
IBM Research: Software Technology

© 2006 IBM Corporation1

Programming Language X10

Christoph von Praun
IBM Research

HPC WPL
Sandia National Labs
December 13, 2006

 This work has been supported in part by the
Defense Advanced Research Projects Agency
(DARPA) under contract No. NBCH30390004

IBM Research: Software Technology

© 2006 IBM Corporation2

Outline

X10 design rationale

Rooted computation and exception model

Pipeline parallelism with await

Farm parallelism with clocks

IBM Research: Software Technology

© 2006 IBM Corporation3

X10 programming model

Global address space
– partitioned
– shared memory: “intuitive” but raises subtle issues about memory consistency and

synchronization defects

Management of non-uniformity
– two-levels (inter-place / intra-place)
– globally asynchronous, locally synchronous
– concurrency and synchronization concepts ‘syntactically consistent’ at both levels

High degrees of parallelism
– pervasive asynchrony (virtual threads: activities)
– versatile mechanisms for concurrency control (transactions and clocks)

Supporting language features
– object-orientation
– strong type system (dependent types, planned: generics, closures)
– safety guarantees

IBM Research: Software Technology

© 2006 IBM Corporation4

Support for performance and scalability (Expressivity)

 Constructs to manage non-uniformity (places)
– placement of mutable shared data at allocation time (distribution),
– local/remote distinction at access

 Build on asynchrony to tolerate access latency
– overlap of computation and communication.
– scalable synchronization constructs (atomic blocks).

 Rich array functionality: aggregate operations, (planned: tiling).

X10 design tradeoffs

Support for productivity (Safety)

 Rule out large classes of errors by design
– type safe, memory safe, deadlock freedom, ...

 Integrate with static tools (Eclipse)
– refactor code, detect potential data races, flag performance problems.

Programming is ... (adopted from David Bernholdt)

 90% about productivity
 10% about performance ... but you need performance where it’s critical!

IBM Research: Software Technology

© 2006 IBM Corporation5

Outline

X10 design rationale

Rooted computation and exception model

Pipeline parallelism with await

Farm parallelism with clocks

IBM Research: Software Technology

© 2006 IBM Corporation6

async

async (P) S
 Creates a new child activity

at place P, that executes
statement S

 Returns immediately
 S may access final variables

in enclosing blocks
 Activities cannot be named
 Activity cannot be aborted or

cancelled

// global dist. array
final double a[D] = …;
final int k = …;

async (a.distribution[99]) {
 // executed at a[99]’s
 // place
 a[99] = k;
}

Stmt ::= async PlaceExpSingleListopt Stmt

cf Cilk’s spawn

IBM Research: Software Technology

© 2006 IBM Corporation7

finish

finish S
Execute S, but wait until all

(transitively) spawned asyncs
have terminated.

 (global termination)

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

finish ateach(point [i]:A)
 A[i] = i;

finish async
 (A.distribution [j])
 A[j] = 2;

// all A[i]=i will complete // before
A[j]=2;

Stmt ::= finish Stmt

cf Cilk’s sync

IBM Research: Software Technology

© 2006 IBM Corporation8

Global termination (example)

public void main (String[] args) {
 ...
 finish {
 async {

for (...) {
 async {...
 }
 }
 finish async {...
 }
 ...
 }

} // finish
}

global
terminationstart

IBM Research: Software Technology

© 2006 IBM Corporation9

Rooted computation and exception flow

public void main (String[] args) {
 ...
 finish {
 async {

for (...) {
 async {...
 }
 }
 finish async {...
 }
 ...
 }

} // finish
}

...

spawn hierarchy

exception flow

Propagation along the lexical scoping:
Exceptions that are not caught inside an activity are propagated
to the nearest suspended activity in the ancestor relation.

root activity

IBM Research: Software Technology

© 2006 IBM Corporation10

Example: rooted exception model

int result = 0;
try {
 finish {
 ateach (point [i]:dist.factory.unique()) {
 throw new Exception (“Exception from “+here.id)
 }
 result = 42;
 } // finish
} catch (x10.lang.MultipleExceptions me) {
 System.out.print(me);
}
assert (result == 42); // always true

 no exceptions are ‘thrown on the floor’
 exceptions are propagated across activity and place boundaries

IBM Research: Software Technology

© 2006 IBM Corporation11

Outline

X10 design rationale

Rooted computation and exception model

Pipeline parallelism with await

Farm parallelism with clocks

IBM Research: Software Technology

© 2006 IBM Corporation12

Pipeline parallelization

int jout = 0;

for (int g = 0; g < list_size; g++) {
 int j = list[g];
 double p_j_x = p_j[j].position.x;
 double p_j_y = p_j[j].position.y;
 double p_j_z = p_j[j].position.z;

 double tx = p_i_x - p_j_x;
 double ty = p_i_y - p_j_y;
 double tz = p_i_z - p_j_z;

 double r2 = r2_delta;
 r2 += tx * tx;
 r2 += ty * ty;
 r2 += tz * tz;

 if (r2 <= cutoff2_delta) {
 nli[jout] = j ;
 r2i[jout ++] = r2;
 }
}

loop-carried dependence

Example from NAMD2 (C++ / ComputeNonBondedInl.h):

compute j and r2

serial execution

sample

IBM Research: Software Technology

© 2006 IBM Corporation13

Optimized serial code (1/2)
 //***
 //* 4-way unrolled and software-pipelined
 //***

 if (list_size <= 0) return 0;

 int g = 0;
 int jout = 0;
 if (list_size > 4) {
 // prefetch
 int jcur0 = list[g];
 int jcur1 = list[g + 1];
 int jcur2 = list[g + 2];
 int jcur3 = list[g + 3];

 int j0, j1, j2, j3;

 register BigReal pj_x_0, pj_x_1, pj_x_2, pj_x_3;
 register BigReal pj_y_0, pj_y_1, pj_y_2, pj_y_3;
 register BigReal pj_z_0, pj_z_1, pj_z_2, pj_z_3;

 register BigReal t_0, t_1, t_2, t_3, r2_0, r2_1, r2_2, r2_3;

 pj_x_0 = p_j[jcur0].position.x;
 pj_x_1 = p_j[jcur1].position.x;
 pj_x_2 = p_j[jcur2].position.x;
 pj_x_3 = p_j[jcur3].position.x;
 pj_y_0 = p_j[jcur0].position.y;
 pj_y_1 = p_j[jcur1].position.y;
 pj_y_2 = p_j[jcur2].position.y;
 pj_y_3 = p_j[jcur3].position.y;
 pj_z_0 = p_j[jcur0].position.z;
 pj_z_1 = p_j[jcur1].position.z;
 pj_z_2 = p_j[jcur2].position.z;
 pj_z_3 = p_j[jcur3].position.z;

 for (g = 4 ; g < list_size - 4; g += 4) {

 // compute 1d distance, 4-way parallel
 // Save the previous iterations values, gives more flexibility
 // to the compiler to schedule the loads and the computation
 j0 = jcur0; j1 = jcur1;
 j2 = jcur2; j3 = jcur3;

 jcur0 = list[g]; jcur1 = list[g + 1];
 jcur2 = list[g + 2]; jcur3 = list[g + 3];

 //Compute X distance
 t_0 = p_i_x - pj_x_0; t_1 = p_i_x - pj_x_1;
 t_2 = p_i_x - pj_x_2; t_3 = p_i_x - pj_x_3;

 r2_0 = t_0 * t_0 + r2_delta;
 r2_1 = t_1 * t_1 + r2_delta;
 r2_2 = t_2 * t_2 + r2_delta;
 r2_3 = t_3 * t_3 + r2_delta;

 //Compute y distance
 t_0 = p_i_y - pj_y_0; t_1 = p_i_y - pj_y_1;
 t_2 = p_i_y - pj_y_2; t_3 = p_i_y - pj_y_3;
 r2_0 += t_0 * t_0; r2_1 += t_1 * t_1;
 r2_2 += t_2 * t_2; r2_3 += t_3 * t_3;

 //compute z distance
 t_0 = p_i_z - pj_z_0; t_1 = p_i_z - pj_z_1;
 t_2 = p_i_z - pj_z_2; t_3 = p_i_z - pj_z_3;
 r2_0 += t_0 * t_0; r2_1 += t_1 * t_1;
 r2_2 += t_2 * t_2; r2_3 += t_3 * t_3;

manual software pipelining and prefetch enable instruction-level parallelism

C++

IBM Research: Software Technology

© 2006 IBM Corporation14

Optimized serial code (2/2)
 // prefetch for next iteration
 pj_x_0 = p_j[jcur0].position.x;
 pj_x_1 = p_j[jcur1].position.x;
 pj_x_2 = p_j[jcur2].position.x;
 pj_x_3 = p_j[jcur3].position.x;
 pj_y_0 = p_j[jcur0].position.y;
 pj_y_1 = p_j[jcur1].position.y;
 pj_y_2 = p_j[jcur2].position.y;
 pj_y_3 = p_j[jcur3].position.y;
 pj_z_0 = p_j[jcur0].position.z;
 pj_z_1 = p_j[jcur1].position.z;
 pj_z_2 = p_j[jcur2].position.z;
 pj_z_3 = p_j[jcur3].position.z;

 bool test0, test1, test2, test3;

 test0 = (r2_0 < cutoff2_delta);
 test1 = (r2_1 < cutoff2_delta);
 test2 = (r2_2 < cutoff2_delta);
 test3 = (r2_3 < cutoff2_delta);

 int jout0, jout1, jout2, jout3;

 jout0 = jout;
 nli[jout0] = j0; r2i[jout0] = r2_0;
 jout += test0; jout1 = jout;
 nli[jout1] = j1; r2i[jout1] = r2_1;
 jout += test1; jout2 = jout;
 nli[jout2] = j2; r2i[jout2] = r2_2;
 jout += test2; jout3 = jout;
 nli[jout3] = j3; r2i[jout3] = r2_3;

 jout += test3;
 }
 g -= 4;
 } // if

 // tail iterations
 for (; g<list_size; g++) {
 int j = list[g];
 BigReal p_j_x = p_j[j].position.x;
 BigReal p_j_y = p_j[j].position.y;
 BigReal p_j_z = p_j[j].position.z;

 BigReal tx = p_i_x - p_j_x;
 BigReal ty = p_i_y - p_j_y;
 BigReal tz = p_i_z - p_j_z;

 BigReal r2 = r2_delta;
 r2 += tx * tx;
 r2 += ty * ty;
 r2 += tz * tz;

 if (r2 <= cutoff2_delta) {
 nli[jout] = j;
 r2i[jout ++] = r2;
 }
 } // tail iterations

C++

IBM Research: Software Technology

© 2006 IBM Corporation15

Controlling pipeline parallelism with await
int jout = 0;
int turn = 0;

finish foreach (int g = 0; g < list_size; g++) {
 int j = list[g];
 double p_j_x = p_j[j].position.x;
 double p_j_y = p_j[j].position.y;
 double p_j_z = p_j[j].position.z;

 double tx = p_i_x - p_j_x;
 double ty = p_i_y - p_j_y;
 double tz = p_i_z - p_j_z;

 double r2 = r2_delta;
 r2 += tx * tx;
 r2 += ty * ty;
 r2 += tz * tz;

 await turn == g;
 if (r2 <= cutoff2_delta) {
 nli[jout] = j ;
 r2i[jout++] = r2;
 }
 atomic turn ++;
}

parallel execution

thread-level parallelism

X10 code

g=0 ... list_size

IBM Research: Software Technology

© 2006 IBM Corporation16

Relaxing the pipeline with transactions
int jout = 0;

finish foreach (int g = 0; g < list_size; g++) {
 int j = list[g];
 double p_j_x = p_j[j].position.x;
 double p_j_y = p_j[j].position.y;
 double p_j_z = p_j[j].position.z;

 double tx = p_i_x - p_j_x;
 double ty = p_i_y - p_j_y;
 double tz = p_i_z - p_j_z;

 double r2 = r2_delta;
 r2 += tx * tx;
 r2 += ty * ty;
 r2 += tz * tz;

 if (r2 <= cutoff2_delta) {
 int my_jout;
 atomic my_jout = jout++;
 nli[my_jout] = j;
 r2i[my_jout] = r2;
 }
}

parallel execution

domain property: result lists nli/r2i do not have to be sorted!

g=0 ... list_size

IBM Research: Software Technology

© 2006 IBM Corporation17

Outline

X10 design rationale

Rooted computation and exception model

Pipeline parallelism with await

Farm parallelism with clocks

IBM Research: Software Technology

© 2006 IBM Corporation18

Farm parallelism
while (true)
 boolean another_A = false, another_B = false;

 for (point[i]: [1:N]) {
 int new_A_i = Math.min(A[i],B[i]);
 if (i > 1)
 new_A_i = Math.min(new_A_i,B[i-1]);
 if (i < N)
 new_A_i = Math.min(new_A_i,B[i+1]);
 another_A |= A[i] == new_A_i;
 A[i] = new_A_i;
 }

 for (point[i]: [1:N]) {
 int new_B_i = Math.min(B[i],A[i]);
 if (i > 1)
 new_B_i = Math.min(new_B_i,A[i-1]);
 if (i < N)
 new_B_i = Math.min(new_B_i,A[i+1]);
 another_B |= B[i] == new_B_i;
 B[i] = new_B_i;
 }

 if (!another_A && !another_B)
 break;
} // while

A

B

A

B

min(B[i], A[i-1], A[i], A[i+1])

...

...

...

...

iterate till convergence.

min(A[i], B[i-1], B[i], B[i+1])

IBM Research: Software Technology

© 2006 IBM Corporation19

Controlling farm parallelism with clocks
 finish {
 final clock c = clock.factory.clock();
 foreach (point[i]: [1:N]) clocked (c) {
 while (true) {
 int old_A_i = A[i];
 int new_A_i = Math.min(A[i],B[i]);
 if (i > 1)
 new_A_i = Math.min(new_A_i,B[i-1]);
 if (i < N)
 new_A_i = Math.min(new_A_i,B[i+1]);
 A[i] = new_A_i;
 next;
 int old_B_i = B[i];
 int new_B_i = Math.min(B[i],A[i]);
 if (i > 1)
 new_B_i = Math.min(new_B_i,A[i-1]);
 if (i < N)
 new_B_i = Math.min(new_B_i,A[i+1]);
 B[i] = new_B_i;
 next;
 if (old_A_i == new_A_i && old_B_i == new_B_i)
 break;
 } // while
 } // foreach
 c.drop();
 } // finish

parent transmits clock
to children

exiting from while loop
terminates activity for

iteration i, and automatically
deregisters activity from clock

bulk-synchronous
data parallelism

IBM Research: Software Technology

© 2006 IBM Corporation20

X10 Team

Core team
– Rajkishore Barik
– Vincent Cave
– Chris Donawa
– Allan Kielstra
– Sriram Krishnamoorthy
– Nathaniel Nystrom
– Igor Peshansky
– Christoph von Praun
– Vijay Saraswat
– Vivek Sarkar
– Tong Wen

X10 tools
– Philippe Charles
– Julian Dolby
– Robert Fuhrer
– Frank Tip
– Mandana Vaziri

Emeritus
– Kemal Ebcioglu
– Christian Grothoff

Research colleagues
– R. Bodik,
– G. Gao,
– R. Jagadeesan,
– J. Palsberg,
– R. Rabbah,
– J. Vitek

Try out our first public release:

http://x10web.watson.ibm.com

IBM Research: Software Technology

© 2006 IBM Corporation21

Questions (1/3)

 What is the timeframe for generating large-scale
applications (10’s to 100’s of thousands of lines of
code) on large machines with performance
comparable to MPI?

– Depends on the application domain.
– HPCS languages hopefully a step forward to achieve this

goal for general purpose parallel computing.

IBM Research: Software Technology

© 2006 IBM Corporation22

Questions (2/3)

 What features of your language are most suited to
current and forthcoming scientific computing
application on highly parallel systems?

– control of locality through places.
– fine grained multithreading (async, future)
– non-blocking concurrency control (atomic)
– powerful synchronization mechanisms (clocks)

IBM Research: Software Technology

© 2006 IBM Corporation23

Questions (3/3)

 If a standardization effort was started to create a
single HPCS language, what critical features of your
language would be “required”?

– strong typing, safety properties
• guards against concurrency related errors

– structured parallelism
• structure follows mostly lexical scoping

(async, foreach, ateach)
• rooted computation, flow of exceptions (finish)

 Do you think such an effort makes sense?
– Yes!

IBM Research: Software Technology

© 2006 IBM Corporation24

Backup material

IBM Research: Software Technology

© 2006 IBM Corporation25

The X10 programming model

Place = collection of resident
activities & objects

Storage classes
 Immutable Data
 PGAS

– Local Heap
– Remote Heap

 Activity Local

Locality Rule
Any access to a mutable
datum must be performed by a
local activity  remote data
accesses can be performed by
creating remote activities

Ordering Constraints (Memory Model)
Locally Synchronous:
Guaranteed coherence for local heap 
Sequential consistency

Globally Asynchronous:
No ordering of inter-place activities 
use explicit synchronization for coherence

IBM Research: Software Technology

© 2006 IBM Corporation26

atomic

 Atomic blocks are conceptually
executed in a single step while
other activities are suspended:
isolation and atomicity.

 An atomic block ...
– must be nonblocking
– must not create concurrent

activities (sequential)
– must not access remote data

(local) // push data onto concurrent
// list-stack
Node node = new Node(data);
atomic {
 node.next = head;
 head = node;
}

// target defined in lexically
// enclosing scope.
atomic boolean CAS(Object old,
 Object new) {
 if (target.equals(old)) {
 target = new;
 return true;
 }
 return false;
}

Stmt ::= atomic Statement
MethodModifier ::= atomic

IBM Research: Software Technology

© 2006 IBM Corporation27

Static semantics of atomic blocks

An atomic block must...be local, sequential, nonblocking:

 ...not include blocking operations
– no await, no when, no calls to blocking methods

 ... not include access to data at remote places
– no ateach, no future, only calls to local methods

 ... not spawn other activities
– no async, no foreach, only calls to sequential methods

IBM Research: Software Technology

© 2006 IBM Corporation28

Clocks: Motivation

 Activity coordination using finish and force() is accomplished by
checking for activity termination

 However, there are many cases in which a producer-consumer
relationship exists among the activities, and a “barrier”-like coordination is
needed without waiting for activity termination
– The activities involved may be in the same place or in different places

Activity 0 Activity 1 Activity 2 . . .

Phase 0

Phase 1

. . .

IBM Research: Software Technology

© 2006 IBM Corporation29

Clocks (1/2)
clock c = clock.factory.clock();
 Allocate a clock, register current activity with it. Phase 0 of c starts.

async(…) clocked (c1,c2,…) S
ateach(…) clocked (c1,c2,…) S
foreach(…) clocked (c1,c2,…) S
 Create async activities registered on clocks c1, c2, …

c.resume();
 Nonblocking operation that signals completion of work by current

activity for this phase of clock c

next;
 Barrier --- suspend until all clocks that the current activity is registered

with can advance. c.resume() is first performed for each such clock, if
needed.

 Next can be viewed like a “finish” of all computations under way in the
current phase of the clock

IBM Research: Software Technology

© 2006 IBM Corporation30

Clocks (2/2)

c.drop();
 Unregister with c. A terminating activity will implicitly drop all clocks

that it is registered on.

c.registered()
 Return true iff current activity is registered on clock c
 c.dropped() returns the opposite of c.registered()

ClockUseException
 Thrown if an activity attempts to transmit or operate on a clock that it is

not registered on

IBM Research: Software Technology

© 2006 IBM Corporation31

Semantics

Static semantics
– An activity may operate only on those clocks it is registered with.
– In finish S,S may not contain any (top-level) clocked asyncs.

Dynamic semantics
– A clock c can advance only when all its registered activities have

executed c.resume().
– An activity may not pass-on clocks on which it is not live to sub-

activities.
– An activity is deregistered from a clock when it terminates

Supports over-sampling, hierarchical nesting.

No explicit operation to register a clock.

IBM Research: Software Technology

© 2006 IBM Corporation32

Behavioral annotations for clocks

clocked (c0,..., ck).

 A method m that spawns an async clocked(c0,...,ck) must declare
{c0,...,ck} (or a superset) in its annotation: clocked (c0,..., ck).

 {c0,...,ck} are fields of type clock declared in the calss that declares m.

IBM Research: Software Technology

© 2006 IBM Corporation33

Behavioral annotations
nonblocking
 On any input store, a nonblocking method can continue execution or

terminate. (dual: blocking, default: nonblocking)

recursively nonblocking
 Nonblocking, and every spawned activity is recursively nonblocking.

local
A local method guarantees that its execution will only access variables
that are local to the place of the current activity.
(dual: remote, default: local)

sequential
Method does not create concurrent activities.
In other words, method does not use async, foreach, ateach.
(dual: parallel, default: parallel)

Sequential and nonblocking imply recursively nonblocking.

IBM Research: Software Technology

© 2006 IBM Corporation34

Static semantics

 Behavioral annotations are checked with a conservative
intra-procedural data-flow analysis.

 Inheritance rule: Annotations must be preserved or
strengthened by overriding methods.

 Multiple behavioral annotations must be mutually
consistent.

Note: Checking is not currently implemented.

IBM Research: Software Technology

© 2006 IBM Corporation35

Data races with async / foreach

final double arr[R] = …; // global array

class ReduceOp {
 double accu = 0.0;
 double sum (double[.] arr) {
 foreach (point p: arr) {
 atomic accu += arr[p];
 }
 return accu;
}

concurrent conflicting
access to shared variable:
data race

X10 guideline for avoiding data races:
 access shared variables inside an atomic block
 combine ateach and foreach with finish
 declare data to be read-only where possible (final or value type)

finish

IBM Research: Software Technology

© 2006 IBM Corporation36

Futures can deadlock
nullable future<int> f1=null;
nullable future<int> f2=null;

void main(String[] args) {
 f1 = future(here){a1()};
 f2 = future(here){a2()};
 f1.force();
}

int a1() {
 nullable future<int> tmp=null;
 do {
 tmp=f2;
 } while (tmp == null);
 return tmp.force();
}

int a2() {
 nullable future<int> tmp=null;
 do {
 tmp=f1;
 } while (tmp == null);
 return tmp.force();
}

X10 guidelines to avoid deadlock:
 avoid futures as shared variables
 force called by same activity that created body of future

cyclic wait condition

IBM Research: Software Technology

© 2006 IBM Corporation37

Global vs. local termination

Local termination:
 Statement s terminates locally when activity has completed all its

computation with respect to s.

Global termination:
Local termination + activities that have been spawned by s
terminated globally (recursive definition)

 main function is root activity
 program terminates iff root activity terminates.

 (implicit finish at root activity)
• ‘daemon threads’ (child outlives root activity) not allowed
• ... but children can outlive ther parents

IBM Research: Software Technology

© 2006 IBM Corporation38

Rooted computation X10

root activity

public void main (String[] args) {
 ...
 finish {
 async {

for (...) {
 async {...
 }
 }
 finish async {...
 }
 ...
 }

} // finish
} ...

spawn hierarchy

root-of relation

