
ParalleX
what we are doing at LSU (between games)

Thomas Sterling

Louisiana State University
California Institute of Technology
Oak Ridge National Laboratory

December 13, 2006

:

An Invited Presentation to Workshop on HPC Programming Languages:





A Personal Perspective and Mental 
Peregrinations 

• Observation: As technology changes, architecture advances
– To exploit new capability opportunities
– To compensate for limitations

• Distinct architecture classes may benefit from employing 
alternative models of computation
– Earlier: SIMD, vector, systolic, dataflow
– Contemporary: multiple threads, CSP

• Premise
– Current and future technology suggests need for change in 

architecture
– Such architecture advance needs to be driven in change of 

execution model
– We are formulating a working hypothesis execution model, 

“ParalleX”
– Such changes may benefit from language advances



Prior Projects that Influenced ParalleX

• Beowulf
– NASA, GSFC & JPL

• Continuum Computing Architecture
– DARPA, Caltech

• HTMT
– NSF/DARPA/NSA/NASA, Caltech & JPL

• DIVA
– DARPA, USC ISI

• Gilgamesh
– NASA, JPL

• Percolation
– NSF, U. of Delaware

• Advance Programming Models
– DOE, ANL

• Cascade
– DARPA, Cray

• Config-OS
– DOE, SNL & UNM



Attributes of an Execution Model

• Conceptual framework for considering design 
decisions for programming languages, compilers, 
runtime, OS, and hardware architectures

• Enables reasoning about the decision chain for 
resource scheduling

• Is NOT a programming model, architecture, or virtual 
machine

• Specifies referents, their interrelationships, and 
actions that can be performed on them

• Defines semantics of state objects, functions, parallel 
flow control, and distributed interactions

• Leaves unbound policies of implementation 
technology, structure, and mechanism



Goals of a New Model of Parallel Computation

• Serve as a discipline to govern future scalable system 
architectures, programming methods, and runtime/OS

• Address Dominant Challenges to Enable High Efficiency 
(in time)
– Latency
– Overhead
– Starvation
– Resource contention
– Programmability

• Exploit performance opportunities of the technology
– Support architecture changes like myriad ALUs and PIM

• Emphasize critical (precious) resources
– Memory bandwidth, system bandwidth

• Address practical concerns of power, reliability, and size



A Synthesis of Selected Concepts

• Split-phase transaction
• Message-driven
• Multi-threaded
• Distributed Shared Memory
• Futures
• Percolation
• Lightweight control objects
• One sided 
• In-memory synchronization
• Copy semantics
• Affinity relationships
• Failure aware



Split Phase Transactions

• A transaction is a set of interdependent actions on 
exchanged values

• Transactions are divided between successive phases
• All actions of a transaction phase are relatively local

– Assigned to a given execution element
– Operations perform on local state for low latency

• Phases are divided at stages of remote access or 
service request
– Thus, asynchronous phasing at split 



Localities

• A “locality” is a contiguous physical domain
• Guarantees compound atomic operations on local 

state
• Manages intra-locality latencies
• Exposes diverse temporal locality attributes
• Divides the world into synchronous and 

asynchronous
• System comprises a set of mutually exclusive, 

collectively exhaustive localities
• A first class object
• An attribute of other objects
• Heterogeneous
• Specific inalienable properties



Global name space

• Assumes no coherence between localities
• User variables
• Synchronization variables and objects
• Threads as first-class objects
• Moves virtual named elements in physical space
• Parcel sets
• Process

– First class object
– Specifies a broad task
– Defines a distributed environment

• Spans multiple localities
• Need not be contiguous



Parcels

• Enables message-driven computation
• Messages that specify function to be performed on a named 

element
• Moves work and data between objects in different localities
• Parcels are not first-class objects
• Exists in the world of “parcel sets”

– First-class objects
– Transfer between parcel sets is atomic, invariant, and unobservable

• Major semantic content
– Destination object
– Action to be performed on targeted object
– Operands for function to be performed
– Continuation specifier



Multi-Grain Multithreading

• Threads are collections of related operations that perform on 
locally shared data

• A thread is a continuation combined with a local environment
– Modifies local named data state and temporaries
– Updates intra thread and inter thread control state

• Does not assume sequential execution
– Other flow control for intra-thread operations possible

• Thread can realize transaction phase
• Thread does not assume dedicated execution resources
• Thread is first class object identified in global name space
• Thread is ephemeral



Percolation Pre-Staging

• An important latency hiding and scheduling technique
• Overhead functions are not necessarily done optimally 

by high speed processors
• Moves data and task specification to local temporary 

storage of an execution element by external means
• Minimum overhead at execution site
• Almost no remote accesses
• Cycle: dispatch/prestage/execute/commit/control update
• High speed execution element operates on work queue
• Processors are dumb, memory is smart
• Good for accelerators, functional elements, precious 

resources



Fine-grain event driven synchronization: 
breaking the barrier

• A number of forms of synchronization are 
incorporated into the semantics

• Message-driven remote thread instantiation
• Lightweight objects

– Data flow
– Futures

• In-memory synchronization
– Control state is in the name space of the machine
– Producer-consumer in memory

• e.g., empty/full bits
– Local mutual exclusion protection
– Synchronization mechanisms as well as state are presumed 

to be intrinsic to memory
• Directed trees and graphs

– Low cost traversal



Beyond current scope

• Policies not specified
– Execution order
– Language and language syntax
– What’s special about hardware
– Runtime vs. OS responsibilities
– Load balancing

• What’s missing
– Affinity, colocation
– Fault intrinsics
– Meta threads
– I/O
– Many details



Reference Implementation

• Goal
– Validation of semantics and PXI formulation

• Correctness
• Completeness 

– Early testbed for experimentation and algorithm 
development

– Executable reference for future PXI implementations by 
external collaborators

• Strategy
– Facilitates development of PXIF syntax specification
– Employ rapid prototyping software development environment
– Incremental design

• Replace existing functions with PXI-specific modules
• Refinement of ParalleX concepts and PXIF formalism



PXIF from Sources to Execution

PXIF Sources

Internal 
Representation

Text Object Pool

TextTextText

High-level 
Translator

Static 
Compiler

Dynamic 
Compiler

Multi-
threaded 

VM

Multi-
threaded 

VM

Multi-
threaded 

VM

Thread 
Scheduler

Thread 
Scheduler

Thread 
Scheduler

...



Conclusions

• Undertaking an exploratory study of alternative 
execution models

• Influenced by early architecture studies
• Benefits from previous projects
• Working toward

– Advanced Specification
– Reference implementation
– Costs quantification
– Realization on conventional distributed systems (?)
– FPGA-based accelerator
– Architecture refinement
– Implications for programming model and language




