Q / USC Viterbi

School of Engineering

Programming Model Building Blocks
OR
Strategies for High-Performance
Heterogeneous Applications:
A Compiler Perspective

Mary Hall

December 13, 2006

* Sponsors: NSF NGS&CSR, DOE SciDAC, Intel, DARPA ACIP

HPC WPL, Sandia

USC Viterbi
Q’ School of E:gir'uee:rin; CO' laborato r's

- Compiler group:
- Jacqueline Chame (research scientist)
- Pedro Diniz (research assistant professor)
- Spundun Bhatt (programmer)

- Chun Chen, Yoon-Ju Lee Nelson, Muhammad Murtaza, Melina
Demertzi (Phd students)

William Chang (Masters student)

. ISI collaborators:
- Ewa Deelman, Yolanda Gil, Kristina Lerman, Robert Lucas

» Alumnus collaborator:
- Jaewook Shin (Argonne)

« Other USC collaborators:

- Aiichiro Nakano, Priya Vashishta, Bhupesh Bansal, Ken-ichi
Nomura

HPC WPL, Sandia

\/

USC Viterbi .
School of E:gir'uee:rin; Outl |ne

1. Homogeneous vs. heterogeneous
2. Concept diagrams

3. New flexible and systematic compiler
technology
- Self-tuning using empirical techniques
- Easily retargetable

4. Components and workflows

5. Systematic approaches from machine
learning and knowledge representation

HPC WPL, Sandia

[\ SCViterbi {otepogeneous Issues

» High-end (and commodity and embedded)
systems are increasingly heterogeneous
- 6PUs in commodity PCs
- FPGA accelerators (e.g., Cray XD1)

- Heterogeneous chip architectures such as IBM
Cell and Xilinx Virtex 4

- Roadrunner
- Domain accelerators such as Clearspeed

HPC WPL, Sandia 4

\]| UsC Viterbi Heterogeneous:
@ School of Engineering . - o °
Additional Complexity

Other:

e Utilizing highly _
tuned libraries Staging
Data to/from
global
memory

* Differences In
programming
models (GPP +FPGA

IS extreme example) Managing data

movement and
synchronization

Device Device Device
Type 2 Type 3 Type 4

Partitioning:
Where to execute?

'\/

USC Viterbi Key Themes

School of Engineering

» Performance tuning tools

- Use vast resources of Petascale systems
- Enumerate options, try, measure, record

* Optimizing compilers built from modular,

understandable chunks
- Easier to bring up on new platforms
- Facilitates collaboration

* Workflows and components

- Move away from lone hero programmers and towards
community-based development (Let's get organized!)

- Support multiple types of users/developers

A Systematic, Principled Approach!

USC Viterbi Concept 1: DARPA Heterogeneous
Embedded Computing Systems

NOTE: Application Problem

Feedback Source Application

loop,
Cognitive High level compilerfautomated partitioning and optimization

of application across heterogeneous processing system System Model

techniques
Exposed Intemediate Layer: Code Partition + Mappings

Feedback loop
to provide - | - -

performance Low level device-specific compilers and libraries
anc resource
mahagement

data. Usedto

improve overall Communication developed during high level partitioning

system

performance

Device Device Device Device Device
Type 1 Type 2 Type 3 Type d Type 5

Slide source: Bill Harrod and Jon Hiller
HPC WPL, Sandia 7

USC Viterbi Concept 2: Performance Engineering
Research Institute (SciDAC-2)

School of Engineering

* Long-term goal is to
automate the process of
tuning software to
maximize its performance

+ Reduces performance
portability challenge for
computational scientists.

* Addresses the problem
that performance experts
are in short supply -

* Builds on forty years of
human experience and

Guidance
* measurements
* models

* hardware information »+———
+ sample input
» annotations
» assertions

Source Code

Tri ‘a'ge
}

Analysis

Transformations Domain-Specific || Exernal
—l—<:> Code Generation Software

Code Generatign

Code Selection |+

1

Application Assembly

 Runtime Performance Data |

kb

@ . ~Production Runtime
Execution Adaptation

NOTE:
Feedback

:

recent success with linear
algebra libraries

Slide source: Bob Lucas and David Bailey

FPersistant
Database

PERI automatic tuning framework

HPC WPL, Sandia 8

[\J] UC Viterbi Model-guided empirical optimization
and supporting tools

* Model-guided optimization
- static models of architecture, profitability
+ Empirical optimization
- empirical data guide optimization decisions
- ATLAS, PhiPAC, FFTW, SPIRAL eftc.

- Exploit complementary strengths of both
approaches

- compiler models prune unprofitable solutions

- empirical data provide accurate measure of
optimization impact

» Supporting framework
- kernel extraction tool (code isolator)

HPC WPL, Sandia 9

'\/

Phase 1

Phase 2

USC Viterbi

School of Engineering

l Application Code

Code Variant
Generation Algorithm

Analysis/Models

Transformation Modules

Set of Parameterized Code
Variants + Constraints

Empirical Search Engine

>

Optimized Code +
Representative Input Data Set

Performance
Monitoring Support

Execution
Environment

Our Compiler-Based Strategy

Arch.
Spec.

10

eak 390 MFLOFS
350 ; 4 =
ik AL A b 1
300 %Mﬁﬁ:"ﬂ“ ' i F]M M‘ -
250 W =
[dy]
5 200 | _
z
150 | =
100 | =
Vendor BLAS ——
50 ATLAS BLAS i
Native =——
ECO
© o 500 1000 1500 2000 2500 3000 3500
Square matrix sizes
HPC WPL, Sandia 11

From Chen, Chame and Hall, CGO 2005

(\[| SCViterbi Combining Locality with SIMD

School of Engineering
Optimizations
« Motivation
- Multimedia extension architectures (SSE3, AltiVec, ...)

- Node processors in high-end systems (e.g., Intel and
Opteron clusters)

- Novel SIMD compute engines (GPU, Cell, BG/L)

+ Developed SLP compiler
- Initial approach by Larsen and Amarasinghe (PLDI ‘00)

- Locality optimizations for superword registers, control
flow support and other extensions, (Shin, Chame and
Hall, JILP ‘O3, C6GO '05)

* Impact
- Code variants generated anticipating SLP optimizations

- Requires close integration with backend (in our case) or

more search HPC WPL, Sandia 12

'\J] USC Viterbi Recent results: PentiumM+SSE

School of Engineering

doi
doj
do k
c(i,j) = c(i,j) + a(i,k)*b(k,))

VIR Automatically- | Intel MKL ATLAS Intel ifort
(3200x3200) g compiler

LIS 2. 957 Gflops | 2.895 Gflops | 3.076 Gflops |0.692 Gflops

HPC WPL, Sandia 13

c/ USC do k=1,n-1 dependence analys
' reuse

school do i=k+1,n / _

do i=k+1,n ::gwggg ' register model
. W(t, T, :
do J_k+1 ,n anti(+,0,1) :L \\\\\\\\\\\\\\\\\\\\\\

a(i,j)=a(i,j)-a(i,k)"a(k,i) output(+,0,1) flow(+,00)7 cache model

flow(+,0,+) ’
flow(+,+,0) E ““““““““““““
anti(+,0,0) ;

\\

analysis and models

transformations

= original iteration space
s1 = {[k,i,j; 1<=k<=n-1 A k+1<=i<=n A j=k+1}
s2 = {[k,i,]]: 1<=k<=n-1 A k+1<=i<=n A

'§+155.<rr=lme loops k and |

t1:={[k,ij->1[0,j,0,1i,0,Kk, 0] }
t2 .= {[k,ij->1[0,j,0,i,1,k, 0] }

mar

L = tile loops

_L permute([2,1,0]) « t1:= { [k,ij]-> [0, i, 0, kk, 0,], 0,1, 0, k, 0] :
tile(1,3,1= ti < 32) ji=2+16p && kk = 1+1280. && i-15, 2 <= ii <=i
tile(1,7, 1< tj < 32,3) 8&8& kk-127, 1 H ke<i), tj = 128
split(1,5, [d5<d1+tj]) 2::= { [k,ij] -> [, ii= 0k} i=9.44 1, k, 0]
datacopy(2,5,2) jj=2+16[&8& kk = 1+1280L && i-15, 2 <= i <=i
Unr0”(2,5, 1< ui s 16) 5 Emd:li && kk-127, 1 <= kk <=k}
unroll(2,7, 1 < uj < 16) '

(V] SCViterbi posylts: LU Decomposition

1200 ! ! ! ! ! ! ! ! ! !

| T T T
Intel MKL library ——+—
Variant 2 w/ BLAS calls -
HoeT Intel compiler ----»---

1000 -

900

800 |- /

700 -

600 |- -

MFLOPS

500 -
400 - -
300 | -

200 | _

100 Ko

S *‘-->Q<—-->0<-—-%-—-%-—->Q<———>K\‘*/,>K-~->Q<f—->0<~—->06——%---}K—-‘>’<~~‘_)<__—*"-%"%‘>->ﬁ—"%“9<

O | | | | | | | | | | | | | |
0] 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Matrix Size

HPC WPL, Sandia 15

[\ SCViterbi What next?

* Where compilers can beat libraries
- PERI: Auto-tuning of application code

- Libraries used in unusual ways (e.g., MM on
long, skinny matrices)

- Composing library calls
* Where compilers can make programmers
more productive in tuning their code

- Search for best values of application-level
parameters

- Example (next slides)

HPC WPL, Sandia 16

c/ USC Viterbi Example 1:

School of Engineering

LS-DYNA Solver Performance Results

° Factorization
Pr‘og rammer Speedup Number ot Eqs Eliminated
(i.e., Bob Lucas) 6
. - 2R
has written code 5 o 3R
variants for every =
. k3
possible unroll 3 i
factor of two G
innermost loops k bl
» Straightforward = 10R
for compiler to 0 — ——
. 1 2 3 4 5 B 7 B 9 10
generaTe Thls Number of Columns Updated

code and test for
best version

Empirical Optimization for a Sparse Linear Solver: A Case Study, Y. Lee, P. Diniz, M. Hall and R.
Lucas. International Journal of Parallel Programming, vol. 33, 2005.

HPC WPL, Sandia 17

[\ UsC Viterbi Example 2: MD Simulation

+ Explore
tradeoff o
space of
Two '
application-
level
parameters

14|:|%

me({Farallel Time

1|:||:|_
ED__.._._E_._ E 0 el
T

Total Execution Ti

0. .
0 | —=il

B00 400 S .zu ;o GBI 80 10

Farameter2(Cache Size) Farameter!(Cell Size)

[\ UsC Viterbi 4. Unifying Programming Model?

School of Engineering

(Re)discover component technology and software
architectures

- Components should be "tunable”

- Lightweight interfaces

Unify code produced by compiler with existing libraries,
new libraries, and code produced by domain-specific tools

- At the component level, use the same programming model
regardless of functional unit and data movement protocol

Can "grow" a domain-specific tool (like Fortress,
Telescoping Languages)

- Learn what is effective over time

- Evolvable and long term

HPC WPL, Sandia 19

(\]] SCViterbi More on Components

Communication

CODE

Adaptive
Partial ‘Communication

HISTORICAL VIEW EXTENDED VIEW
Facilitates partitioning and optimization of components

in execution context.

HPC WPL, Sandia 20

'\/

UsC Viterbi 5. Machine Learning & Knowledge
Representation, How Used?

School of Engineering

Authors

Problem

Approach

Cooper et al.,

Optimization order

Learning from
scratch

Eigenmann et al.

Optimization flags

Heuristic search

Cavazos & Moss,

Stephenson &
Amarasinghe

Instruction

scheduling, pick alg.

/ choose unroll
factor

Offline learning,
classification

Wings, Gil et al.

Develop plan to
execute application
on grid

Rich knowledge
representation and
AT planning

HPC WPL, Sandia

21

(\J] USC Viterbi | initing Search with Domain Knowledge

School of Engineering

Parameters:
unroll factors,
tile sizes,
prefetch
distances

.....
",
"y
2a,
]
llll
.....
aa
a
a
a
a
]

\d

Example

- Formulate memory
ierarchy optimization
(registers, caches, TLB) as
a tree search

- Levels represent ordering
of search

- Nodes represent
optimization parameters

- Separate trees used for
alternative components

- Pruning, backtracking easy

“A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy 22
Optimization,” Chen, Chame, Hall, Lerman, LCPC 2005.

[\ SCViterbi concluding Remarks

- Three core technical ideas

- Compiler technology: Modular compilers,
systematic approach to optimization, empirical
search, hand-tuned performance

- Components: Tunable, automatically-generated
XML-based interfaces, knowledge
representations, more empirical search

- Systematic: Based on machine learning,
knowledge representation

* Focus on long-term evolutionary path
* ... And community organization

HPC WPL, Sandia 23

