor system productive
to: contribution to broader HPC community

• Established a forum for technical exchange between language teams

Robert Harrison, et al. (ORNL)
Bill Gropp (ANL)
…

HPCC BOF, SC06

Outline
HPCS and HPLS
Chapel Motivating Themes
Recent Chapel Activity
Panel Questions
Other Questions

HPCC BOF, SC06

Chapel’s Motivating Themes
General Parallel Programming through good abstractions
• general parallel programming =

data parallel + task parallel + composable parallelism
portable
user should never say “I’ve hit a wall, time to go back to MPI”

• good abstractions =
for data parallelism:

• domains (first-class index sets, potentially distributed)
• arrays (including strided, sparse, associative, “opaque”)
• user-defined distributions
• iterators and promotion

for task parallelism:
• futures and cobegins to create tasks
• variable-based synchronization
• transactional memory concepts (atomic sections)

HPCC BOF, SC06

Chapel’s Motivating Themes II
Ability to tune for locality
• placement of data

distribution of domains, arrays
placement of non-distributed variables

• placement of computation
in a data-driven manner

• incrementally
supports the 90/10 rule

HPCC BOF, SC06

Chapel’s Motivating Themes III
Narrow gap between mainstream and parallel languages
• support object-oriented programming (OOP)

reference and value classes
keep it optional (for the C/Fortran/HPC crowd)

• support inferred types, generic programming, polymorphism
code reuse
exploratory programming

Recent Chapel Activity

HPCC BOF, SC06

Recent Activity: Initial Release
Releasing to subset of HPLS team this Friday
Contains:
• compiler and runtime
• initial standard libraries
• example codes
• draft rewrite of language specification

Goals:
• demonstrate Chapel features in single-locale setting

Linux, Cygwin (Windows), Mac OS X, SunOS, …
• get feedback

HPCC BOF, SC06

Recent Activity: HPC Challenge
Submitted entry to HPCC “productivity” competition at SC06
• wrote STREAM, Random Access, 1D FFT in Chapel
• all codes compile and run on a single locale
• no performance results reported – hasn’t been our focus to date
• wrote detailed report…

…walking through codes in detail as Chapel tutorial
…describing performance benefits and challenges for codes

• very interested in feedback on this report from users, community
(“simple codes” caveat)

HPCC BOF, SC06

HPCC Code Size Summary (SLOC)

15612486

1406

1668

433

0

200

400

600

800

1000

1200

1400

1600

1800

Reference Chapel Reference Chapel Reference Chapel

SL
O

C

Reference Version
Framework
Computation

 Chapel Version
Prob. Size (common)
Results and output
Verification
Initialization
Kernel declarations
Kernel computation

STREAM
Triad

Random
Access FFT

Panel Questions

HPCC BOF, SC06

Panel Questions
Q: What Chapel features are best-suited to current and

emerging apps on highly-parallel systems?

• rich support for distributed domains and arrays
distributed data aggregates are ubiquitous in code
(and the next whipping boy after MPI, according to Bill Gropp :)

• sparse/associative/opaque domains & arrays for graph-based and
irregular algorithms

• fine-grain threading and synchronization
• locality tuning

• NOTE: floating-point vs. integer is pretty much a wash from language
point-of-view

A:

HPCC BOF, SC06

Panel Questions
Q: What Chapel features do you see as “required” for a

consortium language?

• see previous slide
• but more generally:

partitioned global address space (PGAS)
break away from SPMD programming & execution models
save users from manually distributed/fragmented data aggregates
locality control for data and computation
generality
learn from modern type-safe and scripting languages

A:

HPCC BOF, SC06

Panel Questions
Q (continued): Does standardizing make sense?

• Definitely. (Where would we be without MPI standard?)
• Or rather, attempting to standardize does. But…

timing is tricky
• too early can result in overly conservative/optimistic features

» MPI, OpenMP, HPF had significant prior experience
• too late may lead to impatience, frustration
• at this point focusing on semantic concepts seems most

productive; let languages continue to prove concepts for now
even in mainstream computing we use several languages
need to avoid recreating…

…the during-HPF myopia
…the post-HPF vacuum

how to involve mainstream multicore without getting steamrolled?

A:

HPCC BOF, SC06

Panel Questions
Q: When will we see large-scale (10k–100k lines), scalable

Chapel apps performing comparably to MPI?

• Who can say?
• Depends on so many factors…

funding situation, headcount, resources
institutions that can incubate language work
ability to generate a large-scale, open-source movement
apps. community feedback, involvement, and acceptance

• e.g., how many apps folks required to write such an app?
• Definitely not by 2010 under Cray’s phase III proposal

we didn’t budget for effort of this scale because focus expected to
shift post-2007 to consortium effort

• Note that 10k–100k MPI lines could be 1k–10k Chapel lines

A:

HPCC BOF, SC06

Other interesting questions
New language vs. language extension vs. interoperability
Easy problems (that people know and can fit on slides) vs.
hard problems (that are big and/or unfamiliar and/or
haven’t been codified)
• Why is HPCC our only beauty contest?

implication that higher-level languages…
…are a hindrance to obtaining performance
…prevent the user from tuning, dropping to lower levels

MTA programming model and relation to…
• Chapel
• other languages
• traditional/emerging architectures

HPCC BOF, SC06

For more information…

http://chapel.cs.washington.edu

bradc@cray.com
chapel_info@cray.com

Backup Slides

HPCC BOF, SC06

Compact High-Level Code…
CGEP FT

54

36

17

25

3

0

10

20

30

40

50

60

70

80

F+MPI ZPL

Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

82

38

79

37

89

0

50

100

150

200

250

300

F+MPI ZPL
Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

249
204

332

128

135

0

100

200

300

400

500

600

700

800

F+MPI ZPL
Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

MG IS

242

70

202

87

566

0

200

400

600

800

1000

1200

F+MPI ZPL
Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

152

111

72

80

22

0

50

100

150

200

250

300

C+MPI ZPL
Language

Li
ne

s
of

 C
od

e

communication
declarations
computation

152
111

72

80

22

0

50

100

150

200

250

300

C+MPI ZP L

Language

Li
ne

s
of

 C
od

ecommunication
declarations
computation

HPCC BOF, SC06

…need not perform poorly
CGEP FT

MG IS

C/Fortran + MPI

ZPL versions

See also Rice University’s
recent D-HPF work…

HPCC BOF, SC06

Chapel HPCC Code Size Summary (SLOC)

156

86

124

0

20

40

60

80

100

120

140

160

180

STREAM Triad Random Access FFT

SL
O

C

Problem Size
(common)
Results and output

Verification

Initialization

Kernel declarations

Kernel computation

HPCC BOF, SC06

Chapel HPCC Code Size Summary (tokens)
1299

593

863

0

200

400

600

800

1000

1200

1400

STREAM Triad Random Access FFT

St
at

ic
 L

ex
ic

al
 T

ok
en

s

Problem Size
(common)
Results and output

Verification

Initialization

Kernel declarations

Kernel computation

HPCC BOF, SC06

STREAM Triad Overview

const ProblemSpace: domain(1) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

HPCC BOF, SC06

STREAM Triad Overview

const ProblemSpace: domain(1) distributed(Block) = [1..m];
var A, B, C: [ProblemSpace] elemType;

A = B + alpha * C;

ProblemSpace

Declare a 1D arithmetic domain
(first-class index set)

L0 L1 L2 L3 L4

Specify its distribution

A

B

C

Use domain to declare
distributed arrays

alpha

=

+

*

=

+

*

=

+

*

=

+

*

=

+

*

Express computation using promoted scalar operators
and whole-array references ⇒ parallel computation

HPCC BOF, SC06

Random Access Overview

[i in TableSpace] T(i) = i;

forall block in subBlocks(updateSpace) do
for r in RAStream(block.numIndices, block.low) do
T(r & indexMask) ^= r;

HPCC BOF, SC06

Random Access Overview

[i in TableSpace] T(i) = i;

forall block in subBlocks(updateSpace) do
for r in RAStream(block.numIndices, block.low) do
T(r & indexMask) ^= r;

Initialize table using a forall expression

Express table updates using
forall- and for-loops

Random stream expressed
modularly using an iterator

iterator RAStream(numvals,
start:randType = 0): randType {

var val = getNthRandom(start);
for i in 1..numvals {

getNextRandom(val);
yield val;

}
}

HPCC BOF, SC06

FFT Overview (radix 4)
for i in [2..log2(numElements)) by 2 {

const m = span*radix, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
var wk2 = …, wk1 = …, wk3 = …;

forall j in [k..k+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

wk1 = …; wk3 = …; wk2 *= 1.0i;

forall j in [k+m..k+m+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

}
span *= radix;

}

def butterfly(wk1, wk2, wk3, inout A:[1..radix]) { … }

HPCC BOF, SC06

FFT Overview (radix 4)
for i in [2..log2(numElements)) by 2 {

const m = span*radix, m2 = 2*m;

forall (k,k1) in (Adom by m2, 0..) {
var wk2 = …, wk1 = …, wk3 = …;

forall j in [k..k+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

wk1 = …; wk3 = …; wk2 *= 1.0i;

forall j in [k+m..k+m+span) do
butterfly(wk1, wk2, wk3, A[j..j+3*span by span]);

}
span *= radix;

}

def butterfly(wk1, wk2, wk3, inout A:[1..radix]) { … }

Parallelism expressed
using nested forall-loops

Support for complex and imaginary
math simplifies FFT arithmetic

Generic arguments allow routine to be called with
complex, real, or imaginary twiddle factors

	Chapel: a Confabulated Overview
	HPCS Language Origins
	HPCS HPLS
	Outline
	Chapel’s Motivating Themes
	Chapel’s Motivating Themes II
	Chapel’s Motivating Themes III
	Recent Chapel Activity
	Recent Activity: Initial Release
	Recent Activity: HPC Challenge
	HPCC Code Size Summary (SLOC)
	Panel Questions
	Panel Questions
	Panel Questions
	Panel Questions
	Panel Questions
	Other interesting questions
	For more information…
	Backup Slides
	Compact High-Level Code…
	…need not perform poorly
	Chapel HPCC Code Size Summary (SLOC)
	Chapel HPCC Code Size Summary (tokens)
	STREAM Triad Overview
	STREAM Triad Overview
	Random Access Overview
	Random Access Overview
	FFT Overview (radix 4)
	FFT Overview (radix 4)

