
The Fortress Programming
Language: Features and
Productivity

David Chase
Sun Microsystems Laboratories
1 Network Drive UBUR02-311 Burlington, MA 02183 USA
+1 781 442 0827 david.chase@sun.com

December 13, 2006 HPCWPL, Sandia

mailto:david.chase@sun.com

The Fortress Programming Language

2© 2006 Sun Microsystems, Inc. All rights reserved.

Fortress: features for HPC productivity
problems

• Mathematical syntax
• Library-oriented
• Transactions, GC, safety
• Components
• Type system
• Contracts/tests
• Ubiquitous parallelism
• Work-stealing/N-agnostic

• Scarce programmers
• Hard ports
• Costly maintenance
• Complex systems
• Niche market
• Legacy anchors

The Fortress Programming Language

3© 2006 Sun Microsystems, Inc. All rights reserved.

Support for complex systems

• GC and transactions simplify interfaces
• Type system allows expression of reusability
• Static checking verifies well-formed programs
• Contracts allow additional checking while testing
• Tests in traits (interfaces) check behaviors that can't

be captured in the type system
• Work-stealing/N-agnostic reduces need to

understand resource needs of each individual part
• Components as an organizational tool

The Fortress Programming Language

4© 2006 Sun Microsystems, Inc. All rights reserved.

Clean, fast code. How?

• Tuned implementations of APIs and interfaces
• Type-driven code selection
• Generators, not iterators
• Expect extensive inlining
> Run time optimization
> Whole program analysis
> Database of profiling/configuration information

The Fortress Programming Language

5© 2006 Sun Microsystems, Inc. All rights reserved.

Type-driven code selection

• Functions and methods can be overloaded on
multiple parameters.
• Type can include distribution information
• It's all in a library, it's (almost) all just conventions

invert[\M extends E^(N BY N), E, nat N\](x: M): E^(N BY N)
 where {
 M extends Dense,
 M extends Symmetric,
 M extends DistributedAllocation } = ...

The Fortress Programming Language

6© 2006 Sun Microsystems, Inc. All rights reserved.

Generators, not iterators
Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

for i←1:m, j←1:n do
 a[i,j] := b[i] c[j]
end

for i←seq(1:m) do
 for j←seq(1:n) do
 print a[i,j]
 end
end

for (i,j)←a.indices do a[i,j] := b[i] c[j] end

for (i,j)←a.indices.rowMajor do print a[i,j] end

1:n is a generator

seq(1:n) is a sequential generator

a.indices is a generator for the indices of the array a

a.indices.rowMajor is a sequential generator of indices

The Fortress Programming Language

7© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k←1:n do print k end

y = ∑[k←1:n] a[k] x^k

w = ∑S (* same as ∑[x←S] x *)

v = ∩[k←S, prime k] arrayOfSets[k]

z = MAX[(j,k)←a.indices] |a[j,k]-b[j,k]|

B = { f(x,y) | x←S, y←A, x≠y }

l_triangle = ⟨ x(x+1)/2 | x←1:100 ⟩

The Fortress Programming Language

8© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k 1:n do print k end
y= ∑

k1:n
ak xk

w=∑ S (* same as ∑
x S

x *)

v= ∩
k S

prime k

arrayOfSetsk

z= MAX
 j ,k a.indices

∣a j ,k−b j ,k∣
B={ f  x , y∣ x S , y A , x≠ y}
l triangle=〈 x x1

2 ∣ x1:100〉

The Fortress Programming Language

9© 2006 Sun Microsystems, Inc. All rights reserved.

Loop execution
• Compiler identifies reduction variables, and packages

the loop as a body closure that returns reduction
values, and reduction functions (empty, and combine)
• Body and reduction functions passed to generator

function as parameters (like Smalltalk)
• Generator runs closure in “best” way (for its

distribution) performing reductions as it goes
• In practice, expect everything to be inlined and/or

specialized, yielding flat code, appropriate to the
distribution, that can be traditionally optimized.

The Fortress Programming Language

10© 2006 Sun Microsystems, Inc. All rights reserved.

Generator-driven execution

1
2
3

4
5
6 9

7
8

10
11
12 +par

+seq

1

2

3

0

+seq

+seq

+seq

4

5

6

0

+seq

+seq

+par

+seq

7

8

9

0

+seq

+seq

+seq
12

0

+seq

+seq

+par

11

10

∑AA

The Fortress Programming Language

11© 2006 Sun Microsystems, Inc. All rights reserved.

Gory details: interface to a generator

value object BlockedRange(lo: 64, hi: 64, b: 64)ℤ ℤ ℤ
 extends Generator⟦ 64ℤ ⟧
 (* Natural order: lo to hi *)
 size = hi – lo + 1
 generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = ...
 generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = ...
 generate R ⟦ extends { Monoid R,⟦ ⊕ , LeftZero⟧ R,⟦ ⊕ }⟧ ⟧
 (body: 64 → ℤ R): R = ...
 join T⟦ (Generator⟧ T⟦): Generator⟧ (⟦ 64,T)ℤ ⟧
end

The Fortress Programming Language

12© 2006 Sun Microsystems, Inc. All rights reserved.

Non-commutative reduction
generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R =
 if size ≤ max(b,1) then
 var r : R = Identity⟦⊕⟧
 var i : 64 = loℤ
 while i ≤ hi do
 r := r body(i)⊕
 i += 1
 end
 r
 else
 mid = ⎣(lo + hi) / 2⎦
 BlockedRange(lo,mid,b).generate(body)) ⊕
 BlockedRange(mid+1,hi,b).generate(body))
 end

The Fortress Programming Language

13© 2006 Sun Microsystems, Inc. All rights reserved.

Commutative reduction
generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = do
 var result : R := Identity⟦⊕⟧
 helper(low,high) =
 if size ≤ max(b,1) then
 var r : R = Identity⟦⊕⟧
 var i : 64 = loℤ
 while i ≤ hi do
 r := r body(i)⊕
 i += 1
 end
 atomic do result += r end
 else
 mid = ⎣(lo + hi) / 2⎦
 (helper(low,mid),helper(mid+1,high))
 end
 helper(lo,hi)
 result
end

The Fortress Programming Language

14© 2006 Sun Microsystems, Inc. All rights reserved.

Plans for the future?

• No promises
• Seems to take 3 years to build an optimizing compiler
• Library is unusually important
• JVM looks like a promising target, especially since it is

now GPL'd
• Plan to open up the reference interpreter this year
• Need to grow a user community, too
• Tools, tools, tools.

Carl Eastlund, Guy Steele, Jan-Willem Maessen, Yossi Lev, Eric Allen,
Joe Hallett, Sukyoung Ryu, Sam Tobin-Hochstadt, David Chase, João Dias
Christine Flood, Victor Luchangco (not shown)

david.chase@sun.com
http://research.sun.com/projects/plrg

The Fortress Programming Language

16© 2006 Sun Microsystems, Inc. All rights reserved.

Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations
> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs

The Fortress Programming Language

17© 2006 Sun Microsystems, Inc. All rights reserved.

Regions

• Hierarchical data structure describes CPU and
memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources
• Threads may be

explicitly spawned
in specified regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core

The Fortress Programming Language

18© 2006 Sun Microsystems, Inc. All rights reserved.

Distributions

• Describe how to map a data structure onto a region
> Block, cyclic, block-cyclic, Morton order ...
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster? Break it up.

• Defined entirely by libraries!
> User-extensible

1
2
3

4
5
6 9

7
8

10
11
12

Exact File Name 12/12/06 Page 1

The Fortress Programming
Language: Features and
Productivity

David Chase
Sun Microsystems Laboratories
1 Network Drive UBUR02-311 Burlington, MA 02183 USA
+1 781 442 0827 david.chase@sun.com

December 13, 2006 HPCWPL, Sandia

This talk is intended to give some intuition about how Fortress's features are designed
to increase the productivity of high performance computing. Our goal is productivity in
the broad sense, not just lines-of-code-per-programmer-year.

I've stolen slides from presentations by Jan Maessen and Guy Steele.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 2

The Fortress Programming Language

2© 2006 Sun Microsystems, Inc. All rights reserved.

Fortress: features for HPC productivity
problems

• Mathematical syntax
• Library-oriented
• Transactions, GC, safety
• Components
• Type system
• Contracts/tests
• Ubiquitous parallelism
• Work-stealing/N-agnostic

• Scarce programmers
• Hard ports
• Costly maintenance
• Complex systems
• Niche market
• Legacy anchors

So, how do these features and problems relate?

On the left are some of Fortress's features, and on the right are some of the productivity
problems that we hope to address. There's not a one-to-one mapping, because the
features work in combination.

High performance programmers are scarce. We hope to make it somewhat easier by
making the syntax more accessible; even if it's still not good enough for domain
experts, simply making the code more readable and less cluttered means that they will
be more able to relate their problems to their coded solutions. Transactions and
garbage collection deal with two programming issues that are notoriously problematic,
and never relevant to the science.

Porting HP programs is hard. We believe that our focus on libraries will encourage more
programming from reusable, ported components. Components, the (statically checked)
type system, contracts, and tests all help ensure that programs are put together
correctly, and allow confident experiments with different implementations of interfaces.
Ubiquitous parallelism, and a work-stealing execution model, should make execution of
Fortress programs generally more adaptable to different machine configurations, and
should also reduce the amount of machine-specific tuning that will not port well.

High-performance computing is a niche market. We want to change that with Fortress,
by bringing parallelism into the mainstream. Most of the productivity-enhancing
features are general-purpose, and stolen from other languages. We're trying to lower
the barrier-to-entry for efficient parallel programming; for chip and small-scale
multiprocessors, work-stealing is approximately self-tuning.

Interoperation with existing software presents problems for many new languages.
Fortress's type system and everything-is-a-library approach allow programmers to
describe native data layouts precisely and accurately, and then wrap them up as first
class objects for general use.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 3

The Fortress Programming Language

3© 2006 Sun Microsystems, Inc. All rights reserved.

Support for complex systems

• GC and transactions simplify interfaces
• Type system allows expression of reusability
• Static checking verifies well-formed programs
• Contracts allow additional checking while testing
• Tests in traits (interfaces) check behaviors that can't

be captured in the type system
• Work-stealing/N-agnostic reduces need to

understand resource needs of each individual part
• Components as an organizational tool

Complex applications are a particular concern. For high performance computing,
complex systems present all the problems that they do for ordinary applications, plus
much more difficult performance interactions.

GC and transactions lead to simpler interfaces, because it is no longer necessary to
expose allocation and synchronization protocols and be sure that their requirements are
satisfied. The productivity benefits of GC and safety have been widely observed in
languages that provide them; transactions offer similar benefits.

The components, type system, contracts, and support for testing allow help ensure that
the parts of a program actually fit together. The component system is intended to help
organize the parts of applications, so that configurations can be precisely described and
repeatably assembled. A static type system automates checking of all the constraints
that can be expressed in that type system; it is our aim to hit the sweet-enough spot of
type system expressiveness, ability to perform type inference in application code, and
specification of genericity. There are other constraints that we won't be able to say in a
type system, that nonetheless matter; for those, Fortress has contracts, and the ability
to specify tests. All of this is tied to the code, so that it won't get lost, so that it can be
checked automatically, and so that other tools can rely on it. Many of the things that we
expect to see expressed as types, contracts, and tests, might otherwise be left to
documentation.

One attribute of complex systems is that nobody knows exactly what all the parts are
doing. Resource allocation and concurrency become mystifying and intractable. For
example, in the Java(TM) Programming Language, it's just not possible to do much with
priorities in a complex system, because of potential starvation and priority inversion.
We expect that in complex high performance applications, fixed allocations of
processors to computing will be difficult to do efficiently, especially when computing
demands vary over time, and this is why we are aiming for programming styles that do
not depend on exact processor counts or organizations.

Fortress provides components and databases of components so that programmers can
keep track of what works, what doesn't, and what the differences are.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 4

The Fortress Programming Language

4© 2006 Sun Microsystems, Inc. All rights reserved.

Clean, fast code. How?

• Tuned implementations of APIs and interfaces
• Type-driven code selection
• Generators, not iterators
• Expect extensive inlining
> Run time optimization
> Whole program analysis
> Database of profiling/configuration information

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 5

The Fortress Programming Language

5© 2006 Sun Microsystems, Inc. All rights reserved.

Type-driven code selection

• Functions and methods can be overloaded on
multiple parameters.
• Type can include distribution information
• It's all in a library, it's (almost) all just conventions

invert[\M extends E^(N BY N), E, nat N\](x: M): E^(N BY N)
 where {
 M extends Dense,
 M extends Symmetric,
 M extends DistributedAllocation } = ...

Fortress method dispatch is not like the Java Programming Language or C++. Both of
those languages define a combination of static overloading on the static types of all
parameters, then dynamic dispatch on the type of the first (self) parameter. Fortress
provides dynamic dispatch across all parameters.

Dynamic dispatch is expensive only if it is used and if it cannot be compiled/specialized
out, and it allows us to write and access multiple tuned versions of the same method.

Types can be used as “tags”, that perhaps only provide additional constraints
(contracts) that are relevant during testing, but not during usual execution. A Symmetric
matrix doesn't provide any extra behavior. DistributedAllocation indicates that this
matrix is not stored on a single node.

This is not pretty the mathematical syntax that we want because
- mathematicians don't talk much about type systems
- it's library code
- this glitch is particular to matrix types (which get special treatment in the syntax),
 and we're going to try to fix it.

The overloading algorithm is very complex; as described, overloading selects a generic
function, then the type parameters are unified against the actuals, and then the type-
instantiated function is applied. This is not how it will get implemented; restrictions on
overloading make it easier to do early.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 6

The Fortress Programming Language

6© 2006 Sun Microsystems, Inc. All rights reserved.

Generators, not iterators
Generators (defined by libraries) manage parallelism
and the assignment of threads to processors

for i←1:m, j←1:n do
 a[i,j] := b[i] c[j]
end

for i←seq(1:m) do
 for j←seq(1:n) do
 print a[i,j]
 end
end

for (i,j)←a.indices do a[i,j] := b[i] c[j] end

for (i,j)←a.indices.rowMajor do print a[i,j] end

1:n is a generator

seq(1:n) is a sequential generator

a.indices is a generator for the indices of the array a

a.indices.rowMajor is a sequential generator of indices

One big problem is how to get good performance out of good-looking code without
cluttering it with annotations. Clean code is no good if it doesn't run well. Fortress
does this by turning the loops inside out; “generators” run the show. Generators are
just objects, that can be defined in a library or custom built, for managing iteration,
parallelism, and distribution.

By default, generators are parallel, but as objects, they include methods for obtaining
sequential generators that yield slow, old-style iteration.

Two-dimensional iterators include various sequential generators for row major, column
major, and various sequential and parallel Morton orders.

Distributed data comes with its own default generators that are expected to yield best
access order to that data. So, the generator for a distributed array, will send loop
iteration i,j to the place where array element i,j resides. A well-written generator will
of course send one message (itself, a generator) for a block of elements residing at
the same place, instead of many single-element messages.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 7

The Fortress Programming Language

7© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k←1:n do print k end

y = ∑[k←1:n] a[k] x^k

w = ∑S (* same as ∑[x←S] x *)

v = ∩[k←S, prime k] arrayOfSets[k]

z = MAX[(j,k)←a.indices] |a[j,k]-b[j,k]|

B = { f(x,y) | x←S, y←A, x≠y }

l_triangle = ⟨ x(x+1)/2 | x←1:100 ⟩

Generators are everywhere. Integer ranges, set elements, array indices, tables, maps all
have distributions, and the distributions provide generators.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 8

The Fortress Programming Language

8© 2006 Sun Microsystems, Inc. All rights reserved.

Loops, Reducers, Comprehensions

for k 1:n do print k end
y= ∑

k1:n
ak xk

w=∑ S (* same as ∑
x S

x *)

v= ∩
k S

prime k

arrayOfSetsk

z= MAX
 j ,k a.indices

∣a j ,k−b j ,k∣
B={ f  x , y∣ x S , y A , x≠ y}
l triangle=〈 x x1

2 ∣ x1:100〉

We try to make generators look nice, too. These examples were all automatically
generated from the previous slide's examples, using en emacs macro and Latex.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 9

The Fortress Programming Language

9© 2006 Sun Microsystems, Inc. All rights reserved.

Loop execution
• Compiler identifies reduction variables, and packages

the loop as a body closure that returns reduction
values, and reduction functions (empty, and combine)
• Body and reduction functions passed to generator

function as parameters (like Smalltalk)
• Generator runs closure in “best” way (for its

distribution) performing reductions as it goes
• In practice, expect everything to be inlined and/or

specialized, yielding flat code, appropriate to the
distribution, that can be traditionally optimized.

To the compiler, a reduction variable is one that is updated in the loop body, where the
variable type and update operator form a monoid (associative operator with identity).
This is one place where a convention must be embedded in the compiler.

The loop body is rewritten as a closure that returns the (vector of) reduction update
values, plus separate functions that return the zero of the monoid and combine two
members of the monoid.

The body closure and two reduction functions are passed to the generator. This is the
sort of thing that you'd expect to see in Smalltalk or Lisp; unlike Smalltalk and Lisp,
Fortress is statically typed.

The generator then runs the closure on each index, in whatever way is best for its
distribution, which may include message-sends to other nodes in a cluster; it's all in a
library, so even though message sends are not part of the language, they could
definitely occur behind the curtain.

In practice, because of the static type system, and because we expect extensive inlining
from the Fortress implementation, we expect that all the higher-order function
invocation will disappear and be replaced with something that looks much more like
ordinary code.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 10

The Fortress Programming Language

10© 2006 Sun Microsystems, Inc. All rights reserved.

Generator-driven execution

1
2
3

4
5
6 9

7
8

10
11
12 +par

+seq

1

2

3

0

+seq

+seq

+seq

4

5

6

0

+seq

+seq

+par

+seq

7

8

9

0

+seq

+seq

+seq

12

0

+seq

+seq

+par

11

10

∑AA

Here's an example of how a summation might be run by a generator. At the top level,
the generator splits into two parallel parts, which in turn split into two parallel parts.

Then the sum is run sequentially. The generator starts each sequential reduction with
the result from the zero function, then iteratively calls the body for successive indices,
and uses the combiner function to update the reduction variables.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 11

The Fortress Programming Language

11© 2006 Sun Microsystems, Inc. All rights reserved.

Gory details: interface to a generator

value object BlockedRange(lo: 64, hi: 64, b: 64)ℤ ℤ ℤ
 extends Generator⟦ 64ℤ ⟧
 (* Natural order: lo to hi *)
 size = hi – lo + 1
 generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = ...
 generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = ...
 generate R ⟦ extends { Monoid R,⟦ ⊕ , LeftZero⟧ R,⟦ ⊕ }⟧ ⟧
 (body: 64 → ℤ R): R = ...
 join T⟦ (Generator⟧ T⟦): Generator⟧ (⟦ 64,T)ℤ ⟧
end

Here's a generator for blocked ranges from lo to high, blocked by “b”. The generator
provides three different versions of the overloaded function generate, where the
function chosen depends upon the properties of the reduction variables' monoids.

This is a case where we designed the type system to support the needs of the library
writer; overloading is constrained enough to be unambiguous, but flexible enough to
permit this sort of automatic code selection so that the very best choices can be made
without requiring any assistance from the programmer. The library writers will need to
think about algebraic properties when they define new types and operators.

The contracts and tests also figure into this, because the traits for Monoid and
CommutativeMonoid and LeftZero include tests to verify that any type/operator
implementing them really does (at least, up to testing; if we had a tractable program
proof story, we would require that).

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 12

The Fortress Programming Language

12© 2006 Sun Microsystems, Inc. All rights reserved.

Non-commutative reduction
generate R ⟦ extends Monoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R =
 if size ≤ max(b,1) then
 var r : R = Identity⟦⊕⟧
 var i : 64 = loℤ
 while i ≤ hi do
 r := r body(i)⊕
 i += 1
 end
 r
 else
 mid = ⎣(lo + hi) / 2⎦
 BlockedRange(lo,mid,b).generate(body)) ⊕
 BlockedRange(mid+1,hi,b).generate(body))
 end

Here's the first method, invoked for plain, non-commutative monoids. The reduction can
run in parallel, reassociated around the midpoint, but the order of operands cannot
change. It may not be obvious, but the two recursive invocations run in parallel if they
can. Because of work-stealing in the run-time, if processors are available, they will,
otherwise they won't.

Notice the while-loop for the within-block case; while loops don't use generators, and
this is necessary because otherwise the recursion is endless. This is one example of
how coding libraries is trickier than coding applications.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 13

The Fortress Programming Language

13© 2006 Sun Microsystems, Inc. All rights reserved.

Commutative reduction
generate R ⟦ extends CommutativeMonoid R,⟦ ⊕⟧⟧
 (body: 64 → ℤ R): R = do
 var result : R := Identity⟦⊕⟧
 helper(low,high) =
 if size ≤ max(b,1) then
 var r : R = Identity⟦⊕⟧
 var i : 64 = loℤ
 while i ≤ hi do
 r := r body(i)⊕
 i += 1
 end
 atomic do result += r end
 else
 mid = ⎣(lo + hi) / 2⎦
 (helper(low,mid),helper(mid+1,high))
 end
 helper(lo,hi)
 result
end

This method handles the case of a commutative monoid.

Instead of collecting results in an ordered tree, they are summed willy-nilly into a shared
variable that is accessed transactionally. Again, the recursive calls (this time to the
helper function) generate as much parallelism as work-stealing permits.

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 14

The Fortress Programming Language

14© 2006 Sun Microsystems, Inc. All rights reserved.

Plans for the future?

• No promises
• Seems to take 3 years to build an optimizing compiler
• Library is unusually important
• JVM looks like a promising target, especially since it is

now GPL'd
• Plan to open up the reference interpreter this year
• Need to grow a user community, too
• Tools, tools, tools.

No word yet from DARPA on a language development contract, and as a rule we are not
allowed to make any promises about the future. Given that disclaimer, we're still
working on Fortress.

To get to a high performance implementation will take a few years. In practice, it seems
to take about 3 years to build an optimizing compiler; sometimes 2, sometimes four or
more. Fortress is a little different because so much of the language is defined in the
library. Because of this, right now we think it's more important to work on the
interpreter and work on the library; it's slow, but it lets us get more confidence that we
have the right type system and features for a library-centric language. Changes later will
be more expensive.

We're very happy to hear that the JVM will be GPL'd; that makes it easy for us to choose
our first target for compilation. It's not the best choice for high performance computing,
but we may be able to tweak it (now that it's open), or perhaps someone else will tweak it
for us. It's well-defined, which is an aid to compiler-writing, and widely available, which
will help popularize Fortress. We need to grow a community, and we're happy to steal
and adapt existing JVM tools for our purposes.

And, because the JVM will be open, that made it easier for us to choose to open up
Fortress later this year. The parser and interpreter are not yet complete, but we have
been able to begin work in the library, and we're finishing them as quickly as possible.

Details are TBD, except that “this year” is the high order bit.

Exact File Name 12/12/06 Page 15

Carl Eastlund, Guy Steele, Jan-Willem Maessen, Yossi Lev, Eric Allen,
Joe Hallett, Sukyoung Ryu, Sam Tobin-Hochstadt, David Chase, João Dias
Christine Flood, Victor Luchangco (not shown)

david.chase@sun.com
http://research.sun.com/projects/plrg

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 16

The Fortress Programming Language

16© 2006 Sun Microsystems, Inc. All rights reserved.

Replaceable Components

• Avoid a monolithic “Standard Library”
• Replaceable components with version control
• Encourage alternate implementations
> Performance choices
> Test them against each other

• Encourage experimentation
> Framework for alternate language designs

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 17

The Fortress Programming Language

17© 2006 Sun Microsystems, Inc. All rights reserved.

Regions

• Hierarchical data structure describes CPU and
memory resources and their properties
> Allocation heaps
> Parallelism
> Memory coherence

• A running thread can
find out its resources
• Threads may be

explicitly spawned
in specified regions

Cluster

Node

Chip

Core

NodeNodeNode

ChipChip

Core

Fortress: HPCWLS Sandia, 2006 12/12/06 Page 18

The Fortress Programming Language

18© 2006 Sun Microsystems, Inc. All rights reserved.

Distributions

• Describe how to map a data structure onto a region
> Block, cyclic, block-cyclic, Morton order ...
> Map an array into a chip? Use a local heap.
> Map an array onto a cluster? Break it up.

• Defined entirely by libraries!
> User-extensible

1
2
3

4
5
6 9

7
8

10
11
12

