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X10 programming model

Global address space
– partitioned
– shared memory: “intuitive” but raises subtle issues about memory consistency and

synchronization defects

Management of non-uniformity
– two-levels (inter-place / intra-place)
– globally asynchronous, locally synchronous
– concurrency and synchronization concepts ‘syntactically consistent’ at both levels

High degrees of parallelism
– pervasive asynchrony (virtual threads: activities)
– versatile mechanisms for concurrency control (transactions and clocks)

Supporting language features
– object-orientation
– strong type system (dependent types, planned: generics, closures)
– safety guarantees
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Support for performance and scalability (Expressivity)

 Constructs to manage non-uniformity (places)
– placement of mutable shared data at allocation time (distribution),
– local/remote distinction at access

 Build on asynchrony to tolerate access latency
– overlap of computation and communication.
– scalable synchronization constructs (atomic blocks).

 Rich array functionality: aggregate operations, (planned: tiling).

X10 design tradeoffs

Support for productivity  (Safety)

 Rule out large classes of errors by design
– type safe, memory safe, deadlock freedom, ...

 Integrate with static tools (Eclipse)
– refactor code, detect potential data races, flag performance problems.

Programming is ... (adopted from David Bernholdt)

 90% about productivity
 10% about performance ... but  you need performance where it’s critical!
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async

async (P)  S
 Creates a new child activity

at place P, that executes
statement S

 Returns immediately
 S may access final variables

in enclosing blocks
 Activities cannot be named
 Activity cannot be aborted or

cancelled

// global dist. array
final double a[D] =  …;
final int k = …;

async ( a.distribution[99] ) {
    // executed at a[99]’s
    // place
    a[99] = k;
}

Stmt ::= async  PlaceExpSingleListopt Stmt

cf Cilk’s spawn
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finish

finish S
Execute S, but wait until all

(transitively) spawned asyncs
have terminated.

   (global termination)

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

finish ateach(point [i]:A)
    A[i] = i;

finish async
    (A.distribution [j])
    A[j] = 2;

// all A[i]=i will complete // before
A[j]=2;

Stmt ::= finish Stmt

cf Cilk’s sync
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Global termination (example)

public void main (String[] args) {
  ...
  finish {
    async {

for (...) {
        async {...
        }
      }
      finish async {...
      }
      ...
    }

} // finish
}

global
terminationstart
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Rooted computation and exception flow

public void main (String[] args) {
  ...
  finish {
    async {

for (...) {
        async {...
        }
      }
      finish async {...
      }
      ...
    }

} // finish
}

...

spawn hierarchy

exception flow

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated 
to the nearest suspended activity in the ancestor relation.

root activity
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Example: rooted exception model

int result = 0;
try {
   finish {
     ateach (point [i]:dist.factory.unique()) {
       throw new Exception (“Exception from “+here.id)
     }
     result = 42;
   } // finish
} catch (x10.lang.MultipleExceptions me) {
   System.out.print(me);
}
assert (result == 42); // always true

 no exceptions are ‘thrown on the floor’
 exceptions are propagated across activity and place boundaries
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Pipeline parallelization

int jout = 0;

for (int g = 0; g < list_size; g++) {
    int j = list[g];
    double p_j_x = p_j[j].position.x;
    double p_j_y = p_j[j].position.y;
    double p_j_z = p_j[j].position.z;

    double tx = p_i_x - p_j_x;
    double ty = p_i_y - p_j_y;
    double tz = p_i_z - p_j_z;

    double r2  = r2_delta;
    r2 += tx * tx;
    r2 += ty * ty;
    r2 += tz * tz;

    if ( r2 <= cutoff2_delta ) {
      nli[jout   ] = j     ;
      r2i[jout ++] = r2;
    }
}

loop-carried dependence

Example from NAMD2 (C++ / ComputeNonBondedInl.h):

compute j and r2 

serial execution

sample
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Optimized serial code (1/2)
  //***********************************************************
  //* 4-way unrolled and software-pipelined
  //***********************************************************

  if ( list_size <= 0) return 0;

  int g = 0;
  int jout = 0;
  if ( list_size > 4) {
    // prefetch
    int jcur0 = list[g];
    int jcur1 = list[g + 1];
    int jcur2 = list[g + 2];
    int jcur3 = list[g + 3];

    int j0, j1, j2, j3;

    register  BigReal pj_x_0, pj_x_1, pj_x_2, pj_x_3;
    register  BigReal pj_y_0, pj_y_1, pj_y_2, pj_y_3;
    register  BigReal pj_z_0, pj_z_1, pj_z_2, pj_z_3;

    register BigReal t_0, t_1, t_2, t_3, r2_0, r2_1, r2_2, r2_3;

    pj_x_0 = p_j[jcur0].position.x;
    pj_x_1 = p_j[jcur1].position.x;
    pj_x_2 = p_j[jcur2].position.x;
    pj_x_3 = p_j[jcur3].position.x;
    pj_y_0 = p_j[jcur0].position.y;
    pj_y_1 = p_j[jcur1].position.y;
    pj_y_2 = p_j[jcur2].position.y;
    pj_y_3 = p_j[jcur3].position.y;
    pj_z_0 = p_j[jcur0].position.z;
    pj_z_1 = p_j[jcur1].position.z;
    pj_z_2 = p_j[jcur2].position.z;
    pj_z_3 = p_j[jcur3].position.z;

    for ( g = 4 ; g < list_size - 4; g += 4 ) {

      // compute 1d distance, 4-way parallel
      // Save the previous iterations values, gives more flexibility
      // to the compiler to schedule the loads and the computation
      j0   =   jcur0;           j1   =   jcur1;
      j2   =   jcur2;           j3   =   jcur3;

      jcur0  =  list[g    ];    jcur1  =  list[g + 1];
      jcur2  =  list[g + 2];    jcur3  =  list[g + 3];

      //Compute X distance
      t_0   =  p_i_x - pj_x_0;   t_1   =  p_i_x - pj_x_1;
      t_2   =  p_i_x - pj_x_2;   t_3   =  p_i_x - pj_x_3;

      r2_0  =  t_0 * t_0 + r2_delta;
      r2_1  =  t_1 * t_1 + r2_delta;
      r2_2  =  t_2 * t_2 + r2_delta;
      r2_3  =  t_3 * t_3 + r2_delta;

      //Compute y distance
      t_0    =  p_i_y - pj_y_0;   t_1    =  p_i_y - pj_y_1;
      t_2    =  p_i_y - pj_y_2;   t_3    =  p_i_y - pj_y_3;
      r2_0  +=  t_0 * t_0;        r2_1  +=  t_1 * t_1;
      r2_2  +=  t_2 * t_2;        r2_3  +=  t_3 * t_3;

      //compute z distance
      t_0    =  p_i_z - pj_z_0;   t_1    =  p_i_z - pj_z_1;
      t_2    =  p_i_z - pj_z_2;   t_3    =  p_i_z - pj_z_3;
      r2_0  +=  t_0 * t_0;        r2_1  +=  t_1 * t_1;
      r2_2  +=  t_2 * t_2;        r2_3  +=  t_3 * t_3;

manual software pipelining and prefetch enable instruction-level parallelism

C++
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Optimized serial code (2/2)
      // prefetch for next iteration
      pj_x_0 = p_j[jcur0].position.x;
      pj_x_1 = p_j[jcur1].position.x;
      pj_x_2 = p_j[jcur2].position.x;
      pj_x_3 = p_j[jcur3].position.x;
      pj_y_0 = p_j[jcur0].position.y;
      pj_y_1 = p_j[jcur1].position.y;
      pj_y_2 = p_j[jcur2].position.y;
      pj_y_3 = p_j[jcur3].position.y;
      pj_z_0 = p_j[jcur0].position.z;
      pj_z_1 = p_j[jcur1].position.z;
      pj_z_2 = p_j[jcur2].position.z;
      pj_z_3 = p_j[jcur3].position.z;

      bool test0, test1, test2, test3;

      test0 = ( r2_0   <   cutoff2_delta );
      test1 = ( r2_1   <   cutoff2_delta );
      test2 = ( r2_2   <   cutoff2_delta );
      test3 = ( r2_3   <   cutoff2_delta );

      int jout0, jout1, jout2, jout3;

      jout0 = jout;
      nli[ jout0 ]  = j0;         r2i[ jout0 ] = r2_0;
      jout += test0;              jout1 = jout;
      nli[ jout1 ]  = j1;         r2i[ jout1 ] = r2_1;
      jout += test1;              jout2 = jout;
      nli[ jout2 ]  = j2;         r2i[ jout2 ] = r2_2;
      jout += test2;              jout3 = jout;
      nli[ jout3 ]  = j3;         r2i[ jout3 ] = r2_3;

      jout += test3;
    }
    g -= 4;
  } // if

  // tail iterations
  for ( ; g<list_size; g++) {
    int j = list[g];
    BigReal p_j_x = p_j[j].position.x;
    BigReal p_j_y = p_j[j].position.y;
    BigReal p_j_z = p_j[j].position.z;

    BigReal tx = p_i_x - p_j_x;
    BigReal ty = p_i_y - p_j_y;
    BigReal tz = p_i_z - p_j_z;

    BigReal r2  = r2_delta;
    r2 += tx * tx;
    r2 += ty * ty;
    r2 += tz * tz;

    if ( r2 <= cutoff2_delta ) {
      nli[ jout    ] = j;
      r2i[ jout ++ ] = r2;
    }
  } // tail iterations

C++
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Controlling pipeline parallelism with await
int jout = 0;
int turn = 0;

finish foreach (int g = 0; g < list_size; g++) {
    int j = list[g];
    double p_j_x = p_j[j].position.x;
    double p_j_y = p_j[j].position.y;
    double p_j_z = p_j[j].position.z;

    double tx = p_i_x - p_j_x;
    double ty = p_i_y - p_j_y;
    double tz = p_i_z - p_j_z;

    double r2  = r2_delta;
    r2 += tx * tx;
    r2 += ty * ty;
    r2 += tz * tz;

    await turn == g;
    if ( r2 <= cutoff2_delta ) {
      nli[jout] = j     ;
      r2i[jout++] = r2;
    }
    atomic turn ++;
}

parallel execution

thread-level parallelism

X10 code

g=0 ... list_size
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Relaxing the pipeline with transactions
int jout = 0;

finish foreach (int g = 0; g < list_size; g++) {
    int j = list[g];
    double p_j_x = p_j[j].position.x;
    double p_j_y = p_j[j].position.y;
    double p_j_z = p_j[j].position.z;

    double tx = p_i_x - p_j_x;
    double ty = p_i_y - p_j_y;
    double tz = p_i_z - p_j_z;

    double r2  = r2_delta;
    r2 += tx * tx;
    r2 += ty * ty;
    r2 += tz * tz;

    if ( r2 <= cutoff2_delta ) {
      int my_jout;
      atomic my_jout = jout++;
      nli[my_jout] = j;
      r2i[my_jout] = r2;
    }
}

parallel execution

domain property: result lists nli/r2i do not have to be sorted!

g=0 ... list_size
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Farm parallelism
while (true)
  boolean another_A = false, another_B = false;

  for (point[i]: [1:N]) {
    int new_A_i = Math.min(A[i],B[i]);
    if ( i > 1 )
       new_A_i = Math.min(new_A_i,B[i-1]);
    if ( i < N )
       new_A_i = Math.min(new_A_i,B[i+1]);
    another_A |= A[i] == new_A_i;
    A[i] = new_A_i;
  }

  for (point[i]: [1:N]) {
    int new_B_i = Math.min(B[i],A[i]);
    if ( i > 1 )
       new_B_i = Math.min(new_B_i,A[i-1]);
    if ( i < N )
       new_B_i = Math.min(new_B_i,A[i+1]);
    another_B |= B[i] == new_B_i;
    B[i] = new_B_i;
  }

  if (!another_A && !another_B)
    break;
} // while

A

B

A

B

min(B[i], A[i-1], A[i], A[i+1]) 

...

...

...

...

iterate till convergence.

min(A[i], B[i-1], B[i], B[i+1]) 
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Controlling farm parallelism with clocks
  finish {
    final clock c = clock.factory.clock();
    foreach (point[i]: [1:N]) clocked (c) {
      while ( true ) {
        int old_A_i = A[i];
        int new_A_i = Math.min(A[i],B[i]);
        if ( i > 1 )
          new_A_i = Math.min(new_A_i,B[i-1]);
        if ( i < N )
          new_A_i = Math.min(new_A_i,B[i+1]);
        A[i] = new_A_i;
        next;
        int old_B_i = B[i];
        int new_B_i = Math.min(B[i],A[i]);
        if ( i > 1 )
           new_B_i = Math.min(new_B_i,A[i-1]);
        if ( i < N )
           new_B_i = Math.min(new_B_i,A[i+1]);
        B[i] = new_B_i;
        next;
        if ( old_A_i == new_A_i && old_B_i == new_B_i )
          break;
      } // while
    } // foreach
    c.drop();
  } // finish

parent transmits clock
to children

exiting from while loop
terminates activity for

iteration i, and automatically
deregisters activity from clock

bulk-synchronous
data parallelism
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Questions (1/3)

 What is the timeframe for generating large-scale
applications (10’s to 100’s of thousands of lines of
code) on large machines with performance
comparable to MPI?

– Depends on the application domain.
– HPCS languages hopefully a step forward to achieve this

goal for general purpose parallel computing.
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Questions (2/3)

 What features of your language are most suited to
current and forthcoming scientific computing
application on highly parallel systems?

– control of locality through places.
– fine grained multithreading (async, future)
– non-blocking concurrency control (atomic)
– powerful synchronization mechanisms (clocks)
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Questions (3/3)

 If a standardization effort was started to create a
single HPCS language, what critical features of your
language would be “required”?

– strong typing, safety properties
• guards against concurrency related errors

– structured parallelism
• structure follows mostly lexical scoping

(async, foreach, ateach)
• rooted computation, flow of exceptions (finish)

 Do you think such an effort makes sense?
– Yes!
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Backup material
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The X10 programming model

Place = collection of resident
activities & objects

Storage classes
 Immutable Data
 PGAS

– Local Heap
– Remote Heap

 Activity Local

Locality Rule
Any access to a mutable
datum must be performed by a
local activity   remote data
accesses can be performed by
creating remote activities

Ordering Constraints (Memory Model)
Locally Synchronous:
Guaranteed coherence for local heap 
Sequential consistency

Globally Asynchronous:
No ordering of inter-place activities 
use explicit synchronization for coherence
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atomic

 Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
isolation and atomicity.

 An atomic block ...
– must be nonblocking
– must not create concurrent

activities (sequential)
– must not access remote data

(local) // push data onto concurrent
// list-stack
Node node = new Node(data);
atomic {
     node.next = head;
     head = node;
}

// target defined in lexically
// enclosing scope.
atomic boolean CAS(Object old,
                   Object new) {
   if (target.equals(old)) {
     target = new;
     return true;
   }
   return false;
}

Stmt ::= atomic Statement
MethodModifier ::= atomic
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Static semantics of atomic blocks

An atomic block must...be local, sequential, nonblocking:

 ...not include blocking operations
– no await, no when, no calls to blocking methods

 ... not include access to data at remote places
– no ateach, no future, only calls to local methods

 ... not spawn other activities
– no async, no foreach, only calls to sequential methods
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Clocks: Motivation

 Activity coordination using finish and force() is accomplished by
checking for activity termination

 However, there are many cases in which a producer-consumer
relationship exists among the activities, and a “barrier”-like coordination is
needed without waiting for activity termination
– The activities involved may be in the same place or in different places

Activity 0 Activity 1 Activity 2 . . .

Phase 0

Phase 1

. . .
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Clocks (1/2)
clock c = clock.factory.clock();
 Allocate a clock, register current activity with it. Phase 0 of c starts.

async(…) clocked (c1,c2,…) S
ateach(…) clocked (c1,c2,…) S
foreach(…) clocked (c1,c2,…) S
 Create async activities registered on clocks c1, c2, …

c.resume();
 Nonblocking operation that signals completion of work  by current

activity for this phase of clock c

next;
 Barrier --- suspend until all clocks that the current activity is registered

with can advance. c.resume() is first performed for each such clock, if
needed.

 Next can be viewed like a “finish” of all computations under way in the
current phase of the clock
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Clocks (2/2)

c.drop();
 Unregister with c. A terminating activity will implicitly drop all clocks

that it is registered on.

c.registered()
 Return true iff current activity is registered on clock c
 c.dropped() returns the opposite of c.registered()

ClockUseException
 Thrown if an activity attempts to transmit or operate on a clock that it is

not registered on
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Semantics

Static semantics
– An activity may operate only on those clocks it is registered with.
– In finish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics
– A clock c can advance only when all its registered activities have

executed c.resume().
– An activity may not pass-on clocks on which it is not live to sub-

activities.
– An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.
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Behavioral annotations for clocks

clocked (c0,..., ck).

 A method m that spawns an async clocked(c0,...,ck) must declare
{c0,...,ck} (or a superset) in its annotation: clocked (c0,..., ck).

 {c0,...,ck} are fields of type clock declared in the calss that declares m.
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Behavioral annotations
nonblocking
   On any input store, a nonblocking method can continue execution or

terminate. (dual:  blocking, default: nonblocking)

recursively nonblocking
   Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.
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Static semantics

 Behavioral annotations are checked with a conservative
intra-procedural data-flow analysis.

 Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

 Multiple behavioral annotations must be mutually
consistent.

Note: Checking is not currently implemented.
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Data races with async / foreach

final double arr[R] =  …; // global array

class ReduceOp {
   double accu = 0.0;
   double sum ( double[.] arr ) {
      foreach (point p: arr) {
         atomic accu += arr[p];
      }
      return accu;
}

concurrent conflicting
access to shared variable:
data race

X10 guideline for avoiding data races:
 access shared variables inside an atomic block
 combine ateach and foreach with finish
 declare data to be read-only where possible (final or value type)

finish
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Futures can deadlock
nullable future<int> f1=null;
nullable future<int> f2=null;

void main(String[] args) {
  f1 = future(here){a1()};
  f2 = future(here){a2()};
  f1.force();
}

int a1() {
  nullable future<int> tmp=null;
  do {
    tmp=f2;
  } while (tmp == null);
  return tmp.force();
}

int a2() {
  nullable future<int> tmp=null;
  do {
    tmp=f1;
  } while (tmp == null);
  return tmp.force();
}

X10 guidelines to avoid deadlock:
 avoid futures as shared variables
 force called by same activity that created body of future

cyclic wait condition
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Global vs. local termination

Local termination:
   Statement s terminates locally when activity has completed all its

computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

 main function is root activity
 program terminates iff root activity terminates.

 (implicit finish at root activity)
•  ‘daemon threads’ (child outlives root activity) not allowed
• ... but children can outlive ther parents
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Rooted computation X10

root activity

public void main (String[] args) {
  ...
  finish {
    async {

for (...) {
        async {...
        }
      }
      finish async {...
      }
      ...
    }

} // finish
} ...

spawn hierarchy

root-of relation


