"

IBM Research: Software Technology

=1

"Il

Programming Language X10

- @ @
_ S S I L.
Christoph von Praun e Bae :’ ;

IBM Research

HPC WPL

Sandia National Labs This work has been supported in part by the &=
December 13, 2006 Defense Advanced Research Projects Agency.
(DARPA) under contract No. NBCH30390004"

L © 2006 IBM Corporation

IBM Research: Software Technology

Outline

X10 design rationale
Rooted computation and exception model
Pipeline parallelism with await

Farm parallelism with clocks

p © 2006 IBM Corporation

IBM Research: Software Technology

X10 programming model

Global address space
— partitioned
— shared memory: “intuitive” but raises subtle issues about memory consistency and
synchronization defects

Management of non-uniformity
— two-levels (inter-place / intra-place)
— globally asynchronous, locally synchronous
— concurrency and synchronization concepts ‘syntactically consistent’ at both levels

High degrees of parallelism
— pervasive asynchrony (virtual threads: activities)
— versatile mechanisms for concurrency control (transactions and clocks)

Supporting language features
— object-orientation
— strong type system (dependent types, planned: generics, closures)
— safety guarantees

3 © 2006 IBM Corporation

IBM Research: Software Technology

X10 design tradeoffs

Programming is ... (adopted from David Bernholdt)

= 90% about productivity
= 10% about performance ... but you need performance where it’s critical!

Support for productivity (Safety)

= Rule out large classes of errors by design
— type safe, memory safe, deadlock freedom, ...
= Integrate with static tools (Eclipse)
— refactor code, detect potential data races, flag performance problems.

Support for performance and scalability (Expressivity)

= Constructs to manage non-uniformity (places)
— placement of mutable shared data at allocation time (distribution),
— local/remote distinction at access
= Build on asynchrony to tolerate access latency
— overlap of computation and communication.
— scalable synchronization constructs (atomic blocks).
= Rich array functionality: aggregate operations, (planned: tiling).

4 © 2006 IBM Corporation

IBM Research: Software Technology

Outline

X10 design rationale
Rooted computation and exception model
Pipeline parallelism with await

Farm parallelism with clocks

5 © 2006 IBM Corporation

IBM Research: Software Technology

async
Stmt ::= async PlaceExpSingleListopt Stmt
async (P) S
= Creates a new child activity ~ // global dist. array
at place P, that executes final double a[D] = ...;

statement S finalintk = ...;

" Returns immediately async (a.distribution[99]) {
= 5 may access final variables Il executed at a[99]’s

in enclosing blocks Il place
= Activities cannot be named a[99] = k;
= Activity cannot be aborted or }

cancelled

cf Cilk's spawn

6 © 2006 IBM Corporation

IBM Research: Software Technology

finish

finish S

Execute S, but wait until all
(transitively) spawned asyncs
have terminated.
(global termination)

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

Stmt ::=finish Stmt

finish ateach(point [i]:A)
Ali] =i;

finish async
(A.distribution [j])
ALl =2;

Il all A[i]=i will complete // before
A[j1=2;

cf Cilk’s sync

7 © 2006 IBM Corporation

IBM Research: Software Technology

Global termination (example)

global
start | termination
public void main (String[Jargs){ -—— =
finish {
async { = —rrmmmmmmemeemeeeeeenee ®
for (...) {
async {... ®
}
}
finish async {... @ @
e ®
}
} I finish e ®---@
} o

8 © 2006 IBM Corporation

IBM Research: Software Technology

Rooted computation and exception flow

public void main (String[] args) {

.f.i.nish { spawn hierarchy
async {

for (...) { root activity
async {...
iish async {... K
} P

} /I finish

}

O ® exception flow

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended activity in the ancestor relation.

© 2006 IBM Corporation

IBM Research: Software Technology

Example: rooted exception model

int result = 0;

try {
finish {
ateach (point [i]:dist.factory.unique()) {
throw new Exception (“Exception from “+here.id)

result = 42;
} /I finish
} catch (x10.lang.MultipleExceptions me) {
System.out.print(me);

assert (result == 42); // always true

= no exceptions are ‘thrown on the floor’
= exceptions are propagated across activity and place boundaries

10 © 2006 IBM Corporation

IBM Research: Software Technology

Outline

X10 design rationale
Rooted computation and exception model
Pipeline parallelism with await

Farm parallelism with clocks

© 2006 IBM Corporation

IBM Research: Software Technology

Pipeline parallelization

Example from NAMD2 (C++ / ComputeNonBondedInl.h):

o loop-carried dependence
int jout = 0;

for (int g = 0; g < list_size; g++) {
int j = list[g];

double p_j_x = p_j[j].position.x; A
double p_j_y = p_j[j].position.y;
double p_j_z = p_j[jl.position.z;

doubletx=p_i x-p_j_X;
double ty = p_i_y - p_j_y; > compute j and r2
doubletz=p i z-p_j z;

double r2 =r2_delta;
r2 += tx * tx;

r2 +=ty * ty;
r2 += tz * tz; Y
if (r2 <= cutoff2_delta) { h
nlifjout 1=j ; ~
r2ifjout ++] = r2; sample
} 7

}

serial execution

© 2006 IBM Corporation

IBM Research: Software Technology

Optimized serial code (1/2)

I /***

II* 4-way unrolled and software-pipelined C+ +

I R e e L e s S s

if (list_size <= 0) return 0; fdr(g=4;g<list_size-4;g+=4){
jnt g = 0; compute 1d distance, 4-way parallel
Intjout =0; Save the previous iterations values, gives more flexibility
f (list_size > 4) { to the compiler to schedule the loads and the computation
Il prefetch = jcur0; j1 = jcurt;
int jeur0 = list[g]; = jeur2; j3 = jeur3;
int jcur1 = list[g + 1];
int jecur2 = list[g + 2]; ur0 = listfg]; jcur1 = list[g + 1];
int jeur3 = list[g + 3]; ur2 = list[g +2]; jecur3 = list[g + 3];
int jo, j1, j2, j3; Compute X distance
|0 = p_ix-pjx0; t1 = p_ix-pj_x_1;
register BigReal pj_x_0, pj_x_1, pj_x_2, pj_x_3; |2 = p_ix-pj_x_2; t3 = p_i_x-pj_x_3;
register BigReal pj_y_0, pj_y_1, pj_y_2, pj_y_3;
register BigReal pj_z_0, pj_Z_1, pi_z_2, pj_z_3; 2 0 =t _0*t_0+r2_delta;
2 1 = t_1*t_1+r2_delta;
register BigReal t_0,t_1,t_2,t 3,r2_0,r2_1,r2_2,r2_3; 2 2 =t_ 2*t 2+7r2 delta
2 3 =t _3*t_3+r2_delta;
pj_x_O = p_jljcur0].position.x;
pji_x_1 = p_j[jcur1].position.x; Compute e y distance
pj_X_2 p_ilicur2].position.x; 0 =piy- pj y 0; t1 = p_l _y-pi_y_1;
pj_x_3 = p_j[jcur3].position.x; 2 =piy-pjiy 2, t3 =p_iy-piy_3;
Pi_y_ 0 = p_j[jcur0].position.y; 2 0 +=t 0*t_0; r2_1 += t_1*t_1;
pi_y_1=p_jljcur1].position.y; 2 2 += t 2%t 2; r2_3 += t_3*t_3;
pi_y_2 = p_j[jcur2].position.y;
pi_y_3 = p_j[icur3].position.y; compute z distance
pj_z_0 = p_j[jcur0].position.z; 0 =pliz-pjz0; t 1 =pliz-pjiz1;
pi_z_1 = p_jlicur1].position.z; 2 =piz-pjiz2 t3 =p.iz-pjz3;
pi_z_2 = p_jlicur2].position.z; 2 0 +=t 0*t_0; r2_1 += t_1*t_1;
pi_z_3 = p_j[jcur3].position.z; 2 2 +=t 2*t_2; r2_3 += t_3*t_3;

manual software pipelining and prefetch enable instruction-level parallelism

13 © 2006 IBM Corporation

IBM Research: Software Technology

Optimized serial code (2/2)

| prefetch for next iteration
j_x_0 = p_j[jcur0].position.x;
ji_x_1 = p_j[jcur1].position.x;
j_Xx_2 = p_j[jcur2].position.x;
ji_x_3 = p_j[jcur3].position.x;
j_y_0 = p_j[jcur0].position.y;
j_y_1 = p_j[jcur1].position.y;
j_y_2 = p_j[jcur2].position.y;
j_y_3 = p_j[jcur3].position.y;
j_z_0 = p_j[jcur0].position.z;
j_z_1 = p_jlicur1].position.z;
j_z_2 = p_j[jcur2].position.z;
j_z_3 = p_j[jcur3].position.z;

ool test0, test1, test2, test3;

est0 =(r2_0 < cutoff2_delta);
est1 =(r2_1 < cutoff2_delta);
est2=(r2_2 < cutoff2_delta);
est3 =(r2_3 < cutoff2_delta);

nt jout0, jout1, jout2, jout3;

out0 = jout;
nli[jout0] =j0; r2i[jout0] =r2_0;
out += test0; jout1 = jout;
nli[jout1] =j1; r2i[jout1]=r2_1;
out += test1; jout2 = jout;
nli[jout2] =j2; r2i[jout2] =r2_2;
out += test2; jout3 = jout;
nli[jout3] =j3; r2i[jout3] =r2_3;
out += test3;

}

g-=4;

Y if

C++

Il tail iterations

for (; g<list_size; g++) {
int j = list[g];
BigReal p_j_x = p_j[j].position.x;
BigReal p_j_y = p_j[j].position.y;
BigReal p_j_z = p_j[j].position.z;

BigReal tx = p_i_x - p_j_x;
BigReal ty=p_i_y -p_j_y;
BigReal tz=p_i_z - p_j_z;

BigReal r2 =r2_delta;
r2 += tx * tx;
r2 +=ty * ty;
r2 +=tz* tz;

if (r2 <= cutoff2_delta) {
nli[jout]1=j;
r2i[jout ++]=r2;

} // tail iterations

© 2006 IBM Corporation

IBM Research: Software Technology

Controlling pipeline parallelism with await

int jout = 0;

int turn = 0; X10 code

finish foreach (int g = 0; g < list_size; g++) {
ntj = list[g]; .
Houble p_j. x = p_j[j].position.x; parallel execution

double p_j_y = p_j[j].position.y;
double p_j_z = p_j[j].position.z;

double tx =p_i_x-p_j_X;

Houblety=p i y-p j_ y;
Houbletz=p_i z-p_j z;

Houble r2 = r2_delta; | =
2 += tx * tx; -
2 +=ty " ty; | :
r2 +=tz * tz; I

await turn == g;

f (r2 <= cutoff2_delta) {
nlifjout] =j ;
r2ifjout++] = r2;

\4

g=0 ... list_size I

Ltomic turn ++; _
thread-level parallelism

© 2006 IBM Corporation

IBM Research: Software Technology

Relaxing the pipeline with transactions

int jout = 0;

finish foreach (int g = 0; g < list_size; g++) { _

nt j = list[g]; parallel execution
double p_j_x = p_j[j].position.x;

double p_j_y = p_j[j].position.y;

double p_j_z = p_j[j]-position.z;

double tx = p_i_x-p_j_Xx;

Houblety=p i y-p j_ y;
Houbletz=p_i z-p_j z;

double r2 =r2_delta;

2 += tx * tx; | =
2 +=ty * ty; I |
2 += tz * tz; |

if (r2 <= cutoff2_delta) {
int my_jout;

20 tet cive | <
atomic my_jout = jout++; g=0 ... list_size I -
nlifmy jout] =j;
r2ifmy jout] =r2;

}
} domain property: result lists nli/r2i do not have to be sorted!

© 2006 IBM Corporation

IBM Research: Software Technology

Outline

|||
ol

"

..,,I
"

i

X10 design rationale
Rooted computation and exception model
Pipeline parallelism with await

Farm parallelism with clocks

© 2006 IBM Corporation

IBM Research: Software Technology

Farm parallelism

while (true)
boolean another_A = false, another_B = false;

for (point[i]: [1:N]) {

A int new_A_i = Math.min(A[i],B[i]);
if (i>1)
/[T\min(A[i]’ 811, B1, B(i+1]). "eW_A_i = Math.min(new_A_i,B[i-1]);
if(i<N)
B] new_A_i = Math.min(new_A_i,B[i+1]);
another_A |= A[i] == new_A_i;

A[i] = new_A i;

for (point[i]: [1:N]) {
A int new_B_i = Math.min(B[i],A[i]);
if(i>1) _ _ o
min(B[il, Ali-1], A[i], A[i+1]); ??:VNB)' ' = Math-min(new_B_LAL-11)
B new_B_i = Math.min(new_B_i,A[i+1]);
another_B |= B[i] == new_B_i;
B[i] = new_B_i;

. . if (lanother_A && !another_B)
iterate till convergence. break;

} Il while

© 2006 IBM Corporation

IBM Research: Software Technology

Controlling farm parallelism with clocks

finish {
final clock ¢ = clock.factory.clock();
fore:_alch (point[i]: [1:N]) clocked (c) { parent transmits clock
while (true) { to child
int old_A_i = A[il; O children
int new_A_i = Math.min(A[i],Bl[i]);
if(i>1)
new_A_i = Math.min(new_A_i,B[i-1]);
if(i<N)
new_A_i = Math.min(new_A_i,B[i+1]);
A[i] = new_A_i;
_netxt;mI B i = Bl bulk-synchronous
into i = BJ[i]; -
int new_B_i = Math.min(B[i],A[i]); data parallelism
if(i>1)
new_B_i = Math.min(new_B_i,A[i-1]);
if(i<N)
new_B_i = Math.min(new_B_i,A[i+1]);
B[i] = new_B_i;
next;
if (old_A_i==new_A_i && old_B_i==new_B_i)
break; iy .
} // while exiting from while loop
} Il foreach terminates activity for
c.drop(); iteration i, and automatically

} Il finish deregisters activity from clock

19 © 2006 IBM Corporation

IBM Research: Software Technology

X10 Team
Core team X10 tools
— Rajkishore Barik — Philippe Charles
— Vincent Cave — Julian Dolby
— Chris Donawa — Robert Fuhrer
— Allan Kielstra — Frank Tip

— Sriram Krishnamoorthy -
— Nathaniel Nystrom
— lgor Peshansky

— Christoph von Praun -
— Vijay Saraswat -
— Vivek Sarkar
— Tong Wen

Try out our first public release: B

http://x10web.watson.ibm.com _

20

Mandana Vaziri

Emeritus

Kemal Ebcioglu
Christian Grothoff

Research colleagues

R. Bodik,

G. Gao,

R. Jagadeesan,
J. Palsberg,

R. Rabbah,

J. Vitek

© 2006 IBM Corporation

IBM Research: Software Technology

Questions (1/3)

= What is the timeframe for generating large-scale
applications (10’s to 100’s of thousands of lines of
code) on large machines with performance
comparable to MPI?

— Depends on the application domain.

— HPCS languages hopefully a step forward to achieve this
goal for general purpose parallel computing.

21 © 2006 IBM Corporation

IBM Research: Software Technology

Questions (2/3)

22

= What features of your language are most suited to
current and forthcoming scientific computing
application on highly parallel systems?

— control of locality through places.

— fine grained multithreading (async, future)

— non-blocking concurrency control (atomic)

— powerful synchronization mechanisms (clocks)

© 2006 IBM Corporation

IBM Research: Software Technology

Questions (3/3)

23

= If a standardization effort was started to create a
single HPCS language, what critical features of your
language would be “required”?

— strong typing, safety properties
e guards against concurrency related errors
— structured parallelism

« structure follows mostly lexical scoping
(async, foreach, ateach)

 rooted computation, flow of exceptions (finish)

* Do you think such an effort makes sense?
— Yes!

© 2006 IBM Corporation

Il
il
]

Ik
(
1T}
|
"II

IBM Research: Software Technology

Backup material

24 © 2006 IBM Corporation

IBM Research: Software Technology

The X10 programming model

Partitoned
» ' Global
% Remote Address
A .] object Space
object .
< e [T [Outbound Inbound [T Tom mE | (PGAS)
alo e [l e ' Activities Activities | = =
3 | [Globally |
SN Asynchronous ‘
& s B e (€T 2t
\J
Place 0 Place (MaxPlaces-1)

Place = collection of resident
activities & objects

Storage classes
= |Immutable Data
= PGAS
— Local Heap
— Remote Heap
= Activity Local

25

Locality Rule
Any access to a mutable

datum must be performed by a
local activity =» remote data
accesses can be performed by

creating remote activities

Ordering Constraints (Memory Model)
Locally Synchronous:

Guaranteed coherence for local heap =
Sequential consistency

Globally Asynchronous:
No ordering of inter-place activities =
use explicit synchronization for coherence

© 2006 IBM Corporation

IBM Research: Software Technology

atomic

= Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
iIsolation and atomicity.

= An atomic block ...
— must be nonblocking
— must not create concurrent
activities (sequential)
— must not access remote data
(local)

26

Stmt ::= atomic Statement
MethodModifier ::= atomic

// target defined in lexically
// enclosing scope.
atomic boolean CAS (Object old,
Object new) ({
if (target.equals(old)) {
target = new;
return true;

}

return false;

// push data onto concurrent
// list-stack
Node node = new Node (data) ;
atomic {

node.next = head;

head = node;

© 2006 IBM Corporation

IBM Research: Software Technology

Static semantics of atomic blocks

An atomic block must...be local, sequential, nonblocking:

= ...not include blocking operations
— no await, no when, no calls to blocking methods
= ... not include access to data at remote places
— no ateach, no future, only calls to local methods
= ... not spawn other activities
— no async, no foreach, only calls to sequential methods

27 © 2006 IBM Corporation

IBM Research: Software Technology

Clocks: Motivation

= Activity coordination using finish and force() is accomplished by
checking for activity termination

= However, there are many cases in which a producer-consumer

relationship exists among the activities, and a “barrier’-like coordination is
needed without waiting for activity termination

— The activities involved may be in the same place or in different places

Phase 0

Phase 1

Activity 0 Activity 1 Activity 2

28 © 2006 IBM Corporation

IBM Research: Software Technology

Clocks (1/2)

clock ¢ = clock.factory.clock();
= Allocate a clock, register current activity with it. Phase 0 of c starts.

async(...) clocked (c1,c2,...) S

ateach(...) clocked (c1,c2,...) S

foreach(...) clocked (c1,c2,...) S

= Create async activities registered on clocks c1, c2, ...

c.resume();

= Nonblocking operation that signals completion of work by current
activity for this phase of clock c

next;

= Barrier --- suspend until all clocks that the current activity is registered
with can advance. c.resume() is first performed for each such clock, if
needed.

= Next can be viewed like a “finish” of all computations under way in the
current phase of the clock

29 © 2006 IBM Corporation

IBM Research: Software Technology

Clocks (2/2)

30

c.drop();

= Unregister with c. A terminating activity will implicitly drop all clocks
that it is registered on.

c.registered()

= Return true iff current activity is registered on clock ¢
= c.dropped() returns the opposite of c.registered()

ClockUseException

= Thrown if an activity attempts to transmit or operate on a clock that it is
not registered on

© 2006 IBM Corporation

IBM Research: Software Technology

Semantics

Static semantics
— An activity may operate only on those clocks it is registered with.
— In finish S5 may not contain any (top-level) clocked asyncs.

Dynamic semantics

— A clock ¢ can advance only when all its registered activities have
executed c.resume().

— An activity may not pass-on clocks on which it is not live to sub-
activities.

— An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.

31 © 2006 IBM Corporation

IBM Research: Software Technology

Behavioral annotations for clocks

clocked (c0,..., ck).

= A method m that spawns an async clocked(c0,...,ck) must declare
{cO0,...,ck} (or a superset) in its annotation: clocked (c0,..., ck).

= {c0,...,ck} are fields of type clock declared in the calss that declares m.

32 © 2006 IBM Corporation

IBM Research: Software Technology

Behavioral annotations

33

nonblocking

On any input store, a nonblocking method can continue execution or
terminate. (dual: blocking, default: nonblocking)

recursively nonblocking
Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.

© 2006 IBM Corporation

IBM Research: Software Technology

Static semantics

34

o Behavioral annotations are checlged with a conservative
intra-procedural data-flow analysis.

= Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

= Multiple behavioral annotations must be mutually
consistent.

Note: Checking is not currently implemented.

© 2006 IBM Corporation

35

IBM Research: Software Technology

Data races with async / foreach

final double arr[R] = ..; // global array

class ReduceOp {
double accu = 0.0;
double sum (double[.] arr) {
finish foreach (point p: arr) ({
atomi = arr|[pl:

} \ concurrent conflictin
return & g

access to shared variable:
data race

X10 guideline for avoiding data races:
= access shared variables inside an atomic block
= combine ateach and foreach with finish

= declare data to be read-only where possible (final or value type)

© 2006 IBM Corporation

IBM Research: Software Technology

Futures can deadlock

36

nullable future<int> fl=null;

nullable future<int> f2=null; int al() {
nullable future<int> tmp=null;
do
void main (String[] args) { t$p=f2;
f1l = future (here) {al()}; } while (tmp == null);
f2 = future (here) {22 ()}; return tmp.force();
fl.force() ; }
}
int a2 () {
cyclic wait condition nullable future<int> tmp=null;
do {
tmp=£1;

} while (tmp == null);
return tmp.force() ;

X10 guidelines to avoid deadlock:
= avoid futures as shared variables
= force called by same activity that created body of future

© 2006 IBM Corporation

IBM Research: Software Technology

Global vs. local termination

Local termination:

Statement s terminates locally when activity has completed all its
computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

— main function is root activity

— program terminates iff root activity terminates.
(implicit finish at root activity)
- ‘daemon threads’ (child outlives root activity) not allowed
* ... but children can outlive ther parents

37 © 2006 IBM Corporation

IBM Research: Software Technology

Rooted computation X10

public void main (String[] args) {

finish {
async { spawn hierarchy
for (...) {
}async {... root activity
}
finish async {...

}

> root-of relation

38 © 2006 IBM Corporation

