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ContextContext

•Most parallel programs are written using either:
– Message passing with a SPMD model (MPI)
– Shared memory with threads in OpenMP, Threads+C/C++/F or Java

•Partitioned Global Address Space (PGAS) Languages take 
the best of both

– SPMD parallelism like MPI (performance)
– Local/global distinction, i.e., layout matters (performance)
– Global address space like threads (programmability)

• 3 Current languages: UPC (C), CAF (Fortran), and Titanium (Java) 
• 3 New languages: Chapel, Fortress, X10



UPC ExperiencesUPC Experiences

• Portability - runs everywhere
• Performance 

– One-sided communication
• Programmability & Productivity

– Efficient higher level language&library constructs
– Scalability and Tunability - (same level of effort as MPI)
– Latency hiding optimizations:

Runtime mechanisms (data driven execution)
Compiler support for latency hiding transformations

– Performance portable communication optimizations 



Performance



OneOne--Sided Sided vsvs TwoTwo--Sided: TheorySided: Theory

• A two-sided messages needs to be matched with a receive to identify memory 
address to put data

– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

• A one-sided put/get message can be handled directly by a network interface with 
RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)
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GASNetGASNet Communication PerformanceCommunication Performance

• Raw network performance is determined by overhead, latency
and bandwidth

• Data transfer (one-sided communication) is often faster than 
(two sided) message passing

• One-sided vs two-sided: semantics limit performance
– In-order message delivery
– Message and tag matching
– Need to acquire information from remote host processor
– Synchronization (message receipt) tied to data transfer

• Good support for non-blocking communication (overlap)

An Evaluation of Current High-Performance Networks
 C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome, K. Yelick.  - IPDPS 2003.



GASNet: Portability GASNet: Portability andand HighHigh--PerformancePerformance
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GASNet better for overhead and latency across machines
UPC Group; GASNet design by Dan Bonachea
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important for overlap

Joint work with UPC Group; GASNet design by Dan Bonachea
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OneOne--Sided vs. TwoSided vs. Two--Sided: PracticeSided: Practice
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• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
• Half power point (N ½ ) differs by one order of magnitude
• This is not a criticism of the implementation!

Yelick,Hargrove, Bonachea
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8-byte Broadcast Perfor
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Library ExtensionsLibrary Extensions
• Many algorithms require synchronization with remote 

processor: add semantic information to data transfers
– Remote enqueue: Put a task in a remote queue
– Remote Signaling store: Raise a semaphore upon transfer
– Remote execution: Floating functions (X10 activities)

• Collective Operations: implemented using “new” primitives, easier to tune,  
often faster than MPI
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Programmability & ProductivityProgrammability & Productivity
(Exploiting Overlap)(Exploiting Overlap)



Manual Overlap for NAS 3D FFTManual Overlap for NAS 3D FFT

Three approaches/granularities:
Chunk:

Wait for 2nd dim FFTs to finish
Minimize # messages

Slab:
Wait for chunk of rows destined for 1 proc to 

finish
Overlap with computation

Pencil:
Send each row as it completes
Maximize overlap and
Match natural layout

chunk = all rows with same destination

pencil = 1 row

slab = all rows in a single plane with same 
destination

Optimizing Bandwidth Limited Problems Using One-Sided Communication and Overlap
 C. Bell, D. Bonachea, R. Nishtala, K. Yelick - IPDPS 2006



NAS FT Performance Comparison
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NAS FT  Performance SummaryNAS FT  Performance Summary

• Upper bound (10%-15%) for MPI vs UPC performance, same amount of tuning 
effort

• Can’t decide  a priori which implementation performs best

.5 Tflops



• Run-time in charge of managing communication: transparently find and use the 
idle time (overlap) present in applications

• User level implementation using  existing OS (virtual memory protection) and 
NIC mechanisms (RDMA)

Automatic OverlapAutomatic Overlap

h = init_read(dest, src, N);
...
sync(h);
for(i=0; i < N; i++)

... = dest[i]...;

h = init_read(dest, src, N);
mprotect(dest, N, PROT_NONE);
...
sync(h);
for(i=0; i < N; i++)

... = dest[i]...;

segfault()   {
mprotect(dest,N,PROT_ALL);
sync(h);   }

Execution Trace
init -> sync -> compute init -> mprotect -> start compute -> 

segfault -> sync -> compute

HUNTing the Overlap
 C. Iancu, P. Husbands, P. Hargrove. PACT 2005



Application (NAS FT)Application (NAS FT)
Speedup FT(classB)/AlphaServer
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•Runtime mechanisms can be “heavyweight”, good performance results
•Lack of integration of OS and NIC software stacks
•Tuning the implementation?



LU Matrix FactorizationLU Matrix Factorization

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced
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Husbands,Yelick



Three Strategies for LU FactorizationThree Strategies for LU Factorization

Husbands,Yelick

• Organize in bulk-synchronous phases (ScaLAPACK)
• Factor a block column, then perform updates
• Relatively easy to understand/debug, but extra synchronization

• Overlapping phases (HPL):
• Work associated with on block column factorization can be overlapped
• Parameter to determine how many (need temp space accordingly)

• Event-driven multithreaded (UPC Linpack):
• Each thread runs an event handler loop
• Tasks: factorization (w/ pivoting), update trailing, update upper
• Tasks my suspend (voluntarily) to wait for data, synchronization, etc.
• Data moved with remote gets (synchronization built-in)
• Must “gang” together for factorizations
• Scheduling priorities are key to performance and deadlock avoidance



UPCUPC--HP HP LinpackLinpack PerformancePerformance

• Comparable to HPL (numbers from HPCC database)
• Faster than ScaLAPACK due to less synchronization
• Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p
• UPC code twice shorter than MPI

UPC vs. 
ScaLAPAC
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Performance TuningPerformance Tuning



Status QuoStatus Quo

• Software is more expensive than hardware
• Performance modeling targets procurements
• Usual approach: use time accurate performance model

(applications, automatically tuned collectives)
– Require extensive instrumentation
– Models (LogP..) don’t capture important behavior (parallelism, congestion, 

resource constraints, non-linear behavior)
– Exhaustive search of the optimization space
– Validated only at low concurrency (~tens of procs), might break at high 

concurrency, might break for different network topology

• Qualitative vs Quantitative - my application does not scale past 100 procs
– Do I care how will it run on 100,000?
– Do I care how to modify it to run at larger concurrency?



Example: VectorExample: Vector--AddAdd

shared double *rdata;
double *ldata, *buf;

upc_memget(buf, rdata, N);
for(i=0; i<N; i++)

ldata[i]+= buf[i];

for(i=0; i<N/B; i++)
h[i]=upc_memget_nb(buf+i*B,rdata+i*B,B);

for(i=0; i<N/B; i++) {
sync(h[i]);
for(j=0;j<B; j++)

ldata[i*B+j]+=buf[i*B+j];

}

GET_nb(B0)
:
GET_nb(Bb)
GET_nb(Bb+1)
:
GET_nb(B2b)
sync(B0)
compute(B0)
:
sync(Bb)
compute(Bb)
GET_nb(B2b+1)
:
GET_nb(B3b)
:
sync(BN)
compute(BN)

Which implementation is faster?
What is the granularity and schedule of communication?

b

b

b



PrototypingPrototyping
• Use performance model for ideal implementation
• Understand hardware resource constraints and the variation of 

performance parameters (understand trends not absolute values)
• Derive implementation constraints to satisfy both optimal 

implementation and hardware constraints
• Force implementation parameters to converge towards optimal
• Validation:

– Develop performance model for scenarios widely encountered in 
applications (p2p, scatter, gather, all-to-all) and a variety of aggressive 
optimization techniques (strip mining, pipelining, communication schedule skewing)

– Use both micro-benchmarks and application kernels to validate approach
• Application:  (performance portability)

– In practice one can produce templatized implementations for an 
algorithm and use approach to determine optimal implementatin
values: loop transformations (UPC), automatic tuning, application development

Efficient Use of One-Sided Communication
C. Iancu, E. Strohmaier - PPoPP 2007



ConclusionsConclusions

• Diminishing returns from tuning network software stacks
• Cooperation compiler/runtime able to greatly improve application

performance
• Need smarter runtimes:

– All the performance  pre-conditions (RTT, G) are present.
– Are they easy to implement given the current level of software integration?

• Performance modeling of implementations at  large scale still an open 
question. 

– Should we use accurate end-to-end execution time models? 
– What are the metrics of success?



EndEnd


