
Programming Environments
&

Debugging

Greg Watson



Introduction

• Parallel Tools Platform
– Provides basic functionality for developing parallel codes
– Provides a platform for the integration of parallel tools

• Starting to get some experiences with tool integration

• Convincing argument for using an IDE?

• Debugging



Case Study 1: Cell SDK

• Traditional build model
– Requires three directories: project, PPE, SPU
– Manually edit makefiles and include template
– Specify SPU imports in project
– Partition code into PPE and SPU (!)
– During build process:

– Compiles PPE code
– Cross-compiles SPU code
– Runs tool to embed SPU code into PPE executable



Case Study 1 (cont…)

• Traditional (cont…)
– Copy PPE executable to target
– Run PPE executable
– If debugging:

– Launch separate debugger for PPE or SPU target
– Connect to running SPU process as remote target

• Cell SDK
– Version 2.0 available 15 December
– Provides combined PPE/SPU debugger



Case Study 1 (cont…)

• Cell IDE
– Eclipse based



Case Study 1 (cont…)













Case Study 2: TAU

• Traditional
– Stub makefile and library created when TAU installed
– Manually include stub makefile in build system
– Enable/disable instrumentation using TAU_DEFS environment

variable
– Launch application, selective instrumentation controlled by

TAU_THROTTLE environment variable or by editing
instrumentation file

– Manually collect data
– Run visualizer on collected instrumentation data



Case Study 2 (cont…)

• Eclipse
– Uses existing Eclipse-based project
– Click on Profile button instead of Run button
– Select instrumentation from GUI

– Automatically rebuilds application if necessary
– Profile data automatically added to project database
– Right-click to launch paraprof



Case Study 1 (cont…)



Lessons

• Complex tool chains can be significantly simplified
– Hide unnecessary details from the user
– Presents much more logical workflow

• Advanced interface features
– Greatly simplify user interaction with tool chain
– Can provide features difficult or impossible otherwise



Lessons (cont…)

• New tool design and development simplified
– No need to re-implement shared services
– Can focus on core tool functionality

• Training and support costs are lower
– Much easier to learn development tools
– Support can focus on single environment across a range of

architectures/machines



Other Advantages

• Managing legacy codes
– Refactoring C structs to MPI types
– Converting Fortran common blocks to derived types
– Conversion to new languages

• Meta-compiler error checking
– Concurrency checking for OpenMP
– Fortran default single precision constants

• Programming model support
– Visual aids for program design
– Source code generation (e.g. MPI communicators)



Debugging

• Traditional debugging methodology
– B.I.S.R. (breakpoint, inspect, step, repeat)
– printf
– May not work with advanced languages
– Will not work with peta-scale architectures

• Assumption is that gdb and TotalView will solve the
problem



Debugging Advances

• Identifying error occurrence
– Predicates/assertions
– Message/data patterns

• Locating error data
– Visualize global program state
– Comparison/search across application

• Rewinding/replaying

• As easy as printf



Debugging Advances (cont…)

• and
– how does this work in heterogeneous environments?



What is needed?

• Universal parallel debugging platform

• Rich user interface

• Community willing to undertake research
– Open source

• Confidence
– Technology can be advanced
– Will aid developers, not hinder
– Longevity


