
Marc Snir

 Programming Languages for HPC

Requirements
Claims and hypotheses
Proposed Battle Plan

Dec 2006

 Marc Snir

2 12-06

Goal
 Programming environment that addresses the needs of the

Scientific HPC community
 Large, slow evolving scientific frameworks (200 KLOC – 500 KLOC,
evolves over decades); not quick prototyping of short codes

 Expert programming teams; not “parallelism for the masses”
 Large, fast evolving, expensive HPC platforms (10K – 1M threads,
accelerators, $100M and up)
 Performance matters!

 Applications with locality mapped to architectures that leverage locality

 Claim: productivity is not a problem; performance is
 Programmer productivity for large scientific codes is similar to
productivity for large commercial codes [Post, Kendall] – developing
large software system is inherently difficult

 Large (expensive) systems are not utilized too effectively

 Do not need tools to write faster programs that run slower

 Marc Snir

3 12-06

Requirement 1
Built to fit application patterns; more so than to fit

machine architecture
 Applications change more slowly than hardware

 Lack of productivity is not a technology inflection
point that will cause a paradigm shift; growth in
the number of threads may (not clear, yet);
evolution of applications and use models (e.g.,
interactive HPC; real-time HPC control) is most
likely inflection point!

 Claim: Having hardware companies design
programming languages in the 21st century is a
silly idea.

 Marc Snir

4 12-06

Requirement 2
Performs better than MPI

 Doable using compiled communication, rather
than library: take advantage of rDMA
communication hardware, with no procedural
overhead; expose communication to compiler
optimizations (aggregation, hw scatter/gather,
prefetching, push & pull,…)

 Claim: “mainstream” language/compiler
technology will handle processor performance;
HPC community should focus on interprocessor
communication performance

 Marc Snir

5 12-06

Requirement 3
As consistent as possible with programming

environments for low end scientific servers
 Small market – need to reuse technology
 Small customer population – need to reduce

need for specialized knowledge

 Focus innovation on unique features of HPC
(large number of threads, communication)

 Marc Snir

6 12-06

Requirement 4
Embedded within rich managed application

development platform
 Integrates multiple languages, libraries, tools…
 Supports distributed sw development, code

reuse and evolution
 Better, not worse than IDE’s used for

programming small systems
 Focused on scale and performance tuning

 Claim: sw productivity is more dependent
on IDE than on language

 Marc Snir

7 July 23, 2003

Requirements 5—9: Motherhood and
Apple Pie

 Supports OO
 Supports modularity, composability & separation of

concerns
 Support performance programming, with incremental

code refinement
 Can write code without controlling locality, communication,

etc. if these are not critical; can refine later if have
performance problems

 Code refinement for performance does do not obscure
semantics

 Portable (node architecture, accelerators, locality
hierarchy, system size)

 Coexists with existing languages & libraries

 Marc Snir

8 July 23, 2003

Requirement 10: Use Latest
Technology

Takes advantage of advances in programming
languages and compilers:

 strong typing, type and memory safety, atomicity,
efficient support for generic programming

 run-time compilation, heuristic search for tuning,
telescoping and domain specific languages

 Marc Snir

9 12-06

Requirement 11

Semantic & Performance transparency and
composability

 Can analyze & understand outcome and
performance of parallel code by looking at
source code: language has simple (approximate)
performance model

 Can derive performance of code from
performance of modules

 Marc Snir

10 12-06

A Non Trivial Implication
 Claim: Need support for processor virtualization and dynamic

thread creation
 Applications are written for virtual processors (aka locales); mapping of
locales to processors is
 done by runtime
 is not necessarily one-to-one
 can change over time (load balancing)

 Processor virtualization is cheap (Kale and co.)
 Why not user controlled load balancing (a la Zoltan)?

 Change in number of available resources can be external
 failures (especially for large multicore processors that may mask core
failures)

 dynamic power management

 multiphysics and multiscale codes – evolution in one module requires
resource reallocation in another module; without virtualization one
looses modularity

 Marc Snir

11 12-06

Dynamic Data & Computation
Redistribution

courtesy Steve Ashby

 Marc Snir

12 12-06

Multiphysics Code
 E.g., rocket simulation:

 solid+fluid+combustion
 dynamic redistribution in
some, but not all the modules

 Marc Snir

13 12-06

Multiscale codes

courtesy Steve Ashby

 Marc Snir

14 12-06

Modularity
 Parallel composition

 Adaptive refinement in one module may require
taking resources away from another module

 Sequential composition
 Local invocation of a compute intensive parallel

fine-scale method, may require load balancing in
invoking code

 Claim: need process virtualization and load
balancing in run-time, to achieve modularity

 Marc Snir

15 12-06

Other Implications
 Do need global name space

 iterative refinement; specify data distribution only if must
 Assuming that users need to manage communication, then
it should be caching, not copying: change location of
variable, but not name.

 Do not (or seldom) need nondeterminism and
atomic sections: scientific code is not about
transactions.
 Parallelism in specification (concurrent programming) vs.
parallelism in implementation (parallel programming)

 Claim: Modern hw+compiler+PL technology should
allow support for deterministic shared memory
programming

 Marc Snir

16 12-06

New Languages -- Diagnostic
 Each of the proposed languages would be an
advance over MPI, if properly implemented
 X10, Chapel and especially Fortress require sophisticated
compiler technology for a proper implementation

 All of the proposed languages satisfy only a small
subset of requirements
 None address directly node performance bottlenecks and
scaling problems

 A language design to satisfy all of the requirements
is feasible

 No prognostic

 Marc Snir

17 12-06

A Minimalist Strategy
 Add compiler-supported global arrays to MPI

 essentially, CAF+MPI or UPC+MPI (UPC--/++)

 Implement global arrays so that compiled remote accesses are more
efficient than MPI calls

 Provide refactoring tools to replace MPI calls with global array accesses
 Replace MPI collectives with suitable global array intrinsics
 Extend global arrays to support distributed irregular structures
 Virtualize MPI/CAF/UPC processes and add dynamic process allocation to

CAF/UPC
 Develop good (Eclipse based) IDE that supports virtualized MPI/CAF/UPC

and understands computational frameworks
 Continue to do research for a paradigm shift and wait for multicore to

force better support for parallelism at low end, before deploying more
than a minimalist solution

 Marc Snir

18 12-06

Non Technical Obstacles
 It takes money to make a good compiler; there is no
market for HPC unique optimizations

 It takes time to make a good compiler; there is no
funding mechanism for a sustained 10 years
software development effort

 It takes people to make a good compiler; there is no
independent compiler company

 Parallel software needs stability
 It is not sufficient to fix the technology; one needs
to fix the business model for parallel software

 Marc Snir

19 12-06

Summary
 HPCS is hampered by lack of good software
support

 Language is small part of the problem
 Most obstacles are not technological
 Key issues for petascale computing are not
yet being addressed

 Marc Snir

20 12-06

