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Fortress: features for HPC productivity 
problems

• Mathematical syntax
• Library-oriented
• Transactions, GC, safety
• Components
• Type system
• Contracts/tests
• Ubiquitous parallelism
• Work-stealing/N-agnostic

• Scarce programmers
• Hard ports
• Costly maintenance
• Complex systems
• Niche market
• Legacy anchors
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Support for complex systems

• GC and transactions simplify interfaces
• Type system allows expression of reusability
• Static checking verifies well-formed programs
• Contracts allow additional checking while testing
• Tests in traits (interfaces) check behaviors that can't 

be captured in the type system
• Work-stealing/N-agnostic reduces need to 

understand resource needs of each individual part
• Components as an organizational tool 
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Clean, fast code.  How?

• Tuned implementations of APIs and interfaces
• Type-driven code selection
• Generators, not iterators
• Expect extensive inlining
> Run time optimization
> Whole program analysis
> Database of profiling/configuration information
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Type-driven code selection

• Functions and methods can be overloaded on 
multiple parameters.
• Type can include distribution information
• It's all in a library, it's (almost) all just conventions

invert[\M extends E^(N BY N), E, nat N\](x: M): E^(N BY N)
        where {
                M extends Dense,
                M extends Symmetric,
                M extends DistributedAllocation } = ...
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Generators, not iterators
Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

for i←1:m, j←1:n do
  a[i,j] := b[i] c[j]
end

for i←seq(1:m) do
  for j←seq(1:n) do
    print a[i,j]
  end
end

for (i,j)←a.indices do a[i,j] := b[i] c[j] end

for (i,j)←a.indices.rowMajor do print a[i,j] end

1:n is a generator

seq(1:n) is a sequential generator

a.indices is a generator for the indices of the array a 

a.indices.rowMajor is a sequential generator of indices 
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Loops, Reducers, Comprehensions

for k←1:n do print k end

y = ∑[k←1:n] a[k] x^k

w = ∑S                (* same as ∑[x←S] x *)

v = ∩[k←S, prime k] arrayOfSets[k]

z = MAX[(j,k)←a.indices] |a[j,k]-b[j,k]|

B = { f(x,y) | x←S, y←A, x≠y }

l_triangle = ⟨ x(x+1)/2 | x←1:100 ⟩
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Loops, Reducers, Comprehensions

  
for k 1:n do print k end
y= ∑

k1:n
ak xk

w=∑ S (* same as ∑
x S

x  *)

v= ∩
k S

prime k

arrayOfSetsk

z= MAX
 j ,k a.indices

∣a j ,k−b j ,k∣
B={ f  x , y∣ x S , y A , x≠ y}
l triangle=〈 x x1

2 ∣ x1:100〉
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Loop execution
• Compiler identifies reduction variables, and packages 

the loop as a body closure that returns reduction 
values, and reduction functions (empty, and combine)
• Body and reduction functions passed to generator 

function as parameters (like Smalltalk)
• Generator runs closure in “best” way (for its 

distribution) performing reductions as it goes
• In practice, expect everything to be inlined and/or 

specialized, yielding flat code, appropriate to the 
distribution, that can be traditionally optimized.
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Generator-driven execution
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Gory details: interface to a generator

value object BlockedRange(lo: 64, hi: 64, b: 64)ℤ ℤ ℤ
    extends Generator⟦ 64ℤ ⟧
  (* Natural order: lo to hi *)
  size = hi – lo + 1
  generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
          (body: 64 → ℤ R): R = ...
  generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
          (body: 64 → ℤ R): R = ...
  generate R ⟦ extends { Monoid R,⟦ ⊕ , LeftZero⟧ R,⟦ ⊕  }⟧ ⟧
          (body: 64 → ℤ R): R = ...
  join T⟦ (Generator⟧ T⟦ ): Generator⟧ (⟦ 64,T)ℤ ⟧
end
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Non-commutative reduction
generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
        (body: 64 → ℤ R): R =
  if size ≤ max(b,1) then
    var r : R = Identity⟦⊕⟧
    var i : 64 = loℤ
    while i ≤ hi do
      r := r  body(i)⊕
      i += 1
    end
    r
  else
    mid = ⎣(lo + hi) / 2⎦
    BlockedRange(lo,mid,b).generate(body))  ⊕
       BlockedRange(mid+1,hi,b).generate(body))
  end
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Commutative reduction
generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
        (body: 64 → ℤ R): R = do
  var result : R := Identity⟦⊕⟧
  helper(low,high) =
    if size ≤ max(b,1) then
      var r : R = Identity⟦⊕⟧
      var i : 64 = loℤ
      while i ≤ hi do
        r := r  body(i)⊕
        i += 1
      end
      atomic do result += r end
    else
      mid = ⎣(lo + hi) / 2⎦
      (helper(low,mid),helper(mid+1,high))
    end
  helper(lo,hi)
  result
end
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Plans for the future?

• No promises
• Seems to take 3 years to build an optimizing compiler
• Library is unusually important
• JVM looks like a promising target, especially since it is 

now GPL'd
• Plan to open up the reference interpreter this year
• Need to grow a user community, too
• Tools, tools, tools.
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Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations
> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs
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Regions

• Hierarchical data structure describes CPU and 
memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources
• Threads may be

explicitly spawned
in specified regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core
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Distributions

• Describe how to map a data structure onto a region
> Block, cyclic, block-cyclic, Morton order ...
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster?  Break it up.

• Defined entirely by libraries!
> User-extensible
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This talk is intended to give some intuition about how Fortress's features are designed 
to increase the productivity of high performance computing.  Our goal is productivity in 
the broad sense, not just lines-of-code-per-programmer-year.

I've stolen slides from presentations by Jan Maessen and Guy Steele.
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Fortress: features for HPC productivity 
problems

• Mathematical syntax
• Library-oriented
• Transactions, GC, safety
• Components
• Type system
• Contracts/tests
• Ubiquitous parallelism
• Work-stealing/N-agnostic

• Scarce programmers
• Hard ports
• Costly maintenance
• Complex systems
• Niche market
• Legacy anchors

So, how do these features and problems relate?

On the left are some of Fortress's features, and on the right are some of the productivity 
problems that we hope to address.  There's not a one-to-one mapping, because the 
features work in combination.

High performance programmers are scarce.  We hope to make it somewhat easier by 
making the syntax more accessible; even if it's still not good enough for domain 
experts, simply making the code more readable and less cluttered means that they will 
be more able to relate their problems to their coded solutions.  Transactions and 
garbage collection deal with two programming issues that are notoriously  problematic, 
and never relevant to the science.

Porting HP programs is hard.  We believe that our focus on libraries will encourage more 
programming from reusable, ported components.  Components, the (statically checked) 
type system, contracts, and tests all help ensure that programs are put together 
correctly, and allow confident experiments with different implementations of interfaces.  
Ubiquitous parallelism, and a work-stealing execution model, should make execution of 
Fortress programs generally more adaptable to different machine configurations, and 
should also reduce the amount of machine-specific tuning that will not port well.

High-performance computing is a niche market.  We want to change that with Fortress, 
by bringing parallelism into the mainstream.  Most of the productivity-enhancing 
features are general-purpose, and stolen from other languages.  We're trying to lower 
the barrier-to-entry for efficient parallel programming; for chip and small-scale 
multiprocessors, work-stealing is approximately self-tuning.

Interoperation with existing software presents problems for many new languages.  
Fortress's type system and everything-is-a-library approach allow programmers to 
describe native data layouts precisely and accurately, and then wrap them up as first 
class objects for general use.
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Support for complex systems

• GC and transactions simplify interfaces
• Type system allows expression of reusability
• Static checking verifies well-formed programs
• Contracts allow additional checking while testing
• Tests in traits (interfaces) check behaviors that can't 

be captured in the type system
• Work-stealing/N-agnostic reduces need to 

understand resource needs of each individual part
• Components as an organizational tool 

Complex applications are a particular concern.  For high performance computing, 
complex systems present all the problems that they do for ordinary applications, plus 
much more difficult performance interactions.

GC and transactions lead to simpler interfaces, because it is no longer necessary to 
expose allocation and synchronization protocols and be sure that their requirements are 
satisfied.  The productivity benefits of GC and safety have been widely observed in 
languages that provide them; transactions offer similar benefits.

The components, type system, contracts, and support for testing allow help ensure that 
the parts of a program actually fit together.  The component system is intended to help 
organize the parts of applications, so that configurations can be precisely described and 
repeatably assembled.  A static type system automates checking of all the constraints 
that can be expressed in that type system; it is our aim to hit the sweet-enough spot of 
type system expressiveness, ability to perform type inference in application code, and 
specification of genericity.  There are other constraints that we won't be able to say in a 
type system, that nonetheless matter; for those, Fortress has contracts, and the ability 
to specify tests.  All of this is tied to the code, so that it won't get lost, so that it can be 
checked automatically, and so that other tools can rely on it.  Many of the things that we 
expect to see expressed as types, contracts, and tests, might otherwise be left to 
documentation.

One attribute of complex systems is that nobody knows exactly what all the parts are 
doing.  Resource allocation and concurrency become mystifying and intractable.  For 
example, in the Java(TM) Programming Language, it's just not possible to do much with 
priorities in a complex system, because of potential starvation and priority inversion.  
We expect that in complex high performance applications, fixed allocations of 
processors to computing will be difficult to do efficiently, especially when computing 
demands vary over time, and this is why we are aiming for programming styles that do 
not depend on exact processor counts or organizations.

Fortress provides components and databases of components so that programmers can 
keep track of what works, what doesn't, and what the differences are.
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Clean, fast code.  How?

• Tuned implementations of APIs and interfaces
• Type-driven code selection
• Generators, not iterators
• Expect extensive inlining
> Run time optimization
> Whole program analysis
> Database of profiling/configuration information
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Type-driven code selection

• Functions and methods can be overloaded on 
multiple parameters.
• Type can include distribution information
• It's all in a library, it's (almost) all just conventions

invert[\M extends E^(N BY N), E, nat N\](x: M): E^(N BY N)
        where {
                M extends Dense,
                M extends Symmetric,
                M extends DistributedAllocation } = ...

Fortress method dispatch is not like the Java Programming Language or C++.  Both of 
those languages define a combination of static overloading on the static types of all 
parameters, then dynamic dispatch on the type of the first (self) parameter.  Fortress 
provides dynamic dispatch across all parameters.

Dynamic dispatch is expensive only if it is used and if it cannot be compiled/specialized 
out, and it allows us to write and access multiple tuned versions of the same method.

Types can be used as “tags”, that perhaps only provide additional constraints 
(contracts) that are relevant during testing, but not during usual execution.  A Symmetric 
matrix doesn't provide any extra behavior.  DistributedAllocation indicates that this 
matrix is not stored on a single node.

This is not pretty the mathematical syntax that we want because
- mathematicians don't talk much about type systems
- it's library code
- this glitch is particular to matrix types (which get special treatment in the syntax),
  and we're going to try to fix it.

The overloading algorithm is very complex; as described, overloading selects a generic 
function, then the type parameters are unified against the actuals, and then the type-
instantiated function is applied.  This is not how it will get implemented; restrictions on 
overloading make it easier to do early.
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Generators, not iterators
Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

for i←1:m, j←1:n do
  a[i,j] := b[i] c[j]
end

for i←seq(1:m) do
  for j←seq(1:n) do
    print a[i,j]
  end
end

for (i,j)←a.indices do a[i,j] := b[i] c[j] end

for (i,j)←a.indices.rowMajor do print a[i,j] end

1:n is a generator

seq(1:n) is a sequential generator

a.indices is a generator for the indices of the array a 

a.indices.rowMajor is a sequential generator of indices 

One big problem is how to get good performance out of good-looking code without 
cluttering it with annotations.  Clean code is no good if it doesn't run well.  Fortress 
does this by turning the loops inside out; “generators” run the show.  Generators are 
just objects, that can be defined in a library or custom built, for managing iteration, 
parallelism, and distribution.

By default, generators are parallel, but as objects, they include methods for obtaining  
sequential generators that yield slow, old-style iteration.

Two-dimensional iterators include various sequential generators for row major, column 
major, and various sequential and parallel Morton orders.

Distributed data comes with its own default generators that are expected to yield best 
access order to that data.  So, the generator for a distributed array, will send loop 
iteration i,j to the place where array element i,j resides.  A well-written generator will
of course send one message (itself, a generator) for a block of elements residing at
the same place, instead of many single-element messages.
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Loops, Reducers, Comprehensions

for k←1:n do print k end

y = ∑[k←1:n] a[k] x^k

w = ∑S                (* same as ∑[x←S] x *)

v = ∩[k←S, prime k] arrayOfSets[k]

z = MAX[(j,k)←a.indices] |a[j,k]-b[j,k]|

B = { f(x,y) | x←S, y←A, x≠y }

l_triangle = ⟨ x(x+1)/2 | x←1:100 ⟩

Generators are everywhere.  Integer ranges, set elements, array indices, tables, maps all 
have distributions, and the distributions provide generators.
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Loops, Reducers, Comprehensions

  
for k 1:n do print k end
y= ∑

k1:n
ak xk

w=∑ S (* same as ∑
x S

x  *)

v= ∩
k S

prime k

arrayOfSetsk

z= MAX
 j ,k a.indices

∣a j ,k−b j ,k∣
B={ f  x , y∣ x S , y A , x≠ y}
l triangle=〈 x x1

2 ∣ x1:100〉

We try to make generators look nice, too.  These examples were all automatically 
generated from the previous slide's examples, using en emacs macro and Latex.
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Loop execution
• Compiler identifies reduction variables, and packages 

the loop as a body closure that returns reduction 
values, and reduction functions (empty, and combine)
• Body and reduction functions passed to generator 

function as parameters (like Smalltalk)
• Generator runs closure in “best” way (for its 

distribution) performing reductions as it goes
• In practice, expect everything to be inlined and/or 

specialized, yielding flat code, appropriate to the 
distribution, that can be traditionally optimized.

To the compiler, a reduction variable is one that is updated in the loop body, where the 
variable type and update operator form a monoid (associative operator with identity).  
This is one place where a convention must be embedded in the compiler.

The loop body is rewritten as a closure that returns the (vector of) reduction update 
values, plus separate functions that return the zero of the monoid and combine two 
members of the monoid.

The body closure and two reduction functions are passed to the generator.  This is the 
sort of thing that you'd expect to see in Smalltalk or Lisp; unlike Smalltalk and Lisp, 
Fortress is statically typed.

The generator then runs the closure on each index, in whatever way is best for its 
distribution, which may include message-sends to other nodes in a cluster; it's all in a 
library, so even though message sends are not part of the language, they could 
definitely occur behind the curtain.

In practice, because of the static type system, and because we expect extensive inlining 
from the Fortress implementation, we expect that all the higher-order function 
invocation will disappear and be replaced with something that looks much more like 
ordinary code.



Fortress: HPCWLS Sandia, 2006 12/12/06 Page 10

The Fortress Programming Language

10© 2006 Sun Microsystems, Inc.  All rights reserved.

Generator-driven execution
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Here's an example of how a summation might be run by a generator.   At the top level, 
the generator splits into two parallel parts, which in turn split into two parallel parts.

Then the sum is run sequentially.  The generator starts each sequential reduction with 
the result from the zero function, then iteratively calls the body for successive indices, 
and uses the combiner function to update the reduction variables.
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Gory details: interface to a generator

value object BlockedRange(lo: 64, hi: 64, b: 64)ℤ ℤ ℤ
    extends Generator⟦ 64ℤ ⟧
  (* Natural order: lo to hi *)
  size = hi – lo + 1
  generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
          (body: 64 → ℤ R): R = ...
  generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
          (body: 64 → ℤ R): R = ...
  generate R ⟦ extends { Monoid R,⟦ ⊕ , LeftZero⟧ R,⟦ ⊕  }⟧ ⟧
          (body: 64 → ℤ R): R = ...
  join T⟦ (Generator⟧ T⟦ ): Generator⟧ (⟦ 64,T)ℤ ⟧
end

Here's a generator for blocked ranges from lo to high, blocked by “b”.  The generator 
provides three different versions of the overloaded function generate, where the 
function chosen depends upon the properties of the reduction variables' monoids.

This is a case where we designed the type system to support the needs of the library 
writer; overloading is constrained enough to be unambiguous, but flexible enough to 
permit this sort of automatic code selection so that the very best choices can be made 
without requiring any assistance from the programmer.  The library writers  will need to 
think about algebraic properties when they define new types and operators.

The contracts and tests also figure into this, because the traits for Monoid and 
CommutativeMonoid and LeftZero include tests to verify that any type/operator 
implementing them really does (at least, up to testing; if we had a tractable program 
proof story, we would require that).
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Non-commutative reduction
generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
        (body: 64 → ℤ R): R =
  if size ≤ max(b,1) then
    var r : R = Identity⟦⊕⟧
    var i : 64 = loℤ
    while i ≤ hi do
      r := r  body(i)⊕
      i += 1
    end
    r
  else
    mid = ⎣(lo + hi) / 2⎦
    BlockedRange(lo,mid,b).generate(body))  ⊕
       BlockedRange(mid+1,hi,b).generate(body))
  end

Here's the first method, invoked for plain, non-commutative monoids.  The reduction can 
run in parallel, reassociated around the midpoint, but the order of operands cannot 
change.  It may not be obvious, but the two recursive invocations run in parallel if they 
can.  Because of work-stealing in the run-time, if processors are available, they will, 
otherwise they won't.

Notice the while-loop for the within-block case; while loops don't use generators, and 
this is necessary because otherwise the recursion is endless.  This is one example of 
how coding libraries is trickier than coding applications.
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Commutative reduction
generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
        (body: 64 → ℤ R): R = do
  var result : R := Identity⟦⊕⟧
  helper(low,high) =
    if size ≤ max(b,1) then
      var r : R = Identity⟦⊕⟧
      var i : 64 = loℤ
      while i ≤ hi do
        r := r  body(i)⊕
        i += 1
      end
      atomic do result += r end
    else
      mid = ⎣(lo + hi) / 2⎦
      (helper(low,mid),helper(mid+1,high))
    end
  helper(lo,hi)
  result
end

This method handles the case of a commutative monoid.

Instead of collecting results in an ordered tree, they are summed willy-nilly into a shared 
variable that is accessed transactionally.  Again, the recursive calls (this time to the 
helper function) generate as much parallelism as work-stealing permits.
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Plans for the future?

• No promises
• Seems to take 3 years to build an optimizing compiler
• Library is unusually important
• JVM looks like a promising target, especially since it is 

now GPL'd
• Plan to open up the reference interpreter this year
• Need to grow a user community, too
• Tools, tools, tools.

No word yet from DARPA on a language development contract, and as a rule we are not 
allowed to make any promises about the future.  Given that disclaimer, we're still 
working on Fortress.

To get to a high performance implementation will take a few years.  In practice, it seems 
to take about 3 years to build an optimizing compiler; sometimes 2, sometimes four or 
more.  Fortress is a little different because so much of the language is defined in the 
library.  Because of this, right now we think it's more important to work on the 
interpreter and work on the library; it's slow, but it lets us get more confidence that we 
have the right type system and features for a library-centric language.  Changes later will 
be more expensive.

We're very happy to hear that the JVM will be GPL'd; that makes it easy for us to choose 
our first target for compilation.  It's not the best choice for high performance computing, 
but we may be able to tweak it (now that it's open), or perhaps someone else will tweak it 
for us.  It's well-defined, which is an aid to compiler-writing, and widely available, which 
will help popularize Fortress.  We need to grow a community, and we're happy to steal 
and adapt existing JVM tools for our purposes.

And, because the JVM will be open, that made it easier for us to choose to open up 
Fortress later this year.  The parser and interpreter are not yet complete, but we have 
been able to begin work in the library, and we're finishing them as quickly as possible. 

Details are TBD, except that “this year” is the high order bit.
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Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations
> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs
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Regions

• Hierarchical data structure describes CPU and 
memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources
• Threads may be

explicitly spawned
in specified regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core
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Distributions

• Describe how to map a data structure onto a region
> Block, cyclic, block-cyclic, Morton order ...
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster?  Break it up.

• Defined entirely by libraries!
> User-extensible
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