Programming Languages for HPC

Requirements
Claims and hypotheses
Proposed Battle Plan

Marc Snir
Dec 2006

Marc Snir

Goal

= Programming environment that addresses the needs of the
Scientific HPC community

= Large, slow evolving scientific frameworks (200 KLOC — 500 KLOC,
evolves over decades); not quick prototyping of short codes

= Expert programming teams; not “parallelism for the masses”
= Large, fast evolving, expensive HPC platforms (10K — 1M threads,

accelerators, $100M and up)
= Performance matters!
= Applications with locality mapped to architectures that leverage locality

= Claim: productivity is not a problem; performance is

= Programmer productivity for large scientific codes is similar to
productivity for large commercial codes [Post, Kendall] — developing
large software system is inherently difficult

= Large (expensive) systems are not utilized too effectively
= Do not need tools to write faster programs that run slower

— ™ RN O vvemaiies ot M s .

Requirement 1

Built to fit application patterns; more so than to fit

machine architecture
Applications change more slowly than hardware
Lack of productivity is not a technology inflection

point that will cause a paradigm shift; growth in
the number of threads may (not clear, yet);

evolution of applications and use models (e.g.,
interactive HPC; real-time HPC control) is most
likely inflection point!

Claim: Having hardware companies design
programming languages in the 21st century is a
silly idea.

Requirement 2

r=ehPerforms better than MPI

Doable using compiled communication, rather
than library: take advantage of rDMA

communication hardware, with no procedural
overhead; expose communication to compiler

optimizations (aggregation, hw scatter/gather,
prefetching, push & pull,...)

Claim: “mainstream” language/compiler
technology will handle processor performance;
HPC community should focus on interprocessor
communication performance

Requirement 3

EePAs consistent as possible with programming
environments for low end scientific servers
= Small market — need to reuse technology

= Small customer population — need to reduce
need for specialized knowledge

= Focus innovation on unique features of HPC
(large number of threads, communication)

Requirement 4

E<hEmbedded within rich managed application
development platform
Integrates multiple languages, libraries, tools...

Supports distributed sw development, code
reuse and evolution

Better, not worse than IDE’s used for
programming small systems

Focused on scale and performance tuning

s Claim: sw productivity is more dependent
on IDE than on language

Marc Snir

Requirements 5—9: Motherhood and
Apple Pie

3«0 Supports OO

gah Supports modularity, composability & separation of
concerns

@&ah Support performance programming, with incremental
code refinement
= Can write code without controlling locality, communication,

etc. if these are not critical; can refine later if have
performance problems

= Code refinement for performance does do not obscure
semantics

“&h Portable (node architecture, accelerators, locality
hierarchy, system size)

et Coexists with existing languages & libraries

== Requirement 10: Use Latest
Technology

re=al akes advantage of advances in programming
languages and compilers:

m strong typing, type and memory safety, atomicity,
efficient support for generic programming

run-time compilation, heuristic search for tuning,
telescoping and domain specific languages

Requirement 11

rreeSemantic & Performance transparency and
composability

« Can analyze & understand outcome and
performance of parallel code by looking at
source code: language has simple (approximate)
performance model

Can derive performance of code from
performance of modules

Marc Snir

A Non Trivial Implication

= Claim: Need support for processor virtualization and dynamic
thread creation

= Applications are written for virtual processors (aka locales); mapping of
locales to processors is

= done by runtime
= iS not necessarily one-to-one
= can change over time (load balancing)
= Processor virtualization is cheap (Kale and co.)

= Why not user controlled load balancing (a la Zoltan)?
= Change in number of available resources can be external

= failures (especially for large multicore processors that may mask core
failures)

= dynamic power management

= multiphysics and multiscale codes — evolution in one module requires
resource reallocation in another module; without virtualization one
looses modularity

== Dynamic Data & Computation

Redistribution
ALE | A_'LE-AM% AMR

Marc Snir

Multiphysics Code

= E.g., rocket simulation:
= solid+fluid+combustion

= dynamic redistribution in
some, but not all the modules

Marc Snir

Multiscale codes

Expanding cylinder model with 50
grains at each FE integration point

ﬂ .
) QM“
- .

i 1/4 pipe cross %}

section with shear bands

»

g;?i '. ﬁ’i*‘ Exploding Shear bands in a

§.‘:§~"" cylinder Ta-10W tube

O

With adaptive sampling, fine
scale models do not run
everywhere, but only where
interpolation from previous
response functions is not
sufficiently accurate

courtesy Steve Ashby

Modularity

m Parallel composition

= Adaptive refinement in one module may require
taking resources away from another module

m Sequential composition

= Local invocation of a compute intensive parallel
fine-scale method, may require load balancing in
invoking code

m Claim: need process virtualization and load
balancing in run-time, to achieve modularity

Marc Snir

Other Implications

= Do need global nhame space
= iterative refinement; specify data distribution only if must

= Assuming that users need to manage communication, then
it should be caching, not copying: change location of
variable, but not name.

= Do not (or seldom) need nondeterminism and

atomic sections: scientific code is not about
transactions.
= Parallelism in specification (concurrent programming) vs.
parallelism in implementation (parallel programming)
= Claim: Modern hw+compiler+PL technology should
allow support for deterministic shared memory
programming

New Languages -- Diagnostic

= Each of the proposed languages would be an
advance over MPI, if properly implemented

= X10, Chapel and especially Fortress require sophisticated
compiler technology for a proper implementation

= All of the proposed languages satisfy only a small
subset of requirements

» None address directly node performance bottlenecks and
scaling problems

= A language design to satisfy all of the requirements
is feasible

= NO prognostic

Marc Snir

A Minimalist Strategy

Add compiler-supported global arrays to MPI
= essentially, CAF+MPI or UPC+MPI (UPC--/++)

Implement global arrays so that compiled remote accesses are more
efficient than MPI calls

Provide refactoring tools to replace MPI calls with global array accesses
Replace MPI collectives with suitable global array intrinsics
Extend global arrays to support distributed irregular structures

Virtualize MPI/CAF/UPC processes and add dynamic process allocation to
CAF/UPC

= Develop good (Eclipse based) IDE that supports virtualized MPI/CAF/UPC
and understands computational frameworks

= Continue to do research for a paradigm shift and wait for multicore to
force better support for parallelism at low end, before deploying more
than a minimalist solution

Non Technical Obstacles

= [t takes money to make a good compiler; there is no
market for HPC unique optimizations

= [t takes time to make a good compiler; there is no
funding mechanism for a sustained 10 years
software development effort

= [t takes people to make a good compiler; there is no
independent compiler company

= Parallel software needs stability

= [t is not sufficient to fix the technology; one needs
to fix the business model for parallel software

Summary

= HPCS is hampered by lack of good software
support

= Language is small part of the problem
s Most obstacles are not technological

m Key issues for petascale computing are not
yet being addressed

Marc Snir

