
HPC WPL, Sandia 1

Mary Hall

December 13, 2006

Programming Model Building Blocks
OR

Strategies for High-Performance
Heterogeneous Applications:

A Compiler Perspective

* Sponsors: NSF NGS&CSR, DOE SciDAC, Intel, DARPA ACIP

HPC WPL, Sandia 2

Collaborators

• Compiler group:
– Jacqueline Chame (research scientist)
– Pedro Diniz (research assistant professor)
– Spundun Bhatt (programmer)
– Chun Chen, Yoon-Ju Lee Nelson, Muhammad Murtaza, Melina

Demertzi (Phd students)
– William Chang (Masters student)

• ISI collaborators:
– Ewa Deelman, Yolanda Gil, Kristina Lerman, Robert Lucas

• Alumnus collaborator:
– Jaewook Shin (Argonne)

• Other USC collaborators:
– Aiichiro Nakano, Priya Vashishta, Bhupesh Bansal, Ken-ichi

Nomura

HPC WPL, Sandia 3

Outline

1. Homogeneous vs. heterogeneous
2. Concept diagrams
3. New flexible and systematic compiler

technology
– Self-tuning using empirical techniques
– Easily retargetable

4. Components and workflows
5. Systematic approaches from machine

learning and knowledge representation

HPC WPL, Sandia 4

Heterogeneous Issues

• High-end (and commodity and embedded)
systems are increasingly heterogeneous
– GPUs in commodity PCs
– FPGA accelerators (e.g., Cray XD1)
– Heterogeneous chip architectures such as IBM

Cell and Xilinx Virtex 4
– Roadrunner
– Domain accelerators such as Clearspeed

HPC WPL, Sandia 5

Heterogeneous:
Additional Complexity

Device
Type 1

Device
Type 2

Device
Type 3

Device
Type 4

Memory

Staging
Data to/from

global
memory

Other:

• Utilizing highly
tuned libraries

• Differences in
programming
models (GPP +FPGA
is extreme example)

Partitioning:
Where to execute?

Managing data
movement and

synchronization

HPC WPL, Sandia 6

Key Themes

• Performance tuning tools
– Use vast resources of Petascale systems
– Enumerate options, try, measure, record

• Optimizing compilers built from modular,
understandable chunks
– Easier to bring up on new platforms
– Facilitates collaboration

• Workflows and components
– Move away from lone hero programmers and towards

community-based development (Let’s get organized!)
– Support multiple types of users/developers

A Systematic, Principled Approach!

HPC WPL, Sandia 7

Concept 1: DARPA Heterogeneous
Embedded Computing Systems

Slide source: Bill Harrod and Jon Hiller

NOTE:
Feedback

loop,
cognitive

techniques

HPC WPL, Sandia 8

Concept 2: Performance Engineering
Research Institute (SciDAC-2)

• Long-term goal is to
automate the process of
tuning software to
maximize its performance

• Reduces performance
portability challenge for
computational scientists.

• Addresses the problem
that performance experts
are in short supply

• Builds on forty years of
human experience and
recent success with linear
algebra libraries

PERI automatic tuning frameworkSlide source: Bob Lucas and David Bailey

NOTE:
Feedback

loop

HPC WPL, Sandia 9

Model-guided empirical optimization
and supporting tools

• Model-guided optimization
– static models of architecture, profitability

• Empirical optimization
– empirical data guide optimization decisions
– ATLAS, PhiPAC, FFTW, SPIRAL etc.

• Exploit complementary strengths of both
approaches
– compiler models prune unprofitable solutions
– empirical data provide accurate measure of

optimization impact
• Supporting framework

– kernel extraction tool (code isolator)

HPC WPL, Sandia 10

Our Compiler-Based Strategy

Analysis/Models

Transformation Modules

Application Code

Arch.
Spec.Code Variant

Generation Algorithm

Optimized Code +
Representative Input Data Set

Empirical Search Engine
Performance

Monitoring Support

Execution
Environment

Ph
as

e
1

Ph
as

e
2

Set of Parameterized Code
Variants + Constraints

HPC WPL, Sandia 11

Matrix Multiply: Comparison with ATLAS,
vendor BLAS and native compiler

matrix multiply on SGI R10K

Vendor BLAS
ATLAS BLAS

Native
ECO

From Chen, Chame and Hall, CGO 2005

HPC WPL, Sandia 12

Combining Locality with SIMD
Optimizations

• Motivation
– Multimedia extension architectures (SSE3, AltiVec, ...)
– Node processors in high-end systems (e.g., Intel and

Opteron clusters)
– Novel SIMD compute engines (GPU, Cell, BG/L)

• Developed SLP compiler
– Initial approach by Larsen and Amarasinghe (PLDI ‘00)
– Locality optimizations for superword registers, control

flow support and other extensions, (Shin, Chame and
Hall, JILP ’03, CGO ’05)

• Impact
– Code variants generated anticipating SLP optimizations
– Requires close integration with backend (in our case) or

more search

HPC WPL, Sandia 13

Recent results: PentiumM+SSE

0.692 Gflops3.076 Gflops2.895 Gflops2.957 GflopsPerformance

Intel ifort
compiler

ATLASIntel MKLAutomatically-
Generated

MM Version
(3200x3200)

do i
do j

do k
c(i,j) = c(i,j) + a(i,k)*b(k,j)

HPC WPL, Sandia 14

application

code variant
generation

engine

foreach memory hierarchy level M
select unmarked data structure D and loop L

s.t. D has maximum reuse, carried by L
if (level == register)

make L innermost and unroll L
else {

permute & tile L according to reuse
dimension
generate copy variant if profitable

}
determine constraints based on D and M

(register/cache/TLB footprint analysis)
mark D

code variants

transformations

search engine

analysis and models

permute([2,1,0])
tile(1,3,1≤ ti ≤ 32)
tile(1,7, 1≤ tj ≤ 32,3)
split(1,5, [d5≤d1+tj])
datacopy(2,5,2)
unroll(2,5, 1≤ ui ≤ 16)
unroll(2,7, 1 ≤ uj ≤ 16)

do k=1,n-1
do i=k+1,n

a(i,k) = a(i,k)/a(k,k)
do i=k+1,n

do j=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,i)

permute loops k and j
t1 := { [k,i,j] -> [0, j, 0, i, 0, k, 0] }
t2 := { [k,i,j] -> [0, j, 0, i, 1, k, 0] }

original iteration space
s1 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ j=k+1}
s2 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^
k+1<=j<=n}

tile loops
t1 := { [k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 0, k, 0] :
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i
&& kk-127, 1 <= kk <= k}
t2 := { [k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 1, k, 0] :
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i
&& kk-127, 1 <= kk <= k}

S2

S1 flow(0,0,+)
flow(0,0,0)

flow(+,0,0)
flow(+,0,+)
flow(+,+,0)
anti(+,0,0)

output(+,0,0)

flow(+,0,1)
flow(+,+,1)
anti(+,0,1)
output(+,0,1)

dependence analysisreuse
analysis
register model

cache model

...

ti = 16, tj = 128
ui = 4, uj = 4

HPC WPL, Sandia 15

Results: LU Decomposition

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

M
FL

O
PS

Matrix Size

Intel MKL library
Variant 2 w/ BLAS calls

Intel compiler

HPC WPL, Sandia 16

What next?

• Where compilers can beat libraries
– PERI: Auto-tuning of application code
– Libraries used in unusual ways (e.g., MM on

long, skinny matrices)
– Composing library calls

• Where compilers can make programmers
more productive in tuning their code
– Search for best values of application-level

parameters
– Example (next slides)

HPC WPL, Sandia 17

Example 1:
LS-DYNA Solver Performance Results

• Programmer
(i.e., Bob Lucas)
has written code
variants for every
possible unroll
factor of two
innermost loops

• Straightforward
for compiler to
generate this
code and test for
best version
Empirical Optimization for a Sparse Linear Solver: A Case Study, Y. Lee, P. Diniz, M. Hall and R.
Lucas. International Journal of Parallel Programming, vol. 33, 2005.

HPC WPL, Sandia 18

Example 2: MD Simulation

• Explore
tradeoff
space of
two
application-
level
parameters

HPC WPL, Sandia 19

4. Unifying Programming Model?

• (Re)discover component technology and software
architectures
– Components should be “tunable”
– Lightweight interfaces

• Unify code produced by compiler with existing libraries,
new libraries, and code produced by domain-specific tools
– At the component level, use the same programming model

regardless of functional unit and data movement protocol
• Can “grow” a domain-specific tool (like Fortress,

Telescoping Languages)
– Learn what is effective over time
– Evolvable and long term

HPC WPL, Sandia 20

More on Components

HISTORICAL VIEW

CODE

Interface
Desc.

Communication

Partial
Code

Interface
Desc.

(Specs. for
Opt., h/w)

Adaptive
Communication

Code
Generator

EXTENDED VIEW

Feature
Code

Facilitates partitioning and optimization of components
in execution context.

HPC WPL, Sandia 21

5. Machine Learning & Knowledge
Representation, How Used?

Heuristic searchOptimization flagsEigenmann et al.

Rich knowledge
representation and
AI planning

Develop plan to
execute application
on grid

Wings, Gil et al.

Offline learning,
classification

Instruction
scheduling, pick alg.
/ choose unroll
factor

Cavazos & Moss,
Stephenson &
Amarasinghe

Learning from
scratch

Optimization order Cooper et al.,

ApproachProblemAuthors

HPC WPL, Sandia 22

Limiting Search with Domain Knowledge

• Example
– Formulate memory

hierarchy optimization
(registers, caches, TLB) as
a tree search

– Levels represent ordering
of search

– Nodes represent
optimization parameters

– Separate trees used for
alternative components

– Pruning, backtracking easy

Parameters:
unroll factors,
tile sizes,
prefetch
distances

pr
un
ed
 b
y
U I
*U J

*U
K
≤
R

pruned by TK ≥ UK

pr
un
ed
 b
y
P P,

K
≤
T K

UI=1
UJ=1
UK=1

root

UI=1
UJ=1
UK=2

UI=1
UJ=1
UK=R

UI=1
UJ=2
UK=1

UI=1 UJ=2
UK=R/2+1

TI=1
TJ=1
TK=1

TI=1
TJ=1
TK=2

TI=1
TJ=1
TK=C

UI=R
UJ=1
UK=1

PP,K=1 PP,K=2
PP,K=3

“A Systematic Approach to Model-Guided Empirical Search for Memory Hierarchy
Optimization,” Chen, Chame, Hall, Lerman, LCPC 2005.

HPC WPL, Sandia 23

Concluding Remarks

• Three core technical ideas
– Compiler technology: Modular compilers,

systematic approach to optimization, empirical
search, hand-tuned performance

– Components: Tunable, automatically-generated
XML-based interfaces, knowledge
representations, more empirical search

– Systematic: Based on machine learning,
knowledge representation

• Focus on long-term evolutionary path
• ... And community organization

