
Unified Parallel C (UPC)Unified Parallel C (UPC)
Performance & PortabilityPerformance & Portability

Costin Iancu
The Berkeley UPC Group: C. Bell, D. Bonachea, W. Chen, J. Duell,

P. Hargrove, P. Husbands, C. Iancu, R. Nishtala, M. Welcome, K. Yelick
http://upc.lbl.gov

ContextContext

•Most parallel programs are written using either:
– Message passing with a SPMD model (MPI)
– Shared memory with threads in OpenMP, Threads+C/C++/F or Java

•Partitioned Global Address Space (PGAS) Languages take
the best of both

– SPMD parallelism like MPI (performance)
– Local/global distinction, i.e., layout matters (performance)
– Global address space like threads (programmability)

• 3 Current languages: UPC (C), CAF (Fortran), and Titanium (Java)
• 3 New languages: Chapel, Fortress, X10

UPC ExperiencesUPC Experiences

• Portability - runs everywhere
• Performance

– One-sided communication
• Programmability & Productivity

– Efficient higher level language&library constructs
– Scalability and Tunability - (same level of effort as MPI)
– Latency hiding optimizations:

Runtime mechanisms (data driven execution)
Compiler support for latency hiding transformations

– Performance portable communication optimizations

Performance

OneOne--Sided Sided vsvs TwoTwo--Sided: TheorySided: Theory

• A two-sided messages needs to be matched with a receive to identify memory
address to put data

– Offloaded to Network Interface in networks like Quadrics
– Need to download match tables to interface (from host)

• A one-sided put/get message can be handled directly by a network interface with
RDMA support

– Avoid interrupting the CPU or storing data from CPU (preposts)

address

message id

data payload

data payload
one-sided put message

two-sided message

network
interface

memory

host
CPU

GASNetGASNet Communication PerformanceCommunication Performance

• Raw network performance is determined by overhead, latency
and bandwidth

• Data transfer (one-sided communication) is often faster than
(two sided) message passing

• One-sided vs two-sided: semantics limit performance
– In-order message delivery
– Message and tag matching
– Need to acquire information from remote host processor
– Synchronization (message receipt) tied to data transfer

• Good support for non-blocking communication (overlap)

An Evaluation of Current High-Performance Networks
 C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Welcome, K. Yelick. - IPDPS 2003.

GASNet: Portability GASNet: Portability andand HighHigh--PerformancePerformance
(d

ow
n

is
 g

oo
d)

GASNet better for overhead and latency across machines
UPC Group; GASNet design by Dan Bonachea

8-byte Roundtrip Latency

14.6

6.6

24.2
22.1

9.6

18.5

11.8

6.6
4.5

9.5 9.5
8.3

17.8

13.5

0

5

10

15

20

25

Elan3 Elan4 Myrinet G5/IB Opteron/IB SP/Fed XT3

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong
GASNet put+sync

(u
p

is
 g

oo
d) GASNet excels at mid-range sizes:

important for overlap

Joint work with UPC Group; GASNet design by Dan Bonachea

Flood Bandwidth for 4KB messages

526

547

420

190

702

152

252

765

750

714231
763

223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3 Elan4 Myrinet G5/IB Opteron/IB SP/Fed XT3

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Flood Bandwidth for 2MB messages

1504

630

244

857 225

610

11061490799
255

858 228
795 1109

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3 Elan4 Myrinet G5/IB Opteron/IB SP/Fed XT3

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

(u
p

is
 g

oo
d)

GASNet at least as high
(comparable) for large messages

OneOne--Sided vs. TwoSided vs. Two--Sided: PracticeSided: Practice

0

100

200

300

400

500

600

700

800

900

16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

B
an

dw
id

th
 (M

B
/s

)

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

(G
A

SN
et

 /
M

PI
)

GASNet put
(nonblock)"
MPI Flood

GASNet/MPI

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
• Half power point (N ½) differs by one order of magnitude
• This is not a criticism of the implementation!

Yelick,Hargrove, Bonachea

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron
processors

8-byte Broadcast Perfor

0

20

40

60

80

100

120

140

Power5
Federation

16

Itanium2
Myrinet

16

Opteron
InfiniBand

64

G5
InfiniBand

16

Itanium2
QSNet2

32

Processor/Network/Threa

MPI UPC

Library ExtensionsLibrary Extensions
• Many algorithms require synchronization with remote

processor: add semantic information to data transfers
– Remote enqueue: Put a task in a remote queue
– Remote Signaling store: Raise a semaphore upon transfer
– Remote execution: Floating functions (X10 activities)

• Collective Operations: implemented using “new” primitives, easier to tune,
often faster than MPI

1 kByte All-To-All Performa

100

1000

10000

Myrinet /
Itanium2 / 16

InfiniBand /
Opteron / 64

InfiniBand / G5
/ 256

CrayXT3 / 64 Elan3 / Alpha /
64

Network / Processor / Node Co

GASNet

MPI

Programmability & ProductivityProgrammability & Productivity
(Exploiting Overlap)(Exploiting Overlap)

Manual Overlap for NAS 3D FFTManual Overlap for NAS 3D FFT

Three approaches/granularities:
Chunk:

Wait for 2nd dim FFTs to finish
Minimize # messages

Slab:
Wait for chunk of rows destined for 1 proc to

finish
Overlap with computation

Pencil:
Send each row as it completes
Maximize overlap and
Match natural layout

chunk = all rows with same destination

pencil = 1 row

slab = all rows in a single plane with same
destination

Optimizing Bandwidth Limited Problems Using One-Sided Communication and Overlap
 C. Bell, D. Bonachea, R. Nishtala, K. Yelick - IPDPS 2006

NAS FT Performance Comparison

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet
Pentium4

64

InfiniBand
Opteron

256

Elan3
Alpha

512

Elan4
Itanium2

512

Cray XT3
Opteron

512

Cray XT3
dual-core
Opteron

1024Interconnect / Processor / Thread count

NAS Fortran/MPI
MPI overlapped
UPC overlapped

NAS FT Performance SummaryNAS FT Performance Summary

• Upper bound (10%-15%) for MPI vs UPC performance, same amount of tuning
effort

• Can’t decide a priori which implementation performs best

.5 Tflops

• Run-time in charge of managing communication: transparently find and use the
idle time (overlap) present in applications

• User level implementation using existing OS (virtual memory protection) and
NIC mechanisms (RDMA)

Automatic OverlapAutomatic Overlap

h = init_read(dest, src, N);
...
sync(h);
for(i=0; i < N; i++)

... = dest[i]...;

h = init_read(dest, src, N);
mprotect(dest, N, PROT_NONE);
...
sync(h);
for(i=0; i < N; i++)

... = dest[i]...;

segfault() {
mprotect(dest,N,PROT_ALL);
sync(h); }

Execution Trace
init -> sync -> compute init -> mprotect -> start compute ->

segfault -> sync -> compute

HUNTing the Overlap
 C. Iancu, P. Husbands, P. Hargrove. PACT 2005

Application (NAS FT)Application (NAS FT)
Speedup FT(classB)/AlphaServer

0.6

0.8

1

1.2

1.4

1.6

1.8

4 8 16 32 64

Processors

FT

FT-H

FT : blocking

FT-H: message decomp &
scheduling

•Runtime mechanisms can be “heavyweight”, good performance results
•Lack of integration of OS and NIC software stacks
•Tuning the implementation?

LU Matrix FactorizationLU Matrix Factorization

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Completed part of U

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Husbands,Yelick

Three Strategies for LU FactorizationThree Strategies for LU Factorization

Husbands,Yelick

• Organize in bulk-synchronous phases (ScaLAPACK)
• Factor a block column, then perform updates
• Relatively easy to understand/debug, but extra synchronization

• Overlapping phases (HPL):
• Work associated with on block column factorization can be overlapped
• Parameter to determine how many (need temp space accordingly)

• Event-driven multithreaded (UPC Linpack):
• Each thread runs an event handler loop
• Tasks: factorization (w/ pivoting), update trailing, update upper
• Tasks my suspend (voluntarily) to wait for data, synchronization, etc.
• Data moved with remote gets (synchronization built-in)
• Must “gang” together for factorizations
• Scheduling priorities are key to performance and deadlock avoidance

UPCUPC--HP HP LinpackLinpack PerformancePerformance

• Comparable to HPL (numbers from HPCC database)
• Faster than ScaLAPACK due to less synchronization
• Large scaling of UPC code on Itanium/Quadrics (Thunder)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p
• UPC code twice shorter than MPI

UPC vs.
ScaLAPAC

0
10
20
30
40
50
60
70
80

2x4 proc grid 4x4 proc grid

G
Fl

op
s

ScaLAPAC

UPC

LU Performance Comparison

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Opteron
InfiniBand

64

SGI Altix
32

Cray X1
128/124

Cray X1
64

Cray XT3
512

Sy
st

em
 /

Pr
oc

es
so

r c
ou

nt

% Peak Performance

UPC/LU

MPI/HPL

(estimated)

Performance TuningPerformance Tuning

Status QuoStatus Quo

• Software is more expensive than hardware
• Performance modeling targets procurements
• Usual approach: use time accurate performance model

(applications, automatically tuned collectives)
– Require extensive instrumentation
– Models (LogP..) don’t capture important behavior (parallelism, congestion,

resource constraints, non-linear behavior)
– Exhaustive search of the optimization space
– Validated only at low concurrency (~tens of procs), might break at high

concurrency, might break for different network topology

• Qualitative vs Quantitative - my application does not scale past 100 procs
– Do I care how will it run on 100,000?
– Do I care how to modify it to run at larger concurrency?

Example: VectorExample: Vector--AddAdd

shared double *rdata;
double *ldata, *buf;

upc_memget(buf, rdata, N);
for(i=0; i<N; i++)

ldata[i]+= buf[i];

for(i=0; i<N/B; i++)
h[i]=upc_memget_nb(buf+i*B,rdata+i*B,B);

for(i=0; i<N/B; i++) {
sync(h[i]);
for(j=0;j<B; j++)

ldata[i*B+j]+=buf[i*B+j];

}

GET_nb(B0)
:
GET_nb(Bb)
GET_nb(Bb+1)
:
GET_nb(B2b)
sync(B0)
compute(B0)
:
sync(Bb)
compute(Bb)
GET_nb(B2b+1)
:
GET_nb(B3b)
:
sync(BN)
compute(BN)

Which implementation is faster?
What is the granularity and schedule of communication?

b

b

b

PrototypingPrototyping
• Use performance model for ideal implementation
• Understand hardware resource constraints and the variation of

performance parameters (understand trends not absolute values)
• Derive implementation constraints to satisfy both optimal

implementation and hardware constraints
• Force implementation parameters to converge towards optimal
• Validation:

– Develop performance model for scenarios widely encountered in
applications (p2p, scatter, gather, all-to-all) and a variety of aggressive
optimization techniques (strip mining, pipelining, communication schedule skewing)

– Use both micro-benchmarks and application kernels to validate approach
• Application: (performance portability)

– In practice one can produce templatized implementations for an
algorithm and use approach to determine optimal implementatin
values: loop transformations (UPC), automatic tuning, application development

Efficient Use of One-Sided Communication
C. Iancu, E. Strohmaier - PPoPP 2007

ConclusionsConclusions

• Diminishing returns from tuning network software stacks
• Cooperation compiler/runtime able to greatly improve application

performance
• Need smarter runtimes:

– All the performance pre-conditions (RTT, G) are present.
– Are they easy to implement given the current level of software integration?

• Performance modeling of implementations at large scale still an open
question.

– Should we use accurate end-to-end execution time models?
– What are the metrics of success?

EndEnd

