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Outline

1. Homogeneous vs. heterogeneous
2. Concept diagrams
3. New flexible and systematic compiler 

technology
– Self-tuning using empirical techniques
– Easily retargetable

4. Components and workflows
5. Systematic approaches from machine 

learning and knowledge representation
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Heterogeneous Issues

• High-end (and commodity and embedded) 
systems are increasingly heterogeneous
– GPUs in commodity PCs
– FPGA accelerators (e.g., Cray XD1)
– Heterogeneous chip architectures such as IBM 

Cell and Xilinx Virtex 4
– Roadrunner
– Domain accelerators such as Clearspeed
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Heterogeneous: 
Additional Complexity

Device
Type 1

Device
Type 2

Device
Type 3

Device
Type 4

Memory

Staging
Data to/from 

global 
memory

Other:

• Utilizing highly 
tuned libraries

• Differences in 
programming 
models (GPP +FPGA 
is extreme example)

Partitioning:
Where to execute?

Managing data 
movement and 

synchronization
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Key Themes

• Performance tuning tools
– Use vast resources of Petascale systems 
– Enumerate options, try, measure, record

• Optimizing compilers built from modular, 
understandable chunks
– Easier to bring up on new platforms
– Facilitates collaboration

• Workflows and components
– Move away from lone hero programmers and towards 

community-based development (Let’s get organized!)
– Support multiple types of users/developers

A Systematic, Principled Approach!
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Concept 1: DARPA Heterogeneous
Embedded Computing Systems

Slide source: Bill Harrod and Jon Hiller

NOTE:
Feedback 

loop, 
cognitive 

techniques
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Concept 2: Performance Engineering 
Research Institute (SciDAC-2)

• Long-term goal is to 
automate the process of 
tuning software to 
maximize its performance

• Reduces performance 
portability challenge for 
computational scientists.

• Addresses the problem 
that performance experts 
are in short supply

• Builds on forty years of 
human experience and 
recent success with linear 
algebra libraries

PERI automatic tuning frameworkSlide source: Bob Lucas and David Bailey

NOTE:
Feedback 

loop
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Model-guided empirical optimization 
and supporting tools

• Model-guided optimization
– static models of architecture, profitability

• Empirical optimization
– empirical data guide optimization decisions
– ATLAS, PhiPAC, FFTW, SPIRAL etc.

• Exploit complementary strengths of both 
approaches
– compiler models prune unprofitable solutions
– empirical data provide accurate measure of 

optimization impact 
• Supporting framework

– kernel extraction tool (code isolator)
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Our Compiler-Based Strategy

Analysis/Models

Transformation Modules

Application Code

Arch.
Spec.Code Variant 

Generation Algorithm

Optimized Code +
Representative Input Data Set

Empirical Search Engine
Performance

Monitoring Support

Execution
Environment

Ph
as

e 
1

Ph
as

e 
2

Set of Parameterized Code 
Variants + Constraints
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Matrix Multiply: Comparison with ATLAS, 
vendor BLAS and native compiler

matrix multiply on SGI R10K

Vendor BLAS
ATLAS BLAS

Native
ECO

From Chen, Chame and Hall, CGO 2005
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Combining Locality with SIMD 
Optimizations

• Motivation
– Multimedia extension architectures (SSE3, AltiVec, ...)
– Node processors in high-end systems (e.g., Intel and 

Opteron clusters)
– Novel SIMD compute engines (GPU, Cell, BG/L)

• Developed SLP compiler 
– Initial approach by Larsen and Amarasinghe (PLDI ‘00)
– Locality optimizations for superword registers, control 

flow support and other extensions, (Shin, Chame and 
Hall, JILP ’03, CGO ’05)

• Impact
– Code variants generated anticipating SLP optimizations 
– Requires close integration with backend (in our case) or 

more search
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Recent results: PentiumM+SSE

0.692 Gflops3.076 Gflops2.895 Gflops2.957 GflopsPerformance 

Intel ifort
compiler

ATLASIntel MKLAutomatically-
Generated

MM Version
(3200x3200)

do i
do j

do k
c(i,j) = c(i,j) + a(i,k)*b(k,j)
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application

code variant 
generation

engine

foreach memory hierarchy level M
select unmarked data structure D and loop L

s.t. D has maximum reuse, carried by L
if (level == register)

make L innermost and unroll L
else { 

permute & tile L according to reuse 
dimension 
generate copy variant if profitable

}
determine constraints based on D and M

(register/cache/TLB footprint analysis) 
mark D

code variants

transformations

search engine

analysis and models

permute([2,1,0]) 
tile(1,3,1≤ ti ≤ 32) 
tile(1,7, 1≤ tj ≤ 32,3) 
split(1,5, [d5≤d1+tj])
datacopy(2,5,2) 
unroll(2,5, 1≤ ui ≤ 16) 
unroll(2,7, 1 ≤ uj ≤ 16) 

do k=1,n-1
do i=k+1,n

a(i,k) = a(i,k)/a(k,k)
do i=k+1,n

do j=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,i)

permute loops k and j
t1 := { [k,i,j] -> [ 0, j, 0, i, 0, k, 0] } 
t2 := { [k,i,j] -> [ 0, j, 0, i, 1, k, 0] } 

original iteration space
s1 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ j=k+1} 
s2 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ 
k+1<=j<=n} 

tile loops
t1 := { [k,i,j] -> [ 0, jj, 0, kk, 0, j, 0, i, 0, k, 0] : 
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i 
&& kk-127, 1 <= kk <= k} 
t2 := { [k,i,j] -> [ 0, jj, 0, kk, 0, j, 0, i, 1, k, 0] : 
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i 
&& kk-127, 1 <= kk <= k} 

S2

S1 flow(0,0,+)
flow(0,0,0)

flow(+,0,0)
flow(+,0,+)
flow(+,+,0)
anti(+,0,0)

output(+,0,0)

flow(+,0,1)
flow(+,+,1)
anti(+,0,1)
output(+,0,1)

dependence analysisreuse 
analysis
register model

cache model

...

ti = 16, tj = 128
ui = 4, uj = 4



HPC WPL, Sandia 15

Results: LU Decomposition
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What next?

• Where compilers can beat libraries
– PERI: Auto-tuning of application code
– Libraries used in unusual ways (e.g., MM on 

long, skinny matrices)
– Composing library calls

• Where compilers can make programmers 
more productive in tuning their code
– Search for best values of application-level 

parameters 
– Example (next slides)
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Example 1:
LS-DYNA Solver Performance Results

• Programmer 
(i.e., Bob Lucas)      
has written code 
variants for every 
possible unroll 
factor of two 
innermost loops

• Straightforward 
for compiler to  
generate this 
code and test for 
best version
Empirical Optimization for a Sparse Linear Solver: A Case Study, Y. Lee, P. Diniz, M. Hall and R. 
Lucas. International Journal of Parallel Programming, vol. 33, 2005.
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Example 2: MD Simulation

• Explore 
tradeoff 
space of 
two 
application-
level 
parameters 
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4. Unifying Programming Model?

• (Re)discover component technology and software 
architectures
– Components should be “tunable”
– Lightweight interfaces

• Unify code produced by compiler with existing libraries, 
new libraries, and code produced by domain-specific tools
– At the component level, use the same programming model 

regardless of functional unit and data movement protocol
• Can “grow” a domain-specific tool (like Fortress, 

Telescoping Languages)
– Learn what is effective over time
– Evolvable and long term
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More on Components

HISTORICAL VIEW

CODE

Interface
Desc.

Communication

Partial
Code

Interface
Desc.

(Specs. for
Opt., h/w)

Adaptive
Communication

Code
Generator

EXTENDED VIEW

Feature
Code

Facilitates partitioning and optimization of components 
in execution context.
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5. Machine Learning & Knowledge 
Representation, How Used?

Heuristic searchOptimization flagsEigenmann et al.

Rich knowledge 
representation and 
AI planning

Develop plan to 
execute application 
on grid

Wings, Gil et al.

Offline learning, 
classification

Instruction 
scheduling, pick alg. 
/ choose unroll 
factor

Cavazos & Moss, 
Stephenson & 
Amarasinghe

Learning from 
scratch

Optimization order Cooper et al., 

ApproachProblemAuthors
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Limiting Search with Domain Knowledge

• Example
– Formulate memory 

hierarchy optimization 
(registers, caches, TLB) as 
a tree search

– Levels represent ordering 
of search

– Nodes represent 
optimization parameters

– Separate trees used for 
alternative components

– Pruning, backtracking easy 

Parameters:
unroll factors, 
tile sizes, 
prefetch
distances

pr
un
ed
 b
y 
U I
*U J

*U
K
≤
R

pruned by TK ≥ UK

pr
un
ed
 b
y 
P P,

K
≤
T K

UI=1 
UJ=1 
UK=1

root

UI=1 
UJ=1 
UK=2

UI=1 
UJ=1 
UK=R

UI=1 
UJ=2 
UK=1

UI=1 UJ=2 
UK=R/2+1

TI=1 
TJ=1 
TK=1

TI=1 
TJ=1 
TK=2

TI=1 
TJ=1 
TK=C

UI=R 
UJ=1 
UK=1

PP,K=1 PP,K=2
PP,K=3 

“A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy 
Optimization,” Chen, Chame, Hall, Lerman, LCPC 2005.
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Concluding Remarks

• Three core technical ideas
– Compiler technology: Modular compilers, 

systematic approach to optimization, empirical 
search, hand-tuned performance

– Components: Tunable, automatically-generated 
XML-based interfaces, knowledge 
representations, more empirical search

– Systematic: Based on machine learning, 
knowledge representation

• Focus on long-term evolutionary path
• ... And community organization


