

From HPF to Locality-Aware
High-Productivity Languages

Hans P. Zima

 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA
and

Institute of Scientific Computing, University of Vienna, Austria

 Workshop on Programming Languages for High Performance Computing (HPC WPL)
Albuquerque, NM, December 12-13, 2006

1 Introduction
2 The Path Towards a High-Level Language
3 Why HPF Did Not Succeed
4 From HPF to Locality-Aware High Productivity

Languages
5 Conclusion
Acknowledgment
 * Part of this talk is based on an upcoming paper:

Ken Kennedy, Charles Koelbel, and Hans Zima: The Rise and Fall of
High Performance Fortran: An Historical Object Lesson
Proc. History of Programming Languages III (HOPL III), San Diego, June 2007

 * Major contributors to the Chapel features discussed were David Callahan, Brad
Chamberlain, and Roxana Diaconescu

 Contents

 Programming models and languages bridge the gap between
“reality” and hardware – at different levels of abstraction

 Abstraction implies loss of information, but the right
abstractions make it harder to write incorrect programs:
0 gain in simplicity, clarity, verifiability, and portability
0 loss of information may lead to performance degradation

 A successful programming model for high performance
computing must find an acceptable compromise between the
level of abstraction and the resulting target code performance
-– with performance having priority

 Abstraction in Programming

 Current HPC programming is dominated by the use of a standard
language (Fortran, C/C++), combined with message-passing (MPI)

 MPI has made a tremendous contribution to the field, providing a
ubiquitous portable standard

BUT:
 there is a wide gap between the domain of the scientist and this

programming model
 conceptually simple problems (e.g., stencil computations) can result

in very complex programs
 conceptually simple changes (like replacing a block data

distribution with a cyclic distribution) can result in major program
modifications

 exploiting performance may require “heroic” programmer effort

 HPC Programming Paradigm: State of the Art

1 Introduction
2 The Path Towards a High-Level Language
3 Why HPF Did Not Succeed
4 From HPF to Locality-Aware High Productivity

Languages
5 Conclusion

 Contents

 High Performance Fortran (HPF) Language Family
0 HPF Predecessors: Kali, CM-Fortran, Fortran D, Vienna Fortran
0 High Performance Fortran (HPF): HPF-1 (1993); HPF-2(1997)
0 Post-HPF Developments: HPF+, JAHPF

 OpenMP
 ZPL
 Partitioned Global Address Space (PGAS) Languages

0 Co-Array Fortran, UPC, Titanium

 High-Productivity Languages
0 Chapel, X10, Fortress

 The Path to High Productivity Languages

do while (.not. converged)
 do J=1,M
 do I=1,N
 B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+
 A(I,J-1)+A(I,J+1))
 end do
 end do
 A(1:N,1:N) = B(1:N,1:N)

local computation
initialize MPI

if (MOD(myrank,2) .eq. 1) then
call MPI_SEND(B(1,1),N,…,myrank-1,..)

 call MPI_RCV(A(1,0),N,
…,myrank-1,..)

 if (myrank .lt. s-1) then
 call MPI_SEND(B(1,M),N,…,myrank+1,..)

 call MPI_RCV(A(1,M+1),N,…,myrank+1,..)
 endif

 else …
 …

The High Performance Fortran Idea

 processors P(NUMBER_OF_PROCESSORS)
 distribute(*,BLOCK) onto P :: A, B

do while (.not. converged)
 do J=1,N
 do I=1,N
 B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+
 A(I,J-1)+A(I,J+1))
 end do
 end do
 A(1:N,1:N) = B(1:N,1:N)

global computation

data distribution

HPF Approach Message Passing Approach

 communication
compiler-generated

 The HPF code for the example is far simpler than MPI code
(due to explicit communication and explicit data structure
management in MPI)

 Compiler generated object code can be as good as MPI code:
0 parallelization of the loop
0 static analysis of access patterns and communication
0 aggregation and fusion of communication

BUT:
 For more realistic application problems, HPF-1 presented

serious difficulties regarding expressivity and performance (in
particular, communication overhead, and load balancing).

 Example: Observations

 Programmer needs to model
irregular meshes

 Access to such a mesh requires
at least 2 levels of indirection.

REAL :: X(3,N_NODES), F(6,N_NODES), ...
INTEGER :: IX(4,N_ELEMS) !mesh
connectivity
...

do i = 1, N_ELEMS
 do i = 1, 4
 F(:,IX(K,I)) = ...+F(:,IX(K,I))+ ...
 end do
end do

 Finite Element Code for Crash Simulation

Problem: index space
locality does not reflect
locality in 3D space

Regular block or cyclic
distributions cannot
effectively deal with
such a situation

Data Distribution for Unstructured Grids

1 Introduction
2 The Path Towards a High-Level Approach
3 Why HPF Did Not Succeed
4 From HPF to Locality-Aware High Productivity

Languages
5 Conclusion

 Contents

 Provide high-level programming support for scalable parallel
computer systems, with particular emphasis on data parallelism

 Provide a machine-independent programming model
characterized by:
0 global name space
0 implicit generation of communication based on a high-level specification of

data distribution
0 Single-threaded control

 Generate target code performance comparable to the best hand-
coded MPI program

 Define the language as a directive-based extension of Fortran 90

 HPF Goals (1993)

 Initial Response: Welcome by many in the user community
0 hope for a high-level programming paradigm providing portability
0 compiler efforts by Digital,IBM,Thinking Machines, Portland Group (PGI)
0 up to 17 vendors offering HPF products, 35 major applications in HPF

 Soon serious problems with performance and portability arose:
0 immature compiler technology
0 lack of key functionality
0 inconsistency of implementations
0 complex relationship between source and target programs – difficulty of

identifying and correcting performance problems

 Experiences with HPF-1 (1993)

 Compiler technology for Fortran 90 was immature at the time:
0 Fortran 90 was a recently completed major extension of F77, providing array

operations, modules, dynamic storage allocation, and pointer-based data structures

 HPF itself required new compiler technology, which had been implemented
only in a few research compilers and in the CM Fortran compiler:
0 global distribution analysis
0 partitioning of the computation
0 generation of communication
0 communication optimization

 Different compiler vendors often focused on different features for
optimization, resulting in diminished (performance) portability

 There was heavy pressure on compiler vendors to release early
implementations

Problems with HPF-1: Compiler Technology

 Data distribution
0 only regular block and cyclic distributions provided
0 all distributions targeted whole processor array
0 this was sufficient for dense and regular array computations, linear algebra
0 no effective support for unstructured, semi-structured (e.g., multi-block,

structured AMR, or parallel multigrid), or sparse computations

 Focus on data parallelism: no support for task parallelism
 Based on owner computes paradigm: no adequate support for

expressing work distribution, in particular affinity between
locus of control and locus of data

 These deficiencies resulted in serious performance problems, in
particular with respect to communication and load balancing

Problems with HPF-1: Missing Functionality

 HPF compilers performed a source-to-source translation:

 HPF Fortran + MPI
 This process generally involved major program transformations,

including many optimizations
 As a result, the relationship between source and target programs

was difficult for the user to understand
 Some tools were developed that mapped performance properties

of the MPI target program back to the HPF source (e.g., Pablo,
Medea) – but still the average user did not know how to modify
the source program in order to address a performance problem

Problems with HPF-1: Performance Tuning

 HPF-2 (1997) addressed some of the shortcomings of HPF-1:
0 more flexible data distributions (including general block, indirect)
0 support for distribution to subsets of the processor array
0 support for expression of affinity
0 rudimentary tasking facility

 This turned out to be too little, too late
 HPF+ (1998), developed at Vienna University, went a step

further and provided high-level control of communication:
0 asserting invariance of a communication schedule for an irregular loop
0 allowing explicit specification and management of “halos” in the language

 JAHPF assimilated many features of HPF+ via a cooperation
with NEC: this led to a successful implementation on the Earth
Simulator – e.g., a JAHPF plasma code reached 40% efficiency
on the Earth Simulator

 HPF Beyond HPF-1

1 Introduction
2 The Path Towards a High-Level Approach
3 Why HPF Did Not Succeed
4 From HPF to Locality-Aware High Productivity

Languages
5 Conclusion

 Contents

 HPCS Languages
0 Chapel (Cascade Project, led by Cray Inc.)
0 X10 (PERCS Project, led by IBM)
0 Fortress (HERO Project, led by Sun Microsystems Inc.)

 Global name space and global data access
0 in general, no static distinction between local and global references

 Explicit high-level specification of parallelism
 Explicit high-level locality management
 High-level support for distributed collections
 Support for data and task parallelism
 Object orientation

 HPCS Language Overview

domain

domain

align data

distribute
 data

work
align data with work
 (affinity)

distribute
 work

 Locale Set

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

 Locality Management in Chapel

 Locality Control in Chapel: Basic Concepts

 Locale
0 “locale”: abstract unit of locality, bound to an execution
0 user-defined views of locale sets
0 explicit allocation of data and computations on locales

 Domain
0 first-class entity
0 components: index set, distribution, associated arrays, iterators
0 different kinds of domains including arithmetic and indefinite

 Array --- Mapping from a Domain to a Set of Variables
 Object-Oriented Framework for User-Defined Distributions

0 original ideas in Kali and Vienna Fortran
0 user can work with distributions at three levels

 naïve use of a predefined library distribution
 explicit specification of a distribution by its global mapping
 explicit specification of a distribution by global mapping and data layout

Example: Matrix-Vector Multiplication (dense)

var Mat: domain(2) = [1..m, 1..n];
var MatCol: domain(1) = Mat(2);
var MatRow: domain(1) = Mat(1);

var A:[Mat] float;
var v:[MatCol] float;
var s:[MatRow] float;

s = sum(dim=2) [i,j in Mat] A(i,j)*v(j);

var L:[1..p1,1..p2] locale = reshape(Locales);

var Mat: domain(2) distributed(myB,myB) on L =[1..m,1..n];
var MatCol: domain(1) aligned(*,Mat(2))= Mat(2);
var MatRow: domain(1) aligned(Mat(1),*)= Mat(1);

var A:[Mat] float;
var v:[MatCol] float;
var s:[MatRow] float;

s = sum(dim=2) [i,j in Mat] A(i,j)*v(j);

Version 1

 Version 2:
 distributions added,
algorithm unchanged

Key Functionality of the Distribution Framework
 Two levels: global mapping and layout mapping
 User-Defined Global Mappings from Index Sets to Locales

0 standard interface for the definition of mapping, distribution segments,
sequential and parallel iterators

0 some functionality provided by the system can be overridden by the user
0 “standard” distributions (block, block-cyclic, etc.) will be placed in a library
0 application-specific distributions will be part of specialized libraries

 User-Defined Layout Specifications
0 layout specifies data arrangement within a locale
0 sparse data structures important target

 Dynamic Reallocation, Redistribution
 High-Level Control of Communication

0 user-defined specification of halos
0 user-defined assertions on communication

0 53 0 0 0
0 0 0 0 0
19 0 0 0 0
0 0 0 0 0
0 0 0 17 0
0 0 0 0 93
0 0 0 0 0

 0 0 0
 0 21 0
 0 0 16
 72 0 0
 0 0 0
 0 0 0
 0 13 0

0 0 0 0
0 23 69 0
27 0 0 11

44 0 0 19
 37 0 0 0
 0 0 64 0

D0

53
19
17
93

C0

 2
 1
 4
 5

R0

 1
 2
 2
 3
 3
 4
 5
 5

D0

53
19
17
93

D0

53
19
17
93

C0

 2
 1
 4
 5

R0

 1
 2
 2
 3
 3
 4
 5
 5

C1

 7
 8
 6
 7

R1

 1
 1
 2
 3
 4
 4
 4
 5

D1

21
16
72
13

D0

53
19
17
93

C2

 2
 3
 1
 4

R2

 1
 1
 3
 5

D2

23
69
27
11

D3

44
19
37
64

C3

 5
 8
 5
 7

R3

 1
 3
 4
 5

const D: domain(2) = [1..m,1..n]; /* dense data domain */
var myBRD: BRD = BRD(…);
/* declaration and initialization of sparse subdomain */
const DD: sparse domain(D) distributed(myBRD,CRS()) = …;
var AA:[DD]eltype;var x:[1..n]eltype; var y:[1..m]eltype;

…
forall(i,j)in DD { y(i)=sum reduce (dim=2) A(i,j)*x(j);…

 }…

Example: Matrix-Vector Multiplication (Sparse CRS)

user program

 BRD Distribution with CRS Layout

class BRD: Distribution {
 …
 function map(i:index(source)):locale{…}; /* global mapping for dense domain */
 function GetDistributionSegment(loc:locale):domain(1){…}; /* “box” for loc */
 …
}

class CRS: LocalSegment {
 const loc: locale = this.getLocale();
 /* declaration of dense and sparse distribution segment for locale loc: */
 const locD: domain(2);
 const locDD: sparse domain(locD) = GetDistributionSegment(loc);
 …
 const LocalDomain: domain(1)=1..nnz; /* local data domain */
 /* persistent data structures in the local segment: */
 var cx: [LocalDomain] index(locD(2)); /* column index vector */
 var ro: [l1..u1+1] index(xLocalDomain); /* row vector */
 …
 function define_column_vector(): {[z in LocalDomain] cx(z)=nz2x(z)(2)}
 function define_row_vector(): {…}
 …
 function layout(i: index(D)): index(LocalDomain) return(x2nz(i))
 constructor LocalSegment(){define_column_vector(); define_row_vector(); }
}

 HPF was a first major attempt at defining a high-productivity language for
programming HPC systems

 This approach did not succeed at the time – for a variety of reasons some of
which were unrelated to the functionality provided by the language

 The HPCS languages revived a key HPF idea--high-level locality awareness--in
a more general, object-oriented context; in addition to enhanced functionality

 Acceptance of a new language depends on many criteria, including:
0 functionality and target code performance
0 mature compiler and runtime system technology
0 user familiarity with conventional features
0 easy integration/migration of legacy codes
0 integrated development environment
0 flexibility to deal with new hardware developments
0 support by funding agencies and major vendors

 Conclusion

Rapport Kilocore chip
 1024 processing elements

announced for 2007

