
Marc Snir

 Programming Languages for HPC

Requirements
Claims and hypotheses
Proposed Battle Plan

Dec 2006

 Marc Snir

2 12-06

Goal
 Programming environment that addresses the needs of the

Scientific HPC community
 Large, slow evolving scientific frameworks (200 KLOC – 500 KLOC,
evolves over decades); not quick prototyping of short codes

 Expert programming teams; not “parallelism for the masses”
 Large, fast evolving, expensive HPC platforms (10K – 1M threads,
accelerators, $100M and up)
 Performance matters!

 Applications with locality mapped to architectures that leverage locality

 Claim: productivity is not a problem; performance is
 Programmer productivity for large scientific codes is similar to
productivity for large commercial codes [Post, Kendall] – developing
large software system is inherently difficult

 Large (expensive) systems are not utilized too effectively

 Do not need tools to write faster programs that run slower

 Marc Snir

3 12-06

Requirement 1
Built to fit application patterns; more so than to fit

machine architecture
 Applications change more slowly than hardware

 Lack of productivity is not a technology inflection
point that will cause a paradigm shift; growth in
the number of threads may (not clear, yet);
evolution of applications and use models (e.g.,
interactive HPC; real-time HPC control) is most
likely inflection point!

 Claim: Having hardware companies design
programming languages in the 21st century is a
silly idea.

 Marc Snir

4 12-06

Requirement 2
Performs better than MPI

 Doable using compiled communication, rather
than library: take advantage of rDMA
communication hardware, with no procedural
overhead; expose communication to compiler
optimizations (aggregation, hw scatter/gather,
prefetching, push & pull,…)

 Claim: “mainstream” language/compiler
technology will handle processor performance;
HPC community should focus on interprocessor
communication performance

 Marc Snir

5 12-06

Requirement 3
As consistent as possible with programming

environments for low end scientific servers
 Small market – need to reuse technology
 Small customer population – need to reduce

need for specialized knowledge

 Focus innovation on unique features of HPC
(large number of threads, communication)

 Marc Snir

6 12-06

Requirement 4
Embedded within rich managed application

development platform
 Integrates multiple languages, libraries, tools…
 Supports distributed sw development, code

reuse and evolution
 Better, not worse than IDE’s used for

programming small systems
 Focused on scale and performance tuning

 Claim: sw productivity is more dependent
on IDE than on language

 Marc Snir

7 July 23, 2003

Requirements 5—9: Motherhood and
Apple Pie

 Supports OO
 Supports modularity, composability & separation of

concerns
 Support performance programming, with incremental

code refinement
 Can write code without controlling locality, communication,

etc. if these are not critical; can refine later if have
performance problems

 Code refinement for performance does do not obscure
semantics

 Portable (node architecture, accelerators, locality
hierarchy, system size)

 Coexists with existing languages & libraries

 Marc Snir

8 July 23, 2003

Requirement 10: Use Latest
Technology

Takes advantage of advances in programming
languages and compilers:

 strong typing, type and memory safety, atomicity,
efficient support for generic programming

 run-time compilation, heuristic search for tuning,
telescoping and domain specific languages

 Marc Snir

9 12-06

Requirement 11

Semantic & Performance transparency and
composability

 Can analyze & understand outcome and
performance of parallel code by looking at
source code: language has simple (approximate)
performance model

 Can derive performance of code from
performance of modules

 Marc Snir

10 12-06

A Non Trivial Implication
 Claim: Need support for processor virtualization and dynamic

thread creation
 Applications are written for virtual processors (aka locales); mapping of
locales to processors is
 done by runtime
 is not necessarily one-to-one
 can change over time (load balancing)

 Processor virtualization is cheap (Kale and co.)
 Why not user controlled load balancing (a la Zoltan)?

 Change in number of available resources can be external
 failures (especially for large multicore processors that may mask core
failures)

 dynamic power management

 multiphysics and multiscale codes – evolution in one module requires
resource reallocation in another module; without virtualization one
looses modularity

 Marc Snir

11 12-06

Dynamic Data & Computation
Redistribution

courtesy Steve Ashby

 Marc Snir

12 12-06

Multiphysics Code
 E.g., rocket simulation:

 solid+fluid+combustion
 dynamic redistribution in
some, but not all the modules

 Marc Snir

13 12-06

Multiscale codes

courtesy Steve Ashby

 Marc Snir

14 12-06

Modularity
 Parallel composition

 Adaptive refinement in one module may require
taking resources away from another module

 Sequential composition
 Local invocation of a compute intensive parallel

fine-scale method, may require load balancing in
invoking code

 Claim: need process virtualization and load
balancing in run-time, to achieve modularity

 Marc Snir

15 12-06

Other Implications
 Do need global name space

 iterative refinement; specify data distribution only if must
 Assuming that users need to manage communication, then
it should be caching, not copying: change location of
variable, but not name.

 Do not (or seldom) need nondeterminism and
atomic sections: scientific code is not about
transactions.
 Parallelism in specification (concurrent programming) vs.
parallelism in implementation (parallel programming)

 Claim: Modern hw+compiler+PL technology should
allow support for deterministic shared memory
programming

 Marc Snir

16 12-06

New Languages -- Diagnostic
 Each of the proposed languages would be an
advance over MPI, if properly implemented
 X10, Chapel and especially Fortress require sophisticated
compiler technology for a proper implementation

 All of the proposed languages satisfy only a small
subset of requirements
 None address directly node performance bottlenecks and
scaling problems

 A language design to satisfy all of the requirements
is feasible

 No prognostic

 Marc Snir

17 12-06

A Minimalist Strategy
 Add compiler-supported global arrays to MPI

 essentially, CAF+MPI or UPC+MPI (UPC--/++)

 Implement global arrays so that compiled remote accesses are more
efficient than MPI calls

 Provide refactoring tools to replace MPI calls with global array accesses
 Replace MPI collectives with suitable global array intrinsics
 Extend global arrays to support distributed irregular structures
 Virtualize MPI/CAF/UPC processes and add dynamic process allocation to

CAF/UPC
 Develop good (Eclipse based) IDE that supports virtualized MPI/CAF/UPC

and understands computational frameworks
 Continue to do research for a paradigm shift and wait for multicore to

force better support for parallelism at low end, before deploying more
than a minimalist solution

 Marc Snir

18 12-06

Non Technical Obstacles
 It takes money to make a good compiler; there is no
market for HPC unique optimizations

 It takes time to make a good compiler; there is no
funding mechanism for a sustained 10 years
software development effort

 It takes people to make a good compiler; there is no
independent compiler company

 Parallel software needs stability
 It is not sufficient to fix the technology; one needs
to fix the business model for parallel software

 Marc Snir

19 12-06

Summary
 HPCS is hampered by lack of good software
support

 Language is small part of the problem
 Most obstacles are not technological
 Key issues for petascale computing are not
yet being addressed

 Marc Snir

20 12-06

